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Abstract 

This dissertation is a detailed analysis of two-dimensional integration providing a priori 

error bounds in a variety of measures of integrand derivatives. Cubature formulae involv

ing both function evaluations and one-dimensional integration are furnished and numerical 

experiments to investigate the efficacy of the error formulae are performed. Product (and 

singular) double integration is investigated. 

Two-dimensional rectangular integral inequalities are constructed via embedding two one 

dimensional Peano kernels. In one dimension, linear kernels with a parametric discontinuity 

furnish "three point" rules where sampling occurs at the boundary and an interior point. 

The error is bounded in terms of the Lebesgue norms of the first derivative of the integrand. 

In two dimensions for a rectangular region, we find that the rule generalises to three "three 

point" rules in each dimension. That is nine sample points and six one dimensional integrals. 

The error bound is expressed in terms of norms of the first mixed partial derivative of the 

integrand. 

These results are further generalised to provide error bounds in terms an arbitrary order 

mixed partial derivative of the integrand. That is, error bounds in measures of g/ngsm f°
r 

some integers n, m > 0 where the integrand is /. In this case, we find that the rule involves 

both sample points and one-dimensional integrals involving all the partial derivatives of the 

integrand up to the stated order. 

Finally, we explore product integrands, where the weight w(-, •) is positive and integrable. 

In this case, the rule and the error bound involve moments of the weight. Particular at

tention is applied to identifying a priori two dimensional grids for which the error bound 

is minimized. Various weights and weight null spaces are explored and cubature formulae 

providing "optimal" grids are given. 
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Chapter 1 

Introduction 

1.1 History and Integration 

We begin by briefly examining approximating the definite integral fa f(x)dx. There are 

many reason why it may be important or desirable to perform this approximation. For 

example, it may be either difficult or impossible to find a mathematical formula for the 

integral or, if the problem can be solved analytically, the function concerned may be too 

complicated for efficient computation. Also, an integration program for a computer library 

may be required which could be used for a general function without special mathematical 

analysis on each occasion. 

The early period was overcome by the contriving of functions in the modern sense to scru

tinize general properties and to treat problems such as interpolation or approximation as 

general concepts. Newton interpolated functions at equidistant points and integrated the 

interpolants, thus becoming the father of the famous Newton-Cotes Quadratures. The sim

plest two quadratures of this class are the trapezoidal rule and Simpson rule. In the years 

that followed, a large number of quadratures of this type were developed involving sundry 

corrections and levelheaded combinations of subsistent formulas. 

Later Gauss was the first to notice that a suitable variation of the points led to better 

accuracy in general. A specialist text for those interested in Gaussian quadratures is the book 

by Stroud and Secrest (1966). Numerous new quadratures were subsequently found which 

3 



4 CHAPTER 1. INTRODUCTION 

sluggishly tended towards optimality, properties for certain class of functions or problems 

(see, for example, Romberg (1955)). 

It is believed that, the accurate and efficient evaluation of the single dimensional integral 

is very well established (see, for example, Abramowitz and Stegun (1972), Engels (1980), 

Davis and Robinowitz (1984), Press et al. (1986) and Atkinson (1988)). 

1.1.1 Multiple Integration 

Multiple integration was first used by Newton, but his arguments were geometrical and 

somewhat obscure. In the first half of the eighteenth century Leonhard Euler used repeated 

integrations in order to integrate over a bounded domain. Joseph Louis Lagrange used a 

triple integral in a work on gravitation involving an ellipsoid at around 1775. Followed by 

Mikhail Spirogyras who wrote integrals of n-forms over an n-dimensional "hypersurface". 

By the nineteenth century the use of multiple integrals had become fairly common. In fact, 

the first good theory was developed fairly recently, by Henri Lebesgue (1902) and Guido 

Fubini (1910). 

In moving from the problem of computing one-dimensional integrals to the multidimensional 

(two-dimensional in our thesis) case leads to a series of new problems. While in one dimension 

we may encounter three possible types of integration intervals - finite, semi-infinite and 

infinite, now a wide variety of domains have to be accommodated. Also, many cubature 

problems do not have a unique solution or a real solution at all. These complications make 

the multidimensional case considerably more difficult than the univariate one, and accounts 

for the fact that the theory of multidimensional cubature is by no means as complete as the 

one-dimensional case. 

One technique for evaluating multiple integrals numerically is to treat them as single integrals 

in each of the directions. This approach is costly with regards to the work required to 

achieve a particular accuracy. Another approach is to aim at reducing the dimension through 

utilizing the symmetry of the boundary of the function by using appropriate co-ordinate 

systems. However, this approach is, in practice, rarely used since symmetry is not always 
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present. 

Our proposed method in the current work, aims at reducing the dimensions by approximating 

a multiple integral by the evaluation of lower dimensional integrals for general functions, that 

do not necessarily contain symmetry. 

The Monte Carlo Method ( M C M ) is one of the most popular methods used in the evaluation 

of multidimensional integrals. The basic idea in M C M is to replace an analytic problem by 

a probabilistic problem with the same solution and then investigate the latter problem by 

statistical simulation. These are useful for functions whose convergence is slow and also 

when integrating over irregular regions. 

Other methods have been stated for decreasing the error in the M C M . All such approxima

tions are called Quasi-Monte Carlo Methods. Many different Quasi-Monte Carlo Methods 

were developed by Haber (1967), Haber (1970). A n extensive theory of Number-Theoretic-

Methods ( N T M ) is given by Korobov (1963). Recently, new references for N T M have been 

given by Fang and Wang (1994) and Fang and Zhang (1999). 

A research monograph and reference work is the book by Stroud (1971), in which, the best 

introductions to the area of multivariable quadrature can be found and numerical methods 

for the approximate calculation of multiple integrals have been discussed. 

Some other numerical methods and techniques that have been used for multidimensional 

integrations, are for example, adaptive quadrature, lattice rules and the use of parallel im

plementation of more traditional methods. 

Adaptive quadrature, Rice (1973), is an automatic procedure for increasing the accuracy of 

numerical approximation to an integral by increasing the number of samples of the integrand. 

It should be noted that, 

• When an adaptive algorithm is used, the nodes at which the integrand is evaluated 

cannot be determined beforehand. Therefore, adaptive techniques are inappropriate 

for tabulated integrands. 

• The subdivision procedure used in most adaptive quadrature codes is a simple bisec

tion of the chosen interval. Bertsen et al. (1991), present an algorithm in which a 
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subdivision strategy results in three differently sized subintervals. 

Another important application to one-dimensional and multidimensional integrals on the 

unit cube is the lattice rules. It uses all the nodes on a lattice that lie within and on the 

boundary of the unit cube. 

Sloan and Lyness (1989), consider quadrature rules for the S-dimensional hypercube. It has 

been noticed that for the one-dimensional integration of a periodic function, the trapezoidal 

rule is an efficient choice. However, for S-dimensional integration of periodic functions over a 

hypercube, the -S-dimensional product trapezoidal rule is not generally cost effective. Other 

lattice rules can be more effective as shown by Sloan and Walsh (1990), such as lattice rules 

of rank 2. Also, Worlet (1991), introduced some new families of integration lattices. They 

have a better order of convergence than previously known constructions. 

Another approach is the use of parallel computer methods, which can sometimes speed up 

the numerical computation of an integral. There are many procedures that can be used 

depending on the type of parallel computer under consideration. The most common use of 

a parallel computer is to partition an integration interval into many sub-intervals and have 

the integration on each sub-interval performed in parallel. Software such as Q U A D P A C K 

(IMSL,NAG) Piessens et al. (1983), has been around for some time, which is very robust 

and it uses adaptive algorithms taking into account the function behaviour. While these 

methods are robust, they are generally the least efficient. 

More recently, Cools et al. (1997) of the Numerical Integration, Nonlinear Equation and 

Software (NINES) group, have developed C U B P A C K + + which can handle double integrals 

over a variety of regions. 

Cools (1999), also has presented an article on cubature rules as an extension to the work of 

Stroud (1971). Thus he has presented both theoretical and practical aspects of multidimen

sional integrations, a comprehensive bibliography and presentation of multiple integration 

or cubature rules for different shaped regions. 

Utilizing the theory of orthogonal polynomials of several variables, Dunkl and X u (2001) have 

developed cubature rules using some classical types of polynomials whose weight functions 

are supported on standard domains. A variety of domains have been investigated such as the 

simplex, the ball, or domains of Gaussian type, which satisfy differential difference equations, 
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and for which fairly explicit formulae exist. 

1.2 Why Inequalities? 

From a practical point of view, sometimes definite integrals cannot be evaluated explicitly, 

that is because the function may not be known at all points in the given domain, or may pos

sess a complicated antiderivative. Thus it is often faster and easier to perform the integration 

using approximations to as high an accuracy as desired. Of course, numerical integration 

(or quadrature) by its very nature is an approximation and this introduces the concept of 

numerical error, and it is important to understand and to be able to estimate or bound 

the resulting error. Thus, as Richard Bellman has said, as mentioned in Mitrinovic et al. 

(1994), "There are reasons for the study of inequalities, practical, theoretical, and aesthetic. 

In many practical investigations, it is necessary to bound one quantity by another. From 

the theoretical point of view we use the principle that every inequality should come from an 

equality which makes the inequality obvious". Inequalities will be obtained in this thesis to 

provide a priori bounds on quadrature rules. Bounds are obtained from identities procured 

by the use of a Peano kernel methodology. 

1.2.1 Peano Kernel 

From an estimation or error analysis point of view, we observe that a method like the Peano 

kernel formula for quadrature rule errors is more general and can be applied in other cases 

besides interpolation. Further, it can be used for error bounds as well as for study of the 

behavior of the error itself. Consider all the functions / e Cn+1\a,b], then the error E[f] 

can be represented by the formula E[f] = f* f^+l\t)K{t)dt where K{t) is the Peano kernel 

for the error and is defined by 

K(t) = -,E[g{x;t)}, (I-1) 

\(x-t)n if x>t, 

g(x;t) = (x-t)l = { 
0 */ x<t. 
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where t is just a parameter in the g function and the E operates only with respect to the x 

variable. The fruitful thing about the Peano kernel, is that it can be used to determine the 

error in integration rules explicitly, as well as being applied for the case when the function 

has only a low order of differentiability. 

1.3 The boundary integration 

Chapter XV of Mitrinovic et al. (1994) deals with integral inequalities involving functions 

with bounded derivatives or Ostrowski T y p e Inequalities, which is now itself a special 

domain of the theory of inequalities with many powerful results and a large number of appli

cations to numerical integration, probability theory and statistics, information theory and 

integral operator theory. 

The main aim of this thesis involves utilizing the result of one-dimensional Ostrowski in

equalities to develop cubature rules for the two-dimensional problem over almost rectangular 

regions. 

By combining the results of the Ostrowski inequality and the three point rules (Cerone and 

Dragomir 1999) and applying them in two dimension we obtain a priori error bounds for 

functions whose first partial derivatives exist and are bounded. In particular the methodol

ogy to be adopted involves the following : 

• Determine a particular quadrature rule for one-dimensional integrals using a Peano 

kernel approach to produce an identity. 

• Utilize the one-dimensional integral identity to obtain identities for higher dimensional 

integrals. 

• Use the Modern Theory of Inequalities to obtain bounds on the approximation by 

estimating the bound on the error. 

• Determine the partition required in a composite rule that will achieve a desired accu

racy. 
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• Extend the Peano kernel to cater for singular or product integrands which appear quite 

naturally in practical problems. 

• Compare the quadrature routines as developed above with standard approaches for 

specific test integrands. 

We develop two-dimensional three point integral inequalities for functions with bounded first 

derivatives for different types of norms. In each case applications in numerical integration 

of two-dimensional integrals are investigated. W e also develop some generalizations of an 

Ostrowski type inequality in two-dimensions for n-time differentiable mappings. A n exten

sion of the Ostrowski result to one-dimensional weighted integrals is considered, where the 

integrand may posses some singularity structure, or the integrand may be perfectly analytic, 

but the region of integration is infinite or semi-infinite. This is accomplished in the manner 

outlined below. 

1.4 Outline of the thesis 

A review of the one-dimensional Ostrowski type inequality is investigated, and some recent 

results relating to it are given in Chapter 2. In Chapter 3, we utilize the three point tech

nique from the previous chapter to obtain two-dimensional Ostrowski inequalities in terms 

of LQQ, Lp and L\ norms, where at most the first derivatives are involved in the bound. 

Applications of the cubature formulas are produced and some related numerical results are 

demonstrated. 

Chapter 4 is reserved for some generalizations of Ostrowski type inequalities in two-dimensions 

for n—times differentiable functions. The results involve integral inequalities with bounds 

in terms of the nth derivative of the integrand. This is employed to approximate double 

integrals using one-dimensional integrals and function evaluated at the interior points. In 

Chapter 5, we consider the extension of the Ostrowski result to one-dimensional weighted 

integrals. Some fruitful weighted (or product) integral inequalities using the Ostrowski ap

proach are demonstrated. These inequalities furnish an error estimate for weighted integrals 

where both the quadrature rule and error bound are given in terms of (at most) the first 

three moments of the weight. Also, the upper bound is a function of the first few derivatives 



10 CHAPTER 1. INTRODUCTION 

of the mapping. 

This analysis is then taken up in Chapter 6 where we again focus on two-dimensional inte

gral inequalities. W e develop weighted first and second order double integral inequalities. 

W e focus in particular to minimizing the bound for different weights and weight null-spaces. 

Finally, we develop a method for calculating cubature grids that rely only on the first few 

moments of the weight. 



Chapter 2 

One Dimensional Integral Inequalities 

Many of the techniques used for developing multiple integral inequalities are based on anal

ogous one dimensional results. With this in mind this chapter will focus on one dimensional 

integral inequalities and we review some recent results. Generalizations of the Ostrowski 

inequality (Ostrowski 1938) are employed to obtain a variety of integral inequalities involv

ing one and three points and/or weighted integrals. The inequalities thus obtained are then 

employed to produce one dimensional quadrature rules with an estimate of the error in a 

variety of norms. 

In the subsequent two chapters, the techniques used here are generalized to obtain two 

dimensional integral inequalities. 

2.1 The Ostrowski Inequality 

The classical Ostrowski integral inequality in one dimension stipulates a bound between a 

function evaluated at an interior point x and the average of the function of over an interval 

(see for example, Mitrinovic et al. (1994, p.468)). That is, 

T H E O R E M 2.1. Let f : I CR -^ R be a differentiable mapping on 1°, (1° is the interior of I) 

and let a,b £ 1° with a < b. Iff : (o,6) -> E ta bounded on (a, 6), that is, 

11/1U := sup \f(t)\ <oo, 
te{a,b] 

11 
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is the Loo [a, b] norm, then we have the inequality: 

fu-ihO® dt < 
1 (x-^l 
4 {b-af (&-a)ll/'llc (2.1) 

for all x e [a, b]. The constant \ is sharp in the sense that it cannot be replaced by a smaller 

constant. 

For completeness, we include the proof of Theorem 2.1. The appropriate construction and 

manipulation of the Peano kernel is an underlying theme which underpins many of the results 

in this dissertation. 

Ostrowski himself did not use a Peano theorem in his proof, but as will be evident this 

approach, in conjunction with Holder and other inequalities, leads to integral inequalities 

with upper bounds expressed in a variety of norms. 

Proof, (of Theorem 2.1) Consider the Peano kernel 

K{x,t) := (2.2) 
t — a, t G [a, x], 

t-b, iG {x,b}. 

See Figure 2.1(a) for a diagrammatic representation of (2.2). 

W e notice that this kernel produces sampling only at an interior point and does not at the 

boundary. This is because K vanishes at the boundary and is discontinuous at the interior 

point x. 

Consider the integral 

f K(x,t)f(t)dt. 
J a 

Integrating by parts over the given intervals in (2.2) and simplifying produces the identity 

fix) - r-^— [ f(t)dt = - i - f K(x,t)f(t)dt. (2.3) 
b-a Ja b- aja 

Now, utilizing (2.3) we have, using well known properties of the modulus and integral, 

/(*) - r~ / 6 / ( * ) * ! ^r—f \K(x,t)\\f(t)\dt (2.4) 
b- aja | b-a Ja 

from which a simple calculation gives (2.1). C 

Of course it would be normal to use Holder inequality in the p and /or 1-norms. This was 

done by Dragomir and Wang (1998a) and Dragomir and Wang (1997). These results appear 

below. 
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T H E O R E M 2.2. Let f as be in Theorem 2.1 and let f G Lp[a, b], (p > 1, I +1 

the following inequality exists 

fW-r— [ f(t)dt\<-^~ 
o-a Ja I b-a 

(x - a ) 9 + 1 + {b- x)i+1 

q + i ll/'l 

= 1), then 

(2.5) 

where 

is the Lp[a,b]-norm. 

I I / X H / \f(t)\Pdt) , 

T H E O R E M 2.3. Let f be defined as in (2.1). Further, let f G Li[a,6]. The following 

inequality holds 

b-a Ja 
dt < 

1 \X-Z±!>\ 

2 (b-a) ll/'l (2.6) 

for all x G [a, b] and ||/'||i := £ \f(t)\ dt. 

Since Ostrowski first produced his inequality in 1938, there has been an explosion of related 

results. See for example, the well known book by Mitrinovic et al. (1994). Extensions to 

other norms, and higher derivatives have been considered by Anastassiou (1995), Cerone 

et al. (1999a), Sofo and Dragomir (2001) and Matic and Pecaric (2001). See the recent book 

edited by Dragomir and Rassias (2001), and the pre-print archive of the Research Group in 

Mathematical Inequalities and Applications (http://rgmia.vu.edu.au). Below we expand on a 

few Ostrowski-like results as they impact on the main work in this thesis. W e will highlight 

the role of the kernel and other techniques as appropriate. 

Further, Milovanovic and Pecaric (1976) increased the order of the derivative in (2.1) to 

an arbitrary n by considering n-times differentiable mappings as shown in the following 

theorem. 

T H E O R E M 2.4. Let f(x) be an n(> 1) times differentiable function such that / W G 

LQO [a, 6] for x G (a, b). Then, for every x G [a, b] 

!(/(,) + § * ) - ^ / ( v ) * 
fc=l 

where Fk is defined by 

< ll/( n)| 
n(n + l)! 

(x - a ) n + 1 + (b-x) 

b — a 

n+1 
(2.7) 

Fk = Fk(f;n;x,a,b) = 
n - k f

k-V{a){x - a)k - fk-»(b){x-b)k 

k\ b — a 
(2.8) 

http://rgmia.vu.edu.au
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Equation (2.7) was proved by employing Taylor's formula 

m = f(y) + £ Lf{k)(y)(* - y)k + ^/(n)(0(* - y)n (2.9) 
fc=i 

and integration by parts, (see Mitrinovic et al. (1994) for the complete proof). 

Remark 2.5. Substituting n = 1 in (2.7) produces (2.1). 

Fink (1992) used the integral remainder form of a Taylor series to generalize the Milovanovic 

and Pecaric (1976) result (Theorem 2.4) to include functions in Lp spaces. 

T H E O R E M 2.6. Let fn~l) be absolutely continuous on [a, b] with fn) G L[a, b] then 

l-(^)^)~afjWv 
where 

1 [(x - a) n + * + (6 - x ) n + 1 ^ 

<K(n,p,x)\\fn% (2.10) 

K{n,p,x) = - ] ^ ^ ' v" *' -—B{{n-l)q + l.q + iyl* 
nl b-a 

for 1 < p < oo, I + I = 1 and K(n, l,x) = t";^'1 °»"<(*-̂ "a,(t-«)"} with B{x,y) is the 

beta function of Euler, that is 

B(x,y)= [ tx-l(l-t)y-ldt, x,y>0. 
Jo 

Remark 2.7. It is easily observed that for n = 1, the result is as in Theorem 2.2. 

Anastassiou (1995) established an optimal upper bound on the deviation of a function from 

its average. He gave a different proof to Theorem 2.1 and from that of Ostrowski's initial 

proof of 1938 (Ostrowski 1938). 

In the same paper, he has been motivated by the important work of Fink (1992) and obtained 

more general Ostrowski type inequalities as follows below. 

T H E O R E M 2.8. Let f G Cn+1([a,b]),n G N and xe [a,b] be fixed, such that fk\x) = 

0, k = 1, • • • ,n. Then 

^— f f(y)dy - /(a 
a Ja 

\n+2' , ii/("+i)iioo / ( ' - » r + ( t - ' ) ' , (,m 
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T H E O R E M 2.9. Let f G Cn+l([a, b}), n G N such that fk\(a+b)/2) = 0, all k even G 

{!,-•• ,n}. Then 

4 _ r w ,(•+», < ll/(n+1)l|oo / ( 6 - a ) " + 1 

(n+2)! ' V 2n+x (2.12) 

Through the use of a Peano kernel approach Cerone et al. (1999a) established another 

generalization of the Ostrowski inequality for n-time differentiable mappings, as illustrated 

in the theorem below. 

THEOREM 2.10. Let f : [a, b] ->• R be a mapping such that /("_1) is absolutely continuous 

on [a, b] and f^ G Loo[a, b], then for all x G [a, 6], the following inequality holds: 

/

b n-1 

f(t)dt - £ 
k=0 

(b-x)k+1 + (-l)k(x-a)k+l 

(fc + 1)! 
f{k\x) 

< M ^ Ux - a)*" + (6 - x)^] < Wf{n)\Ub-^n+1) 

(n+1)! [[X a) +[b X) J~ (n + 1)! 
. (2.13) 

The theorem is proved utilizing mathematical induction and using the Peano kernel mapping 

K(.,.):[a,bf^R, 

K(x, t) 
^ , if*G[a,4 

if t G (x,b\. (t~b)n 
(2.14) 

The kernel (2.14) is similar in sense to that of (2.2). It vanishes at the boundary points and 

is discontinuous at the interior point, thus producing a rule that provides sampling at the 

interior point and not at the end points. Since (2.14) is a polynomial of order n, an integral 

inequality in the nth derivative will result (2.13). W e can compare this to (2.1) which has a 

bound in the first derivative due to the linear Peano kernel (2.2). Equation (2.14) is sketched 

in Figure 2.1 (c) and 2.1 (d). 

Higher order derivative norms are not the only extensions to Theorem 2.1. Introducing more 

branches of the Peano kernel; that is extending the number of discontinuities will produce an 

integral inequality with many sampling points. This avenue has been explored by Dragomir 

with bounds involving the first derivative and by A. Sofo (see Dragomir and Rassias 2001, 
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Chapter 2) involving the nth derivative. Sofo used the Peano kernel 

Kn,k(t) •= < 

(*-ai)n 

n! ' 

(t-a2)
n 

n! ' 

(t-Ofc-l)" 
n! ' 

n! ' 

t G [a,xi) 

t G [xi,x2) 

< G [xk-2,xk_i) 

t G [zfc_i,6]. 

(2.15) 

To begin, it is immediately evident that KUik(t) is of order n, thus the integral inequality will 

be bounded by a measure of fn\ In addition, (2.15) has discontinuities at xx,x2, • • • ,xfc_i 

and does not vanish at the boundary, thus we would expect sampling at the points 

{a,xux2,--- ,£*_!,6}. The kernel (2.15) is sketched in Figures 2.1 (e) and 2.1 (/). The 

integral inequality furnished for this kernel is 

f f(t)dt+J2{-Zjr fe& - a*y - & - <*+i)i}/c,"-i)fa) 
J a .•_, J- L i=0 

ll/(n)| 
i=i 

(2.16) 

k-l 

< 

< 

(n + 1)'-

||/(n) 

£ { ( a i + 1 - ^ ) n + 1 + (ari+i - o*i+i)
n+1} 

t=0 

fc-i 
lloo V"^ , n +i 

(n + 1 ) ! ^ -

ll/(" 
- (nTlf(6_aK(/i) if f(n)eL°°^b^ 

where /ij := xi+i - Xi and ẑ (/i) :— max {/ij |i = 0, • • • , k - 1}. 

A unique extension was proposed and explored by Cerone and Dragomir (1999) wherein the 

constants 'a' and '6' in the kernel (2.2) were replaced by linear parametric functions- the 

zero's and discontinuity of the kernel were themselves functions whose positions were allowed 

to change. 

The kernel is 

t - a(x), if t G [a,x], 

t-p(x), if r e (a;,6], 
K(x, t) := < (2.17) 

where 

(2.18) a(x) = jx + (1 - 7)a and /3(x) = 72: + (1 - 7)6 

7 G [0,1] and x G [a, b]. Hence the sampling occurs at three points; the boundary 'a' and 

'6' and the point x. The sampling is controlled by the parameter 7. This is further explored 
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in the next section. 

Recently, the Research Group in Mathematical Inequalities and Applications (RGMIA) has 

carried out a considerable amount of work in the application of the Modern Theory of In

equalities to obtain a priori bounds for a variety of Newton-Cotes rules. The classical rules 

of mid-point, trapezoidal and Simpson's in particular have been investigated, giving error 

bounds in terms of a variety of norms (see Cerone and Dragomir (2000a) and Cerone and 

Dragomir (2000b) ). 

The investigations were carried out for both Riemann and Riemann-Stieltjes integrals in 

which the bounds involved the behaviour of the integrand. As we mentioned before this was 

done through a Peano kernel development and so the order or accuracy of the approximation 

does not depend on the order of the highest polynomial that the rule integrates exactly. 

For more results related to the Ostrowski inequality see Dragomir and Rassias (2001), Anas-

tassiou (1995), Milovanovic and Pecaric (1976), Cerone et al. (1999b), Cerone et al. (1999c), 

Cerone et al. (1998), Cerone and Dragomir (2000b), Dragomir and Wang (1998b), Dragomir 

et al. (2000), Dragomir (1998) and Dragomir (1999). 

2.2 Three point Quadrature rules 

The inequality, which combines and generalizes the interior point (mid-point type) and 

boundary point (trapezoidal type) inequalities via a parameterization for distinguishing the 

types, has been investigated by P. Cerone. This new inequality has been called the "three 

point rule". Cerone and Dragomir (1999) examined the three point quadrature rule of 

Newton-Cotes type where the error involved the behaviour of, at most, a first derivative. 

Simpson type rules are recaptured as particular cases. Moreover, Riemann integrals are 

approximated for the derivative of the integrand belonging to a variety of norms. 

The following inequality involves a three-point rule whose bound may be obtained in terms 

of the first derivative, /' G Loo[a, 6]. 

T H E O R E M 2.11. Let f and f be as in Theorem 2.1. Further, let a : [a, 6] G 
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0 : [a, b] G R. with a < x < fi Then, for all x G [a, b] we have the inequality 

f f(t)dt - [(P(x) - a(x))f(x) + (b- P(x))f(b) + (a(x) - a)f(a)] 
J a 

< ll/'lloci-
b-Z*\ +(x-

h^L 

Proof. LetK{.,.) : [a,b]' 

+u*) - ̂  + (m -b-^) y (2.19) 

where K(x,t) is the kernel (2.17) and consider the integral 

f K(x,t)f(t)dt. 
J a 

Integrating by parts over the given intervals in (2.17) and simplifing produces an identity 

from which, taking the modulus and using well known properties of the modulus and integral, 

gives the result. • 

Inspection af the bound in (2.19) reveals that a and /3 should take on linear profiles for the 

bound to be minimized. Thus the motivation is to prescribe a linear parameterization in 

(2.18). Utilizing equation (2.18), we get the following theorem, 

T H E O R E M 2.12. Let the conditions of Theorem.2.11 hold, then 

-6 

jr/W*-(i-fl){(l-7)/W + 7[(£Zf)/(.)+(^£ !/(») 

<2||/'||< 4+^2. 
b — a\ ( a + b 
—1—) + (x — (2.20) 

Remark 2.13. 7 = 0 in (2.20) reproduces Ostrowski's inequality equation (2.1) whose bound 

is sharpest where x — s^, giving the mid-point inequality. 

Remark 2.14. 7=1 produces the generalized trapezoidal inequality for which again the best 

bound occurs when x = ^ giving the standard trapezoidal-type inequality. 

Remark 2.15. 7 = | gives a Simpson-type rule for which the optimal value x = ^, giving 

the optimal bound when only the assumption of a bounded first derivative is used. 

Further, the stated three-point rules when /' G Lp[a,b], as represented below. 
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T H E O R E M 2.16. Let f : [a,b] G R be a differentiable mapping on (a,b) and f G Lp(a,6) 

where p> 1 and ± + ± = 1. Then the following inequality holds for allx G [a, 6], a(a;) G [a,x] 

and ̂ (x) G (x, 6], 

J a 
/(t)eft - [(/?(*) - a(x))f(x) + (6 - /3(*))/(6) + (a(x) - a)f(a)] 

< [(a{x) - a)q+1 + (x- a(x)Y+1 + (8(x) - x)?
+1 

+ (b-p(x)y+^(q + i)<\\f\\P 

< 
(x - a)q+l + (b- x)i+l 

q + 1 ll/'l 

<(6-a)(^)V|k. (2.21) 

In the next chapter, the three point technique used here is generalized to obtain two-

dimensional integral inequalities involving the L^, Lp and Li norms in terms of the first 

derivatives of the function in order to produce cubature rules. Three point integral in

equalities in which, at most the first derivative is involved, are derived for two-dimentional 

integrlas. 
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afc) 

PC*; 

(a) The Peano kernel for equation (2.2) (b) The three point Peano kernel of 

equation (2.17) 

a X 

(c) The Peano kernel for the mid-point 

rule in equation (2.14) for odd n 

(d) The Peano kernel for the mid-point 

rule in equation (2.14) for even n 

1/ 1 '1,1 y I j I 
a ai xu a2 xi az 

+ 
Bk-{1 oik b 

(e) The multivariate Peano kernel 

which represents equation (2.15) for 

odd n 

(f) The multivariate Peano kernel 

which represents equation (2.15) for 

even n 

Figure 2.1: Sketch of different Peano kernels. 



Chapter 3 

Techniques for two-dimensional 

Integrals 

3.1 Introduction 

Moving from the problem of computing one-dimensional integrals to the multidimensional 

case leads to a series of new problems. While in one dimension one may encounter three 

possible types of integration intervals - finite, semi-infinite and infinite, now we have to deal 

with a wide variety of domains. In addition, as is already evident in two dimensions, the 

functions being integrated can have singularities not only at a point, but even on an entire 

manifold. These complications make the multidimensional case considerably more difficult 

than the univariate one, and accounts for the fact that the theory of multidimensional cuba

ture is by no means as complete as the one-dimensional case. Indeed, cubature formulae are 

most often evaluated as iterated one-dimensional integrals. The approach is straightforward 

but has some disadvantages, two of which, are that the error estimates are unnecessarily 

large, since they too rely on embedding the one-dimensional error results, and it is often 

difficult to discretize regions that are other than ideal. That is, regions whose boundaries lie 

on coordinate lines of some orthogonal system. 

In this chapter we employ the Peano kernel techniques of Chapter 2 to produce two-

dimensional integral inequalities. Specifically we will combine and extend the work of Cerone 

and Dragomir (1999) and Barnett and Dragomir (2001). In Cerone and Dragomir (1999), 

21 
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a one-dimensional three point inequality was investigated, while in Cerone and Dragomir 

(1999) a two-dimensional version of the Ostrowski result was produced. Here we will develop 

a two-dimensional three point integral inequality for functions with bounded first derivatives 

for different types of norms. In each case applications in the numerical integration of a two-

dimensional integral is investigated. A n a priori error bound is obtained for functions whose 

first partial derivatives exist and are bounded. The rule presented here approximates a two-

dimensional integral via application of function evaluations and one-dimensional integrals 

at the boundary and interior points. A parameterization, similar to that of Cerone and 

Dragomir (1999) and reviewed in Theorem 2.11, is employed to distinguish rule type. If the 

one-dimensional integrals are not known, they themselves can be approximated to produce a 

cubature rule consisting only of sampling points. A n additional three point rule, as in Cerone 

and Dragomir (1999), may be subsequently used, or indeed any other desired quadrature 

rule. For example, the optimal rules of Golomb and Weinberger (1959) and Traub and Woz-

niakowski (1980). As a result the error bound will be larger. 

The Chapter is arranged in the following manner. In Section 3.1, an inequality for double 

[ai,6i] x [a2,b2] . Some integrals is obtained in terms of first derivatives where ^V g £ c 

numerical results are computed in Section 3.7. A n application for the cubature formula is 

illustrated in Section 3.3. In Section 3.3, an inequality is developed for mappings whose 

first derivatives ̂ ^ - G Lp[[ai,6i] x [02,62]] and an application is demonstrated through 

numerical results in Section 3.5. Section 3.5 is reserved for results involving mappings whose 

first derivatives belong to the ||.||i-norm. 

The method presented here is based on Ostrowski's integral inequality, and as such is 

amenable to the production of error bounds for a variety of norms. In addition smoother and 

product integrands may also be considered as has been done for one-dimensional integrals, 

see for example (Cerone and Dragomir 1999; Cerone et al. 1999a; Roumeliotis et al. 1999). 

3.2 Mappings Whose First Derivative Belongs to 

LooHauh] x [fl2,fe]]. 
Here we consider a function whose first partial derivatives exist and are bounded over a given 
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rectangular region. W e state the following theorem (see also, Hanna et al. (2000)). 

THEOREM 3.1. Let f : R2-> R be a differentiable mapping on [aubi] x [a2,62] and let 

ftuta = a& be funded on {a1,b1) x (a2,62) • That is, 

ll/tUL:=. SUP 
(zi,Z2)e(ai,6i)x(a2,&2) 

d2f 
dhdt \UL2 

< OO. 

Furthermore, let Xi G (a,, bt) and introduce the parameterization au ft defined by 

di = (l-7i)aj + jiXi, 

Pi = 0-- 7i) bt + Wi, 

where jt G [0,1], for * = 1,2. Then the following inequality holds 

\G{xi,tx,x2,t2)\ < 
\\f"i,h 

given that 

4 (1 + (27i ~ I)2) 

x (1 + (272 - l)
2) 

'hmZSL) + (Xl _ 5L+A" 

'6 2 - a 2 \ / a2 + b2 
— o +[X2 = — 

3 3 3 

G(xi,ti,x2, t2) = 2_^ 2_^ckiCj2fjk - 2 J (Cjiij2 + cj2iji) 
k=l j=l j=l 

"62 rb\ 

\ I I f(tut2) dtxdt2 
r»2 rb\ 

/ / f(tl, 
Jai J a\ 

(3.1) 

, (3-2) 

(3.3) 

/ 

Uik) = 

/(ai,a2) f{xi,a2) f(h,a2) 
\ 

f(a1,x2) f(xi,x2) 

\ / (01,62) f(xi,b2) 

( 

(Cjk) = 

71(^1 -ai) 

f{h,x2) 

/(6i,62) ) 

72(^2 - ^2) 

(1 - 7x) (61 - 01) (1 - 72) (62 - a2) 

7i (61 - x{) 72(62 - 02) y 

ii*) 

( falf(ti,a2)dti 

£f(tux2)dti 

[£f(ti,b2)dti 

£f(ai,t2)dt2 \ 

J^f(xut2)dt2 

Cj(bi,t2)dt2 ) 

(3.4) 

(3.5) 

(3.6) 
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Proof. Define the kernel 

p(M) = < J' (3.7) 
(t-p, te{x,b], 

where, a = (1 - 7) o + 72, and /? = (1 - 7) 6 + 72. Using (3.7) and integrating by parts we 

obtain, after some simplification, the identity 

/ p (x, t) F' (t) dt 
Ja 

= (1 - 7) (6 - a) F (x) + j[(x-a)F (a) + (b-x)F (6)] - f F (t) dt. (3.8) 
Ja 

A two-dimensional identity can be developed via repeated application of (3.8). To this end, 

we define the mapping 

{i"j (Xi , (Xi ^* Li ^** Jbi* 

*- •- " for i = 1,2. (3.9) 
"i Pi) X{ <. ui ^ Oj, 

Substituting px for p and /(*i, •) for F(t) into (3.8) gives 

/ Pi (xi,ti) — dti = (1 - 7i) (61 - ox) / (xi,t2) 

+ 7i(^i-ai)/(a1,t2) + 7i(6i-x1)/(6i,t2)- f ' f {ti,t2) dtx. (3.10) 

Employing (3.8) again with p2 as the kernel, F{t2) = /^pi (zi,*i) J£d*i as the integrand 

and expanding with (3.10) produces, 

/&2 pb2 pbi Q2 e 

p2(x2, t2)F'(t2) dt2= I I p2 (x2, t2) pi (xi, h) Qf£jfdtidt2 

= (1 - 72) (62 - a2) F {x2) + 72 [(2 - x2) F2 (62) + (x2 - a2) F2 {a2)\ 

- f2 F2 (t2) dt2 
J a^ 

= (1 - 7x) (1 - 72) (61 - ai) (62 - a2) / (xi, x2) 

+ 7i (1 - 72) (62 - an) (bi ~ xi) f (h,x2) 

+ 7i (1 - 72) (62 - 02) [xi - 01) / (ai, x2) 

+ 72 (1 ~ 7i) (61 - ai) (62 - 32) / (si, 62) 

+ 7172 (62 - x2) (61 - xi) / (61, 62) 

+ 7i72 (62 - x2) {xi - ai) / (al5 62) 

+ 72 (1 - 7i) (a?2 - 02) (61 - ai) / fai, °2) 
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+ 7i72 (x2 - a2) (61 - xx) f (bua2) 

+ 7i72 (x2 - a2) (xi - ai) f (ax,a2) 

rh ^ 
- (1 - 73) (62 - a2) / / (ti,x2) dtx - 72 (62 - x2) f fa, 62) dtx 

J o.\ Ja\ 
rh nb2 

- 72 [x2 ~a2) f fa, a2) dtt - (1 - 7 l) {bx - ax) / / {xx,t2) dt2 
Ja\ Ja<i 

rh pbi 

- 7i (61 -Xi) f (61, t2) dt2 - 7! (xi -ai) f (ax, t2) dt2 
>/a2 «/a2 

+ / / f(tl,t2)dtldt2. 
J a2 J a\ 

3 ^ 3 ^ 3 /-b2 /"bl 

/ , / , CkiCj2fjk - 22 (Cjify + Ci2lji) + / / ffa, t2) dtxdt2. 
k=l 7=1 j=l ^a2 «/ai 

so that 
rh rh p>2 J 

G(xx,tx,x2,t2) = / p2(x2,^2)pi(a;1,^) ̂  ^ dtxdt2. 
Ja2 Jai « , « , - ( 3 ' n ) 

Assuming that both first partial derivatives of / are bounded, we can use Holder's inequality 

to give 

rbi rh Q2 r 

/ / p2 (x2, t2) px (xu tx) dtxdt2 
Ja2 J at OtiOt2 

j 2 |p2 (x2,t2)\dtA (j ' \pi (xx,tx)\ dt^ . (3.12) - \\JtUt2 

Now, consider 

r<>i 

Gi(xx) = / \p\(xi,ti)\dtx 
J a\ 

rd\ rx\ 

= - j fa- ax) dtx + / fa - ax) dtx 
J ai J a.\ 

- [x fa-px)dtx+ r fa-px)dtx 
Jxi Jpi 

= i [(ax - aif + (xi - ax)
2 + (px - xxf + (61 - pxf] 

= i[l + (27l-l)
2][( '*i -_^ + L - * + * (3.13) 

Similarly, with G 2 (:r2) = f*
2 \p2 (x2,t2)\dt2, we have 

G2 (x) = - [1 + (272 ~ I)
2] 

' 6 2 - a 2 \
2 / a2 + 62 
+ U2 -

(3.14) 
2 y • \ " 2 J 

Using (3.4) , (3.5) and (3.6) and substituting (3.11), (3.13) and (3.14) into (3.12) will produce 

the result (3.2) and thus the theorem is proved. D 
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The following result gives an Ostrowski type inequality for double integrals. It involves 

double and single integrals together with a function evaluation at an interior point. 

Corollary 3.2. With the conditions as in Theorem 3.1, then 

~h roi 

[bx - ax) (62 - a2) f [xx, x2) - (62 - a2) f fa,x2) dtx 
J a\ 

- (h-ax) f2f{xx,t2)dt2+ f" j' ffa,t2)dtx 
J a2 J a2 J a\ 

dU 

< \\jtl,h 

'h -ax 
+ h r i -

ax +6i a2 + \x2-
a2 + 62 

(3.15) 

Proof. Place 71 = 72 = 0 into equation (3.2). • 

Thus, the earlier results of Barnett and Dragomir (2001) and Mitrinovic et al. (1994, p. 

468) are reproduced as a special case of Theorem 3.1. W e note that unlike Barnett and 

Dragomir (2001), the proof for Theorem 3.1 can be readily extended to more than two 

dimensions. Different values of the parameters 71, 72, xx and x2 give rise to Newton-Cotes 

type inequalities for functions with bounded derivatives. For example 71 = 72 = 0, xx =
 ai^bl 

and x2 = °2^2 produces the two-dimensional mid-point inequality; 71 = 72 = 1 a two-

dimensional trapezoid-like inequality (a similar result has been obtained by Pachpatte (2001) 

) and 71 = 72 = | a two-dimensional Simpson's like inequality. 

From Theorem 3.1 it is a simple matter to show that the tightest bound is obtained when 

7X = 72 = I and xx and x2 are at their mid-points. That is the average of the mid-point and 

trapezoid inequalities. 

Remark 3.3. Let f fa,h) = gfa)g{t2) where g : [0,6] -+ R. If g is differentiable and 

satisfies the condition that Wg'W^ < 00, then, for xx = x2 = x and 71 = 72 = 7;
 we obtain 

a result from Theorem 3.1 which may be factored to recover the three point rule of Theorem 

2.11, namely 

f g(t) dt - 7((x - a)g(a) + (6 - x)g(b)) - (1 - 7)(6 - a)g(x) 
Ja 

<M^(1 + ( 2 7 _ i n fc)
2
 + (* 

o + 6N 
. (3.16) 
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In general, cubature formulae are written only in terms of function evaluations, but Theo

rem 3.1 approximates a double integral in terms of single integrals and function evaluations. 

Therefore we write down the following corollary which eliminates the one-dimensional in

tegrals by approximating them using the 3-point rule in equation (3.16). The resulting 

inequality has a coarser bound than equation (3.2). 

Corollary 3.4. Let f be given as in Theorem 3.1. Then 

''bi rh 3 3 

/ / / (*i, t2) dtxdt2 - ̂ 2 Y2 CkiCj2fjk 
J ai J a\ i i „• i 

< 

k=l j=l 

*11<2 11 OO 
(1 + (27i - l)

2) (1 + (272 - I)
2) 

'6i -aA / _ ai + h' 'b2-a2\ ( a2 + 62 
+ (x2 -— 

2l 

+ 1 (1 + (27i - I)
2) 

'h -aA ( _ ai + h' 

x {72 (x2 - a2) Wf^J^ + (1 - 72) (62 - a2) H/f^J^ + 72 (62 - x2) \\fU\Q 

+ \ (1 + (272 - l)
2) 

b2 — a2\ ( a2 + 62 

x {7l (xi - fll) 114, J ^ + (1 - 71) (61 - ax) U / ^ L + 71 (61 - *i) ||/UtL} (3"17) 

Proof. Approximating each single integral in (3.2) by (3.16) and applying the triangle in

equality produces the desired result. d 

Remark 3.5. Ifji = 72 = 0 and xt =
 Sd^i, then 

I" rffa,h) dtxdt2 - (bi - ax) (62 -a2)f( 
Ja2 J a\ 

l|/tl,t2lloo ti - v2 /, .. \2 

ai + 61 a2 + 62 

< 
16 

(61 - 01) (62 - a2) + 

/: tli«2+*2 

+ 

4 

/ai+fci 
,*2 

(62 - ^2) (61 - ai)2 

- (61 - ai) (62 - a2)
2. (3.18) 

We can apply any other rule rather than the one in (3.16) to approximate each single integral 

in (3.2) 

file:////fU/Q
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3.3 Application to Cubature Formulae 

To illustrate the use of a cubature formula, we form a composite rule from the inequality 

(3.15). 

Let us consider the arbitrary division: 

In • ax = £0 < £i < ... < £n = bx 

on the interval [ax,bx] with x{ G [&,£+1] for i = 0,1,...,n - 1 and Jm : a2 = r0 < rx < ... < 

Tm = b2 on the interval [a2,62] with yi G [rh rj+x] for j = 0,1,..., m - 1. Consider the sum 

n-lm-l n-lm-l r.+1 

4 (/, 4, Jm, a:, y)-=22z2
 hiVif (̂ ' %•) -J2J2h* / (*<. *2) d*2 

i=0 j=0 i=0 3=0 JTJ 

n-1 m-1 „ft+1 

Y.Y,VU f(ti,Vj)dtx, (3.19) 
t=0 J=0 ?' 

where 

hi = &+i - & (« = 0,1,..., n - 1 ) and Uj = Tj+1 - r,- (j = 0,1,..., m - 1 ) and 7i = 72 = 0. 

Under the above assumptions the following theorem holds. 

THEOREM 3.6. Let f : [ai,6i] x [02,62] —> R be a differentiable mapping on [ax,6i] x 

[a2,62], let f"lt2 G Loo(o, 6) x (c, d) and In, Jm, x,y be as above. Then we have the cubature 

formula 

f I ' f fa,t2)dtxdt2 = A(f,In,Jm,x,y) + R(f,In,Jm,x,y), (3.20) 
J ai J a\ 

where the remainder term R(f,In, Jm,x,y) satisfies the inequality 

\R(fJn,Jm,x,y)\ 

n—l m—1 

i=0 j=0 W*-MK Ww-2^2*)' 

Proof. Apply Corollary 3.15 on the interval [&, fi+1] x [TJ, TJ+X] , (i = 0,1,..., n-1), 
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(j= 0,1,...,m-1) to get 

(6+i ~ 6) fa+i - rj) / (a*,Vj) -Vj f fa,yj) dtx 
J& 

rTJ+i rii+i ry+i 

-hi / f(x{, t2) dt2+ / / fa, t2) dtx 
Jn J£{ JTi 

< ll/; , II 
— lK*l,t2lloo 

it+U-t^ ri+[yi~ 
Tj + T5 + 1 

(3.21) 

for all (i = 0,1,..., n - 1), (j = 0,1,..., m - 1). 

Now, summing over i from 0 to n — 1 and over j from 0 to m — 1, and using the generalized 

triangle inequality, we deduce (3.21). • 

Corollary 3.7. We know that 

to (3.21), we find that 

X{ 
&+&+1 < \hi and \VJ — T'+^+1 j < lyj. Applying these 

n—l m—1 

\R(fJn,Jm,x,y)\<\\fut2\\J£Y, 
i=0 j=0 

I n-1 m—1 

loo 

I* + i« 
1 2 * 2 

4W> + 4°i 

<%liaE«E* (3.22) 
i=0 j=0 

Corollary 3.8. Now, consider the case where Xi and y± are the mid-points. At the mid-point 

we have 

^ j1 ffa,t2) dtXdt2 = A (/, In, Jm) + R (/, /„, Jm) , (3-23) 
Ja2 Ja\ 

where the remainder term R (/, In, Jm) satisfies 

n—l m—1 

iH(/,/BJjm)i<JI%^E^E
v. 

2 

16 f-f " l ^ J" 
1=0 3=0 

Corollary 3.9. Let the conditions of Theorem 3.6 hold. In addition, let In be the equidis

tant partition of [ax,bx], In : x{ = ax + f ^
2 1 ) i, * = 0,l,...,n - 1, and Jm be the 

equidistant partition of 

[a2,62],Lm : Vj = a2 + (^) j ,j = 0,1, ...,m - 1, then 

I I / ; : . J L ( ^ - ^ ) 2 ( ^ - Q
2 )

2 
/" / ' f(tl,t2)dtxdt2 - A(f, In, Jn 
J ai J a\ ' a2 J Oi 

< 
16wn 

(3.24) 
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Proof. From Theorem 3.6 with fu = ^ + ^ for all i so that 

II f " II n_1 /A \ 2 m-1 ,. ,2 

\R(fIn,Jm)\ < '' ' j ; ' ^ — 1 E ^ ^ ) 

= ll/;;,t2llo0(fei-ai)
2(62-a2)2 

16wn 

and hence the result is proved. n 

Remark 3.10. If we were to use (3.19) to approximate the integral /£ f*1 ffa,t2)dtxdt2 

with a uniform grid and sampling at each mid-point, then the remainder R is bounded by 

\R(f T T ~ ~M ̂  lK,t2IL(fri-
Qi)2(&2-a2)

2 , , 
\XU,ln,Jm,x,y)\ < ^ — — . (3.25) 

3.4 Mappings Whose First Derivative Belongs to 

LP[[ahbi\ x [a2,b2]]. 

For this section we will refer to Dragomir and W a n g (1998b) where the authors considered 

an inequality of Ostrowski type for ||-||p -norms as in Theorem 2.2. Also we will utilize the 

result of Dragomir et al. (1998) wherein the authors acquired a double integral in terms of 

ll'llp -norms. Utilizing Theorem 2.11 and amalgamating the above two results we point out 

a three point inequality of Ostrowski type for double integrals in terms of the ||-|| -norm of 

the first derivatives. 

THEOREM 3.11. Let f : R2-> R be a differentiable mapping on [ax,bx] x [a2,b2] and let 

ft[,t2 — ai^dh
 be ^P bounded on (ax,bx) x (a2,b2), that is, 

bi rh 

II/ti,blip :~ ( / / 
\J ai J a 

We obtain the following inequality 

d2f v yv 
dtxdt2 I , 1 < p < oo. dtx dt 

u,ti 
\G(xu tu x2, t2) | < ^ ^ [7?

+1 + (1 - 7i)9+1]« [(xi - aiY+1 + (6i - x1)"
1]« 

(?+l)* 

x [7f+
1 + (l - 72)^

1] * [(X2 - a2y
+1 + (62 - x2f

+l]« (3.26) 

where G, xx, x2, 7l, 72 are as in Theorem 3.1 and - + - = 1 
P Q 
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Proof. W e proceed as in the proof Theorem (3.1) by applying Holder's inequality for double 

integrals, that is, 

cb2 rh 

'a2 J a\ 
l 

Q 

d2f 
dtxdt2 

ti,ti 

rh rh pp. t 

I I P2(x2,t2)p1{xx,tx)--—dtidt 
Ja2 Jai Otidt2 

< ( / " / " \P2(x2,t2)Px(xx,tX)\
qdtXdt2)

q ( r [ 
\J a2 J a\ / \Jai Ja 

= U^\pi(xuti)\
qdtx\ (J2\p2(x2,t2)\

qdt2\ 

Consider 

Gx(xx)=(J
1\pi(xi,ti)\qdtxy 

j (ax-tx)
qdtx\ + U fa-ax)

qdtx\ 

' j l (ti ~ PiY dtx\ 

"(ai - ax)
q+l + (xx - ax)

q+l + (px - xx)
q+l + (6i - px)

q+1 

dtxdti 

(3.27) 

{•Pi \ / rh 

+ 1 / (Pi-ti)9dtx) + 

q + 1 
(3.28) 

and we get on using the parametric equations(3.1) 

Gx (xx) = 

G2 (x2) = 

[7?+1 + (1 - 7i)9+1] [(*i - ai)q+1 + (6i - xi)q+1] 

q+1 

Similarly, 

' H+l + (i - 72)
g+1] [(X2 - a 2 )

g + 1 + (62 - x2)
q+l] 

q + 1 

Substituting Gx (xx) and G2 (x2) into (3.27) will produce the result (3.26) and thus the 

theorem is proved. D 

Remark 3.12. We notice from (3.26) that the bound is convex in 7* G [0,1] and Xi G [ai; k) 

for i = 1,2. The sharpest bound occurs on taking jt = \ and Xi =
 9i^£ for i = 1,2. The 

coarsed bound is obtained when the % and x{ are taken at either of their boundary point for 

their respective intervals. The following results investigate this relationship further. 

Corollary 3.13. With the conditions as in Theorem 3.11, then 

,ai+6i a2 + 62 . 
u\—1;—' *i> — n — ' %2) < ^ h K + 1 + (1 - 7i)9+1]* [(61 - ai)]^ 

4(a+l)< 
. 1 «+i 

x [jq+1 + (1 - 72)?+1] « [(62 - a2)] • (3-29) 
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where G(.,tx,.,t2) is defined in (3.3). 

Proof. Place x{ = ^ in the right hand side of equation (3.26). D 

Remark 3.14. Ifp = q = 2, then (3.29) becomes a mid-point type rule 

,ai + 6i a2 + b2 
G ( — n — ' *i> — o — > h) < \\ihMi u? 

12 [7i3 + (l-7i)3]M^i-ai]§ 

x [72
3 + (l-72)3]M62-a2]

f. (3.30) 

Remark 3.15. 7/7! = 72 = 0, then (3.30) becomes a trapezoidal type rule 

(bi - ax) (62 -a2)f( 

~ (62 - a2) / 
J a 

ax + 6X a2 + 62 
2 ' 2 

/ *i, 
a2 + b [)dti-(bi-ai)jy(^±^,t2yt2 

"h fb\ r"i r0\ 

+ f (tut2) dtidt, 
Jai J a\ 

ti,t2 ||2 < ^ ^ ^ [(61 - ai) (62 - a2)p (3.31) 
12 

Remark 3.16. Ifyx = 72 = 1 ,(3.30) becomes 

(61 - 01) (62 - a2) 
[f (61,62) + / {au 62) + / (61, a2) + f (au a2)\ 

h rh ro\ rt>\ 

(62 ~a2) f fa,b2) dti + (62 - a2) / / fa,a2) dtx 
Ja\ Ja\ 

+ (h-ai) ^ f(bx,t2)dt2 + (bx-ax) f f (ax,t2) 
Jai Jai 

rh rh 

+ ffa,t2)dtXdt 
J ao J a\ 

< 

ll 
ti,ti\\2 

12 
[(61 - ox) (62-02)]5' (3.32) 

file:////ihMi
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Remark 3.17. J/7l = 72 = \, then (3.30) becomes 

(h - ap (62 - 02) , fax + bx a2 + b2 

+ 

2 ' 2 
(61 - 01) (62 - a2) 

fL,?i±h)+fL,i^h 

+ 

8 
/ai+61 , \ f (ax+bx \ 

(61 - ax) (62 - 02) 

16 
[/(61,62) + /(ai,62) + /(6i,a2) + /(ai,a2)] 

4 

(62 - 02) 

(bi ax) [2 /* ; /ax + 61 ̂  \ ̂  + f6* f ̂  h) ̂  + /* / ̂  fe) ^ 

J a2 \ / J a2 J a2 

2 f1f(tu^^1)dtx+ t
 1 f fa,b2) dtx + j' f(tx,a2)dtx 

J a\ \ ^ J J a\ J a\ J 
^ 2 rb r»i rOi 

+ / / /(tl,t2) 
J a? J a\ 

dtXdt-2 

< H/t"1't2ll2[(6i-a1)(62-a2)]t- (3.33) 
48 

R e m a r k 3.18. Let f (tx,t2) = g(tx)g(t2) where g : [a,b] -> R If g is differentiable and 

satisfies the condition that g' G Lp[a, b] then, for xx = x2 = x and 71 = 72 = 7 we get 

-b 

(b-a)2g(x)g(x)-g(x)(b-a) f g(t) 
J a 

dt 

-g(x)(b-a) I g(t)dt + 

\w 

b rb 
g(t)g(t)dtdt 

< J } ^ r(a. _ a)
q+l + (6 - x)q+1]« . (3.34) 

~ \(g + ir L 

Therefore, 

f g(t)dt-(b-a)g(x) 
Ja 

< 
\\g'\ 

(q + 1) 
r ((x - a)q+1 + (b - x)q+y . 

This gives 

f g(t)dt-(b-a)g(x) 
J a 

< \w\ 
(x - a)q+1 + (b - x)q+1' 

q + 1 

which is an Ostrowski type inequality for the ||-||p - n o r m obtained by Dragomir and W a n g 

(1998a). Thus, (3.26) is a generalization for two dimensional integrals of the Ostrowski type 

for |j-|| — n o r m s . 

T h e following corollary provides a coarser upper limit for \G(xx,tx,x2,t2)\ 
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Corollary 3.19. With the conditions as in Theorem 3.11 holding, then 

11/" II 
\G(xx,tx,x2,t2)\ < ^ 5 [(&i - 0 l) (62 - a2)]

1+i . (3.35) 
((7 + 1)' 

where G(xx,tx,x2,t2) is as given in (3.11). 

Proof. (Xi - ai)
q+l + (b{ - Xi)

q+1 < fa - a{)
q+1 and 7?

+1 + (1 - 7i)
9+1 < 1. D 

3.5 Application to Cubature Formulae 

Consider the arbitrary division: 

In'-ai=£o<€i< ... <£n = bi 

on the interval [ax, bx] with X{ G [&, £j+i] for i — 0,1,..., n—l and Jm : a2 — r0 < rx < ... < 

rm = 62 on the interval [a2, b2] with y3- G [TJ, TJ+X] for j = 0,1,..., m-1. Consider the sum 

n—l m—1 n—l m—1 n—1 in—1 / t — 1 III—A /*T.-4-i 

A (/, 4, im, x, y) := E E hiVrf (^ &') ~ E E hi / / (Xi'*2) 

n-lm-l „£.+1 

EE^7 f{tuVj)tou (3-36) 
; a ™—A v Ci 

dt2 
t=0 j'=0 i=0 j'=0 

n-lm-l „£.+1 

i=0 j=0 ^ & 

where 

k = 6+1 ~ 6 (* = °> 1. -.n ~ 1) and VJ = ri+i ~ rJ 0' = °> !. •••»rn-1) and 7l = 72 = 0. 

THEOREM 3.20. Let f : [ax,bx] x [a2,62] -> R 6e a differentiable mapping on [ax,bx] x 

[02,62], let f'lt2 G Lp(a,6) x fad) and In, Jm, x.y be as above. Then we have the cubature 

formula 

f f ffa,t2)dtidt2 = A{f,In,Jm,x,y) + R(f,In,Jm,x,y), (3.37) 
J a2 J a\ 

and the remainder term R(f,In, Jm,x,y) satisfies the inequality 

II til || n—l m-1 1 

\R(/,4, Jm,x,y)\< p*k J2 £ ([(*, - 6)9+1 + (6+i - x^} • 
(a + l)« j=o y=o 

xfc-r^ + ^i-^1]') (3-38) 

tf II n-1 m-1 

< IM t l't2 l l^^(/i^J-)
1+K (3-39) 

(o + l)« i=o j=o 
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Proof. Apply inequality (3.26) on the interval [&,&+1] x [T3,T3+X] , 

(i = 0,1,..., n - 1), (j = 0,1,..., m - 1) to get 

(&+i - 6) fo+i - r^ / (xi, y3) -Vj f fa, Vj) dtx 
J& 

fTi+i rb+i r-rj+i 

-hi f(xi,t2)dt2+ / ffa,t2)dtxdh 
JTj J(,i JTj 

< 

(q + l)'< 
[(Xi ~ b r 1 + fa+i - x{)

q+l] * [{Vi - r,)«
+1 + fa+i - yA^] J 

ri+i /"ft+i 

X 

n: 
Q2f 

dtidt2 
dtxdt2 (3.40) 

for all (i = 0,1,..., n - 1), (j = 0,1,..., m - 1 ) . Summing over i from 0 to n - 1 and over j 

from 0 to m - 1 , and using the generalized triangle inequality and Holder's discrete inequality, 

we obtain 

n—l m-1 

\R(fJn,Jm,X,y)\ < 5 Z E 
i=Q j=Q 

[(Xi - Zi)g+1 + fa+i - x ^
1 } 

(Q + 1) 

x [(yi - n)q+1 + (ri+x - Vi)
q+ly 

Tj+i rti+i 

ri 
n—l m—1 

Q2f P \ 

dtxdt2 
dtidt 

< t+1 %i 

-. Ib X lib X 

7^Tri:£[([fe-«,+I + te 
(q + i)« i=o j=0

 LV 

x [fa -n)q+1 + fa+x -yi)
q+1]<) 

r1} 

Ti+i rti+i 

x 

n 
Q2f P \ 

dtidt2 
dtxdt2 

* T - ^ (ii o - &9+i+te+i - ̂ )?+i]«v 
(a + l « Vtnfv y , 
(q + i)- M=O 

'm-1 

vj=0 

, 1 \ 9 
9+1 j_ /V. " - ) 9 1 * | 

n—l m—1 "O+i /*&+! 

E E / / 
t=0 j=0 \ V j U 

d2' 

dtidt2 

i\ P\ 

dtxdt2 
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(g + i)< 

n—l m—1 

EE(fc-^+1+te+i-^r]' 

x [(Vi-rr' + ̂ i-y^n^Uutil- (3-41) 

i=0 j=0 

and the first inequality in (3.38) is proved. 

The second part follows directly from the fact that 

(Xi - Zi)q+1 + fa+i - Xi)
q+1 < hq+l and (Vi - Ti)

q+l + (ri+x - Vi)
q+1 < vq+1. 

• 

3.6 Mappings Whose First Derivative Belongs to 

Li[[ai,6i] x [02,62]]. 

In this section an inequality of Ostrowski type involving two-dimensional integrals for func

tions whose first derivatives belong to Li can be produced as shown in the following theorem. 

T H E O R E M 3.21. Let f : R2-> R be a differentiable mapping on [ax,bx] x [a2,62] and let 

ft[,t2
 = dt it be bounded on (ax,bx) x (a2,62), that is, 

h rh 
" II •= f / 

J ai J a ai J a\ 

d2f 
dtxdt2 

dtxdt2 < 00 

We obtain the following inequality 

\G(xx,tx,x2,t2)\<\\flt2\\lMxM2 (3.42) 

where 

Mi=
{^—^-[l + \2li-l\\ + 2 (07-^)(l + |27*-H) 

and G,Xi,a;2,7i,72 are defined in Theorem 3.1. 
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Proof. The proof follows that of Theorem 3.1. we have, 

rb2 ph r2 r1 o2f 
/ / P2 (x2, t2) Pi (xuti) ^~dtxdt, 
J ai Jai OtiOt2 

~\L I ^^•t^pi(-xi't^dt'd^)(f'f 
sup 

(ti,t2)e[ai,6i]x[o2,62] 

d2f 
dtxdt2 

dtxdt2 

P2(x2,t2)Pi(xi,tl) 

— sup 
*26[a2,62] 

P2(x2,t2) sup 
*ie[ai,&i] 

Pi(xi,h) II II 
*1>*2 111 

Now, consider 

Let 

and 

Qi(xx) = sup 
<i£[ai,6i] 

Pl(Xl,tX) 

-=max{ai -ax,xx -au/3x -xx,bx - Pi}. 

iVl^Xi) = max{ai - ai, xx - ax} 

xx — ax 
2 

xx — ax 
2 

ax 
ax + xx 

x[l + |27x-l|] 

(3.43) 

Wtz(xx) = max{A ~xx,bx- px) 

bi -xi 

2 

&i -xi 

Pi-
bx + xx 

x[l + |27i-l|] 

then 

& (an) = msix{tW,(xx), mz(xx)} 

= ^[l + |27i-l|] + 2 

and similarly 

S2(x2) = ^ - p ^ [1 + |2-yi, - 1|) + 2 

fe-^)(l + |27l-l|) 

(«.-^)(l + I2T2-H) 

Substituting into (3.43) will produce the result in (3.42) and thus the proof completed. 

We note here that the discussion in Remark 3.12 continues to be valid here also. • 
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Corollary 3.22. With the conditions as in Theorem 3.21, then 

\\f" II 2 

\G(xi,ti,x2,t2)\ <
 l-^±Ylfa - ai) [1 + |27i - 1|] 

i=l 

(3-44) 

D 
Proof. Put xi = ^^ in equation (3.42). 

Remark 3.23. 7/7l = 72 = 0, then (3.44) becomes 

(6i-ai)(62-a2)/(^,^) 

-{b2 -a2) jj(tu
a-^)dti-{bi-ai)[

2f( 
rh rb\ 

~ f fa,t2) dtidt2 
Ja2 Ja\ 

< M^IIi [{h _fli){h _Q2)] (345) 

Remark 3.24. 7/7i = 72 = 1, Men (&.££/ 6ecomes 

ax +6i 
t2 dt2 

(6i — ax) (b2 — a2) r , 
" ^ ~ [/ (bu 62) + / (ai, 62) + / (61, a2) + / (ai, a2)\ 

1 

2[ (62 ~a2) f fa, 62) dtx + (62 - a2) / / (*!, a2) dtx 
Jai Jai 

/•&2 /.62 

+ (61-01)/ f(bi,t2)dt2 + (bi-ai) f(ax,t2)dt2 
Ja2 Ja2 

rh rh 
+ / / ffa,t2)dtxdl 

J ai J ai 

< 

11 || 

[(61 - oO (62 - a2)]. (3.46) 

R e m a r k 3.25. 7/7l = 72 = \, then (3.44) becomes 

(h -ai)(b2-a2) fax+bx a2 + b2 

4 J V 2 ' 2 

+ 
(61 - 01) (62 - a2) 

'f(bi,°^)+f(ai,a-^ 

+ f 
' ax + 6 l,a2)+f 

ax +b Kt, 

+ (6' "'j''" "2)[/(M2) + /(a„62)+/(6„a2)+/(a„a2)] 
lo 
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(61 - Oi) I" [b* /oi + 6 1 \ fb> r62 

4 — [ 2 y a 2
; v~2~'h)dh+Ja2

 f fo>**) ° ^ + y / (oi,t2) dt. 
(b2 - 02) L fbl ( a2 + b2\ ' /•*! "' ,61 

— i — [2yai /1*
1* -~2T)dtl + Jai / & > 6 2 ) * * + y / (*i. 02) dtj 

+ 
ro2 pb\ 

/ / /(tl, £2) C?tid<2 
' a2 J a\ 

< J % ^ [(61 - ax) (62 - a2)] (3.47) 

Remark 3.26. Let f (tx,t2) = g(tx)g(t2) where g : [0,6] -+ R. If g is differentiable and 

satisfies the condition that g' e Lx[a, 6] Men, for xx=x2 = x and yx =-y2 = <y we get 

dt (b-a)2g(x)g(x)-g(x)(b-a) f g (t) 
J a 
rb nb pb 

-g (x) (b-a) g(t)dt+ / g (t) g fa dt dt 

< (\\9'\\xf 

Therefore, 

(b-a) 
+ 4 x 

a + b 
(3.48) 

I fb 
\ g(t)dt-(b-a)g(x) 
\Ja 

Ml \2 

< (Will) 
(b-a) 

+ 4 x — 
a + b 

This gives 

I f" 
\ g(t)dt-(b-a)g(x) 
\J a 

(b~a) 
+ 4 x — 

a + b 
< h'Wi 

which is Ostrowski type inequality for the H-^ -norm. Thus, ( 3.42) is a generalization for 

two dimensional integrals of the Ostrowski type inequality for U-^ —norms (see Dragomir 

and Wang (1997) and Dragomir (2001)). 

3.7 Numerical Results 

In this section the inequalities developed in Section 3.1 are used to approximate the double 

integral. In the following example we selected the integrand for which integrating in each 

direction is straightforward, but not so for the double integral. 

Example 3.1. 

ff\-
Jo Jo 

e~xydxdy = 0.203400400702947. (3.49) 
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7i 

0 

l 
3 

0.5 

1 

72 

0 

l 
3 

0.5 

1 

actual error 

1.5(-3) 

5.4(-7) 

4.3(-4) 

6.5(-3) 

Loo-estimated error 

6.3(-2) 

1.9(-2) 

1.6(-2) 

6.3(-2) 

L2-estimated error 

5.7(-2) 

1.9(-2) 

1.4(-2) 

5.7(-2) 

Li-estimated error 

1.6(-1) 

7.1(-2) 

3.9(-2) 

1.6(-1) 

Table 3.1: The actual and estimated errors in computing (3.49) using (3.2), (3.26) and (3.42) with 

xx = x2 = 0.5 and various values of 7i,72 in the ||.|[oo norm, |j.||p norm and ||.||i norm respectively 

Namely, ft 1 - e ~ ^ dx = ^ - ^ and f* 1 - er*» dy = 

Example 3.1 was chosen also because it is infinitely smooth and its co-norm becomes smaller 

with each successive derivative, because 

,-xy fx - yer 

fxx = -y2e'xv 
/i y 

yy 

xe -xy 

f — _ r2 p-x^ 
Jyy — x c 

dx 
\n+lxne~xy xi = (-i)n+1yne-xy $ = (-1)' 

as we see, Vy e [0,1) the derivative with respect to x-+ 0 as n -> oo, and also, Mx E [0,1) 

the derivative with respect to y-> 0 as n -> oo. This indicates that the higher order error 

bound (accompanied by a higher order rule) will give better results. 

Example 3.2. 

Jo Ji X2 
dxdy = 0.1548181217. (3.50) 

The integrand in Example 3.2 was chosen because its oo-norm blows up rapidly with suc

cessive derivatives. That is Vy e [0,1) the derivative with respect to x -> oo as n ->> oo, and 

also, Vx e [1,2) the derivative with respect to y -> oo as n -> oo. This indicates that the 

higher order error bound (accompanied by a lower order rule) will give better results. 

In Table 3.1, results are shown for the approximation of (3.49) using the rule and bound of 

(3.2), (3.26) and (3.43) respectively. In Table 3.2, results are shown for the approximation 
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7i 

0 

l 
3 

0.5 

1 

72 

0 

l 
3 

0.5 

1 

actual error 

2.5(-3) 

1.5(-5) 

8.6(-4) 

1.9(-2) 

Loo-estimated error 

2.2(-2) 

7-l(-3) 

5.7(-3) 

2.2(-2) 

L2-estimated error 

3(-2) 

l(-2) 

7.6(-3) 

3(-2) 

Li-estimated error 

3.3(-l) 

1.5(-2) 

8.3(-3) 

3.3(-l) 

Table 3.2: The actual and estimated errors in computing (3.50) using (3.2), (3.26) and (3.42) with 

xx — x2 = 0.5 and various values of 7i,72 in the ||.||oo norm, ||.||p norm and ||.||i norm. 

to (3.50) using the rule and bound of (3.2), (3.26) and (3.43). From this point of view we 

find that the actual error is much smaller than the theoretical one and is smallest when 

Simpson's rule is applied (7i = 72 = §). The optimal theoretical bound is attained when 

7l = 72 = 1 It should be noted that 7i = 72 = 0 approximates (3.49) and (3.50) with the 

"mid-point" rule and employs one function evaluation (at the mid-point of the region) and 

two one-dimensional integrals (along the bi-sectors). The "trapezoidal" rule uses four sample 

points (the boundary corners) and four one-dimensional integrals (along the boundary). All 

other values, that is 7i, 72 G (0,1), produce a rule that is a linear combination of the above 

and results in the use of nine sample points and six one-dimensional integrals. 

Furthermore Simpson's rule (7i = 72 = |, nine sample points) is more accurate than the 

mid-point rule (7i = 72 = 0, one sample point) which in turn is more accurate than the 

trapezoidal rule (7l = 72 = 1, four sample points). W e note that the estimated errors are 

symmetric about 7x = 72 = \ as in the Tables 3.1 and 3.2. Cleary we observe these from 

Figure 3.1 that the bound is convex in 7i e [0,1] for i = 1,2. The sharpest occurs at 7i = \ 

for i = 1,2. The harshest bound is achieved when 7i are taken at either of their boundary 

points. Next we will employ the composite rules to explore the numerical results for both 

Example 3.1 and Example 3.2 respectively and produce briefly the actual and estimated 

errors in applying the mid-point cubature rules to evaluate the double integral (3.49) and 

(3.50) for an increasing number of intervals for the different norms. 

Cleary, we notice that the actual error ratio in both tables suggests that the composite rule 

in each case has convergence 

' \m2n2 J 

Also, from Table 3.3 and Table 3.4 we gather that the estimated error predicts a convergence 

rate of 
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imi 

l.ffi-IH 

H M 1 

H 1.2E41 

0 
i KiK-Ol 

fj 8.0EJH 

W B.D&02 

Z.0E42 

D.OK+OO 

\ 

\ 

\ 

^--

\ 

- ~ - ••—«_ = j — . , -

/ 

,^-

1 

||. Ui-norm 
||.||2-norm 

||.||oo-norm 

(a) The estimated error as a function of 

7 in evaluating (3.49) with xx = x2 — 

0.5 and various values of 71,72 in the 

ll-lloo norm (equation (3.2)), ||.||p norm 

(equation (3.26)) and ||.||i norm (equa

tion (3.43)). 

(b) The estimated error as a function of 

7 in evaluating (3.50) with xx = x2 = 

0.5 and various values of 71,72 in the 

ll-Hoo norm (equation (3.2)), ||.||2 norm 

(equation (3.26)) and H-lli norm (equa

tion (3.43)). 

Figure 3.1: Diagrammatic representation for the estimated error 

• 1*1 < % # * > WfltiL = 1 (Example 3.1) and ||//; J ^ = .37 (Example 3.2) , 

• 1*1 ̂  % ^ . lU'Ull, = -69 (Example 3.1) and ||/«J2 = .36 (Example 3.2) , 

• \R\ < %^ , ||/£ .^ = .63 (Example 3.1) and ||/»J = -13 (Example 3.2). 

In the next chapter generalizations of double integral inequalities for n-times differentiable 

mappings are obtained. From a general Peano kernel explicit bounds for interior point rules 

are procured, which are used to obtain inequalities for n-times differential mappings for the 

three norms y ^ , ||.||p and ||.||i. 
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n 

1 

2 

4 

8 

16 

32 

64 

128 

m 

1 

2 

4 

8 

16 

32 

64 

128 

Actual Error 

1.5(-3) 

1.0(-4) 

6.7(-6) 

4.2(-7) 

2.6(-8) 

1.6(-9) 

1.0 (-10) 

6.6 (-12) 

Err ratio 

14.51 

15.61 

15.90 

15.98 

15.99 

16.00 

16.00 

Loo-estimated error 

6.3(-2) 

1.6(-2) 

3.9(-3) 

1.0(-3) 

2.0(-4) 

6.1(-5) 

L5(-5) 

3.8(-6) 

L2-estimated error 

5.7(-2) 

2.9(-2) 

1.4(-2) 

7.2(-3) 

3.6(-3) 

1.8(-3) 

8.9(-4) 

4.5(-4) 

Li-estimated error 

1.5(-1) 

4.0(-2) 

9.9(-3) 

2.5(-3) 

6.2(-4) 

1.5(-4) 

3.9(-5) 

9.6(-6) 

Table 3.3: The actual and estimated errors in evaluating (3.49) using a composite rule, for various 

values of n, m. Sampling occurs at the mid-point of each region. 

n 

1 

2 

4 

8 

16 

32 

64 

128 

m 

1 

2 

4 

8 

16 

32 

64 

128 

Actual Error 

2.5(-3) 

2.1(-4) 

1.4(-5) 

8.9(-7) 

5.6(-8) 

3.5(-9) 

2.2 (-10) 

1.3 (-11) 

Err ratio 

12.32 

14.68 

15.62 

15.90 

15.97 

16.00 

16.00 

Loo-estimated error 

2.2(-2) 

5.7(-3) 

1.4(-3) 

3.5(-4) 

8.9(-5) 

2.2(-5) 

5.6(-6) 

1.4(-6) 

L2-estimated error 

1.2(-2) 

6.1(-2) 

3.0(-2) 

1.5(-2) 

7.6(-3) 

3.8(-3) 

1.9(-3) 

9.5(-4) 

Li-estimated error 

3.3(-2) 

8.2(-3) 

2.1(-3) 

5.1(-4) 

1.3(-4) 

3.2(-5) 

8.1(-6) 

2.0(-6) 

Table 3.4: The actual and estimated errors in evaluating (3.50) using a composite rule, 

values of n, m. Sampling occurs at the mid-point of each region. 
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Chapter 4 

A General Ostrowski Type Inequality 

for Double Integrals 

4.1 Introduction 

In the previous chapter, we developed two-dimensional integral inequalities with bounds in 

terms of the behaviour of the first partial derivatives of the function. 

Here, some generalizations of an Ostrowski type inequality in two dimensions for n-time 

differentiable mappings are given. The result is an integral inequality with bounded nth 

derivatives. This is employed to approximate double integrals using one-dimensional integrals 

and function evaluations at the boundary and interior points. 

4.2 Integral Identities 

In Cerone et al. (1999a), the authors proved the following Ostrowski type inequality for 

n-time differentiable mappings. For convenience, Theorem 2.10 is reproduced here. 

THEOREM 4.1. Let f : [a, b] -> R be a mapping such that /(n_1) is absolutely continuous 

45 
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on [0,6] and /<n) e L^ [a,b\. Then for all x e [a,b], we have the inequality: 

ob n-1 

/ /w^-E 
J a ,. „ 

(b - x)k+l + (-1)* (x - a)k+1 

ML ^ ^ + 1 ) ! 

llf(n)ll 
-(^Ti)![ ( a ; - a ) n + 1 + ( 6 - ^ n + 1 ] 

(n)|| (6-a)
n + 1 

/(fc) (*) 

< 
(n + 1)! (4-1) 

For other similar results for n-time differentiable mappings, see Chapter 2 and the papers 

Fink (1992) and Anastassiou (1995) . 

In Barnett and Dragomir (2001) and Dragomir et al. (1998) the authors proved some 

inequalities of Ostrowski type for double integrals in terms of different norms. 

In this section we combine the above results and develop them in two dimensions to ob

tain a generalization of the Ostrowski inequality for n-time differentiable mappings using 

different types of norms. The results presented here approximate a two-dimensional integral 

for n—time differentiable mappings via the application of one-dimensional integrals at the 

boundary, function evaluations at interior or boundary points and/or its derivatives at a 

multiple number of points over the given region. 

The following result holds. 

T H E O R E M 4.2. Let f : [a, b] x [c, d] -> R be a continuous mapping such that the following 

partial derivatives ^V^fK k = 0,1,..., n - 1, / = 0,1,..., m - 1 exist and are continuous on 

[a, b] x [c, d\. Further, consider Kn : [a, bf -> R, Sm : [c, df -> R given by 

(t-g)n 

Kn (x, t) :•• 

#-, te[a,x], 
is-cy 

e [c, y], 

Sm (y, s) := (4.2) 

(«-ft)n 

#-, te(x,b], ^ , se(y,d], 
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then for all (x,y) € [a, b] x [c, d], we have the identity 

»6 rd n-1 m-1 po pa .___ 

Ja Jc u—n ;_n 

dl+kf(x,y) 

fe=o 1=0 

+ fairJ^X^x) fdSm(y,s) 
U—n Jc 

dtkdsl 

d dk+mf (x, s) 

k=o 
m-1 r0 

dtkdsm 

dn+lf(t,y) 
dsl 

ds 

1=0 Ja m 

+ (~l)m+n [ f Kn(x. t)Sm(y, s) ^/^
 8) ds dt . (4.3) 

where 

= {i-xr>+{-i)>(x--r>i Yi(v)=(„. „r+(-U'G, - r 
(A + l)! 

Proo/. Applying the identity (see Cerone e£ a/. (1999a)) 

(/ + !) ! 
(4.4) 

rb n-1 

/ g(t)dt = J^ 
Ja fe=0 

\A+1 (b - x)K+i + (-1)K (x - a) 
(k + l)\ 

fc+i 

S w (x) 

+ (-l)n [bPn(x,t)gM(t)dt, (4.5) 

where 

P» (*,*) = 
M if ie[o,4 

^ if te(x,b], 

which has been used essentially in the proof of Theorem 4.1, for the partial mapping / (•, s), 

s £ [c, d], we can write 

dkf (x, s) pb n-1 

/ ffas)dt = ^l 
Ja k=0 

(b - x)k+1 + (-l)k (x - a)k+1 

(k + l)l dtk 

+ (-IT f KnM^^dt, (4.6) 
J a 

for every x e [a, b] and s € [c, cf]. Integrating (4.6) over s on [c, d], we deduce 

nd n-l 

f(t,s)dsdt = ^2 
k=0 . 

n_1 V(b - x)k+1 + (-l)k (x - a) 
(k + l)l I U{x>s)ds 
+ (-irj\n(x,t)^Jc

dd^(t,s)dsyt (4.7) 
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for all x e [a,b]. 

Applying the identity (4.5) again for the partial mapping 0 (x, •) on [c, d], we obtain 

fddkf( ^ 
-gW(x,s)ds = Y: 

Jc 1=0 

l+l 

ds1 V dt* J ^ 

m—1 

= £ 
(=0 

(d-y)l+1 + (-l)l(y-c) 

(1 + 1)1 

+ (-!)-[ Sm(y,S)^(^)(x,S)ds 

(d - y)l+1 + fal)1 (y - c)l+1 

V) 

(I + IY 

Ql+k 

dtkds 
jf(x,y) 

/

d F)k+m 

Sm(y^)W^f(x,s)ds. (4.8) 
In addition, the identity (4.5) applied for the partial derivative |^f (t, •) also gives 

rd on f ™ * \l+l (d-y)^ + (-lY(y-c) i+i 

(/ + !)! 

dt" 

gn+l 

*d 

/

a ttn+m 

Sm(y,s)w^ffas)ds. (4.9) 
Using (4.8) and (4.9) and substituting into (4.7) will produce the result (4.3), and thus the 

theorem is proved. D 

Utilizing the result (4.3) we will produce the mid-point cubature rule for two-dimensional 

rectangular regions for n-times differentiable mappings as well as the trapezoidal cubature 

rule as shown in the following two corollaries respectively. 

Corollary 4.3. With the assumptions as in Theorem 4.2, we have the representation 

n—l m—1 pb pd n~l m~1 

/ / ffaS)dsdt=^2^2xk 
Ja Jc k=0 1=0 

'a + b\ (c + d\ dl+kf (a + b c + ds 

2 ) l{ 2 J dtkdsl V 2 ' 2 , 

Qk+mf /a + 0 

dtkdsm V 2 + (-u-i>(£j*)jfs.w -,s ) ds 

gn+lj / c + ( f 
dt 

pb pd an+m f 

+ {-l)m+n / Kn(t)~Sm(s)w^fas)dsdt, (4.10) 
J a J c 

where Xk (•) and Yi (•) are as given in (4-4)
 an<J s0 

Xk 
'a + b' ! + (-!)* 

(A + l)! 
(b - a)k+l Y(c_+£ 

2k+i ' ' 1 2 , 

1+ (-!)' 

(/ + !)! 

(d-c) 
2i+i 

i+i 
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and Kn : [a, b] -+R, Sm : [c, d] -+ R are given by 

Kn{t) = Kj±±*,t) and Sm (s) = Sm (
C-±± ,s (4.11) 

on using (4-2). 

Corollary 4.4. Let f be as in Theorem 4.2. Then we have the following identity 

nd -. n—l m—1 

fc=0 1=0 

(b-a) fc+i 

(* + l)! 

i+i (d~c) 

(I+ 1Y-

x m^{a'c) + ̂'^M + ̂ k^M dtkdsl 

n-1 

+ (-^l^(^» 
+ 7(-i)mE 

fc=0 
m—1 

+ -A~l)nE 

(b ~ a)k+ 

(k + l)\ 

(d-c)w 

r rd 

1=0 

dxkdsm 

dn+lf 
dtndsl 

(a-') + (-1)t^(M) ds 

L. fln+l f 
(t,d) dt 

/ a r f)k+m f 
Ym-l{8) 

d+iy- \"[jaXn-l{t) 

1 fb rd Qn+m f 
+ 'ja Jc Xn-l{t)-Ym-^dFdi^S)dSdt- (412) 

where Xn_x (t) and Ym_x (s) are as given by (4.4). 

Proof. By substituting (x, y) = (a, c), (a, d), (b, c), (b, d) respectively and summing the re

sulting identities and after some simplification, we get the desired identity (4.12). • 

In the above section we promote some of two-dimensional integral identities, for n-times 

differentiable mappings, which are avail in themselves and exploit them in the next section 

to obtain two-dimensional integral inequalities on the Lebesgue spaces, L ^ [[01,61] x [a2, b2]], 

Lp[[ax,bx] x [a2,b2\], Lx [[ax,bx] x [a2,b2]], 

4.3 Some Integral Inequalities 

In this section we tap the equalities of Section 4.2 and develop inequalities for the depiction 

of the two-dimensional integral of a function with respect to one-dimensional integrals at 

the boundary, function evaluations at interior or boundary points and/or its derivatives at 

a multiple number of points over the given region. 

W e start with the following result. 
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THEOREM 4.5. Let f : [a, b]x[c,d]-+R be continuous on [a, b] x [c, d\, and assume that 

gp^r exist on {a, b) x (c, d). P/ten we have the inequality 

»b rd n—l m—1 

///ft»)w-EEi*).*)y(l,B) 
fe=0 1=0 

n-1 

~^%Mx)[ S(y,s)lMl{x,s)ds- fairly) I Kix^fay) 

MiU K* - a)n+1 + (6 - ^)n+1] x [(2/ - c)m+1 + (d - y)m+1] x 

tf SS e L°o ([«.&] x [c, d]); 

dt 

dtndsm 

(x-a)nq+1+{b-x)nq+l 

nq+1 X 
(y-c)ro^+1+(d-3/)

mg+1 

mg+1 X 
Qn+m i 

dtndsm 

< { 
1 

V 

*/ S S G L P ([«» fe] >< [C, d]) , p > 1, 1 + 1 -,, 1; 

-^ [(* _ a)
n + (b-x)n + \(x- a)n -(b- x)n\] 

X [(y ~ c)m +(d-y)
m + \(y- C)

m - (d - y)m\] x 

*/ SS eLi([a,6] x [c,d]). 

dn+mf 
dtndsm 

for all (x,y) e [a, 6] x [c,d], tu/iere 

Qn+m f 

dtndsm 

Qn+m t 

= sup 
oo (t,s)e[a,b]x[c,d\ 

3n+mf fa s) 

dtndsr a: 
dtndsm 

an+m 

dtndsm 
f (t, s) 

< oo, 

dtds 1 < oo. 

(4.13) 

Proof. Using Theorem 4.2, we get from (4.3) 

-6 rd n-1 m-1 

fj°f(t,s)dsdt - g g l t M W ^ " ' 
fc=0 1=0 

-(-1)™ £**(*) /d5(y,S) 
l._rv ./C fc=0 
m—1 

^fc+my fa s) 

dtkdsm 

dn+lf fa y) 

ds 

1=0 ,/a 

f' ['is I A C ( \ dn+mf ^S) 

J a Jc Kn^X^Sm^8^ dt"ds" 
<r f fur ( Ad ( M dn+mf(t,s) 
< \Kn(x,t)Sm(y,s)\ 

J a Jc 

dt 

dtndsn 

dsdt 

dsdt. (4.14) 
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Using Holder's inequality and properties of the modulus and integral, then we have that 

f f \Kn(x,t)Sm(y,s)\ 
Ja Jc 

a n + m / {t, s) 

dtndsm 
dsdt 

< < 

Qn+m t 

dtndsm 

Qn+m j 
dtndsm 

-b rd 
la L \Kn fo *) Sm (j/i s) I dt ds 

(CLd\Kn(x,t)Sm(y,S)\
qdtds)\ 

P 

1 i 1 p>i, J + i = i; 

gn+m t 

dtndsm 
sup \Kn (x, t) Sm (y, s) 

1 (t,s)€[a,b]x[c,d] 

(4.15) 

Now, the result in (4.15) can be further simplified by application of (4.2). 

f f \Kn(x,t)Sm(y,s)\dtds= j \Kn(x,t)\dt j \Sm(y,s)\ds 

= \)x(l^Ldt+
C[b(±^ldt 

Ja nl Jx m 

i: (±^rds+ r < ^ U m\ mi 

\(x - a)n+l + (b- x)n+1] \(y - c)m+1 + (d - y)m+1] 

~ (n + 1)! (m + 1)"! 

giving the first inequality in (4.13). Further, 

f J \Kn(x,t)Sm(y,s)\
qdsdty 

= (fb\Kn(x,t)\
qdty Qf \Sm(y,s) 

= i\[
x(t-ardt+[\b-tr 

n\m\ \_Ja Jx 

T\8-cTd8+ f(d-srds 
Jc Jy 

dsdt 

n!ra! 

(x - a)nq+1 + (b-x) 
nq+1 

ng+l 

X rnq +1 
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producing the second inequality in (4.13). Finally, 

sup \Kn(x,t)Sm(y,s)\ = sup \Kn(x,t)\ sup \Sm(y,s)\ 
{t,s)€ [a,b] x[c,d] te[a,b] se[c,d] 

j(x-a)n (b-x)n\ 
= max < —-, -i -!— ) x max 

[ nl n! J 
(x - a)n + {b- x)n 

2 
(y - c)m + (d - yy 

I (y-c)
m (d-y)' 

m! m! 

n\m\ 
+ 

+ 

(x-a)n-(b-x)n 

2 
(y - c)m + (d - y)m 

2 

gives the final inequality in (4.13) where we have used the fact that 

Y-X r „ .ĵ , X + Y 
max {X, Y} = \-

Thus the theorem is now completely proved. • 

Taking in mind that x and y are free parameters. Thus we can produce "mid-point" and 

"boundary-point" type results by choosing appropriate values for x and y. In addition 

choosing values for n and m will re-capture the earlier results of Hanna et al. (2000) and 

Dragomir et al. (1998). 

Corollary 4.6. With the assumptions of Theorem 4-5, we have the inequality 

pb pd n-1 m-1 

/ / ffas)dsdt-Y,Y.Xk 
Ja Jc t._n ,_n k=0 1=0 

n-1 

a + b\ fc + d\ dl+k {a + b c + ds 

-(-D-xWiî f*... 
A;=0 
m—1 

f Sm{t 

2 / dtkdslJ V 2 ' 2 

Qk+m (a + b \ 
—• f ,s ds 
' dtkdsmJ V 2 ' J 

-^^mi>^A^ut 
n+1 ( j „\m+l 

2"+m(n+l)!(m+l)! 
,(b-a)n+i(d-c)m+Lx 

Qn+m I 

dtndsm 

< < 
2n+mn\m\ 

{b-a)nq+l{d-c)mq+11\i 
(ng+l)(mg+l) 

X 
Qn+m f 

dtndsm 

2n+m 
Jaad-orfd-crx Qn+m f 

dtndsm 

(4.16) 

Proof. Taking x = ^ and y = ^ in (4.13) readily produces the result as stated. • 
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These are the tightest possible for their respective Lebesgue norms, because of the symmetric 

and convex nature of the bounds in (4.13). This is straightforward because these functions 

attain their maximums at the ends of the intervals, and their minimum values at the mid

point. 

Other values of x and y may produce the boundary-point cubature rules. 

Remark 4.7. For n = m = 1 in (4-16) and ~£ belonging to the appropriate Lebesgue 

spaces on [a, b] x [c, d], we have 

»b rd a + b c + dN 

2 ' 2 

po pa 

\ / ffas) ds dt-(b- a) (d-c)f 
\Ja Jc 

+(b-a) jyx(s)^j f^,sys+(d-c) j^ kifap ̂ , 
c + d^ 

dt 

±(b-a)2(d-c)2x 

* < \ 
1+1(H-A1+l (b-a)q+i{d-c 

X 

9!L 
dtds 

d2f 
dtds 

(4.17) 

l(b-a)(d-c)x £L 
dtds 

and thus some of the results of Hanna et al. (2000), Pachpatte (2001) and Dragomir et al. 

(1998) are re-captured. 

Corollary 4.8. With the assumptions on f as outlined in Theorem 4.5, we can obtain 

another result which is a generalization of the trapezoid inequality 

pb pd 

/ / f^ 8) 
Ja Jc 

n—l m-1 

dsdt 
(6 - q ) ^ 1 (d-C)

l+1 

X 

sk+l 

(jfc + i)! (i + iy 
k=0 1=0 v ' v ' 

f(a,c) + (-l)lf(a,d) + (-l)kf(b,c) + (-l)K+tf(b,d) 
4 

Tf(a,s) + (-l)kf(b,s) n-1 vfc+1 rd 

^irEL>z!cr«i>)** 
k=0 
m—1 

-(-D"£ 
1=0 

(k +1)! 

(d - c)l+l 

(/ + ! ) ! 

dtkdsm 

Ql+n po rx"1" 

/ Xk {t) dFds~l 
/ fa c) + (-1)7 fad) 

4 

ds 

dt 
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/ (b-a)n+1(d-c)m+1 

^n,m (n+l)!(m+l)! 

Qn+m t 

dtndsm 

< < 

oo 
., Qn+m t 

V 5575^ 6 £00 {[a, b] x [c, d]) • 

SSL (fl\T„(a,b;t)\<dt)< (//|TmM;s)|«<fe) 
Qn+mf 

dtndsm 

(fe-a)"(d-C) 

4n!m! 

.. Qn+m f 
lf d¥d£ G A> ([M] x [c,d]), p > 1, I + I = i; 
,\fn an-t-m j. Qn+m t 

dtndsm 

*/ SSGMM]x[c,d]). 

(4.18) 

where 

1 
2n-l 

ft. n,m 
2n 

2m-l 
2 m 

(2n-l) (2m--1) 
2" 2m 

if n = 2r: and m = 2r2 , 

if n = 2ri + 1 and m = 2r2 , 

if n = 2ri and m = 2r2 + 1 , 

if n = 2rx + 1 and m = 2r2 + 1 

Proof. Using the identity (4.12), we find that 

pb rd n-lm-l (, „\k+l /, xi-f 

x-

1 j ̂  (k + iy. Jc 
(b - a)k+1 fd (5 - c)m + {s- d)? 

to (fe + 4m! 

1 j t_Tf (/ + ! ) ! Ja U C + D' 
ft - a) n + ft - 6)n 

4n! x 

Qk+m f 

dtkdsm 

dn+lf 
dtndsl 

Qk+mf 

ds 

^+^'wh^ dt 

»b rd 

/

" /*« gn+m f 

J Tn(a,b;t)Tm(c,d;s)-^^dsdt 
Ia Ic \

Tn (a> b] t) Tm (c, d; s) | dt ds 

' Qn+m f 

dtndsm 

< < 

if SS G L°° lta'b] x [c, d]]; 
9^| (/>„ (a,&;*)!«<**)' (// \Tm (c, d; s)\

qds) dt 

if SeL p[MxM]],pli + ; = l; 
Qn+m t 

dtndsm 

dtnds 

sup \Tn(a,b;t)Tm(c,d;s)\ 
1 (M)e[a,6]x[c,d] 

if SS G Ll [[fl> 6i x [c, d]]. 
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where 

Tn{a,b',t) 
(b-t)n + (-i)n(t-ay 

2n! 
Tm (c, d; s) = 

(d-s)m + (-ir(s-cy 
2ml 

Now consider fa \Tn (a, 6; t)| dt. As may be seen, explicit evaluation of the integral depends 

on whether n is even or odd. 

(i) If n is even, put n = 2ri. Therefore, 

nb 1 r»(b-t)2n + (t-a)2n 

L ̂ ^^ = <£$£ dt 

1 1 

(2r0! 2 

\2n + l 
(6-or1+1 (b-a) 2n+i 

+ 2ri + 1 2n + 1 

ft>-dT1+i (6-a) n+1 

(2r! + l)! (n+1)! ' 

Similarly, 

»d 

J^Tm(c,d,s)\ds=^l 
1 f (d - sf" + (s - cf" d: =(d-c) m+1 

(m + 1)! ' 

(ii) Now, if n is odd, that is, n = 2T*I + 1, then 

(b _ t)
2ri+1 - ft - o)2ri+1 

Tn(a,b;t) 

Letg(t) = (b-t)2ri+1-(t-a)2ri+l. 

We can observe that 

2 (2rx + 1)! 

g(t) <0forallt€ (***,&] 

g(t) = 0 att = *±* 

#ft) >OforalltG[a,^). 

Thus 

n even. 

2(2n + 1)! / |TB (a, b; t)\ dt = f ? [(b - * ) 2 r i + 1 - ft - a)2ri+1] dt 

+ f [ft - a)2ri+1 - (6 - *f1+1] * 

(&-P) dV 2 i 
2ri + 2 2ri + 2 
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and so 

f 
J a 

\Tn(a,b;t)\dt = 
(b~a) 2n+2 

(2ri + 2) (2f! + 1)! 
1 

22ri+l 

(6-a) 2n+2 22n+l _ j 

~2~2n+T 

Similarly, 

/ \Tm (c, d; s)|ds 

(2rx + 2)! 

(d-c)m+l r 

(6-a) n+1 r 

(n+1)! 

2 n - l 

2n 

2 m _ j 

m even. (m + 1 ) ! [ 2™ 

and this gives the first inequality in (4.18). Now, for the third inequality we have, 

sup ((b-t)n + (t-a)n) = ^)l, kn ai! /M-vei, 

sup \Tn(a,b;t)\ = — x { 
te[a,b] 2 n ! 

te[a,b] 
2n! ' 

sup |(6 - t)n - ft - a)n\ = &££-, for all n odd 
^ te[a,b] 

and this gives last part of the inequality in (4.18). The corollary is thus completely proved. 

• 

Remark 4.9. For n = m = 1 , we have that 

pb pd 

/ / /(M) 
J a J c 

ds dt + (6 a\(d C) [f (a, c) + / (a, d) + / fa c) + f fa d)} 

b — a 
j (f(a,s) + f(b,s))ds 

d — c 
(ffac) + f(t,d))dt 

' l t ^ £ l ! [(a. _ a ) 2 + ft, _ *)2] [(y - cf + (d - y)
2] x ̂!L 

5tc?s 

£< J ((6-aXd-c)) 

(?+l)* 

9+11 
X 

dtds ,p>i.£ + ; = i; 

(6-a)(d-c) 
4 

92/ 
dtds 

Again, the same result was obtained by Hanna et al (2000) and Dragomir et al. (1998). 

In the following Section we will utilize the inequalities obtained in this section and demon

strate their capabilities to numerical integrations. 
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4.4 Applications to Numerical Integration. 

Consider / to be a two-dimensional n-times differentiable mapping in and that its all partial 

derivatives in both direction exist and they are integrable. W e apply the inequalities obtained 

before using a uniform mesh for numerical implementation. Thus the following application 

in Numerical Integration is natural to be considered. 

T H E O R E M 4.10. Let f : [a,b] x [c,d] -^R be as in Theorem 4.5. In addition, let Iv and 

J^ be arbitrary divisions of [a, b\ and [c, d] respectively, that is, 

Iv : a = & < £1 < ... < iu = b, 

where x-% € fa, &+i) for i = 0,1,..., v - 1, and 

JM : c = r0 < n < ... <rjl=d, 

with yj 6 (TJ,TJ+I) for j = 0,1,..., pi - 1, Men we Aave Me cubature formula 

„h „J n-1 m - 1 v—\ M-1 Z3*+.7 f 

fc=0 1=0 i=0 j=0 

n-1 i/-l /*-! /"Tj+i Qk+mt 

f f i (t,.) ds * = E E E E x i W M s i s ? <*<•«>
 (419) 

"/a </c fc=n £=o i=0 i=0 

n-1 v-L p-i fTj+l CT~t t 

+ ( - D m E E E 4 , > W / ^(yi,s)w^(x„s)ds 
k=0 t=0 j'=0 ^ 

m- 1 v-1 fi-1 /.(i+i pn+1 / 

+(-D" E EE^'fe)/. «i° (*"« a«7 <*•ft)* 
1=0 t=0 j=0 ti 

+R(f,Iv,Jn,x,y), 
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where the remainder term satisfies the condition 

\R(f,ln,Jm,x,y)\ 
Qn+m j 

1/-1 

< 

TiW^y. x E [(*« - 6 ) n + 1 + (6+i - x{)
n+1) 

i=0 J 

x E [(% - r,)m+1 + (ri+1 - y,)
m+1] 

•J- Qn+m t 

V QPTQJK e Loo ([a, 6] x [c, d]); 

f xEi^-e.r^ + ^+i-^n^ 
gn+m» 
~dtndBm \\P V-l 

nlml(nq+l)q i=0 

x E [fa - rjr+i + (Tj+X ~ V j r ^ y 
3=0 J 

'/ S S e L P (K b] x [c, dj), p > 1, I + I = 1; 

4niL' ' E [fo ~ 6 ) " + (6+i - ^ - ) n + \(xi - 6 ) " - (6+i - arOBll 

x E [(% - r,)"1 + (ri+1 - y,)m + |(% - r,-)"1 - (r,+1 - y^]] 

, lf « ^ ^ i ( k & ] x [c,d]); 

where 

m(i) 

Xll)(k = 0,1, ...n-1; i = 0,1, ...v-l) , Yt
{j\l = 0,1, ...m-1;; = 0,1,...//- 1) 

and 

W/.-ATA;ft = 0,l,...v-l), S,^(j = 0,l,.../i-l) are defined by 

fc v l) fc+i i ' ri u/j; — — n + T v — — ' a+i)! 

'W, 
ft-6+i)" fP/,.;. ] (s-7-mr , ̂  /„ „. i 

n! ' T <= l̂ tjSi+lJ I +J , se{yi,Tj+x\ 
The proof is obvious by Theorem 4.5 applied on the interval [6,6+i] x [TJ,TJ+X], ft = 

0,1, ...v - 1; j = o, 1, .../i - 1), and we omit the details. 

Remark 4.11. A similar process can be undertaken in producing composite rules if we use 

the other results obtained in Section 4-3, but we omit the details. 

In the following chapter, we develope a method of obtaining "weighted" integral inequalities, 

where the derivatives of the integrand may be unbounded unlike the last two chapters. 



Chapter 5 

Weighted Quadrature Rules 

In the previous two chapters two-dimensional integral inequalities were developed where the 

upper bounds were expressed in measures (or norms) of derivatives of the integrand. Often in 

practical applications the integrand may possess some singularity structure which precludes 

its consideration from this analysis. That is, the function is integrable, but not analytic hence 

one or more derivatives m ay be unbounded and non-integrable. In other cases the integrand 

may be perfectly analytic, but the region of integration is infinite or semi-infinite. Here again, 

this cannot be considered using the techniques of Chapters 2-4. These cases are most often 

managed using product or weighted integrands. In this chapter, we will consider extending 

the Ostrowski result to one-dimensional weighted integrals. This analysis will then be taken 

up in the subsequent chapter where we again focus on two-dimensional integral inequalities. 

5.1 Product and Weighted Interior Point Integral In

equalities 

In chapter 7 of Dragomir and Rassias (2001), J. Roumeliotis developed some weighted (or 

product) integral inequalities using the Ostrowski approach. These inequalities furnish an 

error estimate for weighted integrals where both the quadrature rule and error bound are 

given in terms of (at most) the first three moments of the weight. Also, the upper bound is 

a function of the first few derivatives of the mapping. 

59 
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A weighted one dimensional counterpart of the Ostrowski inequality involving the first deriva

tive is obtained. But, before going any further, let us consider the following definition. 

Definition 5.1. Let w : (a,b) -> [0,oo) be an integrable function, i.e. fbw(t)dt < oo, and 

non-negative, then define 

m,i(a,b)= J fwfadt, i = 0,l,... (5.1) 
J a 

as the ith moment of w. 

Thus, we have the following theorem (see also, Dragomir et al. (1999)) 

THEOREM 5.1. Let w be as defined in Definition 5.1 and let f : [a, b] -+ R be absolutely 

continuous and have bounded first derivative, then 

f w(t)f(t)dt-m0(a,b)f(x) < H/'lloo f \x-t\w{t)dt 
Ja Ja 

= \\f\\oo{x(m0(a, x) - mQ(x, b)) + mx(x, b) - mx(a, x)} 

(5.2) 

Proof. Define the mapping K(.,.) : [a, b] -> R by 

\m0(a,t), te[a,x], 

K(x,t) = l (5-3) 
[ m 0 ( M ) , te(x,b}. 

Integrating by parts gives 

fbK(x,t)f'(t)dt= f2'mQ(a,t)f'(t)dt + J m0fat)f'(t)dt 

= m0(a,t)/ft)];=a + TOoft,t)/ft)]^- f wfaffadt. 
J a 

Yielding the product Montgomery identity 

f" K(x, t)f'(t)dt = m0(a, 6) - jT wfaffadt. (5-4) 

Taking the modulus and using Holder inequality gives 

f K(x,t)f'(t)dt < H/'Hoo / \K(x,t)\dt 
Ja Ja 

= ||/'||oo{ f'mo(a,t)dt + j m0fab)dt}. (5-5) 



5.1. PRODUCT AND WEIGHTED INTERIOR POINT INTEGRAL INEQUALITIES 61 

The last result being obtained by using the fact that for fixed x, K is positive in t G fax) 

and negative in t G (x, b). Utilizing (5.4), recalling Leibniz identity and using integrating by 

parts gives the desired result (5.2). • 

R e m a r k 5.2. substituting wfa) = 1 into (5.2) gives the Ostrowski inequality (2.1). 

Corollary 5.3. Let the condition in Theorem 5.1 hold and let x G [a, b], where [a,b] is a 

finite interval. The following product integral inequality holds. 

r 
J a 

w(t)f(t)dt-m0(a,b)f(x) <\\f'\\oom0(a,b)(
b-~^ + x 

a + b 
(5.6) 

Roumeliotis et al. (1999) used Holder's inequality to produce another estimation in term of 

the ||.j|p norm of wfa) as shown in the following corollary. 

Corollary 5.4. Let the conditions in Theorem 5.1 hold and let wfa) G Lp[a, b], we have the 

inequality 

f 
J a 

w(t)f(t)dt-m0(a,b)f(x) < II/'IUH 
(x - a)g + 1 + (b - x)q+l 

q + 1 

i/? 

(5.7) 

for all x G [a, b],p > 1 and 1 + 1 = 1. It is easily shown that the bound is minimized at the 

mid-point x = ^—^ 

The same author proved the following theorem. 

T H E O R E M 5.5. Let w as be given in Definition 5.1 and let f : [a, b] -» R be such that 

f G Li(a, b). The following inequality holds 

\J a 

w(t)f(t)dt-m0(a,b)f(x) 
1 

< 7;\\f\\i{mo(a,b) + \m0(a,x) -m0ft;,o)|}. (5.8) 

Dragomir et al. (1999) developed a weighted Ostrowski type inequality for Holder mappings 

as a generalization for (5.2). 

T H E O R E M 5.6. Let w be as given in Definition 5.1 and let f be of r — H-Holder type. 

That is 

\f(x)-f(y)\<H\x-y\r (5.9) 

for all x,y G (a,b), H > 0 and r G (0,1]. If wfa f fa) is integrable, then the following 

inequality of the weighted integral holds 

rb rb 

/ w{t)f(t)dt - m0(a, b)f{x) <H \x - t\rw(t)dt, (5.10) 
\J a Jo. 

for all a < x < b. 
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Roumeliotis et al. (1999) presented analogous Ostrowski type inequalities for weighted in

tegrals in one dimension where /" is assumed to exist. 

From the point of view that the following definitions will prove useful. 

Definition 5.2. Define the mean of the interval [a,b] with respect to the density w as 

mx (a, b) 
/z(o, b) = 

m0(a,b) 

and the variance by 

a2(a,b) 
m2(a,b) 

m0(a,b) 
H2(a,b). 

(5.11) 

(5.12) 

Then the following inequality holds 

THEOREM 5.7. Let f,w : (a,b) G R be two mappings on (a,b) with the following proper

ties: 

(1) sup |/"ft)|<oo, 
te{a,b) 

(2) wfa >0 W G fab), 

(3) f*w(t)dt <oo, 

then the following inequalities hold 

m0(a,b) Ja 
w(t)f(t)dt-f(x) + (x- n(a,b))f'(x) 

< 

< 

\\f"\ 
2 

iiriu 

[(x-v(a,b)2 + o-2(a,b)\ 

a + b 
x + 

b — a" 

for all x G [a, 6]. 

(5.13) 

(5.14) 

Proof. . Define the mapping K(.,.) : [a,b]2 G R by 

I Ja'ft — u)w(u)du, a <t < x, 

K(x,t) := < 

/ ft - u)w(u)du, x < t < b. 

Integrating by parts gives the identity 

pb pb 
j K(x,t)f"(t)dt= / w(t)f(t)dt-m0(a,b)f(x)+mo(a,b)(x-v(a,b))f'(x). 

(5.15) 

(5.16) 

• 
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Taking the modulus of (5.16), after some computations and simplifying we obtain the desired 

results. 

It should be emphasized that, the optimal point x = n(a,b) can be interpreted in many 

ways. In a physical context, fi(a, b) represents the center of mass of a one dimensional rod 

with mass density w. Equivalently, this point can be viewed as that which minimizes the 

error variance for the probability density w. Finally (5.11) is also the Gauss node point for 

a one-point rule see (Stroud and Secrest 1966). 

5.2 Weighted Three Point Rules 

Weighted three point quadrature rules are investigated in this section in which sampling 

occurs at the boundary points and an interior point. Explicit a priori bounds are obtained, 

thus enabling the determination of the partition required for a prescribed error bound to 

be fulfilled. This approach contrasts to that commonly used of mesh refinement followed 

by a successive a posteriori comparison of the results (see for example Atkinson (1988)). 

Other quadrature rules have been developed that differ from those given here. Three point 

quadrature rules of Newton-Cotes type have been examined in Cerone and Dragomir (1999) 

in which the error involved the behaviour of, at most, a first derivative. Riemann and 

Riemann-Stieltjes integrals were examined. In the current section, weighted three point 

rules are investigated in which the error relies on the behaviour of the first derivative. Also, 

composite quadrature rules for a log weight function are given and compared with a product-

trapezoidal rule of Atkinson (1988) 

5.2.1 Weighted Three Point Inequalities 

Weighted (or product) inequalities are developed involving function evaluation at three points 

(see also, Cerone et al. (2000)). 

THEOREM 5.8. Utilizing Definition 5.1 and under the conditions of Theorem 2.11 where 
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n = 1. Then for x G [a, 6], a G [a, x], (3 G (x, b), the following inequality holds 

f w (t) f (t) dt - [m0 fa, )3) f (x) + m0 (a, a) f (a) + m0 fa, b) f ft)] 

<I(<x,x,P)\\f'\L, (5-17) 

w/iere 

/ (a, x,/3)=J k (x, t) w ft) dt and k (x, t) = < 
J a 

t - a, t e[a, a] 

\x-t\, tefaj] 

b-t, tefa, b] 

(5.18) 

K (x, t) (5.19) 

Proof. Define the mapping K (-, •) : [a, b] -+ R by 

mo fa, t), t G [a, x] 

m0 fa, t), te (x, b] 

where mo (a, 6) is the zeroth moment of w (•) over the interval [a, b\. It should be noted that 

mo (c, d) will be non-negative for d> c. Integration by parts gives, on using (5.19), 

/ K (x, t) f fa dt = fX m 0 fa, t) f fa dt+ f m 0 fa, t) f fa 
Ja Ja Jx 

dt 

= m 0 fa, t) f (t) + m0fa,t)f(t) 
t=a 

b pb 

- / w(t)f(t)dt, 
t=x la. 

producing the identity 

»6 

f K(x,t)f'fa)dt 
J a 

- m0 fa, (3) f (x) + m0 (a, a) f (a) + m0 fa, b) f (b) - f w fa f ft) dt, (5.20) 
J a 

valid for all x G [a, 6]. Taking the modulus of (5.20) gives 

f w ft) / (t) dt - [m0 (a, 0) f (x) + mQ (a, a) f (a) + m0 fa, b) f ft)] 
J a 

K(x,t)f'(t)dt < ll/'lloo/ \K(x,t)\dt. (5.21) 
J a 

Now, we wish to determine fa
b \K (x,t)\ dt explicity. To this end notice that, from (5.19), 

K (x, t) is a monotonically non-decreasing function of t over each of its branches. Thus, 

there are points a G [a, x] and (3 G [x, 6] such that K (x, a) = K (x, P) = 0. Thus, 

/ \K(x,t)\dt = - f m0(a,t)dt+ f m0fa,t)dt- f m0fa,t)dt+ / m0fa,t)dt. 
Ja Ja Ja Jx J P 

(5.22) 
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Integration by parts gives, for example, 

ra ia pa pa 

- / m 0 fa, t)dt=-(t- a) m 0 fa, t) + (t-a)w (t) dt = (t-a)w fa dt. 
J a J t=a J a J a 

A similar development for the remainder of the three integrals on the right hand side of 

(5.22) produces the result 

f \K(x,t)\dt = Ifa,x,/3), (5.23) 
J a 

where / fa, x, /3) is as given by (5.18). Combining (5.21) and (5.23) produces the result (5.17) 

and hence the theorem is proved. • 

It should be noted at this stage that taking w (•) = 1 reproduces the results of Cerone and 

Dragomir (1999). If a = a and p = 6 then a weighted interior point rule is obtained. If 

a = P = x, then a weighted rule results where the function is evaluated at the boundary 

points. For a = a or ft = b then Radau type rules are obtained while the current work will 

focus on rules allowing sampling at both ends of the boundary. 

Corollary 5.9. Inequality (5.17) is minimized at x — x* where x* satisfies 

m0(oAx*)=m0(x*,/r), a* = °^f- and p* =
 Xl±b-. (5.24) 

Proof. From (5.17) - (5.18), I fa,x,P) may be written as 

pa px 

I fa, x,p)= (t-a)w ft) dt + (x-t)w fa dt 
J a Ja 

rP fb 

+ (t-x)w(t)dt+ j (b-t)w(t)dt, (5.25) 
Jx Jd 

where a G [a, x] and P G (x, 6]. Equation (5.25) could equivalently be written in terms of its 

zeroth and first moments. Differentiating (5.25) with respect to a, P and x gives 

AT r\ r f^T 

-Z- = A(a,x)tv(x), -^ = B fa, x) w (x) and — = m 0 fa, x) - m 0 (x, /?), (5.26) 
da dp ox 

where 

A (a,x) = 2a - (a + x), B fa,x) = 2p-(x + b) (5.27) 

An inspection of the second derivatives demonstrates that (5.25) is convex on using the fact 

that w (t) is non-negative for t G (a, b). Thus, / is minimal at the zeros of (5.26) and so the 

corollary is proven. D 
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Corollary 5.9 investigates the problem of determining the optimal choice of a, x and p 

that produce the tightest bound. The following corollary gives coarser bounds although the 

bound may be easier to implement. 

Corollary 5.10. Let the conditions be as in Theorem 5.8. Then the following inequalities 

hold 

I w(t)f (t) dt - [m0 fa, P) f (x) + m 0 (a, a) f (a) + m 0 fa, b) f 
J a 

(b)] 

where 

Kx (x) = 
o — a\ ( a + b\ 

+ x -

IIHL • ̂ 1 (*) 
< 11/"I I x I , (5.28) 

liwlli -.KTooftO 

( a + x\2 / x + b\2 , , 
+ [a--H~) + (P--Z-) (5-29) 

and 

Koo (x) = 
1 

2 

"6-a 

[ 2 + 
a; -

a + xl 

2 r P-

+ 

x + b 

2 

a + b 
X~ 2 + a -

a + x 

2 
— P-

x + b 

2 
(5.30) 

with \\gWi := fa \g(s)\ds meaning g G Lx[a, b], the linear space of absolutely integrable 

functions and WgW^ := sup |pft)| < oo. 
t£[a,b] 

Proof. From Theorem 5.8 and equations (5.17) - (5.18), (5.19) and (5.23) we have 

pb pb 

Ifa,x,p)= I \K(x,t)\w(t)dt= I k(x,t)w(t)dt. 
J a J a 

Now, 

/ k(x,t)w(t) 
Ja 

dt< < 

Mloo/>(M)|d* 

\wl\m_ sup \k (x,t)\ 
te[a,b] 

where k (x, t) is as defined in (5.18). Some straight forward evaluation gives 

J \k(x,t)\dt = ^[fa-a)2 + (x-a)2 + (p-x)2 + (b-P)2} , 

file:////gWi
file:///wl/m_
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which may readily be shown to equal Kx (x) as given by (5.29) through using the identity 

X2 + Y2 (X + Y\2 (X-Y\2 

three times. Further, 

sup \k (x, t) | = max {a - a, x — a, P — x, b — P] , 
te[a,b] 

which can be shown to equal .Koo fa) as given by (5.30) from using the result 

f ,r ,,... X. + Y \X — Y\ , . 
max {X, Y) = —^— + ' 2 ' , (5.31) 

three times. D 

It should be noted that the tightest bounds are obtained at x = ̂  and a — 9^, P — ^. 

That is, at their respective mid-points. The optimal sampling scheme is independent of the 

weight. 

a 

T H E O R E M 5.11. Let f ; I C R - ^ R be a differentiable mapping on I (the interior of I) 

and a, b el are such that b > a. If f G Li [a, b], then \\f'\\x = fa \f ft)| dt < oo. In addition, 

let a non-negative weight function wfa have the properties as outlined in Definition 5.1. 

Then for x G [a, b], a G [a, x] and P G (x, b] the following inequality holds. 

f w(t)f ft) dt - [m0 fa, P) f (x) + m0 (a, a) f (a) + m0 (p, b) f ft)] 
Ja 

<efa,x,P)\\f'\\x, (5.32) 

where 

9 fa, x,p) = -{m0 (a, b) + \m0 fa, x) - m0 (a, a) \ + |m0 fa, b) - m0 (x, p) \ 

+ |m0 (a, x) - m0 (x, b) + |m0 fa, x) - m0 (a, a)| - |m0 (P, b) - m0 (x, P)11} (5.33) 

and mo (a, b) is the zeroth moment of w (•) over [a, b] 

Proof. From identity (5.20) we obtain, from taking the modulus 

0(a,x,P)= sup \K(x,t)\ , 
te[a,b] 
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where K fa, t) is as given by (5.19). As discussed in the proof of Theorem 5.8, K (x, t) is a 

monotonic non-decreasing function of t in each of its two branches so that 

9 fa, x, p) = max {m0 (a, a), m 0 fa, x), m 0 (x, p), m 0 fa, b)} . 

Now, using equation (5.31) we have 

Mx = max{mo(a,a),m0fa,x)} = -[m0(a,x) + \m0fa,x)-m0faa)\] 

andM 2 = max{m0(x,P),m0fa,b)} = -[m0(x,b) + \m0fa,b)-mQ(x,p)\}, 

to give 

a/ a\ (** wi Mx+M2 Mx-M2 
9 fa, x, p) = max {Mi, M 2 } = — ! — — £ + _i_^—£ 

and hence the result (5.33) is obtained after some simplification and the theorem is proved. 

• 

Remark 5.12. It should be noted that the tightest bound in (5.33) is obtained when a,x and 

P are taken as their respective medians. Thus, the best quadrature rule in the above sense is 

given by 

! w(t)f ft) dt - [m0 (a, a) f (a) + m0fa, P)f (x) + m0(p, b)f (6)1 < ^ i ^ l y^ , 
Ja J 4 

(5.34) 

where 

m 0 (a, x) = m 0 (x, b), m 0 (a, a) = m 0 fa, x) and m0(P, b) = m0(x, (3). 

5.2.2 Development of a Quadrature Rule 

The following theorem will be useful in determining the partition for composite quadrature 

rules. The optimal partition in terms of the partition that provides the tightest bounds will 

be determined. The optimal quadrature rules will result for /' G L^ [a, b]. If /' G Li [a, b] a 

similiar development may be followed but will not be pursued further here. 

T H E O R E M 5.13. Let the conditions of Theorem 5.8 hold and let £ partition the interval 

[a, b] into two. Then the following inequality holds 

I fb 
\ / w (t) f (t) dt - [mo (a, an) f fa) + m0 fax, px) f (xx) + mQ fax, a2) f (£) 
IJa 

+ m 0 fa2, p2) f (x2) + m 0 fa2, b) f ft)] ^ f r O I I / ' I L . (5-35) 
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where 

J(z,0 = </i(zi,0 + < M z 2 , 0 (5.36) 

with 

z 
T fai,Xi,pi), i = 1,2, z = ziUz 2, (5.37) 

< rb 
dt </i(zi,£) = / kx(xx,t)w(t)dt, J2(z2,i) = I k2(x2,t)w(t) 

Ja Jt 

and 

t-a, t G [a, ax] t - 6 i £ [6 a2] 

fci(x!,t) = { |xi-t|, tefax,px] ,k2(x2,t)=< \x2-t\, t£fa2,p2] • (5.38) 

Z-t, te(pu(] [ b-t, tefa2,b] 

Further, a < ax < xx < px < £ and £ < a2 < x2 < p2 < b. 

Proof. The proof follows that of Theorem 5.8. A subscript of 1 is used to denote parameters 

in the interval [a, £] and 2 for parameters in (£, b]. Integration by parts of Ja K (xx,t) f (t) dt 

produces an identity similar to (5.20) with b replaced by £ and x by xx. Similarly for 

f, K (x2,t) /' (t) dt produces an identity like (5.20) with a replaced by £ and x by x2. Sum

ming the two results produces an identity over [a, b\. Taking the modulus and using the 

triangle inequality, relying heavily on (5.18) gives the stated result after collecting the terms 

in order. Here on [a, £], fa, x, P, b) are replaced by fax,xx, PX,C) and on [6 b], (a, a, x, P) are 

replaced by (£,a2,x2,p2). Hence the theorem is proved. • 

Corollary 5.14. The optimal location of the parameters in Theorem 5.13 are ax = a\ = 

-Up., px = pi = 5l+£ a2 = a*2 = £&, P2 - P*2 = ^ and x*x, x*2 and ? satisfy the 

following respective equations 

mo fa\,x\) = m0 (x*,P{), m0 fal,x*2) = m0 (x*, ft) and m0 fa*x,C) = ™o (CM) • 

Proof. The proof of this corollary closely follows that of Corollary 5.9. From (5.36) - (5.38), 

differentiation of J with respect to fai,xi,pi,£,a2,x2,p2) produces, on equating to zero, 

seven simultaneous equations. Using the fact that the weight function is assumed to be 

positive, then the solution of the seven simultaneous equations give the point at which an 

optimal bound is produced, since an inspection of the second derivatives readily demonstrates 

the convexity of the function J. D 
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The results in Theorem 5.13 may be used to develop a composite quadrature rule. To this 

end, define a grid In : a = 6) < £i < • • • < 6>-i < 6* = b on the interval [a,b], with 

Xi G [6,6+i] for i = 0,1,..., n - 1. The following quadrature formula for weighted integrals 

is obtained which relies only on the first two moments of the weight function. 

THEOREM 5.15. Let the conditions in Theorem 5.13 hold, then following weighted quadra

ture rule holds 

[ w(t)f(t) dt = A(f, C, x) + R(f, t x) (5.39) 
Ja 

where 

n-1 

A(f,Cx) = Yjmofai,pi)f(xi) + m0(6),c*i)/(6)) + 2 ^ m 0 ( & , 6 ) / ( 6 ) + mo(&, 60/(60 

(5.40) 
i=l i=X 

and 

\R(f,t,x)\< H/'llooIM(£0,£n) - 2 J2 Wfai,Pi) + Mfa{,6)] 
i= 

+ Znm0(Pn,£n) ~ £0^0(6, <*l) J • (5.41) 

The parameters x;; a^, Pi and 6 satisfy 

mofat, Xi) = mofa, pi), a{ = ^+
x\ p. = ^i±k (5.43) 

for i = 1,2,... ,n, and 

m0(Pi, 6) = w0(6, ai+x), (5.43) 

for i = 1,2,...,n — l. 

Proof. Using the results of Theorems 5.8 and 5.13 over [6,6+1] for i = 0,1,..., n — 1 and 

summing readily produces the result after using Corollaries 5.9 and 5.14 to simplify. • 

5.2.3 Numerical Results 

In this section we illustrate the application of the composite quadrature rule developed in 

the previous section to approximate the integrals 

f Ml^) dt = 0.4484142069 and / e^
4 ln(l/t) dt = 0.05065230956 (5.44) 

Jo t + 2 J0 
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The integrals are evaluated using the composite rule (5.39) and the product-trapezoidal 

as described in Atkinson (1988, p. 310). The first integral, (5.44)i, has been used to 

demonstrate the product-trapezoidal and as a result we can compare the performance with 

the rule developed here. Note that (5.39) is a first-order rule in that it was derived for 

the class of once-differentiable functions. This contrasts with the product-trapezoidal rule 

which is of second order. Thus, to investigate the effects of rule order, we also apply these 

rules to (5.44)2. In contrast with (5.44)i, the integrand of (5.44)2 increases with the order 

of its derivative. Table 5.1 shows the actual error in evaluating (5.44) using (5.39) for an 

increasing number of intervals. W e note that the nodes and weights of the quadrature rule 

are obtained by solving the 4n - 1 simultaneous equations (5.42) and (5.43). It is a simple 

matter to implement a numerical procedure to solve these equations iteratively with an initial 

uniform mesh. For example on a Pentium-90 personal computer, with n = 32, calculating 

(5.42) and (5.43) to 14 digit accuracy took close to 42 seconds. Inspection of Table 5.1 

reveals that a more accurate result is obtained for (5.44)! than for (5.44)2. This is probably 

due to the nature of the integrands, since the integrand in the second integral (5.44)2 has an 

essential singularity at the origin (lower bound of the integral). O n the other side, the plot 

t=-2 is far-away from the support of the measure in the first example (5.44)i. The estimated 

error ratio is consistently close to 2. This value confirms that, due to its development, the 

quadrature rule is at least of first order. The actual error ratios are somewhat larger, these 

values suggest an asymptotic form of the error bound 

\R(f,t,x)\~o(±Y where 7 < 2. (5.45) 

In Table 5.2 the errors in employing the product-trapezoidal rule are presented. The error 

ratios are consistently close to 4 which simply reflects the fact that the rule is of second order. 

This rule was developed by employing a linear approximation for the weighted integrand -

a higher order approximation than that used here. This rule performs better than (5.39) 

for (5.44)i since the integrand is well behaved and its magnitude decreases as its derivatives 

increase. In contrast, the product-trapezoidal rule is inferior to (5.39) for (5.44)2. This 

integrand is not well behaved and its integral is better suited to (5.39) which was developed 

for a more general class of function. 

W e note that the product-trapezoidal rule employs a uniform mesh and the behaviour of 

the weight function, wfa, is accounted for in the quadrature rule weight. Rules of this type 
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n 

2 

4 

8 

16 

32 

64 

Equation (5.44)x 

Relative Error 

1.64(-2) 

4.53(-3) 

1.23(-3) 

3.29(-4) 

8.77(-5) 

2.33(-5) 

Error Ratio 

3.64 

3.69 

3.73 

3.75 

3.77 

Equation (5.44)2 

Relative Error 

7.27(-2) 

2.62(-2) 

8.47(-3) 

2.57(-3) 

7.52(-4) 

2.15(-4) 

Error Ratio 

2.78 

3.09 

3.30 

3.41 

3.50 

Theoretical 

Error Ratio 

1.70 

2.81 

2.08 

2.05 

2.03 

Table 5.1: The relative error in evaluating (5.44) using (5.39), where n is the number of 

intervals. 

n 

2 

4 

8 

16 

32 

64 

Equation (5.44)x 

Relative Error 

7.12(-3) 

1.98(-3) 

5.17(-4) 

1.32 (-4) 

3.33(-5) 

8.35(-6) 

Error Ratio 

3.60 

3.83 

3.92 

3.96 

3.98 

Equation (5.44)2 

Relative Error 

4.29(-l) 

8.08(-2) 

1.90(-2) 

4.74(-3) 

1.18(-3) 

2.96(-4) 

Error Ratio 

5.30 

4.25 

4.01 

4.00 

4.00 

Table 5.2: The relative error in evaluating (5.44) using the product trapezoidal rule , where 

n is the number of intervals. 
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were explored in Roumeliotis et al. (1999), where a one-point, second order product rule 

was developed. In this article, Roumeliotis et al. (1999), showed that, for the log weight, 

employing a non-uniform mesh, similiar to (5.43) increases accuracy by a factor of more 

than two for /" G L^a^}. Finally, we note that the rule developed here is composite in 

nature and identifies an "optimal" partition for an arbitrary weight. This contrasts with 

Gauss quadrature Stroud and Secrest (1966) which is not composite and hence provides no 

information as to how one should partition. 

5.2.4 Concluding Remarks 

The approach described enables the user to predetermine the partition required to assure 

the result to be within a certain error tolerance. This approach is somewhat different from 

that commonly used of systematic mesh refinement followed by a comparison of successive 

approximations which forms the basis of a stopping rule. See (Atkinson (1988), Engels 

(1980) and Krommer and Ueberhuber (1994)) for a comprehensive treatment of traditional 

methods. Although the bounds were obtained in terms of the behaviour of the first derivative 

the methodology may be extended to involve higher derivatives. It may be advantageous to 

rely on the behaviour of lower derivatives as demonstrated in the evaluation of (5.44)2 in 

which the higher derivatives are badly behaved. 

The analysis discussed in this chapter is then taken up in next chapter, where we again focus 

on two-dimensional integral inequalities. W e derive a second order weighted double integral 

inequality. Weighted second order cubature rules are developed and we devise a method for 

calculating cubature grids that rely only on the first two moments of the weight. 
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Chapter 6 

Weighted Integral Inequalities in Two 

Dimensions 

In Chapter 3, two dimensional integration was considered and error bounds were expressed 

in terms of the first mixed partial derivative of the integrand. In Chapter 5, weighted one 

dimensional Ostrowski type inequalities were reviewed and weighted quadrature rules devel

oped. A quadrature grid influenced by the weight function was evaluated via minimization of 

the error bound. In this chapter we combine and extend the work of these previous chapters 

and develop weighted first and second order double integral inequalities. W e pay particular 

attention to the influence of the two dimensional weight function on the error bound and 

explore this influence for different weights and weight null-spaces. Furthermore, weighted 

second order cubature rules are developed and we devise a method for calculating cubature 

grids that rely only on the first two moments of the weight. 

The material in this chapter is presented in the following order. In Section 6.1, we use 

a two variable Taylor expansion to develop weighted two dimensional integral inequalities. 

Milovanovic (1975) used this method to extend Ostrowski's inequality to multiple dimensions. 

Here we will content ourselves with two dimensions, but extend the order of the rule to two. 

W e undertake an examination of the error bound and identify parameters that will minimize 

the bound. In Section 6.2, we present a Peano kernel method, based on analagous results 

in Chapter 3, to derive a second order weighted double integral inequality. Error bounds 

are expressed in terms of the Lx and Loo norms of the first mixed partial derivative of the 

75 
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integrand. Particular attention is paied to minimizing this integrand for different weights 

and weight null-spaces. Finally, the results of this section are extended in Section 6.4 to 

develop a weighted cubature formula. Minimizing the error bound furnishes a set of non

linear coupled equations in the first two moments of the weight whose solution produces a 

cubature grid influenced by the weight function. Plots of the grid for various weights are 

given. 

6.1 Taylor's Formula 

Milovanovic (1975) generalised the Ostrowski inequality to multiple dimensions using the 

multiple variable Taylor formula. As per the Ostrowksi result, the inequality was expressed 

in terms of the first partial derivatives of the integrand. We state the two dimensional 

formula below. 

Following Milovanovic (1975), let D = {(xx,x2)\ai < xt < h(i = 1,2)} and let D be the 

closure of D. 

T H E O R E M 6.1. Let f : R2 -> E be a differentiable function defined on D and let 

Mi (Mi > 0; i = 1,2) in D. Then, for every X = (xx,x2) G D, 

dti 
< 

(bi-ax)(b 

i pbi pb2 

77 7/ / f(tuh)dt2dtx- f(xx,x2) 
)(b2-a2) Jai Ja2 

The weighted version of Theorem 6.1 appears below. 

dti 
< T H E O R E M 6.2. Let f : E2 -> E be a differentiable function defined on D and let 

Mi (M{ > 0; i = 1,2) in D. Furthermore, let the function X »->• w(X) be defined, integrable 

and w(X) > 0 for every X G D. Then for every X G D, 

iba:t2wfa,t2)ffa,t2)dt2dti 

££w(tx,t2)dt2dtx >ai Jai 

< 
I / r^i rb* ( / • b i pb? 

Mx / wfa,t2)\xi -ti\dt2dtx 
„ ,a2 L Ja2 

+ M 2 r rwfa,t2)\x2-t2\dt2dti\. (6.2) 
J a\ J ai ' 
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Theorem 6.2 can be extended to higher orders and below we provide such an extension to 

second order. 

THEOREM 6.3. Let f : [ai,&i] x [a2,b2] -+ R be such that all its partial derivatives 

up to order 2 exist and be continuous, i.e. -|^r < oo,i = 1,2; j = 0,...,i;k = i - j. 
Obi OXry 

Furthermore, let w : (ax,bx) x (a2,b2) -» (0, oo) be integrable (i.e. ffwdA< co,). Then for 

all (xi,x2) G [ai,&i] x [a2,62] the following second order product double integral inequality 

holds 

"bi pbi pb\ pbi poi pOi pb\ pbi 

\ \ wfa,t2)f(tx,t2)dt2dti - f(xx,x2) I j wfa,t2) dt2dtx 
J a\ J ai J a\ J ai 

df Cbl Cb2 df fbl Cb2 

+ ^-(xi,x2) / wfa,t2)(xx -tx)dt2dtx + — (xi,x2) / / wfa,t2)(x2-t2)dt2dtx 
0tl Ja! Jai 0*2 Jai J ai ' a\ J ai 

-&i pbi 

' ai J ai 

»b\ pbi ll&IU rbi rb2 , llfflU /•* rb* 
< — ^ — / / wfa,t2)(xi - h)

2dt2dtx + — | — I / wfa,t2)(x2 - t2)
2dt2dh 

^ J a\ J ai *• J a\ J ai 

+ 
d2f 

dtxdt2 

"b\ nbi pO\ poi 

I I wfa,t2)\xx-tx\\x2-t2\dt2dtx. 
J a\ J ai 

(6.3) 
oo J ai J ai 

Proof. The two-variable Taylor formula states that 

ffa,t2) = f(Xl,X2) + fa ~Xi) — (xUX2) + fa~ ^2)777"fa,X2) 
df 

fa ~ x2)
2 d2f + T S ( 6 ' 6 )

 + ft - *)(* ~ ̂ ( 6 , 6 ) + ̂ ^ f e . 6 ) , (6-4) 
where 6 = *< + Afct - *»). * = !>2, 0 < 9 < 1. Multiplyling (6.4) by tw and integrating 

produces the identity 

pbi pbi pbi pbi 

j I w(tx,t2)f(tx,t2)dt2dtx-f(xx,x2) / w(tx,t2) dt2dtx 
J a\ J ai J a\ J ai 

+ ^-(xx,x2) / w(tx,t2)(xx-tx)dt2dtx 
Ml Jai Ja2 
af pbi pbi 

+ ^f( x i , x 2 ) / / wfa,t2)(x2-t2)dt2dti 
(Jt2 Jai Jai 

= £ f2 wfa,t2)
{-^^^fa,&) dt2dti 

+ r r wfa,t2)(tx-xx)fa-x2)^^fa,^)dt2dtx 
J ai Jai 1 2 

+ J"1 J"* wfa,t2)
{h~2

X2)2^fa,&), dt2dtx. (6.5) 

Taking the modulus of both sides of (6.5), applying the triangle inequality and then Holder's 

inequality on the right hand side gives (6.3). ^ 
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Corollary 6.4. Let the conditions for f be as in Theorem 6.3. Then the following double 

integral inequality holds 

r-bi pbi 

fr—ofo-*) L r mM dhdh -/(i" *> + j £ <*•• *»> (*• -ai + 6i 

+ —(x^x^fxi--^- < a2/ 
<9*2 

fti-ai)2/(^-^)2 1_ 
2 I fti-ax)2

 + 1 2 

+ 
d2f 

dtxdt2 
n ui , , (^i-^)2 l U ( ^ - ^ ) 2 1 

fti-a!)ft2-a2)r(fei_ay + - 1 1 ^ >-J- + 
+ 

d2f 
dt2 

ft2-a2)
2 4 

ft2-a2)
2 / " ( ^ 2 - ^ ) 2 , 1 

ft2-a2)
2 12 + TTT (6-6) 

Proo/. Substituting tufti,i2) = 1 into (6.3) and simplifying produces the desired result. • 

The point (xi, x2), the sample point of the integration rule, is free to be chosen. Often, such 

points are chosen to simplify the rule. For example, in (6.3) if we choose the weight mean 

x _JgJ
haltMtX,t2)dt2dtX 

, i = l,2 

then the partial derivative terms vanish. Fortuitously, in this case, this point also minimizes 

the bound. In the following sub-section, and indeed this chapter, we will not be concerned 

with simplifying the integration rule, but instead attempt to determine such parameters in 

order for the error bound to be minimized. 

6.1.1 Minimizing the upper bound 

Corollary 6.5. The bound in equation (6.2) is minimized at the median point (xx,x2) sat

isfying 

"Xi pbi pbi pbi rxi pbi pOi poi 

I j w(tx,t2) dt2dtx = / / wfa,t2) dt2dtx 
Jai Jai Jxi Jai 

(6.7) 

and 

r-Xl pbi pxi pOi pbi pbi 

/ / wfa,t2)dtxdt2= / / w(tx,t2)dtxdt 
Jai Jai J xi J a\ 

(6.8) 
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Proof. It is a simple matter to show that 

-6l pb2 

I(xx,x2) = Mx I w(tx,t2)\xx-tx\dt2dtx + M2 f" f2wfa,t2)\x2-t2\dt2dtx 
Jai Ja* Jai Jao 

is a convex function. Hence the upper bound in (6.2) is minimized at the stationary point 

of L Evaluating the first partial derivatives of / produces equations (6.7) and (6.8). • 

That is, the minimum point is the "median" of the weight in each direction. This is consistent 

with first order rules reported in Roumeliotis (2001). 

Minimization of the second order bound in Theorem 6.3 is not as simple. It is quite difficult 

to identify a minimum point for the upper bound of (6.3). This bound is comprised of three 

components; the first and last are minimized at the mean (in each direction) 

x _£fitMtl,t2)dt2dt1 _Cjllt2wfa,t2)dt2dtX 
1 Jai lai "(*!,*,) dt2dtX '

 X% fc fc Wfa,t2) dt2dtX '
 (6-9) 

while the second is minimized at the root of a median-type expression 

"62 pbi pbi pxi pbi pbi pbi 

/ / \x2-t2\w(tx,t2)dt2dtx= / |x2 - t2\w(tx,t2) dt2dtx (6.10) 
J ai J ai J xi J ai 

and 

"Xi pbi pbi pbi pxi pbi pbi pbi 

/ / |xi - ti\w(tx,t2) dtxdt2 = / / \xx - tx\wfa,t2) dtxdt2. (6.11) 
Jai Jai J xi Jai 

Of course, for weights in which the solutions of (6.9) are identical to those of (6.10) and 

(6.11) then identification of the minimum point presents little challenge. For example if iy is 

a product weight and symmetric about the midpoint fa^, 2^±^a) then the minimum point 

is the midpoint. That is, ilwfa,t2) = Wifa)w2(t2) and Wi((a + b)/2 — t) = Wi((a + b)/2 + t) 

ft = 1,2), then it can be shown that the solution of (6.9)—(6.11) is the mid-point. This 

is the case when w = 1 and Corollary 6.4 shows that the upper bound is minimized at 

Xi = fa + k)/2, z = 1,2. 

The major difficulty with (6.3) is that the upper bound is comprised of a linear combination 

of three terms involving norms of the partial derivative of the integrand. Hence it would be 

near impossible to find a global minimum that depends only on the weight and not /. To 

obtain a global minimum for a general second order rule will require either simplification of 

(6.3) or the derivation of another expression for the bound. The first point is dealt with in 

the corollary below, while the second is taken up in the next section. 
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Corollary 6.6. Let f and w be as given in Theorem 6.3. Then for all (xx,x2) G [ax,bx] x 

[0-2,62] the following second order product double integral inequality holds 

"bi pbi pbi pbi pOi pbi pbi pbi 

/ / w(tx,t2)ffa,t2)dt2dtx- f(xx,x2) / w(tx,t2)dt2dtx 
Jai Jai Jai Jai 
Q f pbi pbi Q e pbi pbi 

+ —-(xx,x2) / wfa,t2)(xx-tx)dt2dtx + —(xx,x2) / w(tx,t2)(x2-t2)dt2dtx 
Otl Jai Jai C*2 Jai Jai 

< 
d2f 
dt\ 

+ 

' ai J 02 

l^lll 

d2f 
dtxdt2 

xi -

M i 

ax + bx 
+ 

bi - a t 
+ 

d2f 
dt22 

' ai •/ ai 

M|i 
£2 

a2 + b2 

Xj 
ax + bx 

+ 
b\ — ax 

x2 
a2 + b2 

+ 

2 
b2 — a2 

+ 
b2 — a2 

(6.12) 

where \\w\\x = f
 1 / 2 w(tx,t2) dt2dtx is the zero-th moment of the weight. 

Proof. The proof involves taking an upper bound of (6.3) using Holder's inequality. Thus, 

consider 

rbi pbi fbi pbi 

/ / wfa,t2)fai-ti)
2dt2dti< sup (xx-tx)

2 / w(tx,t2)dt2dtx 
Jai Jai *i€[ai,6i] Jai Jai 

= max{(xi - ai)2, (xi - 6i)2}||^||i 

Xi 
ax +bx 

+ 
bx - a x 

Mh-

Similarly 

»6i pbi 

r r wfa, t2)(x2 - t2f dt2dtx < 
J a\ Jai 

X2 
a2 + b2 

+ 
b2 - a2 

w\\i-

Finally, 

"6i pbi pOi pOi 

/ / wfa,t2)\xi-ti\\x2-t2\dt2dti 
Jai Jai 

Ixi -ti||x2 -t2||Mli < sup 
(tut2)e[ai,bi]x[ai,bi] 

= max{xi - 01,61 - x j max{x2 - a2, b2 - x2}||w||i 

Xi 
ax +bx 

+ 
bi -ai 

x2 
a2 + b2 

+ 
b2 — a2 

\w 1 

Making use of (6.13), (6.14) and (6.15) gives (6.3). 

(6.13) 

(6.14) 

(6.15) 

• 

It is clear that the bound in (6.12) is minimized at the mid-point of the rectangular region. 

Unfortunately, the weight does not influence this minimum point. 



6.2. MAIN RESULTS 81 

Taylor's theorem is a popular vehicle for developing cubature and higher dimension rules. 

Stroud (1971) uses Taylor's expansion to develop cubature rules and recently Qi (2001), used 

this technique to derive weighted Iyengar-type multiple integrals. The drawback is in the 

size of the error bound. For two dimensions, an n-th order rule has a Taylor remainder of 

n + 1 terms. Minimizing any rule with order greater than one would be extremely difficult. 

Thus, in the next section, we turn to the Peano kernel and use the results of Chapter 3 to 

derive a second order weighted double integral inequality that contains only one term in the 

upper bound. 

6.2 Main Results 

Lemma 6.1. Let f : [ax, bx] x [a2, b2] -» E be bounded and integrable and whose first partial 

derivatives exist and are also bounded and integrable. Furthermore, let w : (ax,bx)x (a2, b2) -> 

(0, oo) be integrable. Then following identity holds 

"bi pbi 
1= T f2[f{xi,x2)-f(xi,t2)-ffa,x2) + ffa,t2)}wfa,t2)dt2dti' 

Jai Jai 
pbi pbi pfi f 

= /, L P{h'h)mkdhdh (6'16) 
where xx G [01,61], x2 G [a2,b2] and 

Pfti,t2) = < 

p(tx,t2)= < 

pti 

I p fa, u2) du2, a2 <t2 < x2, 
J ai 

pti 

/ pfa, u2) du2, x2 <t2 < b2, 
< J bi 

pti 

/ w(ux,t2)dux, ax<tx<xx, 
J a\ 

rti 

/ w(ux,t2)dui, xi<ti<bx. 
, Jbi 

(6.17) 

(6.18) 

Proof. To begin, let / = fa* h dtx and consider I2 where 

d2f(ti,t2)„ 

'-£«*•»-% 

-r^^^*^^^?* 
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-i: (/>•**) "-w^i: (/>»H ^* 
= 721 + ̂ 22-

Using integration by parts, we find that 

• ^ C7Cl ,/ Ctl ai J ai 

= £W,^^-£^p((l,^2 
J ai dtx dU 

Similarly 

-r>*> (^1-^)),, 

72 = £p( ( l,i 2 )(?%^_^ii)^t2 

722 

Thus 72 becomes 

'' = />•«(-«. 

and substituting into 7 gives 

= f hdt2, (6.19) 
^02 

where 

/.-jr^(3^-^)*. 
Applying the same treatment to Lj as for 72 gives 

/3= [ * wfa,t2)[f(xx,x2) - f(tx,x2) - f(xx,t2) + f(tx,t2)]dtx. 
Jai 

Substituting Lj into (6.19) we find that the identity (6.16) is thus proved. • 

The upper bound of the integration rule will depend on P. Below, we detail some properties 

of P that will be subsquently used in analysis of the bound. 

L e m m a 6.2. The kernel P : [ax, bx] x [a2, b2] -+R as defined in Lemma 6.1 has the following 

properties: 
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1. P vanishes on the boundary of the rectangle [ax,bx] x [a2,b2], 

2. Pfa,-) : (a2,b2) -+R is monotonic increasing for alltx G (ai,xi), 

3. Pfa, •) : (a2,b2) -> E is monotonic decreasing for all tx G (xx,bx), 

L P is positive on (ax,xx) x (a2,x2) and (xx,bx) x (x2,b2), 

5. P is negative on (ax,xx) x (x2,62) and (xx,bx) x (a2,x2). 

for all (xx,x2) G (ax,bx) x (a2,b2). 

Proof. These properties are quite simple to prove via inspection of the first partial derivatives 

of P. • 

In Figure 6.1, we plot the surface and contours of (6.17) for two different weights. The plots 

exhibit the properties discussed in Lemma 6.2. It is obvious that the kernel achieves its 

maximum deviation on of its branches at the discontinues point (xi,x2). 

In the following theorem we state the main result by employing the identity in Lemma 6.1 to 

produce second order weighted double integral inequalities. In contrast with the inequalities 

of the previous section, the upper bound here is comprised of just one term. 

THEOREM 6.7. Let the conditions of Lemma 6.1 hold. The following double integral 

inequalities involving the usual Lebesgue norms of the first mixed partial derivative of f hold, 

"bi pbi 

\I\ < d2f 
dtidh 

pbi pbi 

/ / \xx - tx\\x2 - t2\w (tx,t2) dtxdt2, 
J a\ Jai 

(6.20) 
oo «/ ai J ai 

tfmTdu e Loo[ai,bi] x [a2,b2] and 

\I\< 
d2f 

dtidt2 

f pxi pxi pxi pbi 

max< / / wfa,t2) dt2dti, I I w(tx,t2) dt2dtx, 
l \Jai Jai Jai Jxi 

pbi pxi pbi pbi "I 

/ / wfa,t2)dt2dtu / wfa,t2) dt2dtx\ 
J xi Jai J xi J xi ) 

(6.21) 

if J? I G Li[ai,&i] x [a2,62], where I is defined in equation (6.16). 
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(a) (b) 

Figure 6.1: Surface and contour plots of the Peano type kernels P defined in (6.17) for 

different weights, (a) wfa,t2) = -\nfat2) over the unit square and xi = x2 = 0.5, (b) 

w(tx,t2) = yh/h, over the unit square and Xi = x2 = 0.5. 

Proof. To prove (6.20) we begin with Holder's inequality and then simplify using Lemma 6.2 

-bi rbi d2ffa,t2) 
-dtidts 

dtxdt2 

d2f 
dtxdt2 

n-\r [pa n
a/(* 

02 f I pbi pbi 

' / / \P(tX,t2)\dt2dtX 
Jai Jai 

Opxi pxi pxi pbi 
f / P(tX,t2)dt2dtX- / P(tX,t2)dt2dtX 
ai J a2 Jai J xi 

pbi pxi pbi pbi \ 

- / / Pfa,t2)dt2dtx+ / P(tx,t2)dt2dtx\. (6.22) 
J xi Jai J xi J xi / 

Now each of the terms in (6.22) can be evaluated via partial integration and simplified using 

Lemma 6.1 and equations (6.17) and (6.18). For the first term 

pxi pxi pxi r pxi \ 

/ / P(tx,t2)dt2dtx= lfa-x2)P\
X
al- (t2-x2)pdt2\dtx 

Jai Jai Ja\ t Jai ) 
pxi pxi 

= - (h -x2)pdtxdt2 
Jai Jai 

= - jfa-x2)\ fa - xx)p\
x
a\ - j fa- xx)w dtx \ dt2 

Jai K Jai ' 
pxi pxi 

= (X2- t2)(xi - h)wfa, t2) dhdt2. (6.23) 
Jai Jai 

Employing the same procedure for the other terms we find 

(Xl (2 P(tx,t2)dt2dtx = j ' j \x2 - t2)(xx - tx)w(tx,t2)dtxdt2, (6.24) 
Jai J xi Jai J xi 
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roi rxi pbi px2 

/ / P(h,t2) dt2dtx = / (x2 - t2)(xi - tx)wfa,t2) dtxdt2, (6.25) 
Jxi Jai JXl Ja2 
rbi rb2 »6l pb2 

/ / Pfa,t2)dt2dtx= / (x2-t2)(xx-tx)w(tx,t2)dtxdt2. (6.26) 
JXl JXl Jxi JX2 

Substituting (6.23)-(6.26) into (6.22) gives (6.20). To prove (6.21) we again begin with 

Holder's inequality 

-6i pbi 
PI:, + /•' J ^><-V.u ,Jfc 

< 

r r P(tht2)m^>dtldt 
Jai Ja2 OlXOt2 

d2f sup |Pfti,t2)| 
1 (ti,t2)e[ai,6i]x[o2,62] 

( pxi pxi pxi pb2 

m&x< / / wfa,t2)dt2dtx, / wfa,t2)dt2dtx, 
1 {Jai Jai Jai J xi 

pbi pxi pbi pbi -\ 

/ / w(ti,t2)dt2dtu / wfa,t2)dt2dtA. (6.27) 
Jxi Jai J xi J xi ) 

The last line being computed by appealing to the properties of P as listed in Lemma 6.2. 

Thus the theorem is proved. • 

If the first moments of the weight w are known, as well as the "one dimensional" integrals 

pbi / pbi \ pbi / pbi \ 

/ f(ti,x2)i wfa,t2)dt2) dtx and / f(xx,t2)l wfa,t2)dtx) dt2 (6.28) 
Jai \J ai / Jai \Jai J 

then (6.20) can form the basis of a cubature formula for the evaluation of the weighted 

double integral ffD ffa,t2)w(tx,t2) dA over a rectangular region D. A major drawback is 

that is most cases the integrals (6.28) are unknown. These can be eliminated using the one-

dimensional weighted results in Roumeliotis et al. (1999). It was shown that for mappings 

/ with bounded second derivative that 

/ wfa)f (t) dt - f(x) j wfa dt + f'(x) f (x - t)w(t) dt < ILU^ f (x- t)2w(t) dt, 
\Ja Ja Ja Ja 

(6.29) 

where x G fab) and w is a weight function. Thus making use of (6.29), the following 

inequalities hold 

I rbi / pbi \ pbi pbi 

\ f(ti,x2)[ w(tx,t2)dt2) dtx-f(xx,x2) / w(tx,t2)dt2dtx 
\J ai \J ai / Jai Jai 

r fb2Wfa,t2)
{xi~ti)2dt2dtx 

Jai Jai 

(6.30) 

Q f pbi pbi 

+ QJ-(XI,X2) / (xx-tx)w(tx,t2)dt2dtx 
' ai J ai 

< 
oo J ai J ai 
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and 

rb2 / rh \ pbi pb2 

/ f(xuh)[ wfa,t2)dtx\ dt2- f(xx,x2) / w(tx,t2)dt2dtx 
Jai \Jai / Jai Jai 

df f f d2f fbl rb2 (T — t ) 2 

+ - f ( x 1 , x 2 ) / / (x2-t2)w(tx,t2)dt2dtx < — L / / w(tx,t2)
{ 2

 n
 2) dt2dtx. 

ol2 Jai Ja2 Ot2 ^J^ Ja2 I 
(6.31) 

It is of interest to note that combining (6.20), (6.30) and (6.31) will produce (6.3). Thus, in 

one sense, (6.20) is more general than (6.3) since it is not obvious how one may derive (6.20) 

from (6.3). 

One advantange of (6.20) over (6.3) is that the upper bound involves one term instead of 

three. Thus, with (6.20) we can find points (xi,x2) that will minimize the upper bound in 

terms of the weight and independent of the integrand. In the following corollary we will 

identify points (xi,x2) to minimize the bound 

"bi pb2 pb\ pbi 

J(xx,x2) = / |xi - tx\\x2 -t2\wfa,t2) 
</Oi Jai 

dt2dtx. (6.32) 

Corollary 6.8. J(xx,x2) as defined in (6.32) is minimized at (x*x,x^) where x\ and x\ 

satisfy the equations 

fx\ pbi 

r f V 2 -h\wfa,t2) dt2dh = r r\x*2~t2\w(tx,t2) dt2dtx (6.33) 
J ai Jai Jx^ Jai 

and 

P [ 1 K - ti\w(tx,t2) dt2dtx = / f |x* - tx\wfa,t2) dt2dh. (6.34) 
Jai Jai Jx% Jai 

Proof. Evaluating the partial derivatives of J gives 

jw=^LfauX2) = r r \X2 - t2\w(tx,t2) dt2dtx -i 1 ix2 - t2\wfa,t2) dt2dtx, 
dxX Jai Ja2 Jxi Ja2 

"bi pbi 

(6.35) 

J(2) dj 
dx2 

"X2 pbi "bi pbi pxi pbi f°2 ft 
(xux2)= ' \xx - tx\w(tx,t2) dtxdt2 - / \xx-tx\w(tx,t2)dtxdt2. 

Jai Jai Jx* Jai 

(6.36) 

Inspection of (6.35) reveals that, for fixed x2, J
w is monotonic increasing and J{1)fa,x2) = 

-J{2)(bx,x2) < 0. J® also exhibits similar properties and hence there exists a unique point 

(x^) that is the zero of (6.35) and (6.36) and minimizes J. • 
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Xl xx 

Figure 6.2: Contour plots of the J(xx,x2) given by (6.32) for various weight functions. 

(a) w(tx,t2) = -lnftit2), fti,t2) G (0,1) x (0,1), (b) w(tx,t2) = — In |tx — 2̂|, fa,t2) G 

(0,1) x (0,1), (c) wfa,t2) = — In |*i - t\\, (tx,t2) e (0,1) x (0,1) and (d) w(tx,t2) = 

e-h/Vh, fti,t2)G(0,4)x(0,l). 

The behaviour of (6.32) is very dependant on the behaviour of the weight. In Figure 6.2 

contours of J are plotted for different weight functions. In each case, the minimum point is 

readily observed and its location depends on the weight and weight null-space. 

In the following section, properties of the minimum point of J are identified for various 

conditions on w. 

6.3 Minimizing the bound 

Solution of equations (6.33) and (6.34) provide the point that minimizes the bound (6.32). 

The equations are non-linear and two dimensional, thus, in most cases, require numerical 

treatment. In this section we identify solutions or simplifications to (6.33) and (6.34) for 
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specific weight types. Some of these weights are of importance since they appear in the 

important areas of integral transforms and integral equations. 

With functions of two or more variables it is common that an identifiable relationship between 

the variables is observed. That is, w(tx,t2) — wfafa,t2)) for some <f>. For singular weights, 

the null-space of (j), {fti,£2) : 4>fa,t2) = 0}, is of interest since this gives rise to a mapping 

which furnishes the singularity structure. Below, we explore the properties of J for (j) 

being the difference mapping on a square and generalise to more general null-spaces in other 

corollaries. 

Corollary 6.9 (Difference weight). Let w : (a,b) —> (0,oo) be integrable and let a < 

xx,x2 < b. Then the bound 

"6 pb po po 
J(xx,x2)= / \xx-tx\\x2-t2\w\tx-t2\ 

J a J a 

dt2dtx. 

is minimized at the midpoint xx = x2 =
 9^-. 

Proof. As stated in Corollary 6.8, J is minimized at the root of equations (6.33) and (6.34). 

Substituting the midpoint in (6.33) gives 

*(a+&)/2 rb p(a+b)/z p 

J a J a 

-f I 
J (a+b) 12 J a 

a + b 
-t, 

a + b 

w\tx — t2\dt2dtx - I 
J (a+b)/2 J a 

w\u — v\ dvdu— / / 
J(a+b)/2 J a 

a + b 
tl 

a + b 
t2 

w\tx — t2\dt2dtx 

w\tx — t2\ dt2dtx 

= 0, 

where u = a + b - tx and v = a + b - t2 are integral substitutions. The same treatment on 

(6.34) shows that the midpoint minimizes the bound Q 

The following two corollaries show that the simultaneous equations (6.33) and (6.34) may 

be decoupled under certain conditions for the weight. 

Corollary 6.10 (Separable weight). Let the conditions in Corollary 6.8 hold. Further

more, let w be separable, that is w(tx,t2) = wx(tx)w2(t2), where Wi are themselves weight 

functions defined on K&i], i=l,2. Then J is minimized at the median of each weight 

pxi rbi 

I wifa)dti = / Wifa)dti, 
Ja{ J Xi 

i = l,2. 
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Proof. Substituting wfa,t2) = Wifa)w2(t2) into (6.33) and (6.34) and simplifying produces 

the result. • 

Corollary 6.11 (Symmetric weight). Let the conditions in Corollary 6.8 hold and let 

w : fab) x fab) -+R be symmetric, that is, wfa,t2) = w(t2,tx). Then the minimum point 

is at xx = x2. 

Proof. With the above conditions, the two equations in Corollary 6.8 are 

p\ rp pxi pb pb pb J pxi pb pb pb 

-(xx,x2)= / \x2-t2\w(tx,t2)dt2dtx- / \x2 - t2\w(tx,t2) dt2dtx, (6.37) 
1 J a J a J xi Ja 

pxi pb pb pb 

(xi,x2)= / \xx - tx\w(tx,t2) dtxdt2 - / |xi - tt\wfa,t2)dtidt2. (6.38) 
Ja Ja J xi J a 9x2 Ja Ja JX) 

Beginning with (6.37) we have 

p> rr pxi pb pb pb 

OX i Ja Ja •> xi 

"Xi pb pb pb 

T pxi pb pb pb 

-(xi,x2)= / / |x2 - t2\wfa,t2) dt2dtx - I I \x2 - t2\wfa,t2)dt2dtx 
I Ja Ja J xi J a 

pxi pb pb pb 

= / \x2-tx\w(t2,tx)dtxdt2- / |x2 -tx\w(t2,tx)dtxdt2 
Ja Ja J xi Ja 

pxi pb pb pb 

— I / \x2 - tx\w(tx,t2) dtxdt2 - / \x2-tx\wfa,t2)dtxdt2 
Ja Ja J xi J a 

dj, 
= ^—(X2,XX). 

dx2 
Thus the solution of 

—-(xi,x2) = 0 and —-(xx,x2) = 0, 
axi ox2 

is identical to 

g(x2,xi) = 0 and g(*i,*2) = 0, 

and hence the solution occurs at xx = x2. *-* 

In Corollary 6.9 we showed that if a weight has a "difference" null-space on a square then the 

bound (6.32) is minimized at the centre of the square. The following corollary will generalise 

this result and we will consider a null space of the form tx = (j)fa) where <f> is anti-symmetric 

on a rectangle. 

Corollary 6.12. Let w : {-a, a) x fa A, A) -> (0,oo) be a weight function of the form 

wfa,t2) = w\tx - (j>(t2)\, where <f> : fa A, A) -> (-a, a) is surjective and odd, for some 

a,A>0, that is M-t) = -<f>fa). Then J as defined in (6.32) is minimized at the origin. 
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Proof. W e need to show that 

-0 pA 

/

u rA pa pA 

J_A \h\w\h -(j)fa)| dt2dti=l / \t2\w\ti-(j)fa)\dt2dti (6.39) and 

f0 pa / u ra pA pa 

J \ti\w\tx - <j)(t2)\dtidt2 = 11 \ti\w\ti - 4>(t2)\dtidt2. (6.40) 

Making the substitution tx = -u and t2 = -v in the first integral of (6.39) we have 
/ 0 pA pa pA 

I \h\w\tx-(t)fa)\dt2dtx= / \v\w\u-(f)(v)\dvdu. 
a J-A Jo J-A 

Similarly 
/ 0 pa pA pa 

I \tx\w\tx-(j)(t2)\dtxdt2= / / \u\w\u-<t>(v)\dudv. 
•A J—a Jo J-a 

Hence, the corollary is proved. • 

6.4 Cubature and grid generation 

Theorem 6.7 can form the basis of a cubature formula for weighted double integrals. That 

is, we can form a mesh and apply equation 6.20 to each grid rectangle. The minimum point 

of each rectangle would be given by (6.33) and (6.34). The question that would remain is 

how would such a grid be "optimally" constructed? For example, for four grid rectangles, 

as shown in Figure 6.3, how would £i and £2 be chosen? 

Let us consider a partition a* < 6 < bi of the interval [ai,bi], with x^i G [OJ,6] and xii2 G 

[6,6j], for i = 1,2. In addition, define D to be the rectangular region [ai,&i] x [a2,b2] and 

define the sub-regions DM = [ax, £i] x [a2, £2], L\2 = [£i, bx] x [a2, £2], D2,i = [ax, £i] x [£2, b2] 

and D2]2 = [£1; bx] x [£2, b2]. A sketch of this partition is shown is Figure 6.3. 

THEOREM 6.13. Let the conditions in Theorem 6.7 hold. Given the partition defined 

above, the following double integral inequality holds 

[f /fti,h)w(tx,t2)dtxdt2 -J2( f(xi,i,t2)wfa,t2)dtxdt2 
J J D ~ 7 \J JDiti+Di,i 

- [[ ffa,x2,i)w(tx,t2) dtxdt2) +^2Y1 f(Xl,j,X2,i) ff w(tx,t2) dtxdt2 
JJDi,i+Di>2 / i=l j=l JJDij 

TT~ ^^// l*M-*ill*2j-*2kfti,*2)<*Mt2. (6.41) 
1 2 oo j—i j=X J JDij 

file:///h/w/h
file:///ti/w/ti
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b2 

X2,2 

X2A 

ai 

- A,i 

- A,i 

1 

L>2)2 

A,2 

1 
ax xii ^1,2 bi 

Figure 6.3: A partition of the rectangular region D — [ax, bi] x [a2, b2] showing the sub-regions 

Aj, hj = 1,2. 

The bound is minimized at the points xy,6, (i,j = 1,2J statisfying 

rxi,i pii pxi,i rb2 
I l \x2,i-t2\wfa,t2)dt2dti+ / |x2>2 - t2\wfa,t2) dt2dtx\ 
J ai J ao J ai J £i ' ai J ai 'fc 

"6 /-62 /•fi r?2 /"?i r°2 

= / / \x2,i - t2\w(tx,t2) dt2dtx + I I \x2,2 - t2\w(tx,t2) dt2dtx, 
Jxiti Jai J xiti J ii 

rxi,i pii rxi,i rbi 

/ / \x2iX-t2\w(tx,t2)dt2dtx+ / |x2j2 -t2|iofti,t2)dt2dtil 
Jii Jai Jii J& 

pbi pii rbi rbi 

= / \x2A - t2\w(tx,t2) dt2dtx + I I |x2)2 - t2\w(tx,t2) dt2dtx, 
Jxiti Jai Jxi,i J ii 

px2,i pii fX2,i pbi 

/ / \xXA-tx\wfa,t2)dtxdt2+ / |xi)2-ti|tyfti,t2)dtidt2| 
Jai Jai J a2 J ii 

-ii rh pii pii r?2 r<>i 

= / / fci.i - tx\w(tx,t2) dtxdt2 + / / \xXj2-tx\w(tx,t2)dtxdt2, 
Jxiti Jai Jxizi J ii 

px2,i pii fx2,i rbi 

/ / |xM-*i|u;fti,£2)d£id£2+ / / K 2 - tx\wfa,t2) dtxdt2\ 
Jii Jai J& J^ 'ii Jii 

"bi pbi pbi pii r°2 r°i 

= / / \xXA-tx\w(tx,t2)dtxdt2+ I I |xi,2 - tx\w(tx,t2) dtxdt2, 
Jxiti Jai Jxi,i Jii 

t a;i,i+a?i,2 , c g2,i + XW 
£1 = — ^ — - and & 2 

(6.42) 

(6.43) 

(6.44) 

(6.45) 

(6.46) 

Proof. To obtain (6.41), it is a simple matter of applying equation (6.20) of Theorem 6.7 to 

each region Did faj = 1,2), summing and finally employing the triangle inequality. 
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To show equations (6.42)-(6.46), we calculate the stationary point of the bound 

2 2 

J = J2Y1 \xi,i ~ ti\\x2j - t2\w(tx,t2) dtxdt2. (6.47) 
i=l ,=1 J JDi,j 

For xia, 

dj d 
dxx i dx foTl^C // \xi,i-ti\\x2,j-t2\w(tx,t2)dtxdt2\ 

1,1 t A-X J JDij J 

d ( r1-1 p . 
= dx~\J / ™ ~ *i)liC2a — *z|iw(*i, *a) d*2rf*i 

+ / fa- xlfi)\x2A - t2\wfa,t2) dt2dtx 
J%l,i Jai 
pxi,i pbi 

+ 1 I (%i,i ~ h)\x2,2 - t2\w(tx,t2) dt2dtx 
Jai Jii 
rii rbi -\ 

+ 1 I fa -xXiX)\x2t2 - t2\wfa,t2) dt2dtx \ 
Jxi,i Jii ) 

pxi,i pii pii pii 
= / \x2A-t2\wfa,t2)dt2dti- / |x2,i - t2\w(tx,t2) dt2dtx 

Jai Jai J x\,\ Jai 
pxi,i rbi pii pb2 

+ 1 I \x2,2-t2\w(tx,t2)dt2dtx- / |x2,2 - t2\w(tx,t2) dt2dt 
Jai Jii Jxi,i J ii 

Setting the last expression to zero gives (6.42) and the same process can be used to show 

equations (6.43)-(6.45). 

To show (6.46), observe that 

-ii /-ft dj /"" / 
— = / fa - xhX)\x2,x - t2\wfa,t2) dt2 - j (xi,2-£i)|x2,i-t2M£i,£2)dt2 
Csi Ja2 Jai 

pb2 pbi 
+ / (£i - xlti)\x2t2-t21wfa,t2)dt2- / (xii2-£i)|x2,i-t2|ti;(£i,t2)dt2 
Jii Ji2 

= 2 jf* Ux - ^liLtEl^j \X2tX - t2\wfa, t2) dt2 

+ 2 f2 U - Xl>1+2
XlA |x2)2 - t2\wfa, t2) dt2, 

which obviously has a root at (6.46)i- Similarly, we can show (6.46)2. • 

W e now proceed to a full weighted cubature formulae. 

Define the following partitions of the intervals [ai, bi] 

li'-a>i = 6,o < 6,i < • • • < &,n = h, 
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and let xi4 G [6j_i, 6j] for % = 1,2 and j = 1,2,..., n. Furthermore, let A j = [£i,i-i, £i,i] x 

[6j-i, 6j], A W = LC=i A,* and Z><2> = U L i A y , for i,i = 1,2,..., n. 

Consider the weighted cubature formula 

A(f,w,Ix,I2,i,x) 

= 5 Z (// (D /^i'i' *2M*i> *2) ̂ 2 + y y (2) ffa,x2Awfa,t2) dtidt2j 

~ SIZ /(XM' *2j) // wfti, t2) dtidt2. (6.48) 
i=l j=l JJDij 

Using the above assumptions, we can write the following theorem. 

T H E O R E M 6.14. Let f : [aubi] x [a2, b2] -> R and to : (a1; &i) x (a2,62) -> (0, oo) 6e as in 

Theorem 6.7 and h,I2, £, a; 6e awen above. The following weighted cubature formula holds 

"bi pbi 

f j* ffa,t2)wfa,t2)dt2dtx= A(f,w,Ix,I2,£,x) + R{f,w,Ix,I2,£,x), (6.49) 
Jai Jai 

where 

\R(f,w,Ix,I2,i,x)\< 
d2f 

dtxdt2 

n n p«. 

\%i,i - ti\\x2,j - t2\w(tx,t2) dtxdt2. (6.50) 

The bound (6.50) is minimized when x and ̂ satisfy 

n rxi,i pii,j " rii,i ri2,j 

Y, / \x2J - t2\wfa, t2) dt2dh = J2 / \X*J - hfafa, t2) dt2dti (6.51) 
j=l /fi,»-i Jhj-i j=l J*1** "'^-i-1 
n rxi,i rii,j JL r&,i r£i,i 
Yl / \x\j-h\w(tut2)dhdt* = Y2 / \xid-ti\wfa,t2)dtidt2 (6.52) 

tk,i =
 Xk'l\Xk'l+\ for i = l,...,n, l = l,...,n-l, k = l,2. (6.53) 

Proof. The proof follows that of Theorem 6.14. • 

To find the 4n — 2 unknowns 

x i,l < 6,1 < xi,2 < • < &,n-l < xi,n, 

for i = l,2, we need to solve the 4 n - 2 coupled non-linear equations (6.51), (6.52) and (6.53). 

These equations are easily solved iteratively with a uniform grid as the starting point. With 

this method of solution all variables are fixed apart from the parameter of interest. Thus for 
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Figure 6.4: Grid generated from the solution of equations (6.51)- (6.53) for the weight 

wfa,t2) = y/hfa over [0,1] x [0,1] and n = 10. The solid lines indicate the composite grid; 

in each grid square there is one function evaluation (dot) and two single integral evaluations 

(dashed lines). 

example if fc = 1 and we fix i, then equation (6.51) may be considered as a function of xM 

only; say F(xXti). It is easy to see that 

n <>iij 

F'fax,i)=2}2 K J 
J=I J&,j-\ 

- t2\w(xXti,t2) dt2 > 0 

and F(£i,i_i) < 0, F ( £ M ) > 0. Thus F has a unique root and the bisection algorithm would 

be an appropriate numerical technique to produce the solution. 

In Figures 6.4, 6.5, 6.6 and 6.7, the grid obtained via numerical solution of (6.51)-(6.53) is 

plotted for various weight functions and n. We can see that the grid clustering reflects the 

weight behaviour. 
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Figure 6.5: Grid generated from the solution of equations (6.51)- (6.53) for the weight 

wfa,t2) = -lnftii2) over [0,1] x [0,1] and n = 10. The solid lines indicate the composite 
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Figure 6.6: Grid generated from the solution of equations (6.51)- (6.53) for the weight 
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