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COMPLETELY MONOTONIC FUNCTIONS RELATED TO THE
GAMMA FUNCTIONS

CHAO-PING CHEN AND FENG QI

Abstract. (i) Let a, b > 0 be real numbers, and let

fa,b(x) =
1

xb−a

[
Γ(bx + 1)

Γ(ax + 1)

]1/x

.

Then, for x > 0 and n = 1, 2, . . ., (−1)n(ln fa,b(x))(n) ≷ 0 according as b ≷ a.
(ii) Let p > 0 be a real number, and let fp(x) = θ(px)− pθ(x), where

θ(x) =

∫ ∞
0

(
t

et − 1
− 1 +

t

2

)
e−xt

t2
dt, x > 0

is remainder of Binet’s formula. Then, for x > 0 and n = 0, 1, 2, . . .,

(−1)nf
(n)
p (x) ≷ 0 according as p ≶ 1.

1. Introduction

The Euler gamma function Γ and its logarithmic derivative ψ, the so-called
digamma function, are defined for Re z > 0 by

Γ(z) =
∫ ∞

0

tz−1e−t dt and ψ(z) =
Γ′(z)
Γ(z)

.

There exists a very extensive literature on these functions. In particular, inequal-
ities, monotonicity and complete monotonicity properties for these functions have
been published, we refer to the paper [1] and [2], and the references given therein.
We recall that a function f is said to be completely monotonic on an interval I, if
f has derivatives of all orders on I and satisfies

(−1)nf (n)(x) ≥ 0 (x ∈ I;n = 0, 1, 2, . . .). (1)

If the inequality (1) is strict, then f is said to be strictly completely monotonic
on I. Completely monotonic functions have remarkable applications in different
branches. For instance, they play a role in potential theory [4], probability theory
[6, 8, 10], physics [7], numerical and asymptotic analysis [9, 15], and combinatorics
[3]. A detailed collection of the most important properties of completely monotonic
functions can be found in [14, Chapter IV], and in an abstract in [5].

In a recent paper [12], the terminology “(strictly) logarithmically completely
monotonic function” was introduced. It was also shown in this paper that a
(strictly) logarithmically completely monotonic function is also (strictly) completely
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monotonic. For convenience, we recall that a positive function f is said to be log-
arithmically completely monotonic on an interval I if its logarithm ln f satisfies

(−1)n(ln f(x))(n) ≥ 0 (x ∈ I;n = 1, 2, . . .). (2)
If inequality (2) is strict, then f is said to be strictly logarithmically completely
monotonic.

In 2003, J. Sándor [13] showed that

lim
x→∞

1
xb−a

[
Γ(bx+ 1)
Γ(ax+ 1)

]1/x

=
bb

aa
eb−a. (3)

Our first theorem considers logarithmically complete monotonicity property of
the function in (3).

Theorem 1. Let a, b > 0 be real numbers, and let

fa,b(x) =
1

xb−a

[
Γ(bx+ 1)
Γ(ax+ 1)

]1/x

.

Then, for x > 0 and n = 1, 2, . . ., (−1)n(ln fa,b(x))(n) ≷ 0 according as b ≷ a.

If we denote by

I(a, b) =
1
e

(
bb

aa

)1/(b−a)

, a > 0, b > 0, a 6= b,

the so-called identric mean, then, we yield from (3) and the monotonicity of the
function fa,b that, for x > 0,

1
xb−a

[
Γ(bx+ 1)
Γ(ax+ 1)

]1/x

≷ [e2I(a, b)]b−a according as b ≷ a. (4)

Binet’s formula [16, p. 103] states that for x > 0,

ln Γ(x) =
(
x− 1

2

)
lnx− x+ ln

√
2π + θ(x),

where

θ(x) =
∫ ∞

0

(
t

et − 1
− 1 +

t

2

)
e−xt

t2
dt. (5)

Let p > 0 be a real number. Our second theorem considers complete monotonic-
ity property of the function x 7→ θ(px)− pθ(x) on (0,∞).

Theorem 2. Let p > 0 be a real number, and let fp(x) = θ(px) − pθ(x), where
θ(x) is defined by (5). Then, for x > 0 and n = 0, 1, 2, . . .,

(−1)nf (n)
p (x) ≷ 0 according as p ≶ 1.

2. Proofs of Theorems

Proof of Theorem 1. Using Leibniz’ rule

[u(x)v(x)](n) =
n∑

k=0

(
n

k

)
u(k)(x)v(n−k)(x),

we obtain

(ln fa,b(x))(n) = − (b− a)(−1)n−1(n− 1)!
xn
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+
n∑

k=0

(
n

k

)(
1
x

)(n−k)

[ln Γ(bx+ 1)− ln Γ(ax+ 1)](k)

= − (b− a)(−1)n−1(n− 1)!
xn

+
(−1)nn!
xn+1

[ln Γ(bx+ 1)− ln Γ(ax+ 1)]

+
(−1)nn!
xn+1

n∑
k=1

(−1)k

k!
xk[bkψ(k−1)(bx+ 1)− akψ(k−1)(ax+ 1)].

Define for x > 0,

ga,b(x) =
(−1)nxn+1

n!
(ln f(x))(n)

=
(b− a)x

n
+ lnΓ(bx+ 1)− ln Γ(ax+ 1)

+
n∑

k=1

(−1)k

k!
xk[bkψ(k−1)(bx+ 1)− akψ(k−1)(ax+ 1)].

Using the representations

(n− 1)!
xn

=
∫ ∞

0

tn−1e−xt dt, (x > 0),

ψ(n)(x) = (−1)n+1

∫ ∞

0

tn

1− e−t
e−xt dt, (x > 0, n = 1, 2, . . .),

see [11, p. 16], we imply

n!
xn
g′a,b(x) =

(b− a)(n− 1)!
xn

+ (−1)n[bn+1ψ(n)(bx+ 1)− an+1ψ(n)(ax+ 1)]

= (b− a)
∫ ∞

0

tn−1e−xt dt−
∫ ∞

0

bn+1tn

et − 1
e−bxt dt+

∫ ∞

0

an+1tn

et − 1
e−axt dt

= (b− a)
∫ ∞

0

tn−1e−xt dt−
∫ ∞

0

tn

et/b − 1
e−xt dt+

∫ ∞

0

tn

et/a − 1
e−xt dt

=
∫ ∞

0

[(
t

et/a − 1
− a

)
−

(
t

et/b − 1
− b

)]
tn−1e−xt dt.

For fixed t > 0, we define the function

ht(a) =
t

et/a − 1
− a (a > 0).

Differentiation yields

h′t(a) =
(t/a)2et/a − (et/a − 1)2

(et/a − 1)2
.

Now we are in a position to prove h′t(a) < 0 for a > 0, which is equivalent to

(t/a)et/(2a) < et/a − 1,

i.e.,

(t/a) < et/(2a) − e−t/(2a).
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Using power series expansion, we have

et/(2a) − e−t/(2a) − (t/a) = 2
∞∑

n=2

1
(2n− 1)!

(
t

2a

)2n−1

> 0

for a > 0. Hence h′t(a) < 0 for a > 0, and then, for x > 0, g′a,b(x) ≷ 0 and ga,b(x) ≷
ga,b(0) = 0 according as b ≷ a. This implies that for x > 0 and n = 1, 2, . . .,
(−1)n(ln fa,b(x))(n) ≷ 0 according as b ≷ a. The proof is complete. �

Proof of Theorem 2. By (5), we imply

fp(x) =
∫ ∞

0

(
u

eu − 1
− 1 +

u

2

)
e−pxu

u2
du− p

∫ ∞

0

(
t

et − 1
− 1 +

t

2

)
e−xt

t2
dt

= p

∫ ∞

0

[
t

p(et/p − 1)
− 1 +

t

2p

]
e−xt

t2
dt− p

∫ ∞

0

(
t

et − 1
− 1 +

t

2

)
e−xt

t2
dt

= p

∫ ∞

0

[
t

p(et/p − 1)
− 1
et − 1

+
1− p
p

]
e−xt

t2
dt

=
∫ ∞

0

δp(t)
2(et/p − 1)(et − 1)t

e−xt dt

and therefore,

(−1)nf (n)
p (x) =

∫ ∞

0

tn−1δp(t)
2(et/p − 1)(et − 1)

e−xt dt.

where

δp(t) = (1 + p)et − (1 + p)et/p + (1− p)e[(1+p)/p]t + p− 1

=
∞∑

k=3

[pk − 1 + (1− p)(1 + p)k−1]
(1 + p)tk

pk · k!
.

It is easy to see that

pk − 1 + (1− p)(1 + p)k−1 = (p− 1)
k−1∑
m=0

pm + (1− p)
k−1∑
m=0

(
k − 1
m

)
pm

= (p− 1)
k−2∑
m=1

[
1−

(
k − 1
m

)]
pm ≷ 0 according as p ≶ 1.

This implies for x > 0 and n ≥ 0,

(−1)nf (n)
p (x) ≷ 0 according as p ≶ 1.

The proof is complete. �
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