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Abstract

Let aij be a n× n array. L−Summing Method is the following rearrange:

∑
1≤i,j≤n

aij =

n∑
k=1

(
k∑

i=1

aik +

k∑
j=1

akj − akk

)
.

By using Maple software and this method, we get some new identities.
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1 Introduction

In [3] we introduced L−Summing Method for proving and yielding some identities. In this method
we sum the numbers in array aij by two ways; first by an arbitrary method, for example line by line
and then by summing L by L. The k−th L in array aij is:

Lk =
k∑

i=1

aik +
k∑

j=1

akj − akk,

and L−Summing Method is: ∑
1≤i,j≤n

aij =
n∑

k=1

Lk.

If we apply this method on aij = ij (i.e. n× n Multiplication Table), then we have [3]:

n∑
k=1

k3 =
(

n(n + 1)
2

)2

.
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Also, applying this method on aij = (ij)−s we yield [3]:

n∑
k=1

ζk(s)
ks

=
ζ2
n(s) + ζn(2s)

2
, (s ∈ C).

In other hand we have Maple software, which can compute summations. So, we can use this useful
software and L−summing method to get some new identities. Our Maple program and its out put,
for example for aij = ij, is:

restart:
a[ij]:=i*j;
L:=sum(eval(a[ij],i=k),j=1..k):
C:=sum(eval(a[ij],j=k),i=1..k):
L[k]:=simplify(C+L-eval(eval(a[ij],i=k),j=k)):
S(A):=factor(simplify(sum(sum(a[ij],i=1..n),j=1..n))):
Sum(L[k],k=1..n)=S(A);

aij := ij

n∑
k=1

k3 =
n2 (n + 1)2

4

By LSMMP (L−Summing Method’s Maple Program), we call above program. Also by LSMI(aij),
we call the identity related by aij and generated by LSMMP. So, we have proven:

LSMI(ij) :
n∑

k=1

k3 =
n2 (n + 1)2

4
.

Now, we are ready to use LSMMP on some arrays to get some new identities or reprove some of
know identities.

2 Identities by LSMMP

All propositions here has their proofs in their heart. They yield by using LSMMP on their related
array which mentioned in the left hand side of them by LSMI(aij).

2.1 Reproving Some Well-known Identities

Proposition 1 For every n ∈ N, we have

LSMI(1) :
n∑

k=1

(2k − 1) = n2.

Corollary 2 For every n ∈ N, we have

n∑
k=1

k =
n(n + 1)

2
.
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Proposition 3 For every n ∈ N, we have

LSMI(i + j +
1
2
) :

n∑
k=1

(3k2 − 1
2
) =

n2(2n + 3)
2

.

Corollary 4 For every n ∈ N, we have

n∑
k=1

k2 =
n(n + 1)(2n + 1)

6
.

2.2 Some New Other Identities

Proposition 5 Let Ψ(x) = d
dxΓ(x), where Γ(x) is well-known gamma function [1]. For every n ∈ N,

we have

LSMI(
1
ij

) :
n∑

k=1

2 Ψ (k + 1) k + 2 γ k − 1
k2

=
(
Ψ(n + 1) + γ

)2
,

in which γ is Euler constant.

Proposition 6 For every n ∈ N, we have

LSMI(log(i)) :
n∑

k=1

ln
(
Γ (k + 1)

)
+ k ln (k)− ln (k) = n ln

(
Γ (n + 1)

)
.

Proposition 7 For every n ∈ N, we have

n∑
k=1

(
k∑

i=1

Γ (i + 1,−1) + kΓ (k + 1,−1)− Γ (k + 1,−1)

)
= n

n∑
i=1

Γ (i + 1,−1) .

Proof: This is eLSMI(e−1Γ (i + 1,−1)); i.e. both sides of the identity multiplied by e. This com-
pletes the proof.

Remark 8 Note that d(n) = e−1Γ (i + 1,−1) is the number of derangements; i.e. permutations of
Nn = {1, 2, 3, · · · , n} that has no fixed points [2]. Considering this notation and LSMI(e−1Γ (i + 1,−1)),
we have

n∑
k=1

(
k∑

i=1

d(i) + kd(k)− d(k)

)
= n

n∑
i=1

d(i).

Proposition 9 For every n ∈ N, we have

n∑
k=1

(
2 k + 1

k

)
+
(

2 k + 1
k + 1

)
−
(

2 k

k

)
=
(

2 n + 2
n + 1

)
− 2.

Proof: This is 2n + LSMI(
(
i+j

i

)
). This completes the proof.

Proposition 10 For every n ∈ N, we have

LSMI(e
i
j ) :

n∑
k=1

−ek−1
+
∑k

j=1 e
k
j ek−1 −

∑k
j=1 e

k
j + e1

ek−1 − 1
=

n∑
j=1

e
n+1

j − ej−1

ej−1 − 1
.
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Proposition 11 For every n ∈ N, we have

n∑
k=1

(
(2k − 1) tan (k) + 2

k∑
i=1

tan(i)
)

= 2n
n∑

i=1

tan(i),

and
n∑

k=1

(
(2k − 1) cot (k) + 2

k∑
i=1

cot(i)
)

= 2n
n∑

i=1

cot(i).

Proof: These are easy reformation of LSMI(tan(i)) and LSMI(cot(i)), respectively.

3 Identities by LSMMP and Maple Software

We can compute
∑

Lk by using Maple. The representation of this computation some times is differ
by the representation which has yield by L−Summing Method. In this case, comparing these two
representations led us to some other identities.

Corollary 12 For every n ∈ N, we have

n∑
k=1

Ψ(k)
k

=

(
Ψ(n + 1) + γ

)2 + Ψ(1, n + 1)
2

− π2

12
−Ψ(n + 1) γ − γ2

Proof: Consider LSMI( 1
ij ) and the following identity by Maple:

n∑
k=1

2 Ψ (k + 1) k + 2 γ k − 1
k2

= −Ψ(1, n + 1) +
π2

6
+ 2 Ψ (n + 1) γ + 2 γ2 + 2

n∑
k=1

Ψ(k)
k

.

This completes the proof.

Corollary 13 For every n ∈ N, we have
n∑

k=1

ln (Γ (k + 1)) + k ln (k) = (n + 1) ln
(
Γ (n + 1)

)
.

Proof: Consider LSMI(log(i)) and the following identity by Maple:
n∑

k=1

ln (Γ (k + 1)) + k ln (k)− ln (k) = − ln (Γ (n + 1)) +
n∑

k=1

ln (Γ (k + 1)) + k ln (k) .

This completes the proof.

Remark 14 Using Maple and comparing its result by LSMI(
(
i+j

i

)
), we yield a nice and huge identity

which you can see it in Maple by running the following program:

restart:
a[ij]:=binomial(i+j,j);
L:=sum(eval(a[ij],i=k),j=1..k):
C:=sum(eval(a[ij],j=k),i=1..k):
L[k]:=simplify(C+L-eval(eval(a[ij],i=k),j=k)):
S(A):=factor(simplify(sum(sum(a[ij],i=1..n),j=1..n))):
Sum(L[k],k=1..n)=S(A);
Sum(L[k],k=1..n)=simplify(sum(L[k],k=1..n));
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