

A Refinement of Mandl's Inequality

This is the Published version of the following publication

Hassani, Mehdi (2005) A Refinement of Mandl's Inequality. Research report collection, 8 (2).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/18085/

A REFINEMENT OF MANDL'S INEQUALITY

MEHDI HASSANI

ABSTRACT. In this short note, we prove that $\frac{n}{2}p_n - \sum_{i=1}^n p_i > 0.01659n^2$ holds for every $n \geq 9$. This is a refinement of Mandl's inequality which asserts $\frac{n}{2}p_n - \sum_{i=1}^n p_i > 0$, for those values of n.

1. Introduction and Refinement

As usual, let p_n be the n^{th} prime. The Mondl's conjecture (see [1] and [2]) asserts that for every $n \geq 9$, we have:

$$\frac{n}{2}p_n - \sum_{i=1}^n p_i > 0.$$

To prove Mandl's inequality, Dusart ([1], page 50) uses the following inequality

(1.1)
$$\int_{2}^{p_n} \pi(t)dt \ge c + \frac{p_n^2}{2\log p_n} \left(1 + \frac{3}{2\log p_n} \right) \qquad (n \ge 109),$$

in which

$$c = 35995 - 3Li(599^2) + \frac{599^2}{\log 599} \approx -47.06746,$$

and

$$Li(x) = \lim_{\epsilon \to 0} \left(\int_0^{1-\epsilon} \frac{dt}{\log t} + \int_{1+\epsilon}^x \frac{dt}{\log t} \right),$$

is logarithmic function, and base of all logarithms are e. Note that one can gets (1.1), using the following known bound [1]:

$$\pi(t) \ge \frac{t}{\log t} \left(1 + \frac{1}{\log t} \right) \qquad (t \ge 599).$$

Also, for using (1.1) to prove Mandl's inequality, we note that:

$$\int_{2}^{p_n} \pi(t)dt = \sum_{i=2}^{n} (p_i - p_{i-1})(i-1) = \sum_{i=2}^{n} (ip_i - (i-1)p_{i-1}) - \sum_{i=2}^{n} p_i = np_n - \sum_{i=1}^{n} p_i.$$

Therefore, we have:

(1.2)
$$np_n - \sum_{i=1}^n p_i \ge c + \frac{p_n^2}{2\log p_n} \left(1 + \frac{3}{2\log p_n} \right) \qquad (n \ge 109).$$

Now, we use the following bound ([1], page 36):

$$\frac{x}{\log x} \Big(1 + \frac{1.2762}{\log x}\Big) \ge \pi(x) \qquad (x \ge 2).$$

 $^{1991\} Mathematics\ Subject\ Classification.\ 11A41.$

Key words and phrases. Primes.

Considering this bound and (1.2), for every $n \geq 109$, we obtain:

$$np_n - \sum_{i=1}^n p_i \ge c + \frac{p_n^2}{2\log p_n} \left(\frac{0.2238}{\log p_n}\right) + \frac{p_n^2}{2\log p_n} \left(1 + \frac{1.2762}{\log p_n}\right)$$

$$\ge c + 0.1119 \frac{p_n^2}{\log^2 p_n} + \frac{p_n}{2} \pi(p_n) = c + 0.1119 \frac{p_n^2}{\log^2 p_n} + \frac{n}{2} p_n.$$

So, for every $n \ge 109$, we have:

(1.3)
$$\frac{n}{2}p_n - \sum_{i=1}^n p_i \ge c + 0.1119 \frac{p_n^2}{\log^2 p_n}.$$

In other hand, we have the following bounds for p_n ([3], page 69):

$$n \log n \le p_n \le n(\log n + \log \log n)$$
 $(n \ge 6).$

Combining these bounds with (1.3), for every $n \ge 109$, we yield that:

$$\frac{n}{2}p_n - \sum_{i=1}^n p_i \ge c + \frac{0.1119(n\log n)^2}{\log^2(n(\log n + \log\log n))}.$$

But, for every $n \ge 89$, we have $c + \frac{0.0119(n \log n)^2}{\log^2(n(\log n + \log \log n))} > 0$, and so, we obtain the following inequality for every $n \ge 89$:

$$\frac{n}{2}p_n - \sum_{i=1}^n p_i \ge \frac{(n\log n)^2}{10\log^2\left(n(\log n + \log\log n)\right)}.$$

This holds also for $10 \le n \le 88$. Thus, considering $\log(n(\log n + \log\log n)) < 2\log n + 1$, we yield that:

$$\frac{n}{2}p_n - \sum_{i=1}^n p_i \ge \frac{n^2}{10} \left(\frac{\log n}{2\log n + 1}\right)^2,$$

which holds for every $n \geq 9$. This is a refinement of Mandl's inequality, with quadratic and logarithms terms. Now, for every $n \geq 9$, we note that:

$$\frac{n}{2}p_n - \sum_{i=1}^n p_i \ge \frac{n^2}{10} \left(\frac{\log n}{2\log n + 1} \right)^2 \ge \frac{n^2}{10} \left(\frac{\log 9}{2\log 9 + 1} \right)^2 > 0.01659n^2.$$

References

- Pierre DUSART, Autour de la fonction qui compte le nombre de nombres premiers, PhD. Thesis, 1998.
- [2] J. Barkley Rosser & L. Schoenfeld, Sharper Bounds for the Chebyshev Functions $\theta(x)$ and $\psi(x)$, Math. Of Computation, Vol. 29, Number 129 (January 1975) pp. 243-269.
- [3] J. Barkley Rosser & L. Schoenfeld, Approximate Formulas for Some Functions of Prime Numbers, *Illinois Journal Math.*, 6 (1962) pp. 64-94.

Institute for Advanced, Studies in Basic Sciences, P.O. Box 45195-1159, Zanjan, Iran. E-mail address: mhassani@iasbs.ac.ir