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APPROXIMATION OF pn BY Hn

AKRAM ALIKHANI

MEHDI HASSANI

Abstract. In this paper we introduce some bounds including Hn =
∑n

k=1
1
k
,

for pn, nth prime number. Then we observe that the Prime Number Theorem
is equivalent with pn ∼ nHn, when n tends to infinity.

1. Introduction

As usual, let pn be the nth prime. According to the Prime Number Theorem
(PNT) [3], we know that:

(1.1) pn = n log n + o(n log n) (n →∞).

Also, we know that [1], if Hn =
∑n

k=1
1
k , then:

(1.2) Hn = log n + O(1) (n →∞).

So, considering (1.1) and (1.2), we obtain:

pn = n(Hn + O(1)) + o(n log n) = nHn + o(n log n) (n →∞).

Therefore, comparing pn and nHn seems to be a nice problem. To consider this
problem, we need some bounds concerning pn and Hn, which we recall them from
literatures. About pn, we have the following bounds [4]:
(1.3)

n log n+n log2 n−n+n
log2 n− 2.25

log n
≤ pn ≤ n log n+n log2 n−n+n

log2 n− 1.8
log n

,

which left hand side of it holds true for every n ≥ 2 and the right hand side of it
holds true for every n ≥ 27076, log2 n means log log n and base of all logarithms is
e. Also, for Hn we have the following bounds [2]:

(1.4) γ + log(n + 0.5) < Hn ≤ γ + log(n− 1 + e1−γ) (n ≥ 1),

where γ is Euler constant. In this note, we search some bounds of the form nHn +
e(n), which we will find e(n) in both cases lower and upper bounds.

2. Inequalities of the form nHn

Consider the following inequality:

(2.1) nHn + a(n) ≤ pn ≤ nHn + b(n).

Here, we try to find some suitable functions a(n) and b(n), such that (2.1) holds
true.
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Upper Bound. To find above mentioned upper bound, considering (1.4), we
have:

(2.2) n (γ + log(n + 0.5)) < nHn ≤ n
(
γ + log(n− 1 + e1−γ)

)
.

Using left hand side of above inequality, we have:

n (γ + log(n + 0.5)) + b(n) ≤ nHn + b(n),

and considering this inequality, with the right hand side of (1.3), we must have:

n log n + n log2 n− n + n
log2 n− 1.8

log n
≤ n (γ + log(n + 0.5)) + b(n),

or equivalently,

n log n + n log2 n− n + n
log2 n− 1.8

log n
− n (γ + log(n + 0.5)) ≤ b(n),

Since, b(n) is going to appears in upper bound for pn , the best possible case is:

(2.3) b(n) = n log2 n− n(1 + γ) + n

(
log2 n− 1.8

log n
− log

(
1 +

0.5
n

))
.

Thus, we have:

(2.4) pn ≤ nHn + n log2 n− n(1 + γ) + n

(
log2 n− 1.8

log n
− log

(
1 +

0.5
n

))
,

which holds for n ≥ 27076.

Lower Bound. To find above mentioned lower bound, considering (2.2), we have:

nHn + a(n) ≤ nγ + n log(n− 1 + e1−γ) + a(n).

Considering this inequality with the left hand side of (2.1) and the left hand side
of (1.3), we must have:

nγ + n log(n− 1 + e1−γ) + a(n) ≤ n log n + n log2 n− n + n
log2 n− 2.25

log n
.

Since, we want to find the maximum lower bound in the left hand side of (2.1), the
best possible choice for a(n), is:

a(n) = n log2 n− n(1 + γ) + n

(
log2 n− 2.25

log n
− log

(
1 +

e1−γ − 1
n

))
.

So, we have:

(2.5) nHn + n log2 n− n(1 + γ) + n

(
log2 n− 2.25

log n
− log

(
1 +

e1−γ − 1
n

))
≤ pn,

which holds for n ≥ 2. Therefore, considering (2.4) and (2.5), for every n ≥ 27076,
we obtain:

(2.6) |pn − (nHn + n log2 n− n(1 + γ))| ≤ n

(
log2 n− 1.8

log n
− log

(
1 +

0.5
n

))
.
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3. An Equivalent for the PNT

Considering (2.6), we obtain:

pn = nHn + n log2 n− n(1 + γ) + O

(
n log2 n

log n

)
,

which is a very strong form of an equivalent for the PNT. In fact we observe that
the PNT holds if and only if pn ∼ nHn, when n tends to infinity. To see this, first
suppose that the PNT holds true. So, when n tends to infinity, we have:

pn = n log n + o(n log n).

Considering this with Hn ∼ log n, we obtain:

pn = n(Hn + O(1)) + o(n log n)
= nHn + O(n) + o(n log n)
= nHn + o(n log n)
= nHn + o(n(Hn + O(1)))
= nHn + o(nHn) + o(O(n))
= nHn + o(nHn).

Inversely, suppose pn ∼ nHn, then:

pn = nHn + o(nHn),

which considering this with Hn ∼ log n, we obtain:

pn = n(log n + O(1)) + o(n(log n + O(1)))
= n log n + O(n) + o(n log n + O(n))
= n log n + O(n) + o(n log n)
= n log n + o(n log n),

and this is PNT.
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