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TWO CLASS OF COMPLETELY MONOTONIC FUNCTIONS
INVOLVING GAMMA AND POLYGAMMA FUNCTIONS

BAI-NI GUO AND FENG QI

Abstract. The function

[Γ(x+ 1)]1/x

xc

(
1 +

1

x

)x

is logarithmically completely monotonic in (0,∞) if and only if c ≥ 1 and

its reciprocal is logarithmically completely monotonic in (0,∞) if and only if

c ≤ 0. The function

ψ′′(x) +
2 + (6 + c)x+ (4 + 3c)x2 + (2 + 3c)x3 + cx4

x3(x+ 1)3

is completely monotonic in (0,∞) if and only if c ≥ 1 and its negative is

completely monotonic in (0,∞) if and only if c ≤ 0.

1. Introduction

A function f is said to be completely monotonic on an interval I if f has deriva-

tives of all orders on I and

(−1)nf (n)(x) ≥ 0 (1)

for x ∈ I and n ≥ 0. The set of completely monotonic functions is denoted by C[I].

A positive function f is said to be logarithmically completely monotonic on an

interval I if its logarithm ln f satisfies

(−1)k[ln f(x)](k) ≥ 0 (2)

for k ∈ N on I. The set of logarithmically completely monotonic functions is

denoted by L[I].

A function f is called a Stieltjes transform if it can be of the form

f(x) = a+
∫ ∞

0

dµ(s)
s+ x

, (3)
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2 B.-N. GUO AND F. QI

where a ≥ 0 and µ is a nonnegative measure on [0,∞) satisfying
∫∞
0

1
1+s dµ(s) <∞.

The set of Stieltjes transforms is denoted by S.

To the best of our knowledge, the notion or terminology “logarithmically com-

pletely monotonic function” was introduced explicitly in [9], published formally

in [8], and used immediately in [2, 4, 10, 11, 12]. Among other things, it is

proved implicitly or explicitly in [2, 3, 8, 9, 10, 13] that L[I] ⊂ C[I], but not

conversely [9, 10]. Among other things, it is further revealed in [2, 13] that

S\{0} ⊂ L[(0,∞)] ⊂ C[(0,∞)]. In [2, Theorem 1.1] and [4, 11] it is pointed out that

the logarithmically completely monotonic functions on (0,∞) can be characterized

as the infinitely divisible completely monotonic functions studied by Horn in [5,

Theorem 4.4]. For more information on the logarithmically completely monotonic

functions, please refer to [2, 4, 7, 10, 11, 13] and the references therein.

In [11, 12], it is proved that

Φ(x) =
[Γ(x+ 1)]1/x

x

(
1 +

1
x

)x

∈ L[(0,∞)], (4)

where Γ(x) is the classical Euler gamma function defined by Γ(z) =
∫∞
0
tz−1e−t d t

for Re z > 0, which is one of the most important special functions [1, 14, 15] and

has much extensive applications in many branches, for example, statistics, physics,

engineering, and other mathematical sciences. Motivated by [9, 12], among other

things, the paper [2] proved that Φ(x) ∈ S and ln Φ(x) ∈ S and the following

explicit representations are obtained

lnΦ(x) =
∫ ∞

0

φ(s)
s+ x

ds (5)

for x > 0, where

φ(s) =


1− s if 0 ≤ s < 1

1− n

s
if n ≤ s < n+ 1 with n ∈ N

(6)

and

Φ(x) = 1 +
∫ ∞

0

h(s)
s+ x

ds (7)

for x > 0 with

h(s) =
ss−1 sin(πφ(s))

π |1− s|s |Γ(1− s)|1/s
(8)

for s ≥ 0.

Define for x ∈ (0,∞)

Φc(x) =
[Γ(x+ 1)]1/x

xc

(
1 +

1
x

)x

. (9)

It is clear that Φ1(x) = Φ(x).
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The main purpose of this article is to confirm the range of c such that Φc(x) ∈

L[(0,∞)]. Our main results are as follows.

Theorem 1. The function

φ(x) = ψ′′(x) +
2 + (6 + c)x+ (4 + 3c)x2 + (2 + 3c)x3 + cx4

x3(x+ 1)3
∈ C[(0,∞)] (10)

if and only if c ≥ 1 and −φ(x) ∈ C[(0,∞)] if and only if c ≤ 0.

Theorem 2. The function Φc(x) ∈ L[(0,∞)] if and only if c ≥ 1 and [Φc(x)]−1 ∈

L[(0,∞)] if and only if c ≤ 0.

Remark 1. Since Φ1(x) and lnΦ1(x) are both Stieltjes transforms, it is natural to

ask whether the functions Φc(x) and ln Φc(x) are Stieltjes transforms for c 6= 1.

2. Lemmas

In order to prove our main result, the following lemmas are necessary.

Lemma 1 ([1, 14, 15]). For x > 0 and r > 0,

1
xr

=
1

Γ(r)

∫ ∞

0

tr−1e−xt d t. (11)

It is well known that the psi or digamma function is ψ(x) = Γ′(x)
Γ(x) , the logarithmic

derivative of the gamma function Γ(x).

Lemma 2 ([1, 14, 15]). The polygamma functions ψ(k)(x) can be expressed for

x > 0 and k ∈ N as

ψ(k)(x) = (−1)k+1k!
∞∑

i=0

1
(x+ i)k+1

, (12)

ψ(k)(x) = (−1)k+1

∫ ∞

0

tke−xt

1− e−t
d t, (13)

where γ = 0.57721566 . . . is the Euler-Mascheroni constant.

For i ∈ N,

ψ(i−1)(x+ 1) = ψ(i−1)(x) +
(−1)i−1(i− 1)!

xi
. (14)

Lemma 3 ([1, 14, 15]). As x→∞,

ln Γ(x) =
(
x− 1

2

)
lnx− x+

ln(2π)
2

+
1

12x
+O

(
1
x

)
, (15)

ψ(x) = lnx− 1
2x

− 1
12x2

+O

(
1
x2

)
, (16)

(−1)n+1ψ(n)(x) =
(n− 1)!
xn

+
n!

2xn+1
+

(n+ 1)!
12xn+2

+O

(
1

xn+2

)
. (17)
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Lemma 4. The function

ϕ(t) =
2e2t − 2(t+ 2)et + t2 + 2t+ 2

tet(et − 1)
(18)

is strictly decreasing in (0,∞).

Proof. Straightforward computing yields

ϕ′(t) =
2 + 2t+ t2 + t3 − (6 + 4t+ 3t2 + 2t3)et + 2(3 + t+ t2)e2t − 2e3t

t2et(et − 1)2

,
λ1(t)

t2et(et − 1)2
,

λ′1(t) = 2 + 2t+ 3t2 − (10 + 10t+ 9t2 + 2t3)et + 2(7 + 4t+ 2t2)e2t − 6e3t,

λ′′1(t) = 2 + 6t− (20 + 28t+ 15t2 + 2t3)et + 4(9 + 6t+ 2t2)e2t − 18e3t,

λ′′′1 (t) = 6− 54e3t − (48 + 58t+ 21t2 + 2t3)et + 16(6 + 4t+ t2)e2t,

λ
(4)
1 (t) = −

[
106 + 100t+ 27t2 + 2t3 + 162e2t − 32(8 + 5t+ t2)et

]
et

, λ2(t),

λ′2(t) = 100 + 54t+ 6t2 − 32(13 + 7t+ t2)et + 324e2t,

λ′′2(t) = 6(9 + 2t)− 32(20 + 9t+ t2)et + 648e2t,

λ′′′2 (t) = 4
[
3− 8(29 + 11t+ t2)et + 324e2t

]
,

λ
(4)
2 (t) = 32(81et − t2 − 13t− 40)et.

It is clear that λ(4)
2 (t) > 0 in (0,∞) and λ

(i)
2 (0) > 0 for 0 ≤ i ≤ 3. Therefore, the

functions λ(i)
2 (t) is increasing and positive for 0 ≤ i ≤ 3 in (0,∞). This implies

that λ(4)
1 (t) is negative in (0,∞). Since λ(i)

1 (0) = 0 for 0 ≤ i ≤ 3, it follows that

λ
(i)
1 (t) is decreasing and negative for 0 ≤ i ≤ 3 in (0,∞). This gives ϕ′(t) < 0 in

(0,∞). The proof of Lemma 4 is complete. �

3. Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. From formulas (11), (12) and (13), for x ∈ (0,∞) and any

nonnegative integer i, it follows that

φ(x) , ψ′′(x) + g2(x) + h2(x)

= ψ′′(x) +
2 + cx− 2x2

x3
+

2(3 + 3x+ x2)
(x+ 1)3

= ψ′′(x) +
2
x3

+
c

x2
− 2
x

+
2

(1 + x)3
+

2
(1 + x)2

+
2

1 + x

=
c

x2
− 2
x

+
2

(1 + x)2
+

2
1 + x

− 2
∞∑

i=2

1
(x+ i)3
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= ψ′′(x+ 2) +
c

x2
− 2
x

+
2

(1 + x)2
+

2
1 + x

= c

∫ ∞

0

te−xt d t− 2
∫ ∞

0

e−xt d t+ 2
∫ ∞

0

te−(x+1)t d t

+ 2
∫ ∞

0

e−(x+1)t d t−
∫ ∞

0

t2e−(x+2)t

1− e−t
d t

=
∫ ∞

0

[
(ct− 2)e2t + (2t− ct+ 4)et − (t2 + 2t+ 2)

]e−(x+2)t

1− e−t
d t

,
∫ ∞

0

q(t)
e−(x+2)t

1− e−t
d t

and

φ(i)(x) = (−1)i

∫ ∞

0

tiq(t)
e−(x+2)t

1− e−t
d t. (19)

Standard argument shows that q(t) Q 0 is equivalent to

c Q
2e2t − 2(t+ 2)et + t2 + 2t+ 2

tet(et − 1)
= ϕ(t) (20)

for t ≥ 0.

Using Lemma 4 and the fact that limt→0 ϕ(t) = 1 and limt→∞ ϕ(t) = 0 leads to

0 < ϕ(t) < 1. If c ≥ 1, then q(t) ≥ 0; if c ≤ 0, then q(t) ≤ 0. This means that

the function φ(x) is strictly completely monotonic in (0,∞) for c ≥ 1 and −φ(x) is

also strictly completely monotonic in (0,∞) for c ≤ 0.

If φ(x) is completely monotonic in (0,∞), then by definition

φ′(x) = ψ′′′(x)− 2(3 + 12x+ 17x2 + 8x3 + 3x4)
x4(1 + x)4

− 2c
x3

≤ 0 (21)

which is equivalent to

c ≥ x3

2

(
ψ′′′(x)− 2(3 + 12x+ 17x2 + 8x3 + 3x4)

x4(1 + x)4

)
→ 1 (22)

as x → ∞ by using the asymptotic formula (17). Similarly, it is easy to see that

the necessary condition of −φ(x) being completely monotonic in (0,∞) is c ≤ 0.

The proof of Theorem 1 is complete. �

The first proof of Theorem 2. Taking logarithm of Φc(x) gives

lnΦc(x) = x ln
(

1 +
1
x

)
+

lnΓ(x+ 1)
x

− c lnx.

Differentiating yields

[lnΦc(x)]′ = ln
(

1 +
1
x

)
− 1
x+ 1

+
xψ(x+ 1)− ln Γ(x+ 1)

x2
− c

x
(23)

and

[lnΦc(x)](n) = (−1)(n−1)(n− 1)!x
[

1
(x+ 1)n

− 1
xn

]
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+ (−1)n(n− 2)!n
[

1
(x+ 1)n−1

− 1
xn−1

]
+
hn(x)
xn+1

+ (−1)n(n− 1)!
c

xn

= (−1)n(n− 2)!
[
c(n− 1)− x

xn
+

x+ n

(x+ 1)n

]
+
hn(x)
xn+1

,

where n ≥ 2, ψ(−1)(x+ 1) = lnΓ(x+ 1), ψ(0)(x+ 1) = ψ(x+ 1), and

hn(x) =
n∑

k=0

(−1)n−kn!xkψ(k−1)(x+ 1)
k!

, (24)

h′n(x) = xnψ(n)(x+ 1)

> 0 if n is odd,

< 0 if n is even.
(25)

Therefore, we have

(−1)nxn+1[lnΦc(x)](n) + (−1)n+1hn(x)

= (n− 2)!
{
c(n− 1)− x+

xn(x+ n)
(x+ 1)n

}
x

and, by (14),

d
{
(−1)nxn+1[lnΦc(x)](n)

}
dx

= (−1)nxnψ(n)(x+ 1) + (n− 2)!
{
c(n− 1)− 2x

+
xn[n+ n2 + (2 + 2n)x+ 2x2]

(x+ 1)n+1

}
= xn

{
(−1)nψ(n)(x+ 1) + (n− 2)!

[
c(n− 1)− 2x

xn

+
n+ n2 + (2 + 2n)x+ 2x2

(x+ 1)n+1

]}
= xn

{
(−1)nψ(n)(x) +

n!
xn+1

+ (n− 2)!
[
c(n− 1)− 2x

xn

+
n+ n2 + (2 + 2n)x+ 2x2

(x+ 1)n+1

]}
= xn

{
(−1)nψ(n)(x) +

n!
xn+1

+ (n− 2)!
[
c(n− 1)− 2x

xn

+
n(n+ 1) + 2(n+ 1)x+ 2x2

(x+ 1)n+1

]}
= xn

{
(−1)nψ(n)(x) + (n− 2)!

[
n(n− 1) + c(n− 1)x− 2x2

xn+1

+
n(n+ 1) + 2(n+ 1)x+ 2x2

(x+ 1)n+1

]}
, xn

{
(−1)nψ(n)(x) + (n− 2)![gn(x) + hn(x)]

}
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with

g′n(x) = −(n− 1)gn+1(x) and h′n(x) = −(n− 1)hn+1(x)

which implies

g
(n−2)
2 (x) = (−1)n(n− 2)!gn(x)

and

h
(n−2)
2 (x) = (−1)n(n− 2)!hn(x)

by induction. Hence, by using Theorem 1, we have

d
{
(−1)nxn+1[lnΦc(x)](n)

}
dx

= (−1)nxnφ(n−2)(x)

> 0 if and only if c ≥ 1,

< 0 if and only if c ≤ 0,

and the function (−1)nxn+1[lnΦc(x)](n) is increasing (or decreasing) if and only if

c ≥ 1 (or c ≤ 0) in (0,∞). From

lim
x→0

{
(−1)nxn+1[lnΦc(x)](n)

}
= 0,

it is deduced that

(−1)nxn+1[lnΦc(x)](n)

> 0 if and only if c ≥ 1

< 0 if and only if c ≤ 0

and

(−1)n[lnΦc(x)](n)

> 0 if and only if c ≥ 1

< 0 if and only if c ≤ 0

for n ≥ 2 in (0,∞). This implies the function [lnΦc(x)]′ is increasing (or decreasing)

if and only if c ≥ 1 (or c ≤ 0) in (0,∞). It is ready to obtain limx→∞[lnΦc(x)]′ = 0,

so

[lnΦc(x)]′

< 0 if and only if c ≥ 1

> 0 if and only if c ≤ 0

and ln Φc(x) is decreasing (or increasing) if and only if c ≥ 1 (or c ≤ 0) in (0,∞).

The first proof of Theorem 2 is complete. �

The second proof of Theorem 2. Write

Φc(x) =
1

xc−1
Φ(x).

Hence

f(x) ≡ ln[Φc(x)] = −(c− 1) lnx+ ln[Φ(x)].
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By applying one of the results in [11] that Φ(x) is logarithmically completely mono-

tonic in (0,∞), it is easy to show (−1)nf (n)(x) ≥ 0 in (0,∞) for all n ∈ N if c ≥ 1.

For the part of c < 1, the second part of Theorem 2 is proved if one uses

ln
1

Φc(x)
= − ln(Φc(x)).

If the function Φc(x) is logarithmically completely monotonic in (0,∞), then by

definition [lnΦc(x)]′ ≤ 0 which is equivalent to

c ≥ x ln
(

1 +
1
x

)
− x

x+ 1
+
xψ(x+ 1)− ln Γ(x+ 1)

x
, ϑ(x) (26)

from (23). If 1
Φc(x) is logarithmically completely monotonic in (0,∞), then by

definition [ln Φc(x)]′ ≥ 0 which is equivalent to the reversed inequality of (26).

By L’Hospital rule, it is easy to obtain that limx→0 ϑ(x) = 0. Utilizing directly

Lemma 3 yields limx→∞ ϑ(x) = 1. Therefore, the necessary condition of Φc(x)

being logarithmically completely monotonic in (0,∞) is c ≥ 1 and the necessary

condition of 1
Φc(x) being logarithmically completely monotonic in (0,∞) is c ≤ 0.

The second proof of Theorem 2 is complete. �
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