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SOME UPPER BOUNDS FOR THE PRODUCT p1p2 · · · pn

MEHDI HASSANI

Abstract. In this note, using refined Mandl’s inequality, Robin’s inequality

and a refinements of the AGM inequality, we find some upper bounds for the
product p1p2 · · · pn.

As usual, let pn be the nth prime. The Mandl’s inequality (see [1] and [5]) asserts
that for every n ≥ 9, we have:

(1.1)
1
n

n∑
i=1

pi <
pn

2
.

Robin’s inequality (see [1], page 51) gives a lower bound for the average 1
n

∑n
i=1 pi;

for every n ≥ 2, it asserts that:

(1.2) pbn
2 c ≤

1
n

n∑
i=1

pi.

A refinement of Mandl’s inequality has been obtained in [2], as follows:

(1.3)
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14
(n ≥ 10).

Using (1.3) and the AGM Inequality [3], we obtain:

(1.4) p1p2 · · · pn <
(pn

2
− n

14

)n

(n ≥ 10).

Note that (1.4) holds also for 5 ≤ n ≤ 9. This yields an upper bound for the
product p1p2 · · · pn, which has been appeared in [2], already. In this short note, we
use a refinement of the AGM inequality to get some better bounds. In [4], Rooin
shows that for any non-negative real numbers x1 ≤ x2 ≤ · · · ≤ xn, we have:

(1.5) An −Gn ≥
1
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in which:

An =
1
n

n∑
i=1

xi,

and

Gn = n

√√√√ n∏
i=1

xi.

1991 Mathematics Subject Classification. 11A41.

Key words and phrases. Primes, Inequalities, AGM-Inequality.

1



2 MEHDI HASSANI

Applying (1.5) on p1 < p2 < · · · < pn, and using relations (1.2) and (1.3), for every
n ≥ 10, we obtain:

(1.6) p1p2 · · · pn <
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in which,
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In fact, all members under summation are positive. So,
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Using this bound for Ω(n) and considering (1.6), for every n ≥ 10, we obtain:

p1p2 · · · pn <
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