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LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS
INVOLVING GAMMA AND POLYGAMMA FUNCTIONS

FENG QI, DA-WEI NIU, AND JIAN CAO

Abstract. There exists a constant b∗ such that the function [Γ(x+ 1)]1/x(1+

1/x)x+b/x is logarithmically completely monotonic and the function ψ′′(x) +
[x4 + 5x3 + (7 + 3b)x2 + (7 + b)x+ 2]/x3(x+ 1)3 is completely monotonic in

(0,∞) if b ≥ b∗ ≥ −1. The function (1 + a/x)x+b for a > 0 and b ∈ R is

logarithmically completely monotonic in (0,∞) if and only if 2b ≥ a.

1. Introduction

A function f is said to be completely monotonic on an interval I if f has deriva-
tives of all orders on I and

(−1)nf (n)(x) ≥ 0 (1)
for x ∈ I and n ≥ 0. The set of completely monotonic functions is denoted by C[I].

A positive function f is said to be logarithmically completely monotonic on an
interval I if its logarithm ln f satisfies

(−1)k[ln f(x)](k) ≥ 0 (2)

for k ∈ N on I. The set of logarithmically completely monotonic functions is
denoted by L[I].

A function f is called a Stieltjes transform if it can be of the form

f(x) = a+
∫ ∞

0

dµ(s)
s+ x

, (3)

where a is a nonnegative number and µ is a nonnegative measure on [0,∞) satisfying∫∞
0

1/(1 + s) dµ(s) <∞. The set of Stieltjes transforms is denoted by S.
The notion “logarithmically completely monotonic function” was explicitly coined

in [2] and recovered in [10, 12, 14] and the following much useful, important and
key conclusion was proved: L[I] ⊂ C[I]. Stimulated by the papers [12, 14], among
other things, it is proved in [3] that S \ {0} ⊂ L[(0,∞)] ⊂ C[(0,∞)].

One motivation for studying completely monotonic functions is the connection
between infinitely divisible probability distributions (measure) on R and [0,∞) and
completely monotonic functions related to their Fourier and Laplace transforms.
See [16, p. 161]. The class of logarithmically completely monotonic functions is
characterized as the infinitely divisible completely monotonic functions established
by Horn in [6, Theorem 4.4] and restated in [3, Theorem 1.1].

It is well-known that the sequence {(1 + 1/n)n}n∈N is increasing. A theorem of
I. Schur [8, pp. 30 and 186] states that the sequence {(1 + 1/n)n+b}n∈N decreases
if and only if b ≥ 1/2. Furthermore, all parameters a > 0 and b ∈ R such that the
sequence

{
(1 + a/n)n+b

}
n∈N or the corresponding function (1 + a/x)x+b in (0,∞)

2000 Mathematics Subject Classification. primary 33B15; secondary 26D07.
Key words and phrases. completely monotonic function, logarithmically completely monotonic

function, gamma function, polygamma function.
The first author was supported in part by the Science Foundation of Project for Fostering

Innovation Talents at Universities of Henan Province, China.

This paper was typeset using AMS-LATEX.

1



2 F. QI, D.-W. NIU, AND J. CAO

are monotonic are determined in [11]. Let Fn(x) = Pn(x)[e − (1 + 1/x)x] and
Gn(x) = Pn(x)[(1+1/x)x+1− e], where Pn(x) = xn +

∑n−1
i=0 cix

i is a polynomial of
degree n ≥ 1 with real coefficients. Then the following conclusions were obtained
in [1]: Fn is completely monotonic if and only if n = 1 and c0 ≥ 11/12, and Gn is
completely monotonic if and only if n = 1 and c0 ≥ 1/12; The function e−(1+1/x)x

and (1 + 1/x)x+1 − e are Stieltjes transforms; Let a > 0 and b be real numbers,
then the function (1 + a/x)x+b − ea is completely monotonic if and only if a ≤ 2b.
In Theorem 2 below, the sufficient and necessary conditions in order the function
(1 + a/x)x+b to be logarithmically completely monotonic in (0,∞) are given.

It is well known that Γ(x) denotes the classical Euler gamma function defined
for Re z > 0 by Γ(z) =

∫∞
0
tz−1e−t d t which is one of the most important special

functions and has much extensive applications in many branches, for example, sta-
tistics, physics, engineering, and other mathematical sciences. In the recent past,
various authors showed that numerous functions, which are defined in terms of
gamma, polygamma, and other special functions, are (logarithmically) completely
monotonic and used this fact to derive many interesting new inequalities. See
[1, 3, 4, 5, 7, 10, 12, 13, 14] and the references therein.

In various papers complete monotonicity for special functions has been estab-
lished by proving the stronger statement that the function is logarithmically com-
pletely monotonic or is a Stieltjes transform. In concrete cases it is often easier
to establish that a function is logarithmically completely monotonic or a Stieltjes
transform than to verify its complete monotonicity. See [3, 5, 10, 12, 13, 14] and
the references therein.

In [12, 13], it is proved that for α ≥ 1 the function [Γ(x+ 1)]1/x/xα is loga-
rithmically completely monotonic in (0,∞). In [14], the authors found that the
function

Φ(x) =
[Γ(x+ 1)]1/x

x

(
1 +

1
x

)x

(4)

is logarithmically completely monotonic in (0,∞). Motivated by [14], among other
things, the author in [3] showed that Φ(x) and lnΦ(x) are both Stieltjes transforms.

Define for x ∈ (0,∞)

Φc(x) =
[Γ(x+ 1)]1/x

xc

(
1 +

1
x

)x

. (5)

It is clear that Φ1(x) = Φ(x). In [5] recently, the following sufficient and necessary
conditions are established: The function Φc(x) is logarithmically completely mono-
tonic in (0,∞) if and only if c ≥ 1 and its reciprocal 1/Φc(x) is logarithmically
completely monotonic in (0,∞) if and only if c ≤ 0; The function

ψ′′(x) +
2 + (6 + c)x+ (4 + 3c)x2 + (2 + 3c)x3 + cx4

x3(x+ 1)3
, (6)

where ψ(x) = Γ′(x)/Γ(x) is the psi or digamma function, is completely monotonic
in (0,∞) if and only if c ≥ 1 and its negative is completely monotonic in (0,∞) if
and only if c ≤ 0.

Define for x ∈ (0,∞)

Ψb(x) =
[Γ(x+ 1)]1/x

x

(
1 +

1
x

)x+b

. (7)

It is clear that Ψ0(x) = Φ0(x) = Φ(x).
The main purpose of this paper is to confirm the range of b such that Ψb(x) is

logarithmically completely monotonic in (0,∞).
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Theorem 1. There exists a constant b∗ ≥ −1 such that the function Ψb(x) is
logarithmically completely monotonic in (0,∞) if b ≥ b∗.

As a by-product of the proof of Theorem 1, we have

Corollary 1. There exists a constant b∗ ≥ −1 such that the function

ψ′′(x) +
x4 + 5x3 + (7 + 3b)x2 + (7 + b)x+ 2

x3(x+ 1)3
(8)

is completely monotonic in (0,∞) if b ≥ b∗.

By the way, we establish the following

Theorem 2. The function (1 + a/x)x+b for a > 0 and b ∈ R is logarithmically
completely monotonic in (0,∞) if and only if 2b ≥ a.

Since L ⊂ C, it is straightforward to obtain the following

Corollary 2 ([1]). Let a > 0 and b be real numbers. The function (1+a/x)x+b−ea

is completely monotonic if and only if a ≤ 2b.

Remark 1. The upper bound of the constant b∗ is estimated in [9, 15].

2. Proofs of main results

Proof of Theorem 1 and Corollary 1. Taking the logarithm of Ψb(x) gives

lnΨb(x) = (x+ b) ln
(

1 +
1
x

)
+

lnΓ(x+ 1)
x

− lnx.

Differentiating yields

[lnΨb(x)]′ = ln
(

1 +
1
x

)
− x+ b

x(x+ 1)
+
xψ(x+ 1)− ln Γ(x+ 1)

x2
− 1
x

(9)

and, for n ≥ 2,

[lnΨb(x)](n) = (−1)(n−1)(n− 1)!(x+ b)
[

1
(x+ 1)n

− 1
xn

]
+ (−1)n(n− 2)!n

[
1

(x+ 1)n−1
− 1
xn−1

]
+
hn(x)
xn+1

+ (−1)n(n− 1)!
1
xn

= (−1)n(n− 2)!
[
(b+ 1)(n− 1)− x

xn
+
x+ n− b(n− 1)

(x+ 1)n

]
+
hn(x)
xn+1

,

where ψ(−1)(x+ 1) = lnΓ(x+ 1), ψ(0)(x+ 1) = ψ(x+ 1), and

hn(x) =
n∑

k=0

(−1)n−kn!xkψ(k−1)(x+ 1)
k!

, (10)

h′n(x) = xnψ(n)(x+ 1)

{
> 0 if n is odd,
< 0 if n is even.

(11)

Therefore, we have

(−1)nxn+1[lnΨb(x)](n) + (−1)n+1hn(x)

= (n− 2)!
{

(b+ 1)(n− 1)− x+
xn[x+ n− b(n− 1)]

(x+ 1)n

}
x

and, by

ψ(i−1)(x+ 1) = ψ(i−1)(x) +
(−1)i−1(i− 1)!

xi
, i ∈ N, (12)
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d
{
(−1)nxn+1[lnΨb(x)](n)

}
dx

= (−1)nxnψ(n)(x+ 1) + (n− 2)!
{

(b+ 1)(n− 1)− 2x

+
xn[b+ n+ (1− b)n2 + (2 + b+ 2n− bn)x+ 2x2]

(x+ 1)n+1

}
= xn

{
(−1)nψ(n)(x+ 1) + (n− 2)!

[
(b+ 1)(n− 1)− 2x

xn

+
b+ n+ (1− b)n2 + (2 + b+ 2n− bn)x+ 2x2

(x+ 1)n+1

]}
= xn

{
(−1)nψ(n)(x) +

n!
xn+1

+ (n− 2)!
[
(b+ 1)(n− 1)− 2x

xn

+
b+ n+ (1− b)n2 + (2 + b+ 2n− bn)x+ 2x2

(x+ 1)n+1

]}
= xn

{
(−1)nψ(n)(x) + (n− 2)!

[
n(n− 1) + (b+ 1)(n− 1)x− 2x2

xn+1

+
b+ n+ (1− b)n2 + (2 + b+ 2n− bn)x+ 2x2

(x+ 1)n+1

]}
, xn

{
(−1)nψ(n)(x) + (n− 2)![gn(x) + hn(x)]

}
with

g′n(x) = −(n− 1)gn+1(x) and h′n(x) = −(n− 1)hn+1(x)
which implies

g
(n−2)
2 (x) = (−1)n(n− 2)!gn(x)

and

h
(n−2)
2 (x) = (−1)n(n− 2)!hn(x)

by induction. Hence

d
{
(−1)nxn+1[lnΨb(x)](n)

}
dx

= (−1)nxn[ψ′′(x) + g2(x) + h2(x)](n−2).

It is well known that, for x > 0 and r > 0,

1
xr

=
1

Γ(r)

∫ ∞

0

tr−1e−xt d t, (13)

and the polygamma functions ψ(k)(x) can be expressed for x > 0 and k ∈ N as

ψ(k)(x) = (−1)k+1

∫ ∞

0

tke−xt

1− e−t
d t, (14)

where γ = 0.57721566 . . . is the Euler-Mascheroni constant. From these two for-
mulas, for x ∈ (0,∞) and any nonnegative integer i, it follows that

φ(x) , ψ′′(x) + g2(x) + h2(x)

= ψ′′(x) +
2 + (b+ 1)x− 2x2

x3
+

3(2− b) + (6− b)x+ 2x2

(x+ 1)3

= ψ′′(x) +
2
x3

+
b+ 1
x2

− 2
x

+
2(1− b)
(1 + x)3

+
2− b

(1 + x)2
+

2
1 + x

= −
∫ ∞

0

t2e−xt

1− e−t
d t+

∫ ∞

0

t2e−xt d t+
∫ ∞

0

(b+ 1)te−xt d t
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− 2
∫ ∞

0

e−xt d t+ 2
∫ ∞

0

e−(x+1)t d t+
∫ ∞

0

(2− b)te−(x+1)t d t

+
∫ ∞

0

(1− b)t2e−(1+x)t d t

=
∫ ∞

0

[
(t− 2)e2t + (t+ 4)et − (t2 + 2t+ 2)

− bt(et − 1)(1 + t− et)
]e−(x+1)t

et − 1
d t

,
∫ ∞

0

q(t)
e−(x+1)t

et − 1
d t

and

φ(i)(x) = (−1)i

∫ ∞

0

tiq(t)
e−(x+1)t

et − 1
d t. (15)

Standard argument shows that q(t) Q 0 is equivalent to

b Q
(t− 2)e2t + (t+ 4)et − (t2 + 2t+ 2)

t(et − 1)(1 + t− et)
= ϕ(t) (16)

for t ≥ 0.
By L’Hospital rule, it is straightforward to obtain that limt→0 ϕ(t) = −∞ and

limt→∞ ϕ(t) = −1. This implies that q(t) keeps constantly non-positive in (0,∞) is
impossible for any b ∈ R. Further, since ϕ(t) is differentiable in (0,∞), there must
exist a maximum b∗ ≥ −1 of ϕ(t) in (0,∞) such that q(t) ≥ 0 in (0,∞) if b ≥ b∗.
This means that the function ψ′′(x) + g2(x) + h2(x) is completely monotonic in
(0,∞) for b ≥ b∗.

For n ≥ 2, if b ≥ b∗, then

d
{
(−1)nxn+1[ln Ψb(x)](n)

}
dx

= xn

∫ ∞

0

tn−2q(t)
e−(x+2)t

1− e−t
d t ≥ 0,

and the function (−1)nxn+1[lnΨb(x)](n) is increasing in (0,∞). From

lim
x→0

{
(−1)nxn+1[lnΨb(x)](n)

}
= 0

by L’Hospital rule, it is clear for n ≥ 2 that (−1)nxn+1[lnΨb(x)](n) ≥ 0 and
(−1)n[lnΨb(x)](n) ≥ 0 in (0,∞). This implies the function [lnΨb(x)]′ is increasing
in (0,∞). It is ready to obtain limx→∞[lnΨb(x)]′ = 0 by using

ln Γ(x) =
(
x− 1

2

)
lnx− x+

ln(2π)
2

+
1

12x
+O

(
1
x

)
, (17)

ψ(x) = lnx− 1
2x

− 1
12x2

+O

(
1
x2

)
, (18)

(−1)n+1ψ(n)(x) =
(n− 1)!
xn

+
n!

2xn+1
+

(n+ 1)!
12xn+2

+O

(
1

xn+2

)
(19)

as x → ∞, so [lnΨb(x)]′ ≤ 0 and lnΨb(x) is decreasing in (0,∞). In conclusion,
the function lnΨb(x) for b ≥ b∗ is completely monotonic in (0,∞).

If Ψb(x) is logarithmically completely monotonic in (0,∞), then from the fact
(−1)n[lnΨb(x)](n) ≥ 0 for n ∈ N and by utilizing L’Hospital rule and formulas (17),
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(18) and (19), one finds that

b ≥ x(x+ 1)
[

ln
(

1 +
1
x

)
+
xψ(x+ 1)− ln Γ(x+ 1)

x2
− 1
x

]
− x

→

{
−1 as x→ 0
−∞ as x→∞

(20)

and

b ≥ − 1
n− 1

xn(x+ 1)n

(x+ 1)n − xn

[
n− 1− x

xn
+

x+ n

(x+ 1)n
+

(−1)nhn(x)
(n− 2)!xn+1

]
→

{
−1 as x→ 0
−∞ as x→∞

(21)

for x ∈ (0,∞). Hence b∗ ≥ −1. The proof is complete. �

Proof of Theorem 2. Let fa,b(x) = (1 + a/x)x+b. Then directly calculating and
employing (13) yields

ln fa,b(x) = (x+ b)[ln(x+ a)− lnx],

[ln fa,b(x)]′ = ln(x+ a)− lnx+
b− a

x+ a
− b

x
,

[ln fa,b(x)]′′ =
1

x+ a
− 1
x
− b− a

(x+ a)2
+

b

x2

=
∫ ∞

0

[
bt

(
eat − 1

)
−

(
eat − at− 1

)]
e−(x+a)t d t

,
∫ ∞

0

pa,b(t)e−(x+a)t d t.

The function pa,b(t) ≥ 0 is equivalent to

b ≥ eat − at− 1
t
(
eat − 1

) =
a
(
eu − u− 1

)
u
(
eu − 1

) , aω(u)

for u = at with limu→0 ω(u) = 1/2 and limu→∞ ω(u) = 0. Since

ω′(u) =
u2eu − (eu − 1)2

u2(eu − 1)2
,

µ(u)
u2(eu − 1)2

,

µ′(u) = 2
(

1 + u+
u2

2
− eu

)
eu < 0,

the function µ(u) is decreasing with µ(0) = 0, which means µ(u) < 0 and ω′(u) < 0.
Hence, the function ω(u) is decreasing strictly in u ∈ (0,∞). This tells us that the
function pa,b(t) ≥ 0 is equivalent to b ≥ a/2.

When 2b ≥ a, the fact that the function pa,b(t) ≥ 0 implies [ln fa,b(x)]′′ is
completely monotonic in (0,∞). Therefore, the function [ln fa,b(x)]′ is increasing
with limx→∞[ln fa,b(x)]′ = 0, and then [ln fa,b(x)]′ < 0. By definition, it follows
that fa,b(x) is logarithmically completely monotonic in (0,∞) for 2b ≥ a.

If fa,b(x) is logarithmically completely monotonic in (0,∞), then [ln fa,b(x)]′ < 0
can be rewritten as

ab ≥ x

[
(x+ a) ln

(
1 +

a

x

)
− a

]
→ a2

2

as x→∞. The proof is complete. �
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