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A REFINEMENT OF MANDL’S INEQUALITY
MEHDI HASSANI

ABSTRACT. In this short note, we prove that Spn — Yripe > 0.01659n2
holds for every n > 9. This is a refinemet of Mandl’s inequality which asserts
$Pn — Y i—1 pi > 0, for those values of n.

1. INTRODUCTION AND REFINEMENT

As usual, let p,, be the nt" prime. The Mondl’s conjecture (see [1] and [2]) asserts
that for every n > 9, we have:
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To prove Mandl’s inequality, Dusart ([1], page 50) uses the following inequality
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is logarithmic function, and base of all logarithms are e. Note that one can gets
(1.1), using the following known bound [1]:
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Also, for using (1.1) to prove Mandl’s inequality, we note that:
Dn n n n n
/ m()dt = (pi—pi1)(i—1) =Y (ipi—(i—Vpi-1) =Y _pi=npn—»_pi.
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Therefore, we have:
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Now, we use the following bound ([1], page 36):

T (1 n 1.2762) > n(x) (x> 2).
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Considering this bound and (1.2), for every n > 109, we obtain:

- P2 0.2238 P2 1.2762
D + 1+
P 2logpy, \ logpn 2log py, log pn

2

> ¢+0.1119 P, = e+ 0.1119 P + 2.
log® pp 2 log?p, 2
So, for every n > 109, we have:
1.3 5Pn — ;> c+0.1119
- 2p ;p log Pn

In other hand, we have the following bounds for p,, ([3], page 69):
nlogn < p, < n(logn + loglogn) (n>6).
Combining these bounds with (1.3), for every n > 109, we yield that:

= 0.1119(nlogn)?
- Zpi >Zct —5 .
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But, for every n > 89, we have ¢ + Tog > 0, and so, we obtain the

following inequality for every n > 89:

= (nlogn)?
- Zpi = 5 .
Pt 101log (n(logn + loglog n))

This holds also for 10 < n < 88. Thus, considering log(n(logn + loglogn)) <
2logn + 1, we yield that:
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which holds for every n > 9. ThlS is a refinement of Mandl’s ineqiality, with
quadratic and logarithms terms. Now, for every n > 9, we note that:

Z w( loen 2>nj _log9 2>001659n2
pl*lO 2logn+1) = 10 \2log9 + 1 ' '
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