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Abstract

In this note, we prove that for n ≥ 30, there exists at lest a prime number
in the interval

(
n2,
(
n + f(n)

)2] in which f(n) is a function with the order
of O( n

ln2 n
), and we count the number of primes in this interval. By using the

result of this counting, we estimate the probability that a prime exists in the
interval

(
n2, (n + 1)2

)
. Also, we show that there exists n0 ∈ N such that for all

n > n0, the interval
[(

n− g(n)
)2

, n2
)
, in which g(n) = O(n

1
20 ).
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1 Introduction

It seems that the story of studying intervals containing primes becomes to Bertrand,
where he conjectured that for all n ∈ N, P ∩ (n, 2n] 6= φ. Note that, as usual, we let
P be the set of all prime numbers. In this area, many activities have done until now,
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for example two of more recent of them are as follows:

I In 1999, P. Dusart [2] showed that for every x ≥ 3275, we have

P ∩
(
x, x
(
1 +

1

2 ln2 x

)]
6= φ.

I In 2001, Baker, Harman and Pintz [1] proved that there exists real x0 such that
for all x > x0 the interval [x− x0.525, x] contains a prime.

Ok! What we are going to do? Before answering, we introduce some notations:

We denote the interval
(
n2,
(
n+ f(n)

)2]
, by I2

+f(n). So, we have I2
+1 =

(
n2, (n+1)2

]
.

Also, by I2
−g(n) we will mean the interval

[(
n− g(n)

)2
, n2
)
.

In this note, we study existence of primes in the intervals I2
+f(n) and I2

−g(n). Also, we
consider the following open problem:

P ∩ I2
1 6= φ (n ∈ N).

We study the probabilistic existence of primes in the interval I2
+1. For estimate above

probability, we will need the following sharp bounds for the function π(x) = #P∩[1, x]:

L(x) =
x

lnx

(
1 +

1

lnx
+

1.8

ln2 x

)
≤ π(x) (x ≥ 32299),

and

π(x) ≤ U(x) =
x

lnx

(
1 +

1

lnx
+

2.51

ln2 x

)
(x ≥ 355991).

These results are due to P. Dusart [2].

2 Existence of Primes in I2
+f(n) and I2

−g(n)

2.1 Study of I2
+f(n)

In this part, we prove the following theorem:

Theorem 1 If n ≥ 30, then we have

P ∩ I2
+f(n) 6= φ,

in which,

f(n) =
n

8 ln2 n+
√

8 lnn
√

1 + 8 ln2 n
= O

( n

ln2 n

)
.
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For prove this theorem, we need the following lemma which help us to change the
form of intervals.

Lemma 1 Suppose a, b > 0. We have,

a2 + b2 =

(
a+

b2

a+
√
a2 + b2

)2

.

Proof. Let a2 + b2 = (a + b
M

)2, with M > 0. Solving this quadratic equation with
respect to M , we have

M =
a

b
+

√
1 +

(a
b

)2

,

and this yields the result.

Now, proof of theorem 1:

Proof. For 30 ≤ n ≤ 57 we can check the result by computer. For n ≥ 58 =⌈√
3275

⌉
, according to P. Dusart [2], there exists at least a prime p such that

n2 < p ≤ n2

(
1 +

1

2 ln2(n2)

)
.

Now, by lemma 1, we have

n2

(
1 +

1

2 ln2(n2)

)
= n2 +

(
n√

8 lnn

)2

=
(
n+ f(n)

)2
,

such that,

f(n) =
n

8 ln2 n+
√

8 lnn
√

1 + 8 ln2 n
= O

( n

ln2 n

)
.

This completes the proof.

Note 1 The truth of theorem 1, holds also for

n = 2, 4, 6, 9, 10, 14, 15, 16, 17, 20, 21, 22, 24, 25, 26, 27, 28.

2.2 Study of I2
−g(n)

Theorem 2 There exists n0 ∈ N such that for all n > n0 we have

P ∩ I2
−g(n) 6= φ,

in which,
g(n) = n−

√
n2 − n1.05 = O(n

1
20 ).
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Proof. We know that [1], there exists real x0 such that for all x > x0 we have

P ∩ [x− x0.525, x] 6= φ.

Let x = n2. So, for n > n0 = d√x0e we have P ∩ [n2 − n1.05, n2] 6= φ. Now, let

n2 − n1.05 =
(
n− g(n)

)2
. This completes the proof.

Note 2 We can see that g(n) ∼ 1
2
n

1
20 . Beside, we have the following bounds for g(n):

1

2
n

1
20 < g(n) < n

1
20 .

which hold for all n > 1. Also, for every ε > 0 there exists n0 ∈ N such that for all
n > n0 we have

1

2
n

1
20 < g(n) <

1

2− ε
n

1
20 .

3 How Many Primes?

3.1 Counting Primes in I2
+f(n)

Let F (n) is the number of primes in I2
+f(n); i.e.

F (n) = #P ∩ I2
f(n) = π

((
n+ f(n)

)2)− π(n2).

By using Prime Number Theorem we can see that:

F (n) ∼ 1

2

( (n+ f(n)
)2

ln
(
n+ f(n)

) − n2

lnn

)
(n→∞).

Beside, by considering asymptotic behavior of f(n) we yield:

F (n) ∼ 1

32

( (n+ n
ln2 n

)2
ln
(
n+ n

ln2 n

) − n2

lnn

)
(n→∞).

Theorem 1, asserts that for n ≥ 58 we have F (n) > 0. By using P. Dusart’s bounds
on π(x) we can yield the following bounds for F (n):

L
((
n+ f(n)

)2)− U(n2) ≤ F (n) ≤ U
((
n+ f(n)

)2)− L(n2),

which holds for all n ≥ max
{⌈√

355991
⌉
,
⌈√

32299
⌉}

= 597.

But, since lim
n→∞

L
((
n + f(n)

)2) − U(n2) = −∞, we replace above lower bound by

trivial one, 1. So, we have

1 ≤ F (n) ≤ U
((
n+ f(n)

)2)− L(n2) (n ≥ 597).
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About sharp lower and upper bounds for F (n), we have the following conjecture
which supported by some computational evidences:

Conjecture 1 For every ε > 0, there exists n0(ε) ∈ N, such that for every n ≥ n0

we have

1

32− ε

( (n+ n
ln2 n

)2
ln
(
n+ n

ln2 n

) − n2

lnn

)
≤ F (n) ≤ 1

32 + ε

( (n+ n
ln2 n

)2
ln
(
n+ n

ln2 n

) − n2

lnn

)
.

3.2 Probabilistic Existence of Primes in I2
1

Estimating of F (n) can be useful in the following theorem.

Theorem 3 The probability that the interval I2
1 contains a prime is

1−

((
n+ f(n)

)2 − (n+ 1)2(
n+ f(n)

)2 − n2

)F (n)

.

Note that f(n) and F (n) are defined in above.

Proof. There are F (n) primes between n2 and
(
n + f(n)

)2
. Since n2 < (n + 1)2 <(

n+ f(n)
)2

, and because these primes distributed randomly, the probability that all

of these primes are between (n+ 1)2 and
(
n+ f(n)

)2
is equal to((

n+ f(n)
)2 − (n+ 1)2(

n+ f(n)
)2 − n2

)F (n)

,

and this yields the result.
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