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SOME UPPER BOUNDS FOR THE PRODUCT pips---pn

MEHDI HASSANI

ABSTRACT. In this note, using refined Mandl’s inequality, Robin’s inequality
and a refinements of the AGM inequality, we find some upper bounds for the
product p1p2 - - pn.

As usual, let p,, be the n*? prime. The Mandl’s inequality (see [1] and [5]) asserts
that for every n > 9, we have:

1O Pn
1.1 - S<
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Robin’s inequality (see [1], page 51) gives a lower bound for the average = > | p;;
for every n > 2, it asserts that:

1 n
(1.2) Pz < ﬁZPzw

(1.3) %Zpi<&—£ (n > 10).

Using (1.3) and the AGM Inequality [3], we obtain:
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(1.4) P1p2- - Pn < 5> 14

Note that (1.4) holds also for 5 < n < 9. This yields an upper bound for the
product p1ps - - - pn, which has been appeared in [2], already. In this short note, we
use a refinement of the AGM inequality to get some better bounds. In [4], Rooin
shows that for any non-negative real numbers z; < x5 < --- < x,,, we have:

(n > 10).

1 n n—k 1 1
(1.5) Ap=Gn >~ AT (o — AL ) >0,
k=2
in which:
1 n
An = - i)
and
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Applying (1.5) on p; < py < - -+ < py, and using relations (1.2) and (1.3), for every
n > 10, we obtain:
Pn TN _ }"
(1.6) P1p2- P < {( 5 14) Qn)p
in which,
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In fact, all members under summation are positive. So,

1 1 Pn nyw\" Pn 1 "
o> b ()} B )
(n)>n{p 2 14 }>2n

Using this bound for Q(n) and considering (1.6), for every n > 10, we obtain:

P1p2 Pn B " 14
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