

Approximation of $\pi(x)$ by $\psi(x)$

This is the Published version of the following publication

Hassani, Mehdi (2005) Approximation of $\pi(x)$ by $\psi(x)$. Research report collection, 8 (2).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/18083/

APPROXIMATION OF $\pi(x)$ **BY** $\Psi(x)$

MEHDI HASSANI

ABSTRACT. In this paper we find some lower and upper bounds of the form $\frac{n}{H_n-c}$ for the function $\pi(n)$, in which $H_n = \sum_{k=1}^n \frac{1}{k}$. Then, considering $H(x) = \Psi(x+1) + \gamma$ as generalization of H_n , in which $\Psi(x) = \frac{d}{dx} \log \Gamma(x)$ and γ is Euler constant, we find some lower and upper bounds of the form $\frac{x}{\Psi(x)-c}$ for the function $\pi(x)$.

1. Introduction

As usual, let \mathbb{P} be the set of all primes and $\pi(x) = \#\mathbb{P} \cap [2, x]$. If $H_n = \sum_{k=1}^n \frac{1}{k}$, then easily we have

(1.1)
$$\gamma + \log n < H_n < 1 + \log n \qquad (n > 1),$$

in which γ is Euler constant. So, $H_n = \log n + O(1)$ and considering the prime number theorem [1], we obtain

$$\pi(n) = \frac{n}{H_n + O(1)} + o\left(\frac{n}{\log n}\right).$$

Thus, comparing $\frac{n}{H_n+O(1)}$ with $\pi(n)$ seems to be a nice problem. In 1959, L. Locker-Ernst [3] affirms that $\frac{n}{H_n-\frac{3}{2}}$ is very close to $\pi(n)$ and in 1999, L. Panaitopol [5] proved that for $n \geq 1429$ it is actually a lower bound for $\pi(n)$.

In this paper we improve Panaitopol's result by proving $\frac{n}{H_n-a} < \pi(n)$ for every $n \geq 3299$, in which $a \approx 1.546356705$. Also, we find same upper bound for $\pi(n)$. Then we consider generalization of H_n as a real value function which has been studied by J. Sándor [6] in 1988; for x > 0 let $\Psi(x) = \frac{d}{dx} \log \Gamma(x)$, in which $\Gamma(x) = \int_0^\infty e^{-t}t^{x-1}dt$ is well-known gamma function. Since $\Gamma(x+1) = x\Gamma(x)$ and $\Gamma(1) = -\gamma$, we have $H_n = \Psi(n+1) + \gamma$, and this relation led him to define

(1.2)
$$\begin{cases} H: (0,1) \longrightarrow \mathbb{R}, \\ H(x) = \Psi(x+1) + \gamma, \end{cases}$$

as a natural generalization of H_n , and more naturally, it motivated us to find some bounds for $\pi(x)$ concerning $\Psi(x)$. In our proofs, we use the obvious relation

(1.3)
$$\Psi(x+1) = \Psi(x) + \frac{1}{x}.$$

Also, we need some bounds of the form $\frac{x}{\log x - 1 - \frac{c}{\log x}}$, which we yield them by using the following known sharp bounds [2] for $\pi(x)$

(1.4)
$$\frac{x}{\log x} \left(1 + \frac{1}{\log x} + \frac{1.8}{\log^2 x} \right) \le \pi(x) \qquad (x \ge 32299),$$

¹⁹⁹¹ Mathematics Subject Classification. 11A41, 26D15, 33B15.

Key words and phrases. Primes, Harmonic series, Gamma function, Digamma function.

and

(1.5)
$$\pi(x) \le \frac{x}{\log x} \left(1 + \frac{1}{\log x} + \frac{2.51}{\log^2 x} \right) \qquad (x \ge 355991).$$

2. Bounds of the form
$$\frac{x}{\log x - 1 - \frac{c}{\log x}}$$

Lower Bounds. We are going to find suitable values of a, in which $\frac{x}{\log x - 1 - \frac{a}{\log x}} \le \pi(x)$. Considering (1.4) and letting $y = \log x$, we should study the inequality $\frac{1}{y-1-\frac{a}{y}} \le \frac{1}{y}(1+\frac{1}{y}+\frac{9}{5y^2})$, which is equivalent with $\frac{y^4}{y^2-y-a} \le y^2+y+\frac{9}{5}$ and supposing $y^2-y-a>0$, it will be equivalent with $(\frac{4}{5}-a)y^2-(a+\frac{9}{5})y-\frac{9a}{5}\ge 0$ and this force $\frac{4}{5}-a>0$, or $a<\frac{4}{5}$. Let $a=\frac{4}{5}-\epsilon$ for some $\epsilon>0$. Therefore we should study $\frac{1}{y-1-\frac{4}{5}-\epsilon} \le \frac{1}{y}(1+\frac{1}{y}+\frac{9}{5y^2})$, which is equivalent with

(2.1)
$$\frac{25\epsilon y^2 + (25\epsilon - 65)y + (45\epsilon - 36)}{5y^3(5y^2 - 5y + (5\epsilon - 4))} \ge 0.$$

The equation $25\epsilon y^2 + (25\epsilon - 65)y + (45\epsilon - 36) = 0$ has discriminant $\Delta_1 = 169 + 14\epsilon - 155\epsilon^2$, which is non-negative for $-1 \le \epsilon \le \frac{169}{155}$ and the greater root of it, is $y_1 = \frac{13-5\epsilon+\sqrt{\Delta_1}}{10\epsilon}$. Also, the equation $5y^2 - 5y + (5\epsilon - 4) = 0$ has discriminant $\Delta_2 = 105 - 100\epsilon$, which is non-negative for $\epsilon \le \frac{21}{20}$ and the greater root of it, is $y_2 = \frac{1}{2} + \frac{\sqrt{\Delta_2}}{10}$. Thus, (2.1) holds for every $0 < \epsilon \le \min\{\frac{169}{155}, \frac{21}{20}\} = \frac{21}{20}$, with $y \ge \max_{0 < \epsilon \le \frac{21}{20}}\{y_1, y_2\} = y_1$. Therefore, we have proved the following theorem:

Theorem 2.1. For every $0 < \epsilon \le \frac{21}{20}$, the inequality

$$\frac{x}{\log x - 1 - \frac{\frac{4}{5} - \epsilon}{\log x}} \le \pi(x),$$

holds for all

$$x \geq \max\left\{32299, e^{\frac{13-5\epsilon+\sqrt{169+14\epsilon-155\epsilon^2}}{10\epsilon}}\right\}.$$

Corollary 2.2. For every $x \ge 3299$, we have

$$\frac{x}{\log x - 1 + \frac{1}{4\log x}} \le \pi(x).$$

Proof. Taking $\epsilon=\frac{21}{20}$ in above theorem, we yield the result for $x\geq 32299$. For $3299\leq x\leq 32298$ check it by computer.

 $\begin{array}{l} \textit{Upper Bounds.} \text{ Similar to lower bounds, we should search suitable values of } b \text{ in which } \pi(x) \leq \frac{x}{\log x - 1 - \frac{b}{\log x}}. \end{array} \text{ Considering (1.5) and letting } y = \log x, \text{ we should study } \frac{1}{y}(1 + \frac{1}{y} + \frac{251}{100y^2}) \leq \frac{1}{y - 1 - \frac{b}{y}}. \text{ Assuming } y^2 - y - b > 0, \text{ it will be equivalent with } (\frac{151}{100} - b)y^2 - (b + \frac{251}{100})y - \frac{251b}{100} \leq 0, \text{ which force } b \geq \frac{151}{100}. \text{ Let } b = \frac{151}{100} + \epsilon \text{ for some } \epsilon \geq 0. \end{array} \text{ Therefore we should study } \frac{1}{y}(1 + \frac{1}{y} + \frac{251}{100y^2}) \leq \frac{1}{y - 1 - \frac{151}{100} + \epsilon}, \text{ which is equivalent with} \end{array}$

$$(2.2) \qquad \frac{10000\epsilon y^2 + (10000\epsilon + 40200)y + (25100\epsilon + 37901)}{100y^3(100y^2 - 100y - (100\epsilon + 151))} \ge 0.$$

The quadratic equation in numerator of (2.2) has discriminant $\Delta_1 = 40401 - 17801\epsilon - 22600\epsilon^2$, which is non-negative for $-\frac{40401}{22600} \le \epsilon \le 1$ and the greater root of it, is $y_1 = \frac{-201 - 50\epsilon + \sqrt{\Delta_1}}{100\epsilon}$. Also, the quadratic equation in denominator of it, has discriminant $\Delta_2 = 44 + 25\epsilon$, which is non-negative for $-\frac{44}{25} \le \epsilon$ and the greater root of it, is $y_2 = \frac{1}{2} + \frac{\sqrt{\Delta_2}}{5}$. Thus, (2.2) holds for every $0 \le \epsilon \le \min\{1, +\infty\} = 1$, with $y \ge \max_{0 \le \epsilon \le 1} \{y_1, y_2\} = y_2$. Finally, we note that for $0 \le \epsilon \le 1$, $y_2(\epsilon)$ is strictly

increasing and so, $6 < e^{\frac{1}{2} + \frac{\sqrt{44}}{5}} = e^{y_1(0)} \le e^{y_1(\epsilon)} \le e^{y_1(1)} = e^{\frac{1}{2} + \frac{\sqrt{69}}{5}} < 9$. Therefore, we obtain the following theorem:

Theorem 2.3. For every $0 \le \epsilon \le 1$, we have

$$\pi(x) \le \frac{x}{\log x - 1 - \frac{151}{100} + \epsilon}$$
 $(x \ge 355991).$

Corollary 2.4. For every $x \geq 7$, we have

$$\pi(x) \le \frac{x}{\log x - 1 - \frac{151}{100 \log x}}.$$

Proof. Taking $\epsilon = 0$ in above theorem, we yield the result for $x \geq 355991$. For $7 \le x \le 35991$ it has been checked by computer [4].

3. Bounds of the form $\frac{n}{H_n-c}$ and $\frac{x}{\Psi(x)-c}$

Theorem 3.1. (i) For every $n \geq 3299$, we have

$$\frac{n}{H_n - a} < \pi(n),$$

in which $a = \gamma + 1 - \frac{1}{4 \log 3299} \approx 1.546356705$.

(ii) For every $n \geq 9$, we have

$$\pi(n) < \frac{n}{H_n - b},$$

in which $b = 2 + \frac{151}{100 \log 7} \approx 2.775986497$.

Proof. For $n \geq 3299$, we have $\gamma + \log n > a + \log n - 1 + \frac{1}{4\log n}$ and considering this with left hand side of (1.1), we obtain $\frac{n}{H_n - a} < \frac{x}{\log x - 1 + \frac{1}{4\log x}}$ and this inequality

with corollary 2.2, yield the first part of theorem. For $n \geq 9$, we have $b + \log n - 1 - \frac{151}{100 \log n} \geq 1 + \log n$ and considering this with right hand side of (1.1), we obtain $\frac{x}{\log x - 1 - \frac{151}{100 \log x}} < \frac{n}{H_n - b}$. Considering this, with corollary 2.4, complete the proof.

Theorem 3.2. (i) For every $x \ge 3299$, we have

$$\frac{x}{\Psi(x) - A} < \pi(x),$$

in which $A = \frac{3298}{3299} - \frac{1}{4\log 3299} \approx 0.9688379174$. (ii) For every $x \geq 9$, we have

$$\pi(x) < \frac{x}{\Psi(x) - B},$$

in which $B = 2 + \frac{151}{100 \log 7} - \gamma \approx 2.198770832$.

Proof. Let H_x be the step function defined by $H_x = H_n$ for $n \leq x < n + 1$. Considering (1.2) we have $H(x-1) < H_x \le H(x)$.

For $x \geq 3299$ by considering part (i) of previous theorem, we have

$$\pi(x) > \frac{x}{H_x - a} \ge \frac{x}{H(x) - a} = \frac{x}{\Psi(x+1) + \gamma - a}.$$

Thus, by considering (1.3) we obtain

$$\pi(x)>\frac{x}{\Psi(x)+\frac{1}{x}+\gamma-a}\geq\frac{x}{\Psi(x)+\frac{1}{3299}+\gamma-a}=\frac{x}{\Psi(x)-A},$$

in which $A=a-\gamma-\frac{1}{3299}=\frac{3298}{3299}-\frac{1}{4\log 3299}.$ For $x\geq 9$ by considering second part of previous theorem, we obtain

$$\pi(x)<\frac{x}{H_x-b}<\frac{x}{H(x-1)-b}=\frac{x}{\Psi(x)+\gamma-b}=\frac{x}{\Psi(x)-B},$$

in which $B=b-\gamma=2+\frac{151}{100\log 7}-\gamma,$ and this completes the proof.

Inverse of this theorem seems to be nice; because using it, for every $x \geq 3299$ we obtain

$$\frac{x}{\pi(x)} + A < \Psi(x) < \frac{x}{\pi(x)} + B.$$

Moreover, considering this inequality with (1.4) and (1.5), we yield the following bounds for x > 355991

$$\frac{\log x}{1 + \frac{1}{\log x} + \frac{2.51}{\log^2 x}} + A < \Psi(x) < \frac{\log x}{1 + \frac{1}{\log x} + \frac{1.8}{\log^2 x}} + B.$$

References

- [1] H. Davenport, Multiplicative Number Theory (Second Edition), Springer-Verlag, 1980.
- [2] P. Dusart, Inégalités explicites pour $\psi(X)$, $\theta(X)$, $\pi(X)$ et les nombres premiers, C. R. Math. Acad. Sci. Soc. R. Can. 21 (1999), no. 2, 53-59.
- [3] L. Locker-Ernst, Bemerkungen über die Verteilung der Primzahlen, Elemente der Mathematik XIV, nr. 1, 1-5, Basel (1959).
- [4] L. Panaitopol, A SPECIAL CASE OF THE HARDY-LITTLEWOOD CONJECTURE, Math. Reports, 4(54)(2002), 3, 265-258.
- [5] L. Panaitopol, SEVERAL APPROXIMATION OF $\pi(x)$, Mathematical Inequalities & Applications, Volume 2, Number 3 (1999), 317-324.
- [6] József Sándor, Remark on a function which generalizes the harmonic series, C. R. Acad. Bulgare Sci., 41(1988), no. 5, 19-21.

INSTITUTE FOR ADVANCED, STUDIES IN BASIC SCIENCES, P.O. BOX 45195-1159, ZANJAN, IRAN. E-mail address: mhassani@iasbs.ac.ir