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S Y N O P S I S 

The following work is concerned with the use of the Method of Least Squares in the 

parameter estimation of a discrete-time model of a system. In particular, the emphasis is upon 

both the initial convergence and accuracy of the estimates. The investigation is therefore 

pertinent to both the "cold-starting" of least squares estimators, and to systems in which 

"jump" changes in parameters occur, requiring resetting of the estimator. 

The work was approached from an engineering viewpoint, with the requirement that 

the theory be applied to a real system. The real system selected was a positional servosystem, 

using a DC motor. 

A number of least squares algorithms were compared for their suitability to such an 

application. The algorithms examined were: 

1) A standard, non-recursive solution of the least squares equations by Lower-

Upper Factorisation of the information matrix. 

2) A standard, recursive solution, i.e. Recursive Least Squares, RLS. 

3) Two reduced order solutions using a priori knowledge of the type number of 

the servosystem (LU Factorisation and RLS). 

4) An Extended Least Squares Solution, using a recursive algorithm. 

5) Several non-recursive solutions using instrumental variables. 

The methods were initially examined using a software simulation of the servosystem. 

This simulation was based on a linear, second-order model. It was concluded that the preferred 

methods were the reduced-order solutions using a priori knowledge. 

The following hypothesis was examined: 

By raising the rate at which the signals are sampled, more information is 

provided to the estimator in any given period of time. Increasing the sampling rate 

should therefore result in a superior, real-time parameter estimator. 
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The simulation results indicated that the effect of sampling rate upon the quality of the 

estimate is different for the "Moving Average" coefficients, than for the "Auto-regressive" 

coefficients. For the noise model used in the simulations, an increase in sampling rate was 

found to improve the estimates of the "Auto-regressive" coefficients. Subsequent results, from 

measurements on the real system, showed that there is an upper sampling rate which should 

not be exceeded. 

A real, positional servosystem was designed and constructed. Full details of this design 

are presented in the appendices of this thesis. The preferred algorithms, using a priori 

knowledge of the servosystem type number, were used to estimate the location of the unknown 

system pole. This pole was estimated using a number of different sampling rates. It was noted 

that the estimates deteriorated as the sampling rate was raised beyond a certain value. This was 

attributed to the decrease in signal to noise ratio with the increase in sampling rate. 

All of the calculations and control were performed using a T800 Transputer. All 

programs were written in Occam2. Appendices E and G contain samples of the source code 

used for both the simulations and the estimation of the real system's pole location. 
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C H A P T E R 1 I N T R O D U C T I O N 

lzl I N T R O D U C T I O N T O S Y S T E M IDENTIFICATION A N D P A R A M E T E R 

ESTIMATION 

EXPLANATION OF THE TERMS "SYSTEM IDENTIFICATION" AND "PARAMETER 

ESTIMATION" 

System Identification may be viewed as the complete process by which an adequate 

mathematical model of a real system is obtained [1-9]. A model may be derived either by the 

application of physical laws, or by the experimental observation of the system's response to 

known input signals. Usually both approaches are required in order to develop an accurate 

model. 

Once the structure of the model is known, it then becomes necessary to determine the 

numerical values of the various parameters of that model. This process is referred to as 

Parameter Estimation. 

In the following work, the system is modelled by a linear difference equation. The 

justification of this model and the assumptions made in its derivation are given. Essentially this 

model, including its order, is derived from a consideration of the known components of the 

system, and the laws of physics that these components must obey. 

It is well known that the coefficients of such a difference equation may be estimated 

from a knowledge of the system components. Unfortunately not all characteristics of the 

components may be known with sufficient accuracy. The process of determining the optimum 

numerical values of these coefficients is an example of Parameter Estimation. In the following 

work this process is achieved by using the model to predict the next output of the real system. 

The coefficients are estimated by adjusting them so as to minimise the summed square of the 

error in this prediction. 

Parameter Estimation is thus a process that may be used as part of an overall exercise 
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known as System Identification. 

T H E U S E S O F S Y S T E M IDENTIFICATION 

In practice system identification is performed for one of two purposes. 

The first is concerned with the understanding of the behaviour of a real system, as a 

necessary prerequisite to the successful control of that system. From Kalman's earliest self-

optimising controller [1-1] all self-tuning controllers have required the inclusion of some means 

of identifying the controlled system. Indeed, this feature of a distinct system identifier may be 

used in the definition of both self-tuning controllers and regulators [1-2]. 

The second use of system identification in engineering is in fault detection. Numerous 

papers have been published on this aspect of system identification [e.g. 1-3,1-4,1-5]. Willsky 

[1-6] published a survey on the use of Kalman Filters, and related concepts, in the detection of 

system "failures". 

\_1 THE PROBLEM INVESTIGATED IN THIS THESIS 

The following work is concerned with the real-time parameter estimation of a discrete-

time model of a servosystem. In particular, the parameters are to be estimated as rapidly as 

possible, necessitating the calculations being based upon relatively few measurements. A 

typical application of the system considered is the control of a turntable upon which a robotic 

arm has been mounted. 

Such a system can be expected to exhibit behaviour predominantly dependent upon the 

ratio of frictional losses to inertia of the rotating turntable. The model proposed is of second 

order, with one pole determined by this ratio, and the other associated with the integral action 

of converting angular velocity into angular displacement. 

If the end-effector of the robot arm is moved further out, away from the axis of 

rotation of the turntable, or if it picks up a load, then the inertia presented to the motor driving 
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the turntable will increase. From a system identification viewpoint, this would cause a jump in 

the parameter values exhibited by the system. The controller of the turntable drive should be 

aware of these changes, in order to compensate for them. 

The controller may contain a parameter estimator. In which case, after the jump 

change in parameters this estimator should be reset, and a new set of estimates produced. The 

parameter estimator produces these new estimates from the sampled input and output signal 

sequences available after the jump change. The longer the length of these sequences the better 

(in terms of both increased information content and a consequent reduction in sensitivity to 

noise). 

By increasing the sampling rate of these signals a larger number of signal pairs may be 

added to the sequences in any given, fixed time interval. 

This thesis investigates whether or not such a simple technique can be used to improve 

the estimation process. The intention is to perform the new parameter estimation using only the 

relatively few, post-jump measurements, rather than a long, cumulative history of probably 

irrelevant sampled values. 

This approach was inspired by a consideration of an ideal, noise-free system of known 

order. In such a deterministic case, a finite number of samples are required in order to exactly 

determine the values of the parameters. For a second-order, noise-free system, the difference 

equation relating the input and output signal sequences should have four coefficients. In the 

absence of noise, only four consecutive pairs of input-output signal samples should be required 

to determine the exact values of all four coefficients. 

In a real system, all measured signals have associated noise. In addition no real, 

discrete-time system can be precisely modelled by a linear, low order difference equation [1-7]. 

From the outset this approach was recognised as having a number of problems, e.g.: 

i) The small number of samples available to the estimator will make it sensitive to noise. 

ii) The sensitivity of the estimated parameter values to the sampling period chosen. 
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Ill M E T H O D O L O G Y 

The structure of the model of the system is assumed to be known, a priori. The 

problem then is reduced to the determination of the numerical values of the parameters of that 

model. 

The ideas and theory developed are aimed at one, real system. This system is a 

positional servosystem using a permanent magnet DC motor. The armature current of this 

motor is controlled by a pulse-width modulated (PWM) amplifier. Details of the designs and 

construction of the hardware are given in Appendix B. 

The models used to describe the servosystem were all input-output models. There was 

no perceived advantage in using state-variable models. The work was restricted to techniques 

of parameter estimation based upon the Method of Least Squares. 

A simple, linear model of the servosystem is proposed. The shortcomings of this model 

are discussed. Particular emphasis is placed upon justifying the model of the PWM unit, and 

upon the non-linear characteristics expected of a real DC motor. The simple model is based 

upon the known (e.g. datasheet) characteristics of the components of the servosystem. This 

model formed the basis of a software simulation of the servosystem. A software simulation was 

used so as to permit the testing of parameter estimation algorithms without problems resulting 

from either an inadequate process model or an unknown noise process. 

This approach ensured that the true coefficients of the system were calculable, and 

hence available for comparison with the estimates. Testing the algorithms using either the real 

servosystem, or an analogue computer, would not have resulted in the availability of true 

coefficient values. The use of software simulation overcame the problems of both inadequate 

modelling and component drift. 

The simulations were used to compare two parameter estimation algorithms at a time. 

The "better" of these two was then tested against a different algorithm, and this process was 

repeated until all of the algorithms to be considered had entered into this comparison. 
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Six algorithms were compared on the basis of their suitability to the specific task of 

real-time parameter estimation of a second-order, type one system. The algorithms considered 

were: 

i) Four parameter, non-recursive solution using Lower-Upper (LU) Factorisation 

ii) Four parameter solution using Recursive Least Squares (RLS) Method 

iii) Reduced order (three parameter) solution using LU Factorisation 

iv) Reduced order (three parameter) solution using RLS 

v) Six parameter Recursive Extended Least Squares Method 

vi) Reduced order (three parameter) solution using instrumental variables. 

The preferred algorithms (iii and iv) were tested on the real system for a number of 

sampling rates. The other four algorithms having exhibited inferior performance for this 

application in the comparisons based upon simulation were not used on the real system. 

The theoretically derived second-order model was assumed to be adequate to describe 

the real system behaviour at all times. There was no attempt to define a restricted, linear 

region of operation of the servosystem. Two different input test signals were used on the real 

system. The first caused the motor to rotate continuously in the one direction. This was done 

to avoid the non-linear, unmodelled behaviour expected in both reversing and stopping the 

motor. The model used did not consider such effects as backlash and deadband. The second 

test signal caused the motor to be driven alternately in either direction. This enabled some 

observations to be made on the effects of these unmodelled non-linearities upon the estimator 

performance. 

All of the calculations, both in simulations and real-time, were performed using a T800 

Transputer [1-8]. A full description of the transputer configuration is given in Appendix A. 

The hardware developed comprising a minimal, but powerful digital identifier and controller. 
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CHAPTER 2 LITERATURE REVIEW OF PARAMETER ESTIMATION USING 

THE METHOD OF LEAST SQUARES 

The first self-tuning controllers [1-1,2-1,2-2] were primarily intended for the control of 

systems with unknown, time-invariant parameters. These designs involved the minimisation of 

a selected Performance Index. Kalman and Koepcke [2-3] attributed the idea that control 

systems should be designed in such a way as to minimise a performance index based upon the 

integral of a squared error signal to Wiener. 

The original development of the Method of Least Squares was done by Legendre and 

Gauss, both publishing their work near the start of the nineteenth century [2-4]. These famous 

mathematicians independently developed this method to apply to batches of previously obtained 

astronomical measurements. The first recursive solution of the Least Squares Problem was 

published by Plackett [2-5]. This recursive approach was developed as a means of minimising 

the computation required if additional observations were to become available. 

Kalman's early design of a self-optimising, discrete-time control system [1-1] used a 

performance index consisting of the mean squared error in the prediction of the system's output 

signal. Stromer [2-6] published a brief bibliography covering the early work on self-optimising 

control systems. 

The simple performance index has been extended by various authors into more 

elaborate Cost Functions [e.g. 2-4]. Clarke and his co-workers [2-2,2-8] proposed cost 

functions that penalised control effort as well as output prediction error. 

With the need to obtain real-time solutions to the Least Squares Equations on low cost 

computers, considerable attention has been paid to the numerical accuracy of the various 

algorithms available. A number of "Square Root" algorithms have been proposed to enable less 

well-conditioned problems to be solved [2-9,2-10,2-11]. These algorithms are considered to 

give a similar improvement in numerical accuracy as would the resort to double precision 
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arithmetic. They are especially valued for dealing with the problem of "round-off" errors in 

computers of short word-length. 

Graupe and his co-authors considered a number of different algorithms based upon the 

Method of Least Squares [2-12]. Their paper classified the algorithms into the following 

groups: 

i) Batch least squares methods (including covariance, autocorrelation and partial 

correlation methods) 

ii) Sequential least squares methods (including the standard Recursive Least 

Squares Method [2-13], and sequential forms of the covariance and partial 

correlation methods) 

iii) Lattice algorithms 

iv) Square Root algorithms (including the use of Householder Transformations) 

In their comparison the authors considered the convergence characteristics of each 

method. They concluded that "the convergence and convergence-rate properties of different 

least-squares algorithms are almost identical for 36 or 64 bit accuracy".1 

Of all the methods considered by Graupe and his colleagues, they nominated the 

"Sequential Direct LS" approach, this is the same as that called Recursive Least Squares (RLS) 

in Chapter 4 of this thesis. 

Wong and his co-authors [2-14] reported problems with numerical instability when 

using the RLS method within an industrial application. This group favoured an algorithm based 

upon the Recursive U-D Factorisation Method [2-11]. It should however be noted that this 

choice was in response to the problem of "bursting" of the estimates [2-14]. This problem is 

prevalent when the estimator has a large set of past samples available to it. The present work 

considers the case of the estimator having few samples, and hence "bursting" is not a concern 

'The T800 Transputer used throughout the present work has a shorter wordlength, being a 32-
bit machine. 
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in algorithm selection. 

The application of self-tuning controllers to time-invariant, almost linear systems is 

now extensively covered in the literature. The problems of such designs and suggested 

solutions being well documented, e.g. biased estimates resulting from coloured noise [2-15], 

lack of persistency of excitation [2-16]. 

The self-tuning controllers can be easily modified to produce adaptive controllers 

suitable for systems with slowly time-varying parameters. Kalman, Swerling and Wittenmark 

[1-1,2-17,2-1] have all noted the ease by which this could be achieved. 

In order to make a self-tuning controller adaptive, the most common modification is the 

introduction of an exponential weighting to discount previously measured values. This is 

achieved by scaling past data by a constant forgetting factor [2-18]. A number of authors have 

encountered problems when using a constant forgetting factor [e.g. 2-19,2-20]. Invariably the 

choice of this factor is empirical, ad hoc and crucial to the system performance and as a 

consequence, a number of schemes involving variable forgetting factors have been proposed 

[e.g. 2-18,2-22,2-23,2-24]. 

Gurubasavaraj [2-21] noted that an inappropriate choice of forgetting factor resulted in 

"numerical instabilities". Gurubasavaraj found it necessary to supplement the use of a constant 

forgetting factor with some resetting of the covariance matrix. Others have also resorted to 

resetting the information or covariance matrix of the estimator [2-25], or the use of a cascade 

of estimators [2-26]. 

The choice between forgetting factor or matrix resetting is largely determined by the 

rate at which the system parameters are able to change. The literature tends to consider two 

classes of parameter variation, commonly described as "drift" and "jump" changes. Goodwin 

and Teoh [2-27] provided a review of the literature on this problem up to 1983. They 

suggested an algorithm based upon covariance resetting, together with results that show far 

better performance than the simple use of a constant forgetting factor. Their algorithm, in its 
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simplest form, requires regular, periodic resetting of the covariance matrix. They suggest that 

in the case of "jumps" in parameter values, that there is some advantage in monitoring the 

prediction error as a basis for covariance resetting. 

The choice of sampling period for parameter estimation of a real system must 

inevitably be related to the time constant of that system. Commonly the sampling period is 

based upon either the closed loop bandwidth of the system [e.g. 5-13,5-14,5-15], or some 

other time constant of the system [e.g. 5-16]. Astrom and Wittenmark [2-28] provide an 

introductory treatment of the selection of an appropriate sampling period. The parameter values 

are dependent upon the sampling period, and their sensitivity to error has been noted in both 

the selection of sampling period and choice of modeling operator [2-29]. 

Astrom [2-7] mentions that adaptive schemes derived from Stochastic Control Theory 

may be used to identify systems in which the parameters vary rapidly, but that these schemes 

are either difficult to implement or are impracticable. 
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C H A P T E R 3 DESCRIPTION O F T H E POSITIONAL S E R V O S Y S T E M 

3-1 DESIGN A N D CON S T R U C T I O N O F T H E S E R V O S Y S T E M 

The following brief description of the real servosystem is included as an introduction to 

the derivation and justification of a mathematical model of that system. A more comprehensive 

description of the design and construction is provided in Appendix B. 

THE DRIVE SECTION OF THE SERVOSYSTEM 

The servosystem uses an 18 volts, 40 watts, permanent magnet DC motor. This motor 

is controlled by its armature current. The armature winding is supplied from a bridge of 

power, VMOS transistors. The transistors act as switches, as shown in Figure 3-1. 

+ 15V 

A 6 
9 o 

o 
() 

<> 
C 

ov 

FIGURE 3-1 THE ARMATURE WINDING IN A BRIDGE OF VMOS 

TRANSISTOR SWITCHES 

10 



The transistors are alternately switched in opposite pairs. Initially, transistor switches A 

and D are open, with B and C closed. In this case the applied armature voltage will attempt to 

drive a positive conventional current through the winding from right to left. 

Transistors B and C are subsequently turned-off also. For a brief period (nominally ten 

microseconds) all four switches are open, to avoid shorting out the +15 volt supply. After this 

short period, switches A and D are closed. The applied armature voltage now attempts to drive 

positive conventional current through the winding from left to right, however the total current 

is dependent upon the voltage induced in the armature winding. 

The switching cycle is then completed by a further short period when all four switches 

are open. The complete cycle of four switching operations is repeated at a nominal, ultrasonic 

rate of 22KHz. 

TABLE 3-1 SEQUENCE OF TRANSISTOR SWITCHING 

Period Number Switches A&D Switches B&C 

1 

2 

3 

4 

The armature current is controlled by varying the ratio of Period 1 to Period 3. This 

ratio is referred to here as the "duty-cycle" of the pulse width modulator (PWM) Unit. A duty-

cycle of 50% indicates that Periods 1 and 3 are of equal duration, resulting in an average 

armature current of zero. 

The design of the PWM Unit is based upon two comparators fed with an internally 

generated 22KHz. triangle wave and an input voltage, v.(t) . The input signal, vt(t) ,is 

open 

open 

closed 

open 

closed 

open 

open 

open 
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produced by a digital-to-analogue converter (DAC) connected to an output port of the digital 

controller. Figure 3-2 shows the interconnection of the various circuit blocks of the Drive 

Section. 

DIGITAL I l\ 

CONTROLLER—/ 
LATCH 
& DAC 

22 KHz 
TRIANGLE 
WAVE GEN 

PWM 
UNIT 

HEXFET 
BRIDGE 

iQ(0 

FIGURE 3-2 BLOCK DIAGRAM OF THE DRIVE CIRCUITS OF THE SERVOSYSTEM 

THE MEASUREMENT SECTION OF THE SERVOSYSTEM 

The controlled output variable of the system was the angular position of the output 

shaft of a gearbox driven by the motor armature shaft. Position measurements were made using 

an optical encoder connected to the armature shaft. Details of this transducer, and its associated 

circuitry are given in Appendix B. 

3-2 MODELLING OF THE DC PERMANENT MAGNET MOTOR 

For simplicity a very simple, linear model of the D C motor was selected. The majority 

of introductory textbooks in control engineering offer such models of DC motors [e.g. 3-1,3-

2,3-3]. 
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The selected model is summarised in Figure 3-3, with the following terms as defined: 

v.(0 , 

eb(.t) , 

m , 
w(0 , 

8(0 , 

K • 

K • 

*,. , 

B , 

J , 

the applied armature voltage 

the back emf of the armature winding 

the armature current 

the torque developed by the armature 

the angular velocity of the armature 

the angular position of the armature 

the resistance of the armature winding 

the inductance of the armature winding 

the motor torque constant 

the viscous frictional coefficient for the rotating section of the machine 

the rotational inertia of the machine 

the back emf constant 

Capital letters denote Laplace Transforms, i.e. S£[i*a(0] = Ia(s) 

V Q ( S ) 

+ R a + s L Q 

(s)T(s) 
K; 

1 
B + sJ 

n(s) 

Eb(s) 
Kb 

1 

s 

B(s) 

FIGURE 3-3 S-DOMAIN BLOCK DIAGRAM OF THE SIMPLE, LINEAR MODEL OF 

THE DC MOTOR 
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The above model incorporates a number of assumptions: 

1) that the armature winding may be treated as a single winding comprising of a 

series connection of a lumped resistance, lumped inductance and a dependent 

voltage source. This voltage source modelling the back emf induced in the 

winding. 

2) that the back emf is directly proportional to the angular velocity of the 

armature. 

3) that the torque developed by the armature is directly proportional to the 

armature current, and that all of this developed torque is available to overcome 

frictional losses and to accelerate the rotor, i.e. 

7X0 = Bo>(0 + J— «(0 3-1 
dt 

There is no disturbance torque included in the model. 

4) that the mechanical, frictional losses are viscous in nature. This assumption is 

reviewed in Section 3-3 below. 

__l NON-LINEAR CHARACTERISTICS OF REAL DC MOTORS 

Kuo and Tal [3-4] point to a number of inadequacies of the above model. These 

inadequacies are summarised below: 

NON-LINEAR TORQUE-ARMATURE CURRENT CHARACTERISTIC 

There are two sources of non-linearity in this characteristic. 

i) The B-H curves of the materials of the motor's magnetic circuit are non-linear. 

The assumption of a "Torque Constant" is particularly suspect at high current 

levels, where magnetic saturation manifests itself as a reduction in the value of 

this "constant". 
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ii) The second source of non-linearity is associated with the angular position of the 

armature with respect to the stator. This effect is noticeable if the motor has an 

insufficient number of commutation points and manifests itself as a cyclical 

variation of torque It may be modelled as a cyclical torque disturbance. 

COGGING 

The reluctance of the magnetic circuit may vary with the angular position of the rotor. 

The rotor will then have preferred, stationary shaft-angle positions. At low speeds the rotor 

may be observed to "cog". 

TEMPERATURE VARIATIONS 

Arguably the most significant problem with temperature changes is the dependence of 

the relative permeability of the motor's magnetic materials upon temperature. 

DEMAGNETISATION OF THE PERMANENT MAGNETS 

Excessive currents may demagnetise the permanent magnet, resulting in an irreversible 

change in the characteristics of the motor. 

NON-LINEAR FRICTION-ANGULAR VELOCITY CHARACTERISTIC 

The viscous damping coefficient of the motor is not a constant. There are a number of 

mechanical and electromagnetic phenomena that contribute to the value of this coefficient, e.g. 

friction in the bearings and windage, and losses due to eddy currents and magnetic hysteresis. 

Not all of these components produce losses that are directly proportional to angular velocity. 
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SUMMARY 

Of the above non-linear characteristics it was expected that the most significant would 

be the non-linearity of the frictional losses. The other non-ideal characteristics were considered 

to be either of a secondary nature or avoidable. An high quality motor was purchased, so as to 

minimise the significance of the above characteristics. 

The assumption concerning the non-linearity of the frictional losses however, had the 

potential to discredit the whole of the model. Accordingly the following section provides a 

brief overview of the literature and available models describing frictional losses appropriate to 

DC motors. 

34 REVIEW OF FRICTIONAL LOSSES 

The literature concerning frictional losses in DC motors suggests that a general model, 

based on physical principles, is not available. Instead there exist a variety of empirical models, 

which tend to be specific to either certain modes of motor operation, or types of motor 

construction. 

SLIDING VS. ROLLING FRICTION 

Bowden and Tabor [3-20] provide an insight into why diverse models are able to co­

exist. The underlying physical processes that manifest themselves as either "sliding friction" or 

"rolling friction" are entirely unrelated. Accordingly a motor constructed with ball-bearings 

would have a different speed-friction characteristic from one constructed using simple journal 

bush bearings. 

VISCOUS FRICTION 

The model of the motor proposed in Section 3-2 considered that the frictional 

component of shaft torque is directly proportional to the angular velocity of the shaft. 
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Tft) = B—0(0 3-2 

is the frictional component of shaft torque 

is the angular position of the shaft 

is the Viscous Frictional Coefficient [3-4] 

For the model of Section 3-2 the Viscous Frictional Coefficient is a constant. 

A linear relationship between frictional torque and shaft speed implies a quadratic 

relationship between the frictional power loss and shaft speed. Puchstein [3-6] gives empirically 

based equations for determining the power loss in small DC motors, operated at constant 

speed. He suggests that the power loss due to bearing friction and windage is proportional to 

the armature speed raised to the power of 1.5. Kuo and Tal [3-5] state that not all components 

of the viscous damping effect are linearly related to angular velocity. 

The distinction between the terms viscous frictional coefficient and viscous frictional 

constant is therefore important. 

STATIC FRICTION 

Static Friction is a component of friction associated with stationary surfaces only. 

Ts(f) = ±r0|6=0 3-3 

where 

Ts(t) , is the torque due to Static Friction 

T0 , is an empirically obtained constant 

0 , is the angular velocity of the shaft 

where 

T/t) 

8(0 

B , 
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Kuo & Tal [3-4] wrote that "once motion begins, the static frictional force vanishes, 

and other frictions take over". 

Bowden & Tabor [3-20] differentiate between the "Coefficient of Static Friction" and 

the "Coefficient of Kinetic Friction". These authors give three reasons why the Coefficient of 

Static Friction should be the larger: 

i) Stationary surfaces will probably be in better contact with one another 

ii) Over a period there may be contact diffusion of atoms from the material of one 

surface to that of the other 

iii) Any thin film, that would serve as a lubricant between the two surfaces, may 

break down. 

COULOMB FRICTION 

Classical models of Friction recognise a third type of friction, known as Coulomb 

Friction. The torque due to Coulomb Friction, T(t) , is given by: 

Tc(t) = Tv 

d6 
dt 3-4 
de 
dt 

where 

Tx , is an empirically obtained constant. 

Depping & Voits [3-7] considered the load torque presented to a DC motor driving a 

D C generator. They viewed the load torque as consisting of two components, one directly 

proportional to shaft speed, the other a speed independent constant. The difference between the 

load torque, and the torque developed by the motor being referred to as the "Acceleration 

Torque". 
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The physical justification of Coulomb Friction is to model the magnetic and mechanical 

hysteresis associated with reversals of direction of motor rotation [3-8]. The effect of Coulomb 

Friction in real systems is to reduce overshoot and oscillations, at the expense of steady-state 

error [3-4]. 

SOLID FRICTION M O D E L S 

Some authors have noted that models of friction based upon Viscous, Coulomb and 

Static components, fail to describe the behaviour of real systems [3-9,3-10,3-13]. A more 

elaborate model, the Solid Friction Model, has been developed to overcome these failures. This 

new model has been subject to several developments and simplifications [3-9,3-10,3-12]. 

The Solid Friction Model is the result of finding a mathematical function that will fit 

an experimentally obtained curve. Unfortunately the resulting function is both unwieldly and 

non-linear: 

dF(x) 

dt 
S.a 1 - —.sen x 

dt 
3-5 

where 
F(x), 
x, 

i, a and F, 

S, 

is the Frictional Force 
is the displacement 

are constants, chosen so as to enable the function to fit the 

required curve 
is a "Stability Factor" [3-11] 

Dahl has used the Solid Friction Model to represent a system comprising of a D C 

motor, gearbox and inertial load [3-11]. This paper reveals the complexity involved in using 

the Solid Friction Model. 

Walrath [3-13] used a simplified Solid Friction Model to describe the behaviour of a 

gimbal mounted tracking system. Walrath's model may be summarised by the equation: 
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Tp) + x . — j ^ = (sgn k).Te 3-( 

is the predicted frictional torque 

is the constant rolling friction torque 

equals either + 1 or -1, depending upon the sign of the relative gimbal 

velocity 

is a suitably chosen constant 

SUMMARY 

There exist two groups of models of friction appropriate to the positional servosystem 

considered in the present work. 

The first group is based upon the "classical" components of friction, namely Viscous, 

Coulomb and Static. Various combinations of these components may be used, depending upon 

the operational mode of the motor considered. A combination of the Viscous and Coulomb 

components proving adequate to many authors [e.g. 3-7,3-14]. 

The second group of models are those derived from Dahl's Solid Friction Model. 

The model of Section 3-2 uses a simple model consisting of viscous friction alone. 

Further, the Coefficient of Viscous Friction was taken to be a constant. This selection was 

made since it is so simple. The above review of friction indicates the level of confidence that 

can be placed on this choice. However it would not be sensible to choose a more complex 

model, before the arrival of experimental results makes the use of such a model imperative. 

The above overview of friction suggests that different models are necessary for 

different modes of motor operation, i.e. 

i) rotation continuously in one direction with only slight speed variations 

where 

Tff) , 

sgn X > 
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ii) rotation continuously in one direction with a wide range of speeds 

or iii) motion subject to either stopping or reversals of direction of rotation. 

3;5 MODELLING THE PULSE WIDTH MODULATOR CONTROLLED MOTOR -

STEADY STATE BEHAVIOUR 

INTRODUCTION 

The model of Section 3-2 showed the applied armature voltage as the input signal to 

the system. The real system has this voltage generated by a Pulse Width Modulator (PWM) 

controlled bridge of power transistors. This circuit is not linear, its output voltage being a 

variable duty-cycle train of rectangular pulses. 

The following sections, 3-5 and 3-6, provide an analysis of the effects of this circuit on 

the armature current, and are a justification of the simple, linear model given as Equation 3-

39. 

AN EQUIVALENT CIRCUIT FOR THE ARMATURE WINDING AND ITS SUPPLY 

The bridge of power transistors supplies a variable duty-cycle, fixed frequency, +/- 15 

volts, rectangular wavetrain across the terminals of the armature winding. This wavetrain is 

modelled by two, synchronised, independent voltage sources, as shown in Figure 3-4. In 

practice there must be a deadtime during which both vt(f) and v2(0 are zero, however to 

simplify the following analysis the deadtime is assumed to be zero. 

A factor k is introduced to describe the duty-cycle of the pulse width modulation. This 

factor may take any value in the range 0*dtel • The relationship between Vj(0, v2(0 and k is 

shown in Figure 3-5. 
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FIGURE 3-4 CIRCUIT DIAGRAM USED TO MODEL THE SWITCHING OF THE 

APPLIED ARMATURE VOLTAGE 
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FIGURE 3-5 W A V E F O R M S USED T O G E N E R A T E T H E APPLIED A R M A T U R E 

V O L T A G E 

In Figure 3-4 the back-emf is considered to be the voltage developed across a parallel 

R-C circuit, rather than the more conventional use of either an independent or dependent 

voltage source. Next the use of the parallel R-C circuit is justified. 
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The model of Section 3-2 includes the following relationships: 

71(0 - ktia(t) 3-7 

7X0 = Sw(0 + J—w(0 3-8 
dt 

eb(t) = kbu>(t) 3-9 

and therefore 

Thus the back-emf may be modelled as the voltage developed across a parallel R-C 

circuit, as per Figure 3-4, where: 

K = — Ohms 3-11 
M Q 

and 

C = — Farads 3-12 
k}cb 

The time constant of this circuit is equal to the Mechanical Time Constant of the 

motor. 

D E R I V A T I O N O F T H E P W M S T E A D Y - S T A T E M O D E L 

The following sub-section of this work derives a steady-state relationship between the 

average armature current and the duty-cycle of the PWM Unit. 

The following assumptions are made: 

i) the PWM duty-cycle has been held at a constant value 

ii) the load presented to the motor shaft is a constant torque. 

As a consequence of these assumptions: 

iii) variations in o>(0, and hence eb(t) are sufficiently small as to permit 

these variables to be treated as constants. 
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Assumption iii) relies on the Mechanical Time Constant of the motor being much 

greater than the time period of the P W M switching cycle. This assumption effectively ensures 

that the charge on the capacitor Cm remains constant throughout the period of the P W M 

switching cycle. The back-emf then becomes the voltage developed across the resistor Rm, with 

the capacitor replaced by an open-circuit, 

i.e. 

e*C) = *JJ® 3"13 

The armature winding then exhibits a total resistance, R, where 

R = R+ R 3-14 
a m 

Over the first part of the P W M cycle, 0<t<kT, the armature current is given by: 

3-15 
ijt) ' ~M(t) + H-fl 

where u(t) denotes a unit step. 

Hence at the end of this first period the instantaneous value of the armature current will 

be given by 

ia(kT) = ̂  + 

Over the second part of the P W M cycle (kT < t < T) the voltage vt(0 is zero, and 

v2(0 is now equal to +Ve volts. 

Define x =t-kT , in which case the second part of the cycle may be described by the 

range 0 < t < (1 -k)T- The initial current for this period may be described as 

' r ' M ^ W U 3"17 

and is as given above in Equation 3-16. 
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Over this second period it can be shown that: 

aK ' R R ° .exp^ 
-Rx 3-18 

Hence at the end of the P W M cycle it can be seen that: 

' « O U = i«(T)U(i-t)r= ~ + —1+*„ 

R ° 
exp. 

-R(l -k)T\ 3-19 

This equation is based on the assumption that the duty-cycle of the P W M is held 

constant, and accordingly: 

Hence it can be shown that the initial current is given by: 

3-20 

t „ v-R(\-k)T^ T-RT, 
1 +2.exp[—- — ] -exp[ ] 

w u - \i - 3-21 
1 r - W i 

l-exp[—— ] 

The average value of the armature current over the period Ozt<kT, IAV1, is given by: 

£T 7? 
, kIRs + 

e x p ( — — ) - l 
3-22 

Similarly the average value of the armature current over the period kT<.t_T, IAV2 is 

given by: 

(i-*)r 

IAV> - \ i£i)dt 

« + ' 

R (l-k)T Wl *Tn 
L 
R 

&M<tm*yi 3-23 

The average value of the armature current over the full switching cycle, IAV, is given 

by: 
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IAVVkT+IAV2.{l-k)T 
LAV j J " ^ 

and hence 

IAV = ^.(2*-l)
 3"25 

This equation shows the linear relationship between the duty-cycle k, and the average 

(over one cycle of the PWM switching period) armature current. The expression is valid 

subject to the assumptions stated. 

!£ MODELLING THE PULSE WIDTH MODULATOR CONTROLLED MOTOR -

DYNAMIC BEHAVIOUR 

In the foregoing analysis it was assumed that the duty cycle of the PWM drive was 

held constant and accordingly the dynamics of the motor were neglected. In this section the 

response to a change in duty-cycle will be considered. This response will be investigated by 

simulations using the software circuit analysis package "PSpice" [3-15,3-16]. The circuit 

simulated is that of Figure 3-4. 

The simulation requires numerical values for the various components of the equivalent 

circuit. The following subsection justifies the values selected for use in the subsequent 

simulations. 

DETERMINATION OF THE COMPONENT VALUES OF THE EQUIVALENT CIRCUIT 

OF THE ARMATURE WINDING 

The component values were determined by use of data provided by the manufacturer of 

the selected motor [3-17]. It should be noted that this data is for the motor alone, without any 

other hardware fastened onto the rotor shaft. In the practical measurements made later in this 

work, the motor always had a gearbox and optical encoder mounted on this shaft. Further, for 

some of the real measurements, a turntable was added to increase the inertial load on the 
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motor. These fixtures will cause a difference to exist between the numerical values of 

Rotational Inertia, J, and Coefficient of Viscous Friction, B, calculated here, and those to be 

expected of the real system. 

The main purpose of this section of the work is to justify the use of a simple, linear 

model of the PWM Unit. The validity of this justification is not lessened by the use of data for 

an unloaded motor. 

The motor manufacturer provided the following data: 

Rotor inertia, J = 63.5 mg.m.m 

Armature resistance, Ra = 0.747 Ohms a 

Armature inductance, La = 0.23 m H 

Torque constant,fc. = 36.5 mN.m/A 

No load current, 1^ = 387 raA (18 Volts Supply) 

No load speed, o>0 = 4500 rpm (150 ^ radians per second) 

These figures enabled the no load back emf, EM to be found : 

EM = Va - 7^a = 17.7 Volts 3-26 

The required value of the parallel resistance may be determined from the no-load 

information 

/?=____„ 45.7 Q 3-27 
I 
1a0 

Similarly the value of the Back-Emf Constant,^ may be found 

jfc = __*? = J2_Z_ ~ 3.76. IO"2 3-28 
b co0 150.it 

Neglecting the mechanical and iron losses of the motor enables the motor input and 

output powers to be equated 
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eb(t).ia(t) = 7X0-co(0 3-29 

This equation shows that the constants k. and kb have the same value. Many authors 

[e.g. 3-18,3-19] simplify their analyses by the use of this approximation. Non-zero values for 

the above losses requires the input power to be greater than the output power. This inequality 

results in kb>k.. The value of kb obtained from Equation 3-28 is indeed slightly greater than 

the datasheet value of kt. 

The no-load data may be used to calculate the value of the Coefficient of Viscous 

Friction, B. Since the no-load values are steady state values, then the armature is not subject to 

acceleration. The Torque Equation , Equation 3-8, reduces to :-

7X0 = B.w(t) 3-30 

and hence 

B - L.— « 3.10"5 Nm^ecs 3-31 

The values obtained for kb and B, provide a second means of calculating the value of 

the equivalent parallel resistance. 

R - ______ = 36.5.1Q-3.3.756.1Q-2 = 45 _Q 3.32 
m ~ B 3.10"5 

which is consistent with the value obtained from Equation 3-27. 

Further the equivalent parallel capacitance may be found 

C = — = 6.35.10" = 46.3/nF 3-33 
m k^ 36.5.10"3.3.756.10-2 

PSPICE SIMULATIONS O F T H E E Q U I V A L E N T A R M A T U R E CIRCUIT 

The PSpice Circuit Simulation and Analysis software was used to examine the 

behaviour of the armature model shown in Figure 3-4. All of the PSpice simulations use the 

component values determined above. A typical source code file is provided in Appendix D. 
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The first PSpice simulation examined the step response of the armature model. The 

input signal being a step in applied armature voltage from 0 volts to +15 volts. Figure 3-6 

provides plots of the resulting armature current and back-emf. 

20 + 

"TlrAE 

FIGURE 3-6 PSPICE SIMULATION O F T H E A R M A T U R E CIRCUIT STEP RESPONSE 

The mechanical time constant of the motor model was obtained from Figure 3-6 by 

measuring the time for the back-emf to change from 0% to 63% of its final value. This 

measurement suggests a time constant of approximately 36 milliseconds. This figure is in 

close agreement with that given by the motor manufacturer of 35.5 milliseconds [4-3]. 

29 



Figure 3-7 shows the response of the armature model to the initial turn on of a 22kHz 

pulse width modulated voltage supply. The traces are for duty cycles of 50%, 60%, 70% and 

90%. Figure 3-7 shows the initial 2 milliseconds of the transient, a period far shorter than the 

mechanical time constant of the motor. The traces therefore effectively show the build up of 

the starting current resulting from the PWM turning on, prior to the back-emf achieving its 

steady-state value. 

0.0ms 0.5ms 1.0ms 1.5ms 2.0ms 

FIGURE 3-7 PSPICE SIMULATION OF THE ARMATURE TRANSIENT RESPONSE 

FOR THE START-UP OF THE PWM UNIT AT VARIOUS DUTY CYCLES 
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The traces of Figure 3-7 were used to measure the electrical time constant of the model 

of the armature winding. Each trace is treated as if it consists of a mean armature current, onto 

which a 22 kHz sawtooth disturbance has been superimposed. The electrical time constant is 

taken as the time taken for the mean current to reach 63 % of its final value. 

From Figure 3-7, three different values of the electrical time constant were obtained, 

corresponding to the traces for duty-cycles of 90%, 70% and 60%. The respective time 

constants being 0.28, 0.27 and 0.24 milliseconds. These values are slightly less than that 

expected using the motor datasheet [4-3]. The datasheet values indicate that the electrical time 

constant, xe, should have a value given by: 

L 
-=-!•« 0.31 msecs 3-34 

It is concluded that the average armature current changes at a maximum rate 

predominantly determined by the Electrical Time Constant of the armature winding. 

Figure 3-8 is included to show that the simulations do subsequently show a fall in the 

armature current as the back-emf is developed. This graph shows the first 10 milliseconds of 

the transient for the 90% duty cycle. 

A DISTURBANCE MODEL OF THE ARMATURE CURRENT 

The simple, linear model of the PWM Unit that is presently being justified uses the 

above idea of the armature current being composed of an average value onto which a sawtooth 

disturbance waveform has been added. The disturbance waveform is an high frequency signal, 

formed from a 22 kHz fundamental and its harmonics. This disturbance signal is injected into a 

system which acts as a low pass filter. Consider the effect of the PWM duty cycle on the 

spectral content of this disturbance signal. 

Analysis shows that the disturbance signal is most significant for a duty-cycle of 50%. 

It is subsequently shown that even for this worst-case duty-cycle the effect of the disturbance 
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signal is negligible. 
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FIGURE 3-8 PSPICE SIMULATION OF THE A R M A T U R E TRANSIENT RESPONSE 

FOR PWM UNIT START-UP WITH A 90% DUTY CYCLE 

Figure 3-9 shows a block diagram of the means of modelling the PWM Unit. The 

applied armature voltage va(0, was considered to equal the mean value of the +/- 15 volt 

wavetrain from the PWM Unit. The 22 kHz switching frequency was modelled by an 

appropriately shaped, injected disturbance signal,ij[t). 

32 



The P W M Unit was thus modelled as a simple, gain block,k., where: 

*_• = 
v,(0 

3-35 
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FIGURE 3-9 BLOCK DIAGRAM OF P W M UNIT M O D E L WITH INJECTED 

A R M A T U R E DISTURBANCE CURRENT 

SPECTRAL CONTENT OF THE DISTURBANCE SIGNAL AS A FUNCTION OF P W M 

DUTY-CYCLE 

The duty-cycle of the PWM Unit affected both the amplitude and the waveshape of the 

disturbance signal. This section identifies the 50% duty-cycle as being that at which the 

disturbance signal was most significant. At this duty-cycle the amplitude of the disturbance 

signal was at its largest value, this is in agreement with the traces of Figure 3-7. 

The same PSpice simulations were used to investigate the spectral content of the 

armature current at different PWM duty-cycles. The PSpice package permits the comparison of 
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the power in the fundamental and first eight harmonics of a periodic waveform. 

These results were obtained from the transient simulations presented in Figure 3-7, for 

the last cycle of the disturbance signal within the period covered by the simulation. 

Accordingly it is acknowledged that the results are not true steady-state values, since these 

transient simulations terminate prior to the motor reaching its steady-state speed. The results 

are however, taken from a period well after the armature current has reached its maximum 

value. 

The selection of this period as the basis of the Fourier Analysis was made so as to 

avoid the need for a number of protracted transient analyses. The results of the Fourier 

Analyses are presented in Table 3-2. 

The servosystem acts as a low pass filter. Accordingly the higher frequency harmonics 

receive a greater attenuation than either the fundamental or low frequency harmonics. Table 3-

2 shows, for the duty-cycles considered, that the fundamental carries most of the power of the 

disturbance signal. Table 3-2 also shows that as the duty-cycle is increased (i.e. moved further 

away from its base value of 50%) that the power at the fundamental frequency falls. These 

results are consistent with the earlier observation from Figure 3-7, that the disturbance signal 

has its largest amplitude for a duty-cycle of 50%. Accordingly it is claimed that the 50% duty-

cycle is the worst case in terms of significance of the disturbance signal. 
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TABLE 3-2 EFFECT OF P W M DUTY-CYCLE U P O N T H E RELATIVE P O W E R OF 

THE SWITCHING FREQUENCY FUNDAMENTAL AND ITS 

HARMONICS 

Frequency Component Duty Cycle 

50% 60% 70% 90% 

22 kHz Fundamental 0.5984 0.5682 0.4817 0.1797 

2nd Harmonic 0.0000 0.0874 0.1415 0.0850 

3rd Harmonic 0.0651 0.0378 0.0209 0.0507 

4th Harmonic 0.0000 0.0342 0.0206 0.0329 

5th Harmonic 0.0219 0.0002 0.0217 0.0214 

6th Harmonic 0.0000 0.0139 0.0089 0.0138 

7th Harmonic 0.0106 0.0062 0.0030 0.0082 

8th Harmonic 0.0000 0.0043 0.0069 0.0044 

9th Harmonic 0.0056 0.0052 0.0044 0.0019 

THE INFLUENCE OF THE WORST CASE DISTURBANCE SIGNAL UPON MOTOR 

SPEED 

Figure 3-7 shows that for a 50% duty-cycle, the disturbance signal has a peak-to-peak 

value of approximately one Amp. The significance of this signal may be tested by replacing it 

by a sinewave disturbance signal of the same amplitude and periodic time. Consider then that 

the disturbance signal, ijjt), injected into the system is a 22 kHz sinewave with a crest value of 

0.5 Amps. 

To investigate the effect of this disturbance upon the motor speed, the input signal 

should be adjusted until the mean applied armature voltage, i.e. va(0 of Figure 3-9, is zero. 
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The system may then be redrawn with the disturbance signal as the input signal, and the motor 

speed as the output, as in Figure 3-10. 

d(s 
-> 

+ A 

-=> 
K 

B + sJ 

Kb 

R + sL 
<-

n(s 

FIGURE 3-10 S-DOMAIN M O D E L USED TO EXAMINE THE EFFECT OF P W M 

SWITCHING UPON THE MOTOR SPEED 

The closed loop transfer function of this system is given by 

Qfr) _ 

kir R, 

—[s+—] 
J L , R B BR+kk. 

s2+s[-+-]+[ Ct] 
L J U 

3-36 

Using the values obtained above for all of these constants, this system may be shown to 

have a gain of -47.6dB for a 22kHz sinusoidal input current, ijft. This represents in real 

terms a variation of 0.00416 radians per second per ampere, or approximately 0.04 rpm per 

ampere! The disturbance signal can therefore be neglected without introducing significant 

errors. 

FINAL SIMPLE MODEL OF THE P W M CONTROLLED ARMATURE CURRENT 

Accordingly the PWM circuit and armature winding will be modelled as shown in 

Figure 3-11. 
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Kd 

Va(s 

+' 
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R + sL 

— > 

Eb(s) 

FIGURE 3-11 SIMPLIFIED S-DOMAIN MODEL OF THE P W M UNIT AND ARMATURE 

WINDING 

With reference to Figure 3-3, the transfer function of the motor is taken as: 

Q(s) _ 
A 
u 3-37 

Va{s) 2 B JL M+*h 
_r+s[— +—]+[ ] 

J L U 
For the Maxon motor used on its own (i.e. without the gearbox) the poles of this 

transfer function are at 29.6 and 3218.4 radians per second. The low frequency pole is clearly 

dominant, and the above second order system may therefore be approximated to by a first 

order model with a time constant of 33.8 milliseconds. 

ci(s) K 3-38 
Vis) 5+29.6 s+p 

The overall transfer function of the position servomechanism , G (s) ,will therefore be 

of the form: 

G(s) = « & -
' V.(s) s(s+p) 

3-39 

where 

m a 
3-40 
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CHAPTER 4 P A R A M E T E R ESTIMATION O F A DISCRETE-TIME M O D E L O F 

THE SERVOSYSTEM 

4_1 DEVELOPMENT OF A DISCRETE-TIME. INPUT-OUTPUT MODEL OF 

THE SERVOSYSTEM 

THE NEED FOR A DISCRETE-TIME MODEL 

The work so far has justified the modelling of the continuous time plant by Equation 3-

39. This plant is to be controlled and monitored using a digital computer. The computer is 

used both to determine the input signal, v,.(0, and to perform the parameter estimation of the 

servosystem. The plant input signal, v^t) is a staircase waveform produced by a digital-to-

analogue converter (DAC). 

In this section a discrete-time model of the servosystem is developed. This model takes 

the sequence of values generated by the program as its input signal. This sequence is denoted 

as {u(kT)}. The value written out by the computer program at time t=kT being denoted by 

u(kT), where T is the periodic time with which the program writes to the output port. The 

output signal of the discrete-time model is a sequence of periodically sampled positions of the 

output shaft of the servosystem. The sampling of the continuous output signal 6(0, is timed so 

as to be synchronous with the generation of the sequence {u(kT)}. The sequence of sampled 

output values will be denoted by {y(kT)}, where 

yikT) = 8(0 U 4-

The digital latch and DAC are modelled by a zero-order hold (ZOH). The ZOH is 

discussed in detail in most introductory textbooks on discrete-time control theory [e.g. 4-1,4-

2,4-3]. 
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FIGURE 4-1 B L O C K D I A G R A M S OF T H E C O M P U T E R C O N T R O L L E D 

SERVOSYSTEM 

Z-TRANSFORM NOTATION 

The z-transform of any continuous time signal, e.g. a(t), will be denoted by A(z). The 

convention for representing the z-transform is that commonly found in the literature, and may 

be summarised by the following equations: 

Mz) *A(s)\ 
_=z 

4-2 

where 

A(s) = S£{_z(0l 

3[a(0] = A(z) 4-3 
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3[a(oi = &wm\ 4-4 

mis)] = 3[a(01 4-5 

DETERMINATION OF THE OVERALL DISCRETE TIME INPUT-OUTPUT MODEL OF 

THE SYSTEM 

In the following subsection the overall system will be described by an Input-Output 

Model. Two related forms of this model are given: 

i) the Discrete Transfer Function of the system 

and ii) the Difference Equation relating elements of the sequences {u(kT)} and 

(y(kT)}. 

Since the transfer function of the plant, Gp(s), is known, as per Equation 3-39, then 

the overall Discrete Transfer Function, G(z), may be determined, where: 

G(z) = -^ 4-6 
U(z) 

G(z) may be found in terms of T (the periodic time of the discrete-time signals), and k 

and p (as defined for Equation 3-39). 

Phillips and Harbor [4-1] provide an elegant method for determining the discrete 

transfer function , G(z). Their method considers the sequence {u(kT)} to be the same as that of 

a sampled unit step. The action of the ZOH is to recover the unit step, and hence 

Vfr) = 1 4-7 
s 

The step response of the system, 8(0» maY men De found from 

&(s) = Vt(s)Gp(s) = ±Gp(s) 4-8 

For the servosystem, using the model given in Equation 3-39, it can be shown that 

Y(z) = 6(z) = — ^— + 4-9 
p(z2-2z+l) p\z-\) p2[z-exp(-pT)] 

The discrete transfer function, G(z), may then be found from 
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Giz) 

Hence it can be shown that 

where a = exp(-/?7) 

Alternatively this may 

G(z) = 

, _ Y(z) 
Uiz) 

kT 

Piz-l) 

be expressed in 1 

Yiz) _ 

Uiz) 

3[Gp(5).l] 
p s 

3.-1 
s 

_ k + Kz-1) 

P2 P2iz-a) 

he fonn 

avz+a2 

z2+byz+b2 

4-10 

4-11 

4-12 

where 

ax = —.\pT-Uexpi-pTj\ 4-13 
P 

k 
a2 = —.[l-expi-pT)-pT.exp(-pT)] 4-14 

P2 

bt = -1-expi-pT) 4-15 

and 

b2 = &xp(-pT) 4-16 

The difference equation relating the sequences {u(kT)} and {y(kT)} may be derived 

from Equation 4-12. The difference equation is: 

yikT) + bxy[ik-\)T\ + b#[ik-2)T\ = axu[ik-\)T\ + a2u[ik-2)T\ 4-17 

This equation is known as an Auto-Regressive, Moving Average (ARMA) Model of 

the system. Coefficients bx and b2 are referred to as the auto-regressive parameters of the 

model, ax and a2 are the moving average parameters. 

In the following work a more compact notation is adopted, whereby Equation 4-17 may 

be rewritten as: 

y0 + bM + b$2 - axux + a2u2 4-18 

i.e. xn denotes the sample of the sequence {x(kT)} at the time t, where t=(k-n)T. 
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A_2 T H E L E A S T S Q U A R E S M E T H O D O F P A R A M E T E R ESTIMATION 

The Least Squares Method of Parameter Estimation considered in this thesis is a means 

by which the coefficients ax,a2,bx and b2 may be determined using knowledge of the 

sequences {u(kT)} and {y(kT)}. 

Equation 4-18 may be used as a One-Step Ahead Predictor of the output signal of the 

system. Using a "carat" to denote predicted values, Equation 4-18 may be rewritten as 

y0 - axux + a2u2 - bxyx - b^ 4-19 

If the values of the input and output sequences are known for the instants t = (k-l)T 

and t = (k-2)T, then Equation 4-19 may be used to calculate the subsequent output value 

y(kT). In practice there are two major problems: 

i) the exact values of the coefficients are not known. Instead the best available 

estimates of these coefficients must be used. These will also be denoted by the 

use of a "carat", as in Equation 4-21 below. 

ii) all of the measured signals include noise and measurement errors. 

Equation 4-19 cannot therefore be expected to yield the correct value of y(kT). At time 

t = kT the true value of y(kT) becomes available for measurement. The difference between the 

measured and predicted values is the Error in Prediction, e0. 

% = y0 - %
 4-20 

Alternatively the Error in Prediction may be expressed as 

eo = 3>o + Vi + ^2 ~ diui ~ «2M2 4"21 

In the Method of Least Squares [4-4] the estimates of the coefficients are adjusted so as 

to minimise the Performance Index, J , where 

2 4-22 
/=0 

The Performance Index is minimised by finding the solution of the following set of 
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simultaneous equations: 

^n ^n K &n 
—- = 0, —n- = 0, —n- - 0, —- = 0 da dd. aS, a£„ 

4-23 

These equations are known as the "Least Square" or "Normal" Equations. 

Using the notation defined at the start of this section, and omitting the limits of the 

summations, these partial derivatives may be expressed as 

f___ 
dd, 

=___.£ u2-i£ uxy0-2$X "_yi-2yC "i)V2«__C "itt2 4-24 

~=2dX u2
2-i£ u2y0-2SX W-2SJ2 W ^ i E «,«_ 4-25 

a/. 

aj5. 
nr=2Sx^y

2
+2Y:y0yl-2S2Y:yly2-2dxY:u1yx-2d2Y:u2yx 4-26 

a/. 
-/ ̂ E y 2

2 + 2 £ y#_+2&£, yxy2-2axJ: uxy2-2d2Y: u2y2 4-27 

Hence the Least Squares Equations m a y be expressed as 

^ o 

E^o 

-EWi 

- ^ 2 

YM,2 YMXU2 -Yuxyx " ^ " l ^ 

TMXU2 YM2 -^M2yx -Eu-y-

-Euxyx -Ytit^ T.y2 Tyxy2 

-Tuxy2 -EK-V. Y.yxy2 Yjy2 

ai 

"2 

k 
h 

4-28 

In this form the equations are basically the same as those used by Kalman [1-1] in his 

earlier work. Kalman however included a time "weighting function ", w(kT), in order to give 

greater weight to the more recent measurements. Thus Kalman replaced the matrix of 

correlation functions by one whose elements he referred to as " pseudo-correlation functions". 

This enabled his estimator to deal with a slowly varying system. Kalman solved the resulting 
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set of equations directly using the Gauss-Seidel Method [1-1]. 

_£ A N O N - R E C U R S I V E S O L U T I O N O F T H E L E A S T S Q U A R E S E Q U A T I O N S 

The Least Squares Equations, given above as Equation 4-23, are a set of four 

simultaneous equations in four unknowns. The four unknowns are the coefficients or 

parameters of the system that are to be estimated. These simultaneous equations are presented 

in matrix form as Equation 4-28, which is now rewritten as Equation 4-29. 

b = &fi 4-29 

where 

R is a symmetrical, 4x4 matrix, known as the Information Matrix 

8 is the 4x1 Parameter Vector, whose elements are the coefficients to be 

estimated 

b is a 4x1 column vector, given by: 

bj = \Luxy0 EK^ -Ey-yj ~Yy^2] 4-30 

One method of solving Equation 4-29 is by Lower-Upper (LU) Factorisation [4-5] of 

the Information Matrix, i.e. 

R = LU 4-31 

Where the elements of the Lower Diagonal and Upper Diagonal Matrices are chosen 

such that: 

R = 

/oo roi 

rio r n 

r20 r21 

r30 r31 

r02 

r!2 

r22 

r32 

r03 

ri3 

r23 

r33 

"l 

'io 

'20 

*30 

0 

1 

'21 

'31 

0 

0 

1 

*32 

0] 
0 

0' 

lj 

Moo % uca w03 

0 uxx uX2 un 

0 0 u22 K23 

0 0 0 u. 33 

From Equation 4-29 the Least Squares Equations can then be rewritten as 

LU.e_ = b 

Pre-multiplying by the inverse of L results in 

4-32 

4-33 
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L-l.LU& = Ll.k = £ 4-

where 

c - _/.8 
4-35 

and since 

then 

L.L~\b = L Q 

b = Lc 

This equation may be used to find the elements of the vector _ 

4-36 

4-37 

1 0 0 0 

lxo 1 0 0 

'20 '21 1 0 

TO *31 3̂2 *. 

co 

C2 

C3 

= 

K 
*_ 

h 

-

r04 

ri4 

r24 

r34 

Where the last column vector results from expressing the original least squares 

equations in the form of a partioned matrix [jg 1 h] • 

Once the elements of c have been calculated, then the equation : 

j_Z..i=c 

may be used to solve for the parameter estimates, 8, as per Equation 4-40. 

4-38 

4-39 

Moo Moi uaz M03 

0 un u12 un 

0 0 K22 K-3 

0 0 0 u 33 

f6° 
81 

e2 

k 

'"OO r01 r02 r03 

0 Un Un „,3 

0 0 M^ «M 

0 0 0 «, 33 

k 
0. 

*e2 

k 

co 

cl 

C2 

Cl 

4-40 

Appendix C contains a list of the sequence of equations required to use L U 

Factorisation to solve a set of four equations in four unknowns. Appendix E contains the 

source code of a program performing Parameter Estimation, using this method. 
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4 4 A R E C U R S I V E S O L U T I O N T O T H E L E A S T S Q U A R E S E Q U A T I O N S 

THE NEED FOR RECURSIVE ALGORITHMS 

In practical self-tuning controllers it is necessary for the parameter estimation to be 

performed in real-time. The time available for the required calculations will depend upon the 

sampling rate of the controller, which in turn will depend upon the speed of response of the 

system to be controlled. The required calculation effort will depend upon the complexity of the 

model used. For linear models the complexity is determined by the order of the model. The 

adoption of recursive solutions of the Least Squares Equations is one means of reducing the 

calculation time required. 

It was found that, for the low order models used in this thesis, that recursive solutions 

do not offer a significant advantage in the reduction of calculation burden. 

YOUNG'S APPROACH TO A RECURSIVE ALGORITHM 

Young [4-6] shows how to develop a recursive solution of the Least Squares Equations. 

The advantage of his approach is that it requires only the simple manipulation of matrices, and 

avoids the need to invoke the Matrix Inversion Lemma [4-7]. 

Starting with the least squares equations written in the form: 

R 6 = b 4-41 
k k k 

i.e. as per Equation 4-29, but now with a subscript indicating that these terms should 

have their elements updated to contain the signals and estimates available immediately after the 

instant t = kT seconds. It can be seen that 

8. = R ~l.h = P.b 4-42 
v* *\t *k ^k^k 

where the inverse of the Information Matrix, the Error Covariance Matrix is denoted 

by _\ . The recursive solution requires a means whereby this "P" matrix may be updated at 

each sampling instant. This updating of the P-Matrix is considered next. 
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A data vector, jjt , is now introduced. This vector is defined such that: 

V = K «2 -yi -yj
 4"43 

It should be noted that all the elements of jj; are known prior to the sampling time at 

t = kT. 

The information matrix, Rk, is updated using the equation: 

*k - **-i
+W "* 

All of the elements of Rk are therefore available prior to t = kT. 

The inverse of the P-matrix (i.e. the inverse of the Error Covariance Matrix ) is 

updated by: 

p x = p -i+jt .it T 4-45 
- * * - J f c - l • * • ) - • * • * : 

By premultiplying this equation by _\ , and then postmultiplying by P_kX the following 

equation is obtained: 

P = P +P .j|r jk T.P 4-46 
H-i *-* *-*-*•*•*-* —t-i 

Then by postmultiplying by ik, 

P .it - P .it +P .it ._t T.E .it 4-47 

The equations may be made less cumbersome by the definition of the vector, J^ and 

scalar D, where 

W = E .Jt 4-48 

and 

D - 1+*/.-„.*, 4-49 

As yet this derivation does not indicate how to determine the contents of P , 

however, from Equations 4-43,4-48 and 4-49 it is apparent that sufficient measurements are 
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available at t = (k-l)T to enable both WL and n to be calculated. 
k 

Combining equations 4-47 and 4-49 it can be seen that: 

KAk - £*V> 4"50 

Postmultiplying by Z>_1.jk T.E , results in 

E -Jt .J_»-1.jfe T.P = P .Ur .Jt T.E 4-51 

The right-hand side of Equation 4-51 may be expressed as the change required in the 

Covariance Matrix, as per Equation 4-46. Equation 4-51 may thus be rewritten as: 

Provided 2^ is known this equation permits the P-matrix to be updated using 

information made available at time t = (k-l)T. i.e. 

£ = E -W J)~l._i TP 4-53 
*-* *-k-i —k * * ~k-i 

The above derivation shows how the P-matrix may be updated. The expression for P. 

as per Equation 4-53 may be substituted into Equation 4-42 in order to obtain the latest 

parameter estimates: 

& - E .b -W -O"1.* T.E •_. 4-54 

where b. may be updated by 

K = V,+Vo 4-55 

and hence 

This equation enables the estimates to be updated once y0 has been measured at time 

t = kT. Next it will be shown how to make this update process recursive. By inspection of 

Equation 4-42 it can be seen that 
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\-i - A-A-i 4-57 

and hence Equation 4-56 may be rewritten as: 

fi* = Vi^^^-yo-V^i-^^A-yol 4~58 

Combining Equations 4-49 and 4-58 results in: 

«. • ^.+«_D",-k-*/-«M]
 4-59 

Since the P-matrix remains symmetrical at all times, Equation 4-48 may be rewritten as 

W T = jt TE 4-60 

Consequently the scalar D may be found from: 

D - i+urr.jt 4-6i 

and from Equation 4-53 the P-matrix may be updated by: 

p = p -D-l.W.Wj 4-62 
k k-l k k 

The RLS algorithm used to explore the performance of this method may be 

summarised as follows: 

i) Calculate the Error in Prediction, y0-jk,
 r.8 

ii) Update ___" , using Equation 4-48 

iii) Calculate D using Equation 4-61 

iv) Calculate 6 using Equation 4-59 

v) Update E., using Equation 4-62 

To develop a practical RLS estimator based upon these equations it is necessary to 

initialise the values of both the P-matrix and the data and parameter vectors. The initial P-

matrix used throughout this work consisted of an identity matrix of the required dimensions, 

multiplied by a scalar value of 10000. The elements of the data and parameter vectors were 

always initialised with zero values. In practice it would be sensible to initialise the parameter 

vector with the best possible 'guess' at the true values. 
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C H A P T E R 5 C O M P A R I S O N O F D I F F E R E N T S O L U T I O N S O F T H E L E A S T 

SQUARES EQUATIONS 

5_1 REVIEW OF SOME ALTERNATIVE METHODS OF SOLUTION 

In Section 4-2 it was shown that the Method of Least Squares requires the solution of a 

set of simultaneous equations. For the second order model (as per Equation 4-23), it is 

necessary to solve a set of four equations in four unknowns, i.e. one unknown for each 

parameter to be estimated. 

Two methods of solution were selected, these solutions are outlined in Sections 4-3 and 

4-4, and are known as Lower-Upper (LU) Factorisation and Recursive Least Squares (RLS) 

respectively. Their initial selection was based upon their low computation requirements, 

suggesting a short execution time suitable for high sampling rate, real-time parameter 

estimation. The selection of these two methods followed a brief literature review of alternative 

methods, and some programming to enable different direct methods of solution to be 

compared. 

SOME DIRECT METHODS OF SOLUTION 

In addition to LU Factorisation a number of other "direct" solutions of the Least 

Squares Equations were considered. These were: 

Gaussian Elimination [4-5,5-1] 

Gauss-Jordan Method [4-5,5-2] 

Cramer's Rule [4-5] 

Given a perfect computer these direct methods should all produce the same solution, in 

so much as they are merely different sequences of mathematical operations performed to solve 

the same set of Least Squares Equations. The initial selection of the preferred direct method 

did not consider the numerical properties of the different algorithms. The preferred, direct 
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method was therefore that with the shortest execution time. 

CRAMER'S R U L E , G A U S S I A N A N D G A U S S - J O R D A N ELIMINATION 

Cramer's Rule is the most computationally tedious of the above direct methods [4-5,5-

3], and hence was not considered further. 

Gaussian Elimination permits a more rapid solution of a set of simultaneous equations 

than does the Gauss-Jordan Method [5-4,5-5]. 

LU FACTORISATION 

A number of programs were written to compare the computation time required by the 

Gaussian Elimination, Gauss-Jordan, and LU Factorisation Methods. The comparisons were 

only made for the solution of four equations in four unknowns. The algorithm with the shortest 

execution time was that using LU Factorisation. 

ITERATIVE METHODS OF SOLUTION 

As an alternative to the "direct" methods, there are a number of iterative methods, e.g. 

Jacobi Iteration and the Gauss-Seidel Method [5-2,5-3]. These methods are useful for problems 

with a large number of equations, however for four equations in four unknowns Jacobi 

Iteration requires more computation time than does Gaussian Elimination [5-6]. Examination of 

Kalman's use of the Gauss-Seidel Method [1-1] showed this method to be no quicker than a 

direct solution. 
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5_2 BASES OF COMPARISON OF LU FACTORISATION AND RLS 

METHODS 

FACTORS AFFECTING THE SELECTION OF THE PREFERRED METHOD 

In comparing the two methods of solution it is necessary to identify the criteria by 

which their relative performances are to be judged. The following factors all have some 

influence upon the comparison: 

i) the required computation (i.e. execution) times for each method 

ii) the rates of convergence of the estimates 

iii) the bias of the estimates (i.e. the difference between the true values of the 

parameters and the asymptotic values of the estimates) 

iv) the sensitivity of the estimators to noise 

v) the "richness" of the input signal (i.e. the ability of the selected input signal to 

provide adequate excitation of the plant for satisfactory system identification to 

be possible). 

vi) the initial values given to the estimator variables, and especially the initial 

"guessed" values of the estimates. 

vii) the sampling period of the estimator. 

viii) the stability of the estimator. 

THE SELECTION OF COMPUTER SIMULATION AS THE BASIS OF THE 

COMPARISON 

There are three means whereby the different parameter estimators may be compared: 

i) using a real system 

ii) using an analogue computer to simulate a real system 

iii) by a software simulation of a real system. 

The first option, using a real system, has the major disadvantage that real systems have 
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non-linear behaviour. This option was therefore rejected, since any anomalies detected in the 

comparison may be attributable to the shortcomings of the mathematical model of the plant, 

rather than the Least Squares Algorithm being tested. 

The second option, using an analogue computer, should result in the plant behaving 

linearly. However there still remains the problem of parameter uncertainty and drift as a 

consequence of the tolerances and drift of the components of the analogue circuitry. 

It was therefore decided that the parameter estimation methods should be compared by 

means of software simulation. The programs used were coded in Occam2 [5-7,5-8]. Appendix 

E lists examples of the source code of the simulation programs. The simulations used an 

invariant, discrete-time system, such as that described by the ARM A model of Equation 4-18. 

Selection of the following arbitary transfer function, GJs), enabled the true 

parameters, 8_r - [ax a2 bx b2] to be calculated. 

G(S) = -5-5- 5-1 
' s.is+1) 

The plant pole was selected so as to provide a normalised pole location of one radian 

per second. The true parameters were determined using Equations 4-13 to 4-16 inclusive. This 

is the major advantage of basing the comparison upon a computer simulation, since the 

estimates may then be compared with these "true" parameter values. 

SOME COMMENTS ON THE SIMULATION PROGRAMS 

The true parameters ej were used to generate the next output signal of the simulated 

Plant JV 

y0„ - axux + a2u2 - bxyXn - bj^ + n0 5-2 

where n0 is an element of the disturbance "noise" signal sequence {n(kT)}, 

superimposed onto the output signal sequence {y(kT)}. The output values have the added 
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subscript, n, to denote that these signals were contaminated by the previous elements of the 

sequence {n(kT)}. 

The noise signal was produced from a random number generator. Use was made of a 

TDS library procedure [5-9] that used a pseudo-random binary sequence (PRBS) to generate a 

value in the range of zero to one. Subtraction of 0.5 from these values, gave a random number 

in the range of -0.5 to 0.5 (i.e. zero mean). This procedure resulted in the random sequence 

having a flat amplitude probability distribution over its range. Noise in real systems is expected 

to have a Normal (or Gaussian) Amplitude Distribution [5-10]. The simulation programs used 

the sum of twelve consecutive outputs of the above procedure to generate each element of 

(n(kT)}. This summation offered the following advantages :-

i) a better approximation to a Gaussian Amplitude Distribution 

and ii) a greater range in the amplitude of the noise signal. A summation of 

twelve values results in a variance of 1.0 in this case. 

The parameter estimators attempted to estimate 8 by the use of the estimated 

parameters £r = [A A $ $], using the One-Step Ahead Predictor y0, such that: 

y0 - &xux + a2u2 - SxyXn - 6^ta
 5"-

It should be noted that in the simulations the noise sequence (n(kT)} was not only fed 

to the estimator, but was also coupled back via the Data Vector it. into the simulated plant. 

The noise sequence thus acted as a disturbance signal superimposed on the output signal, rather 

than as measurement noise (i.e. random errors in measurement). 

The simulations all used one thousand repeat runs for each combination of sampling 

rate, signal-to-noise Ratio (SNR), and input signal. Each run commenced with the estimates of 

the parameters set to zero (i.e. there was no assumption of prior knowledge of the parameter 

values). The different runs for a given set of sample rate, SNR, and input signal, differed only 

in the sections of the P R B S used in each. 
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At the end of each simulation of one thousand runs, for each sampling instant within 

the period covered by each run, there were one thousand estimates of each parameter produced 

by each estimator. The two different estimators being compared were provided with identical 

signal inputs. 

The TDS Library does not provide routines to facilitate the plotting of graphical results 

[5-9]. The simulation programs were therefore designed to write their output to a DOS Text 

File. This file was then imported into a spreadsheet, which was used to generate the graphs 

used in the subsequent comparisons [5-17]. 

COMPUTATION TIME 

The T800 Transputer enables parallel processes to be executed at one of two different 

priority levels. Processes executed with the high priority have access to a clock of one 

microsecond period. This clock was used to measure the execution times required by the 

various algorithms. The execution time of any block of code can thus be measured to a 

resolution of one microsecond. 

RATE OF CONVERGENCE OF ESTIMATES 

This characteristic was examined by plotting the decrease of the normalised Root Mean 

Square Errors (RMSE) of the estimates as the number of samples available to the estimator 

increased. The use of a simulation, and hence the availability of the true parameter values, 

enabled the RMSE to be determined, rather than merely the Standard Deviation of the 

estimates at each sampling instant. The RMSE is a preferred measure of estimate spread due to 

the expectation of bias in the estimates [4-4]. The results are presented in a normalised form, 

obtained by dividing the RMSE by the known true value of the relevant parameter. 

As the number of samples available to an estimator increases, then the value of the 

estimate should reach some final value, the "Asymptotic Value" of the estimate [5-11]. The 
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difference between this Asymptotic Value and the true value of the parameter is the bias of the 

estimate. If the bias is zero, then the RMSE will equal the Standard Deviation of the estimate 

about the true value of the parameter. 

The following points are made to aid in interpreting the results presented below as 

plots of percentage RMSE against time: 

i) For a Normally Distributed Population it is well known [5-12] that 68.26% of 

the population will fall within one standard deviation from the population mean. 

Similarly 95.44% and 99.74% of the population will lie within two and three standard 

deviations from the mean, respectively. 

ii) Hence an unbiassed estimate with a normalised percentage RMSE of X% 

would suggest the following confidence levels in that estimate: 

68.26% probability of the estimate being within +/- X% of the true value 

95.44% probability of the estimate being within +/- 2X% of the true value 

99.74% probability of the estimate being within +/- 3X% of the true value. 

Whether or not the estimators produce unbiassed estimates is the subject of the 

following: 

BIAS OF THE ESTIMATES 

Ideally the plots of Normalised RMSE against time should show the RMSE tending 

towards zero as the number of samples available to the estimator increases, i.e. after an 

adequately large number of samples the estimates should tend towards the true values of the 

parameters. In practice there is a non-zero, asymptotic value to which the RMSE converges. 

This non-zero value may result from two factors: 

i) the estimates never settle exactly on the true value, but due to noise, fluctuate 

about the true value. 

ii) bias in the estimates, i.e. the mean value of the estimates differs from the true 
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value of the parameter. 

To detect any bias the mean of the estimates is compared with the true value. If the 

mean decreases monotonically towards the true value then the estimates are unbiassed. In 

Figures 5-5 and 5-6 plots are presented showing the difference between the mean of the 

estimate and the true value for each parameter. This difference or error was normalised by 

dividing the error by the true value of the parameter. 

SENSITIVITY OF THE ESTIMATORS TO NOISE 

The simulation programs were repeated for several different levels of added output 

noise. This was achieved by a simple, linear scaling of the n0 term of Equation 5-2. 

The Root Mean Square (RMS) value of the added noise was thus easily calculable. The 

resulting signal-to-noise Ratio (SNR) however was only determinable at the end of the last run 

of the simulation. The definition of SNR used here is given by: 

SNR - 201og10*
M5 of noise free output ^ 5_4 

RMS of added noise 

In order to calculate the SNR the programs simulated two systems. The first of these 

systems was noise free, and was used solely to determine what the RMS value of the system 

output would be in the absence of noise. 

RICHNESS OF THE INPUT SIGNAL 

Two classes of input signal were used by the simulation programs: 

i) A Stochastic Input Signal 

The stochastic input signal was generated using one of the two random number 

generator procedures provided in the TDS Library [5-9]. Separate random number 

procedures were therefore available for generating both the noise sequence (n(kT)} and 

the stochastic input signal {u(kT)}. The use of separate PRBS procedures, using 
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different seed values and having different sequence lengths, ensured that there was no 

correlation between the stochastic input signal and the output noise. 

ii) Test Input Signals 

The simulations were run using a variety of test input signals, all of which 

were based upon rectangular pulses. These consisted of either single pulses or square 

wave pulse streams. Responses to a number of different pulse widths were considered. 

INITIAL VALUES OF THE ESTIMATOR VARIABLES 

In all of the simulation programs the estimates were initialised to have values of zero. 

There was no assumption of prior knowledge of the values of the unknown parameters. 

In the case of the RLS Method, the P-Matrix was always initialised as an Identity 

Matrix scaled by a factor of 10000. No other scaling factors were investigated. 

SAMPLING PERIOD OF THE ESTIMATOR 

The literature of Adaptive Control Theory contains numerous "Rules of Thumb" for 

selecting an acceptable sampling rate. Many of these guidelines are based upon the closed loop 

bandwidth of the system [e.g. 5-13,5-14,5-15]. Alternative time constants of the system have 

been suggested as a basis for the selection of the sampling rate, e.g. the 95% Settling Time of 

the system [5-16]. 

In all simulations the plant was modelled with a real pole at wp = 1 radian per 

second. Different sample periods were considered, selected so as to provide a range of ratios 

of sampling period to the time constant associated with this pole. The results presented here are 

for: 

i) T = 0.2 seconds, considered to be a "standard" sampling rate 

and ii) T = 0.05 seconds, considered to be an "high" sampling rate. 
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STABILITY OF TH E ESTIMATOR 

The stability of each estimator may be judged by examining the convergence of the 

estimates towards some asymptotic value. Loss of stability may not be noticed from the 

examination of the mean of the estimates, but should be clearly visible from the spread of the 

estimates. 

5_3 THE COMPARISON OF LU FACTORISATION AND RLS METHODS USING A 

STOCHASTIC INPUT SIGNAL AT A STANDARD SAMPLING RATE 

RESULTS OF THE SIMULATIONS 

Figures 5-1 to 5-14 inclusive present some of the results of using a stochastic input 

signal to excite the system being identified. The results may be summarised as follows: 

TABLE 5-1 S U M M A R Y OF PRESENTED RESULTS OF ESTIMATION OF A R M A 

COEFFICIENTS USING STOCHASTIC INPUT SIGNALS 

FIGURE 

5-1 

5-2 

5-3 

5-4 

5-5 

5-6 

5-7 

5-8 

5-9 

5-10 

PARAMETER T 

al 

a2 

bl 

b2 

al 

bl 

al 

bl 

al 

bl 

(s) 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

Y-AXIS 

VARIABLE 

%RMSE 

%RMSE 

%RMSE 

%RMSE 

%BIAS 

%BIAS 

%ERROR 

%ERROR 

%RMSE 

%RMSE 

No. of 

RUNS 

1000 

1000 

1000 

1000 

1000 

1000 

1 

1 

1000 

1000 

RUN SNR 

LENGTH (dB) 

500T 

500T 

500T 

500T 

500T 

500T 

500T 

500T 

500T 

500T 

47.4 

47.4 

47.4 

47.4 

47.4 

47.4 

43.9 

43.9 

53.4,45.4,39.4 

53.4,45.4,39.4 
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Estimation of b1, T = 0.2 sees, Stochastic Input, 1000 Runs 
Four Parameter LU Factorisation and RLS Methods 
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Estimation of a1, T = 0.2 sees, Stochastic Input, 1000 Runs 
Four Parameter LU Factorisation and RLS Methods 
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Estimation of a1, T = 0.2 sees, Stochastic Input, 1000 Runs 
Four Parameter LU Factorisation and RLS Methods 
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C O M P U T A T I O N T I M E 

The program code required for solution using the RLS Method was measured to have 

an execution time of 93 microseconds. The corresponding time for the LU Factorisation 

Method was 112 microseconds. 

RATE OF CONVERGENCE OF ESTIMATES 

Figures 5-1 to 5-4 inclusive all show the decline in the percentage RMSE with the 

increase in samples to the estimator. Over the period covered (i.e. the first 500 sampling 

periods) the percentage RMSE falls with a reducing rate of decline. 

The period covered is not adequate to show whether or not these curves tend to a value 

of zero, or to some finite asymptotic value. In terms of the problem considered in this thesis, 

namely real-time parameter estimation based on relatively few samples, the final percentage 

RMSE asymptotic value is not in itself of interest. The source of the RMSE is important, 

whether it is primarily due to a bias in the estimates, or due to spreading of the estimates by 

noise. Knowledge of the significance of these two contributions to the RMSE is desirable as a 

prerequisite to attempts to reduce the estimate errors. 

BIAS OF THE ESTIMATES 

Figures 5-5 and 5-6 show the normalised, percentage bias in the estimates of 

parameters al and bl. These plots were derived from the same simulations used to obtain 

Figures 5-1 to 5-4 inclusive. 

From Figures 5-5 and 5-6 it is not clear whether or not both estimates will finally 

achieve a percentage bias value of zero. However, these Figures do indicate that the bias is less 

than the final values of percentage RMSE in Figures 5-1 and 5-3. Accordingly the main 

contributor to the final percentage RMSE values of the simulations is shown to be the 

spreading of the estimates by noise. 
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Figures 5-7 and 5-8 show the normalised percentage error in the estimates of al and bl 

respectively. These Figures use the data from one run of the full simulation of one thousand 

runs and are included to show typical fluctuations in the estimates as the number of samples 

increases. For the SNR considered, i.e. 43.9 dB, it can be seen that even after the 300th 

sample period that both estimates are capable of variations of over one percent. 

Figures 5-6 and 5-8 indicate that there may be bias in the estimation of bl. The results 

presented are inadequate to draw a firm conclusion on this. 

The percentage bias and percentage error plots are not presented for the estimates of a2 

and b2. In all the tests conducted it was found that the Moving Average (MA) Parameters, al 

and a2, always behaved in a similar manner, with al always more accurately estimated than 

a2. Likewise, the Auto-Regressive (AR) Parameters, bl and b2, always behaved in a similar 

manner to one another, with bl always more accurately estimated than b2. 

SENSITIVITY OF THE ESTIMATORS TO NOISE 

Figures 5-9 and 5-10 are included to illustrate the effect of the SNR upon the accuracy 

of the estimates. A decrease in the SNR resulting in a decrease in the accuracy of the 

estimates. Neither method offered an appreciable advantage over the other in dealing with the 

added noise. However in Figure 5-10 it should be noted that the RLS Method tends towards a 

smaller asymptotic value than does the LU Factorisation Method. 

Figures 5-1 to 5-8 inclusive were all based on simulations using the one scaling factor 

in the generation of the noise sequence {n(kT)}. The different SNR figures, i.e. 47.4 and 43.9 

dB, are thus indicative of the range of different SNR values for each run within any one 

thousand runs of the simulation. 

RICHNESS OF THE INPUT SIGNAL 

The stochastic input signal in the above simulations was changed at the sampling 
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instants of the estimators. Thus the spectral content of this signal, and hence its richness, was 

dependent upon the chosen sampling rate of the estimators. 

SAMPLING PERIOD OF THE ESTIMATOR 

Due to the dependence of the input signal upon the sampling rate these simulations 

were not suitable to examine the effects of the ratio of system time constant to estimator 

sampling period. 

STABILITY OF THE ESTIMATOR 

Figures 5-3, 5-4 and 5-10 all show splitting of the traces of RMSE vs sample time. In 

all cases this splitting is observed towards the end of the simulation, and in all cases the RLS 

Method produced the lower trace. 

This splitting was subsequently found to be a manifestation of a problem of instability 

with the LU Factorisation Method as implemented for these simulations. This problem is 

discussed in Section 5-5, where further results more clearly illustrate the nature of this 

problem. 

SUMMARY OF SIMULATIONS USING A STOCHASTIC INPUT SIGNAL AND 

ESTIMATOR WITH SAMPLING PERIOD OF 0.2 SECONDS 

From the results considered so far, the RLS Method offers two distinct advantages: 

i) An execution time of 93 microseconds, compared to 112 microseconds required 

by the LU Factorisation Method. 

ii) Superior long term convergence of the estimates of the Auto-Regressive 

Parameters, bl and b2. 

Other observations based upon these results are: 

i) The plots suggest that for rapid, real-time parameter estimation there is little to choose 
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between the quality of the estimates produced by the two methods. Whilst the RLS 

Method initially produces grossly inaccurate estimates, the LU Factorisation Method 

has to remain dormant until the Information Matrix is of Full Rank. By the time that 

the LU Factorisation Method is available, the RLS Method is producing estimates of 

comparable accuracy. 

ii) The Moving Average (MA) Estimates, ax and d2, evolve in a similar manner to one 

another. The Auto-Regressive (AR) Estimates, $ and $ , evolve in a similar manner 

to one another. 

iii) The coefficients of the more recent signals (i.e. al and bl) are more accurately 

estimated than the corresponding coefficients of the earlier signals (i.e. a2 and b2 

respectively). 

iv) The estimates of the AR coefficients are more accurate than those of the MA 

coefficients. 

v) There is no significant bias detected in the estimation of al. The results do suggest a 

small bias in the estimation of bl. 

vi) For the SNR and test length (i.e. 500 sample periods) considered, the errors in the 

estimates are predominantly attributable to a "large" standard deviation of the 

estimates, rather than bias. 

5_4 THE COMPARISON OF LU FACTORISATION AND RLS METHODS USING A 

STOCHASTIC INPUT SIGNAL WITH AN INCREASED SAMPLING RATE 

RESULTS OF SIMULATIONS 

Simulations using a sample period of 0.05 seconds produced different results and 

conclusions. Some typical results are presented in Figures 5-11 to 5-14 inclusive. 
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TABLE 5-2 SUMMARY OF RESULTS PRESENTED OF ESTIMATION OF ARMA 

COEFFICIENTS USING AN INCREASED SAMPLING RATE 

FIGURE COEFF. T Y-AXIS No. of RUN SNR 

5-11 

5-12 

5-13 

al 

a2 

bl 

5-14 b2 

(s) VARIABLE RUNS 

0.05 %RMSE 1000 

0.05 %RMSE 1000 

0.05 %RMSE 1000 

0.05 %RMSE 1000 

LENGTH (dB) 

50T 42.0,27.9 

50T 42.0,27.9 

50T 42.0,27.9,14.0 

50T 42.0,27.9,14.0 
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RATE OF CONVERGENCE OF ESTIMATES 

i) In estimating the MA Coefficients (al and a2) the LU Factorisation Method 

provided more rapid convergence than the RLS Method, for the case of an 

SNR of 42.0 dB. 

ii) In estimating the AR Coefficients the LU Factorisation Method again provided 

more rapid convergence than the RLS Method. 

iii) In estimating the AR Coefficients the RLS Method provided more rapid 

convergence as the SNR was reduced. 

The following comments are an interpretation of these results: 

SENSITIVITY O F T H E ESTIMATORS T O NOISE 

The improvement of the estimates of bl and b2 as the noise is increased is a 

consequence of the means by which the output, noise, disturbance signal was modelled. The 
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sequence {n(kT)} was not only presented to the estimator, but also fed back into the simulated 

process through the regressor vector jjr. The noise sequence was thus able to excite the Auto-

Regressive Section of the process model. It is this increased excitation that resulted in a 

decrease in SNR resulting in an improvement in the accuracy of the AR estimates. 

RICHNESS OF THE INPUT SIGNAL 

The use of a short sample period, T == 0.05 seconds, resulted in a poor excitation 

signal for the system. The stochastic input signal being of zero mean, and changing at every 

sampling instant, failed to drive the system output far from zero. Simulations using sample 

periods of 0.2 and 0.5 seconds produced larger variations in the output signal of the system. It 

is concluded that the LU Factorisation Method gives superior performance (i.e. more rapid 

convergence) when presented with a small number of samples of such poor signals. No attempt 

was made to improve the performance of the RLS Method by modification of the initial scaling 

of the Error Covariance Matrix. 

SAMPLING PERIOD OF THE ESTIMATOR 

The superior performance of the LU Factorisation Method with a short sample period 

is significant. As noted earlier, an important component of this thesis is to consider the effects 

of increasing the sampling rate as a means of improving both the real-time convergence and 

accuracy of the estimates. 

5_5 THE COMPARISON OF LU FACTORISATION AND RLS METHODS USING 

TEST INPUT SIGNALS 

DESCRIPTION OF SIMULATIONS USING TEST INPUT SIGNALS 

Sections 5-3 and 5-4 dealt with simulations using stochastic input signals. This section 

presents results from simulations using test input signals based upon rectangular pulses.These 
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simulations used the same sampling periods (including T = 0.2 and 0.05 seconds) and same 

plant transfer function ( as per Equation 5-1) as those with a stochastic input signal. 

The main advantages of using a test input signal are: 

i) to enable an investigation of the effects of the richness of the input signal to be 

made. This was done by using single pulses of different width, and by using 

multiple pulses as the test signal. 

ii) to enable a simple investigation of the effects of the chosen sampling rate.1 

The simulations using test input signals had the following restrictions: 

i) The pulses of the different test input signals were to have transitions that were 

synchronised with all three estimator sample clocks. For the estimator sampling 

rates considered here this restriction was met by ensuring that all pulses had 

widths equal to an integer number of seconds. 

ii) The ARMA Process was operated at the same rate as the estimator with the 

shortest period (i.e. 0.05 seconds). The ARMA Process was the same as that 

described by Equation 5-2. 

All of the estimators were therefore presented with two signal sequences from the 

'In the earlier simulations, using stochastic input signals, the input signal was changed at the 
same rate as the sampling rate of the estimator. This resulted in the spectral content of the input 
signal being dependent upon the selected sample period of the estimator. To examine the effects of 
chosen sampling rate using a stochastic input signal would require two 'noise' sequences. The first 
would have the same periodic time as the sampling period of the estimator, and would model the 
"measurement" noise, and as such would only be fed into the estimator itself. 

The second noise sequence, of different periodic time, must be independent of the 
estimator sampling rate. This second sequence would model noise and disturbances within the 
A R M A Process. Accordingly the elements of this sequence would be fed into both the estimator 
and the A R M A Process itself. This second sequence entering the A R M A Process via the 
Regressor Vector. 

Such an experiment would be complex due to a number of problems, e.g. 
i) the relative scaling of the amplitudes of the two noise sequences 

ii) the definition of S N R 
iii) the selection of a ratio of estimator sampling period to the periodic time of the 

A R M A Process. 
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A R M A Process. These sequences represented the input and output signals (u(kT)} and 

{y_(kT)}, with T = 0.05 seconds. The noise sequence, {n(kT)}, thus had a period of 0.05 

seconds in these simulations. 

The estimators with a sample period of 0.05 seconds used all elements of the signal 

sequences. The estimators with a sample period of 0.2 seconds used every fourth element of 

each sequence. The estimators with a sample period of 0.5 seconds used every tenth pair of 

elements. 

The coefficients of the ARMA Process, Equation 5-2, may be calculated for a given 

periodic time from Equations 4-13 to 4-16 inclusive, and Equation 5-1. The results of such 

calculations are presented in Table 5-3 below: 

TABLE 5-3 SHOWING THE VALUES OF THE COEFFICIENTS AT THE DIFFERENT 

SAMPLING RATES 

T al a2 bl b2 

(sees) 

0.5 0.0533 0.0451 -1.6065 0.6065 

0.2 0.0094 0.0088 -1.8187 0.8187 

0.05 0.0006 0.0006 -1.9512 0.9512 

Clearly the sensitivity of the prediction y0 (as per Equation 5-3) to the different 

coefficients will change as T is changed. To circumvent this difficulty the comparison is made 

upon a consideration of the estimate of the finite pole location of the plant of Equation 5-1. 

This plant was chosen to have this unknown pole located at 1 radian per second. 

The selection of the pole location as the parameter to be estimated offers a number of 
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advantages: 

i) the mathematical model suggests that the value of p should be independent of 

the sampling rate of the estimator. 

ii) the value of p is highly significant in terms of the behaviour of the 

servosystem. 

iii) the use of a single parameter (i.e. p) as the basis of comparisons clarifies the 

task of presenting the results. 

The estimate of the pole location,^, may be found using the estimate of the parameter 

_»2, as per Equation 4-16, i.e. 

P = ---In K 5"5 

A further comparison was made based upon the magnitude of the error in the One-Step 

Ahead Prediction made by each estimator. It should be remembered that the Least Squares 

Estimators adjust the model coefficients so as to minimise the sum of the square of this 

Prediction Error. 

TEST INPUT SIGNAL DEFINITIONS 

The test input signals used were either single square wave pulses, or repeated square 

waves, all switched between levels of +5.0 and +0.01. The single pulses took the high value 

for the duration of the pulse. The square waves had their first half-cycle at the high value, with 

transitions once every second. 

RESULTS OF SIMULATIONS 

Figures 5-15 to 5-29 inclusive present the results of the simulations using a variety of 

test input signals and estimator sampling rates. 

Figures 5-15 to 5-24 inclusive show the process by which the plant pole at 1 radian per 
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second has its location estimated. Each trace is based upon one thousand runs of the 

simulation, with each run using a different section of the noise sequence {n(kT)}. All of the 

one thousand runs of each simulation used the same scaling factor in determining the amplitude 

of this noise sequence. The traces shown in Figures 5-15 to 5-24 are: 

i) the Mean of the estimate of the pole location 

ii) the envelope of two standard deviations of these estimates either side of that mean. 

In all of the simulations using test input signals, it should be noted that the SNR is 

dependent not only upon the scaling factor of the noise sequence {n(kT)}, but also upon the 

chosen input signal. Accordingly the description of the significance of noise is not adequately 

described by the SNR value alone. In all of the simulations presented in Figures 5-15 to 5-29 

the RMS value of the noise sequence was held constant at 0.01. 

TABLE 5-4 P R E S E N T E D R E S U L T S O F ESTIMATION O F U N K N O W N P O L E ( M E A N 

+1-2 STANDARD DEVIATIONS) USING TEST INPUT SIGNALS 

FIGURE ESTIMATOR T SNR RMS INPUT METHOD 

5-15 

5-16 

5-17 

5-18 

5-19 

5-20 

5-21 

5-22 

5-23 

5-24 

(sees) 

0.2 

0.2 

0.2 

0.2 

0.2 

0.2 

0.5 

0.5 

0.05 

0.05 

(dB) NOISE 

47.8 0.01 

47.8 0.01 

61.1 0.01 

61.1 0.01 

64.9 0.01 

64.9 0.01 

64.9 0.01 

64.9 0.01 

64.9 0.01 

64.9 0.01 

SIGNAL 

1 sec pulse LU 

1 sec pulse RLS 

5 sec pulse LU 

5 sec pulse RLS 

2 sec sq wave LU 

2 sec sq wave RLS 

2 sec sq wave LU 

2 sec sq wave RLS 

2 sec sq wave LU 

2 sec sq wave RLS 
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FIGURE 5-16 ESTIMATION OF POLE LOCATION USING RLS METHOD AND A 
SINGLE, NARROW PULSE INPUT SIGNAL 
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Estimation of Pole at 1 rad/sec, Pulse Input of 5 sec width 
LU Factorisation, ARMA Process T = 0.05 sees. Estimator T = 0.2 sees 
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FIGURE 5-17 ESTIMATION OF POLE LOCATION USING LU FACTORISATION AND 
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Estimation of Pole at 1 rad/sec, Pulse Input of 5 sec width 
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FIGURE 5-18 ESTIMATION OF POLE LOCATION USING RLS METHOD AND A 
SINGLE, WIDE PULSE INPUT SIGNAL 
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FIGURE 5-19 ESTIMATION OF POLE LOCATION USING LU FACTORISATION AND 
A SQUARE WAVE INPUT SIGNAL 
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FIGURE 5-20 ESTIMATION OF POLE LOCATION USING RLS METHOD AND A 
SQUARE WAVE INPUT SIGNAL 
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FIGURE 5-21 ESTIMATION OF POLE LOCATION USING LU FACTORISATION 
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FIGURE 5-22 ESTIMATION OF POLE LOCATION USING RLS METHOD WITH A 
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RATE O F C O N V E R G E N C E O F ESTIMATES 

The Rate of Convergence of the estimates may be measured by considering the 

narrowing of the envelope produced by the +/- two Standard Deviations traces. To assist in 

this, the mean value of the estimate at time t = 24.2 seconds is taken to be the 'Final' value of 

the estimate. The Rates of Convergence may then be compared by measuring the time at which 

the " 4- 2 Standard Deviation" trace falls to a value double that of the 'Final' value. This time 

is described as "Convergence Time" in Table 5-5. 

The last three results listed in Table 5-5 (based on the results presented in Figures 5-

20, 5-22 and 5-24) indicate that as the estimator sample rate is increased both the Rate of 

Convergence of the estimates, and the accuracy of the 'Final' Value are improved. This result 

was subsequently attributed to the modelling of the noise process used in these simulations. 

TABLE 5-5 SUMMARY OF FINAL VALUES AND CONVERGENCE RATES FOR THE 

DIFFERENT SIMULATIONS USING THE RLS METHOD 

FIGURE ESTIMATOR INPUT 'FINAL' CONVERGENCE 

5-16 

5-18 

5-20 

5-22 

5-24 

PERIOD 

0.2 

0.2 

0.2 

0.5 

0.05 

SIGNAL 

Is pulse 

5 s pulse 

2s sq wave 

2s sq wave 

2s sq wave 

VALUE 

0.77 

0.90 

0.90 

0.43 

1.07 

TIME 

14.4 sees 

13.2 sees 

11.8 sees 

23.8 sees 

10.0 sees 

RICHNESS O F T H E INPUT SIGNAL 

The first three results listed in Table 5-5 (based on the results presented in Figures 5-

16, 5-18 and 5-20) indicate that the choice of the test input signal affects both the accuracy of 
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the 'Final' Value and the Convergence Rate of the estimates. The square wave train, with its 

multiple transitions being the preferred signal of the three considered. 

Figures 5-25, 5-26 and 5-27 illustrate how transitions in the input signal affect the 

error in the "One-Step Ahead Prediction". Whilst a small prediction error is desirable, 

suggesting as it does that the estimator has produced accurate estimates of the unknown 

parameters, it will be noted that the preferred input signal generates the largest perturbations in 

the prediction error. This is reasonable on two counts: 

i) It is this error that enables the estimator to improve the accuracy of its 

estimates. 

ii) The single pulse inputs provide a more steady output response from the system 

than that resulting from the square wave input signal. The more steady the 

output response, the more easily it may be predicted. 

TABLE 5-6 SUMMARY OF PRESENTED RESULTS OF MEAN VALUE OF ERROR IN 

ONE-STEP AHEAD PREDICTION 

FIGURE 

5-25 

5-26 

5-27 

5-28 

5-29 

ESTIMATOR T 

(sees) 

0.2 

0.2 

0.2 

0.05 

0.05 

SNR 

(dB) 

47.8 

61.1 

64.9 

64.9 

64.9 

RMS 

NOISE 

0.01 

0.01 

0.01 

0.01 

0.01 

INPUT 

SIGNAL 

1 sec pulse 

5 sec pulse 

2 sec sq wave 

2 sec sq wave 

2 sec sq wave 

METHOD 

RLS 

RLS 

RLS 

LU 

RLS 

Figures 5-25 to 5-29 inclusive show the magnitude (i.e. modulus) of the error in the 

One-Step Ahead Prediction of the system output. Again each trace indicates the mean of one 
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thousand runs of that simulation. 

S A M P L I N G P E R I O D O F T H E E S T I M A T O R 

As noted above, an increase in the sampling rate of the estimator may result in an 

improvement in both the accuracy and the Convergence Rate of the estimates. However caution 

is required to ensure that the Least Squares problem remains numerically well-conditioned. 

STABILITY OF THE ESTIMATOR 

Figure 5-23 clearly illustrates a simulation in which the LU Factorisation Method 

becomes unstable. This observation is reinforced by the corresponding trace of Prediction 

Error presented in Figure 5-28. It should be noted that the RLS Method, using identical signal 

sequences performed well (Figures 5-24 and 5-29). 

Further simulations revealed that the stability of the LU Factorisation Method was 

dependent upon both the selected input signal and upon the run length of the simulation. 

This loss of stability by the LU Factorisation Method also explains the "splitting" of 

the traces noted in Figures 5-3,5-4 and 5-10 of Section 5-3. This "splitting" being a 

consequence of the onset of loss of stability as the contents of the Information Matrix 

increased. 

In Figure 5-10 it can be seen that the magnitude of the splitting increased as the SNR 

was reduced. The loss of stability is attributed to rounding errors causing the Least Squares 

Equations on which the Information Matrix is based degenerating towards a singular set of 

equations. Some protection against this problem may be achieved by the use of "pivoting" [5-

18]. However this would add yet further to the computation time required by the LU 

Factorisation Method. 
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Mean of One Step Ahead Prediction Error, Pulse Input of 1 sec width 
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FIGURE 5-25 ERROR IN ONE-STEP AHEAD PREDICTION USING A SINGLE, 
NARROW PULSE INPUT SIGNAL 

Mean of One Step Ahead Prediction Error, Pulse Input of 5 sec width 
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FIGURE 5-26 ERROR IN ONE-STEP AHEAD PREDICTION USING A SINGLE, WIDE 
PULSE INPUT SIGNAL 
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Mean of One Step Ahead Prediction Error, Square Wave Input T = 2 sees 
RLS Method, ARMA Process T = 0.03 sees. Estimator T = 0.2 sees 
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FIGURE 5-27 ERROR IN ONE-STEP AHEAD PREDICTION USING A SQUARE WAVE 
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FIGURE 5-28 ERROR IN ONE-STEP AHEAD PREDICTION USING LU 
FACTORISATION WITH A HIGH SAMPLING RATE 
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FIGURE 5-29 ERROR IN ONE-STEP AHEAD PREDICTION USING RLS METHOD 
WITH A HIGH SAMPLING RATE 

5^ CONCLUSIONS OF THE COMPARISON OF THE LU FACTORISATION AND 

RLS METHODS 

The RLS Method is to be preferred over that using LU Factorisation. The main 

advantages of the former being its greater stability and its shorter computation time. 

The LU Factorisation Method may be made more stable by the use of pivoting, yet this 

still would not guarantee stability [5-18]. 

The LU Factorisation Method did sometimes exhibit the advantage of more rapid initial 

convergence (compare Figures 5-11 to 5-14). This advantage over the RLS Method may be lost 

by increasing the value of the scaling factor used to initialise the Error Covariance Matrix used 

by the RLS Method [5-19]. 

As a consequence of the use of a "Least Squares Noise Model" (see Appendix F) in the 

simulations, the results suggest that a reduction of sampling period can be used to reduce the 

time required to bring the estimates within some chosen band of accuracy (see Table 5-5). 
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CHAPTER 6 A REDUCED ORDER ESTIMATOR USING A PRIORI 

KNOWLEDGE OF THE SYSTEM TYPE NUMBER 

64 USE OF A PRIORI KNOWLEDGE OF PLANT INTEGRAL ACTION TO 

REDUCE THE ORDER OF THE ESTIMATOR 

INTRODUCTION 

So far in this work only the model structure was assumed to be known a priori. This 

means that the orders of the AR and MA sections of the ARMA Model were both known prior 

to the estimation process. This assumption was made to avoid the need to implement a full 

system identification procedure, and reduced the problem to simple parameter estimation. 

The positional servomechanism considered was known to contain an integrator, and 

hence to have a pole at s = 0. In this chapter, this knowledge will be used to develop a 

reduced order estimator. 

It is well known that the performance of a parameter estimator may be improved by the 

incorporation of a priori information [6-1,6-2,6-3,6-4]. Further, it is known that an ARMA 

model of a process of Type One requires one less coefficient than the ARMA model of a 

process of the same order, but of Type Zero [6-5]. Using this information it is possible to 

describe the least squares problem using one less least squares equation. 

DERIVATION OF THE REDUCED ORDER ESTIMATOR 

The ARMA model of the system is as given by Equations 4-17 or 4-18. A consequence 

of the integral action of the plant is that two of the coefficients of these equations bx and b2, 

are dependent. This is clearly shown in Equations 4-15 and 4-16. 

The reduced order estimator is developed by rewritting the Least Squares Equations in 

terms of the first differences of the output signal. These first differences are defined by: 

ty> = yo~yi . 6_1 
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ty = y r y 2 

Equation 4-18 may then be rewritten as: 

6-2 

y0 = axux+a2u2+yx+b2byx 6-3 

Following the same argument given in Section 4-2, this equation may be used as a 

One-Step Ahead Predictor at time t = (k-l)T, to estimate the next output value y0. 

The error in estimation, e0, is now given by: 

eo = yo-yr&iu\-&i"_-hby\ 
cf. Equation 4-21. 

This results in a set of Least Squares Equations of the form: 

Y M 2 YMXU2 Yuxbyx 

Yuxu2 T u 2 Yu2byx 

Yuxbyx Yu2byx Yby2 

6-4 

\ai 

kl 
= 

Zuxby0 

lM2by0 

Ybyxby0 

6-5 

cf. Equation 4-28. 

It can be shown that such a reduction in the number of Least Squares Equations can be 

achieved for any linear system of Type One or greater [6-7]. 

The above approach to simplification of the estimator is based upon applying the linear 

constraint on the coefficients before attempting to estimate those coefficient values. A n 

alternative and equivalent approach would involve filtering the signal values [6-6]. The taking 

of the first difference of the sampled output signal is equivalent to feeding this signal through a 

differentiator acting as a filter to eliminate the dynamics of the known part of the plant, i.e. the 

integrator. 

6-2 THE COMPARISON OF THE STANDARD AND REDUCED ORDER RLS 

METHODS OF SOLUTION 

DESCRIPTION OF THE SIMULATIONS UPON WHICH THIS COMPARISON IS MADE 

These simulations are based upon test input signals of the type described in Section 
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5-5. However to avoid duplicating results presented in that section, the following test input 

signals were used: 

i) A square wave of period 2 seconds, switching between +5.0 and -5.0 input 

units (cf. levels of +5.0 and +0.01 in Section 5-5). The first half-cycle of 

this waveform having the value of +5.0. 

ii) A single pulse of width 10 seconds and amplitude of +5.0. This pulse falling 

to an "off" value of +0.01 (i.e. a wider pulse than those of Section 5-5). 

RESULTS OF THE SIMULATIONS USING THE 3 & 4 PARAMETER RLS METHODS 

The simulations whose results are presented below may be summarised as follows: 

TABLE 6-1 SUMMARY OF RESULTS PRESENTED TO COMPARE THE 3 & 4 

PARAMETER RLS METHODS, USING TEST INPUT SIGNALS 

FIGURE 

6-1 

6-2 

6-3 

6-4 

6-5 

6-6 

6-7 

6-8 

6-9 

6-10 

ESTIMATOR T 

(sees) 

0.05 

0.05 

0.2 

0.2 

0.05 

0.05 

0.05 

0.05 

0.2 

0.2 

SNR 

(dB) 

42.5 

42.5 

42.5 

42.5 

28.5 

28.5 

66.4 

66.4 

66.4 

66.4 

RMS 

NOISE 

0.01 

0.01 

0.01 

0.01 

0.05 

0.05 

0.01 

0.01 

0.01 

0.01 

INPUT 

SIGNAL 

+1-5 sq wave 

+/-5 sq wave 

+1-5 sq wave 

+/-5 sq wave 

+1-5 sq wave 

+/-5 sq wave 

10 sec pis 

10 sec pis 

10 sec pis 

10 sec pis 

MET! 

3RLS 

4RLS 

3RLS 

4RLS 

3RLS 

4RLS 

3RLS 

4RLS 

3RLS 

4RLS 
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FIGURE 6-10 ESTIMATION OF POLE LOC. USING 4 PARAMETER RLS METHOD 
AND A SINGLE, WIDE PULSE INPUT SIGNAL WITH A LOW SAMPLING RATE 
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TABLE 6-2 SUMMARY OF FINAL VALUES AND CONVERGENCE RATES FOR THE 

3 & 4 PARAMETER RLS SIMULATIONS 

FIGURE/METHOD ESTIMATOR INPUT 

6-1/ 3RLS 

6-2/ 4RLS 

6-3/ 3RLS 

6-4/ 4RLS 

6-5/ 3RLS 

6-6/ 4RLS 

6-7/ 3RLS 

6-8/ 4RLS 

6-9/ 3RLS 

6-10/4RLS 

'FINAL' 

PERIOD 

0.05 

0.05 

0.2 

0.2 

0.05 

0.05 

0.05 

0.05 

0.2 

0.2 

SIGNAL 

+/-5 sq wave 

+/-5 sq wave 

+/-5 sq wave 

+/-5 sq wave 

+/-5 sq wave 

+/-5 sq wave 

10s pulse 

10s pulse 

10s pulse 

10s pulse 

VAL 

1.03 

1.03 

1.13 

1.13 

1.1 

1.1 

1.13 

1.2 

0.88 

0.92 

CONVERGENCE 

TIME 

6.7 

7.8 

6.2 

7.6 

11.5 

13.0 

9.1 

11.6 

10.7 

13.7 

RELATIVE MERITS OF THE THREE AND FOUR PARAMETER RLS METHODS 

For the +/-5 square wave input signal, the 3 and 4 Parameter RLS Methods produced 

the same "Final Value". However in all of these simulations (Figures 6-1 to 6-6 inclusive) the 

3 Parameter Estimator achieved a more rapid rate of convergence. 

For the less-rich input signal of a single, ten second wide pulse, the 3 Parameter 

Estimator again showed better convergence. However the last pair of results (Figures 6-9 and 

6-10) show that the 4 Parameter Estimator has the more accurate "Final Value". Inspection of 

the 'mean' traces on these figures reveals that these traces still have a noticeable gradient at the 

end of the simulation time. The greater the value of this "Final Gradient" the less valid the 

approximation of the so-called "Final Value" to the asymptotic value of the estimate. 
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Reduced order estimators using L U Factorisation were also tested. The computation 

time required by each method is summarised in Table 6-3. 

TABLE 6-3 COMPUTATION TIME REQUIRED FOR THE 3 & 4 PARAMETER 

ESTIMATORS 

M E T H O D 

4 Parameter L U Factorisation 

4 Parameter RLS 

3 Parameter L U Factorisation 

3 Parameter RLS 

C O M P U T A T I O N TIME (microseconds) 

112 

93 

66 

61 

In conclusion the Three Parameter RLS Method is clearly preferable to the Four 

Parameter RLS Method. It requires less computation time and delivers a more rapid rate of 

convergence of its estimates. 
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C H A P T E R 7 A N INVESTIGATION O F T W O T E C H N I Q U E S I N T E N D E D T O R E D U C E 

THE ESTIMATOR BIAS 

74 INTRODUCTION 

From the above simulations it appears that the mean estimate of the pole location tends 

towards an asymptotic value different from the known true pole location. This is clearly a 

failing of the estimator. In Section 7-2 some sources of the bias in the estimation process are 

considered. Based upon the understanding of these sources, two modifications to the basic, 

least squares estimation process are considered: 

i) Extended Least Squares (Panuska's Method) in Section 7-4 

ii) The use of Instrumental Variables in Section 7-5. 

These two modified methods are compared with the Three-Parameter RLS Estimator of 

Chapter 6. These comparisons are again based upon computer simulations using test input 

signals. 

1__2 SOURCES OF ESTIMATE BIAS 

In practical system identification one of the main sources of bias is the excessive 

simplicity of the model of the system [7-1]. In the simulations used throughout this thesis the 

model order and structure upon which the estimator is based is the same as that of the process 

used to generate the output signal sequence. This knowledge that the process is no more 

complex than the model is a major advantage gained by basing the comparisons upon computer 

simulation. 

In the absence of noise, the Least Squares Methods can return correct estimates of the 

unknown parameters within a small, finite number of sample periods. It is therefore obvious 

that the estimate bias is a consequence of noise corruption of the signals fed into the estimator. 

The requirements for non-biased estimates from Least Squares Estimators are well known [7-2] 
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and include: 

i) Knowledge of the process order and deadtime. 

ii) The input signal, and any DC component of that signal must be known. 

iii) The input signal must be adequately rich. 

iv) The equation error (i.e. the difference between the one-step ahead prediction of 

the output signal and the actual value subsequently measured) must be 

uncorrelated with the elements of the data (i.e. regressor) vector jjj. 

v) The expected value of the equation error should be zero. 

vi) Noise superimposed on the output signal must be stationary. 

i) and ii) present no problems in the above simulations. The simulated system and the 

estimator model having the same structure. Deadtime is not considered in this work. The input 

signal is exactly known to the estimator in all of the simulations. 

iii) the effects of the "richness" of the input signal are briefly considered by examining 

the performance of each estimator for a number of different test input signals. 

iv) As will be shown in Section 7-3 and Appendix F, the equation error is not 

independent of the elements of the data vector. The problem of estimate bias resulting from 

this dependence is the main topic of this chapter. 

v) Since the above simulations do not provide all of the necessary conditions for 

unbiased least squares estimates, it would be unreasonable to expect the equation error to have 

an Expected Value of zero. 

vi) The one PRBS, with a constant scaling factor was used throughout each simulation 

to generate the noise sequence (n(kT)}. 

l_l ESTIMATE BIAS AS A CONSEQUENCE OF CORRELATED NOISE 

There are numerous models that describe the effects of noise upon a discrete-time 

99 



process. The above simulations treated the noise in the manner of an "Equation Error Model" 

[7-3]. This is equivalent to the "LS Model" of noise [7-7], as justified in Appendix F. 

In practical system identification the sources of noise may be far more complex than 

the simple added noise sequence of the above simulations. Hence in practical work it may well 

be necessary to provide a non-constrained, general noise model. Such a general model should 

be able to mould itself to at least part of any hidden structure of the noise process of the real 

system. For the above simulations the noise process is well understood, and accordingly a 

general noise model is not necessary. 

The noise process in the simulations is that of the Least Square Noise Model, in which 

the elements of the output noise sequence, {n(kT)}, are passed down the Data (Regressor) 

Vector with their associated output values. Each element of the noise sequence thus not only 

corrupts its associated, contemporaneous output sequence element, but also all the subsequent 

elements of the output signal sequence. In this manner the noise becomes correlated with the 

output signal sequence, this process is examined in greater detail in Appendix F. Having been 

shifted down the Data Vector, i(r, the noise is able to enter the Information Matrix (or 

conversely the Error Covariance Matrix) of the Least Squares Estimator. 

For simplicity, consider the effect of this noise on the elements of the Information 

Matrix of a non-recursive estimator. Clearly any noise corruption of either yx or byx will 

result in a positive error being added to the corresponding _Zyx or Hby
2 terms of the 

Information Matrix. 

Further, since the noise corruption of yx will include a component due to the noise 

corruption of y2, then the terms such as Yyxy2 in the Information Matrix ( or Ybyxby0 in the 

case of the reduced estimator ) will also suffer from a cumulative error due to noise. The 

cumulative build up of these error terms in the Information Matrix result in the Least Squares 

Estimator producing biassed estimates. 
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On the basis of this understanding several attempts were made to reduce the magnitude 

of the bias. 

The parameters of the chosen noise model are a subset of those of the process model 

and it is tempting to believe that simple corrections may be made to the corruptible elements of 

the Information Matrix. Such an approach is attractive, since it does not require an increase in 

the number of parameters to be estimated. 

Unfortunately the prediction error has two sources. One is the added output noise 

sequence, the other is the errors in the estimates of the parameters. As a consequence of this it 

is not possible to directly obtain the values of the noise sequence from the prediction error 

sequence. Thus a simple modification to the Information Matrix is not possible. 

System Identification literature contains several techniques for dealing with the problem 

of correlated residuals [2-15]. Of these standard techniques two were tested to see whether or 

not they were useful in the reduction of the bias problem. The first of the techniques 

investigated is that known as either "Extended Least Squares" or "Panuska's Method" [7-11]. 

The second of the techniques investigated concerned the modification of the Information Matrix 

by the use of various sets of instrumental variables. 

74 EXTENDED LEAST SQUARES ( ELS I 

INTRODUCTION TO THE ELS METHOD 

This method requires that the data and parameter vectors be extended to accommodate 

extra error signal terms. 

In Appendix F it is shown that the output signal with noise y0n, is equal to the sum of 

a virtual, noise-free output y0, and an additional error term e0. 

i.e. Equation F-8, rewritten here as: 
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y0n = y0
 + eo 7_1 

where 

eo = "Vi ~V2
 + no 7"2 

Substituting for y0 gives: 

y0n = «i"i
+¥2"Vi-V2-&i«rV2+no 7"3 

n0 is the most recent term of the noise sequence {n(kT)}, and hence is not predictable. 

The Extended Least Squares Method does however attempt to model the other 'error terms'by 

extending the data vector: 

$ / = [ "i «2 -?i -?2
 ei fi2 1 7_4 

The Parameter Vector must also be extended to match the Data Vector 

fll = [ «i «i *i h cx c2 ]
 7"5 

It should be noted that the method does not make the constraints bx = cx and b2 = c2 

suggested by Equation 7-3. 

Panuska [7-11] proposed that the sequence {e(kT)} should be a sequence of "computed 

errors". There are two obvious sources for such a sequence: 

i) The Error in the One-Step Ahead Prediction of the output sequence 

ii) The Residual Sequence [7-5]. 

The means by which the elements of these two "computed error" sequences may be 

obtained are discussed next. 

COMPUTED ERRORS BASED UPON THE ERROR IN THE ONE-STEP AHEAD 

PREDICTION 

Using the extended vectors of Equations 7-4 and 7-5, the next predicted output signal 

y0, is given by 

y0 = d1(Jfc-l)Ml+42(A:-l)«2-^1(A:-l)y1-^-l)y2
+^1(^-l)«i

+c2(
fc-1)«2 
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where ex and e2 are delayed versions of the chosen computed error, and axik-\) 

denotes the estimate of ax using information available up to and including t = (k-l)T. 

When the next output value,y0, is subsequently measured the Prediction Error, €0 may 

be found 

€o = y0 ~ %
 7"7 

This prediction error is then one possible source of the computed error terms, 

i.e. 

7"8 

COMPUTED ERRORS BASED UPON THE RESIDUAL SEQUENCE 

After yQ has been measured the parameter estimates may be updated. These posterior 

estimates may then be used to recalculate (or filter) the expected output value. This filtered 

value is here denoted by y«, and hence 

% = «l(^)"l+«2^)"2~^l(%l~4(fc)>'2+^l(A;)«l+C2(*:)«2 ?"9 

The Residual Error, e0, is defined such that 

go = y<> ~ >fy 

and is the second possible source of computed error terms, 

7-10 

i.e. 

eo = eo 7-11 

The Least Squares Noise Model suggests that the coefficients bx and b2 should equal 

cx and c2 respectively. Several attempts were made to force this constraint upon the estimator, 

none of which resulted in an improved algorithm. 
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RESULTS OF THE SIMULATIONS USING THE ELS METHOD 

The simulations whose results are presented below may be summarised as follows: 

TABLE 7-1 SUMMARY OF RESULTS PRESENTED USING THE 6 PARAMETER 

RECURSIVE EXTENDED LEAST SQUARES METHOD 

FIGURE ESTIMATOR T 

7-1 

7-2 

7-3 

7-4 

7-5 

0.05 

0.2 

0.05 

0.05 

0.2 

SNR RMS 

(dB) NOISE 

64.9 0.01 

64.9 0.01 

50.9 0.05 

66.4 0.01 

66.4 0.01 

INPUT 

SIGNAL 

+/-5 sq wave 

+1-5 sq wave 

+1-5 sq wave 

10 sec pis 

10 sec pis 
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FIGURE 7-5 ESTIMATION O F POLE LOCATION USING 6 P A R A M E T E R ELS 
M E T H O D A N D A SINGLE, W I D E PULSE INPUT SIGNAL WITH A L O W E R 
SAMPLING R A T E 

RELATIVE MERITS O F T H E T H R E E P A R A M E T E R RLS A N D SIX P A R A M E T E R ELS 

METHODS 

In all of the cases presented, and all of the other simulations performed, the 3 

Parameter RLS Method produced a more rapid convergence of the estimates, as shown in the 

"Convergence Time" column of Table 7-2. 

In the majority of cases, the 3 Parameter RLS Method produced a more accurate 'Final 

Value' than did the 6 Parameter ELS Method. 

The 6 Parameter ELS Method required a computation time of 196 microseconds, 

compared with the 61 microseconds required by the 3 Parameter RLS Method. 

Over the period covered by the simulations, the 6 Parameter ELS Method failed to 

deliver any significant advantage over the basic 3 Parameter RLS Method in terms of a 

reduction in the estimate bias. This is consistent with the earlier comments of Section 5-3 
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concerning the 'Bias of the Estimates'. In Section 5-3 it was noted that the bias of the 

estimates, if present, was not the major contributor to the RMSE of the estimates. It would 

therefore be expected that a method designed to reduce bias would fail to deliver a significant 

improvement in the estimation process. 

TABLE 7-2 SUMMARY OF FINAL VALUES AND CONVERGENCE RATES FOR THE 

3-PARAMETER RLS AND 6-PARAMETER ELS SIMULATIONS 

FIGURE/METHOD 

7-1/6ELS 

6-1/3RLS 

7-2/6ELS 

6-3/3RLS 

7-3/6ELS 

6-5/3RLS 

7-4/6ELS 

6-7/3RLS 

7-5/6ELS 

6-9/3RLS 

ESTIMATOR 
PERIOD 

0.05 

0.05 

0.2 

0.2 

0.05 

0.05 

0.05 

0.05 

0.2 

0.2 

INPUT 
SIGNAL 

+1-5 sq wv 

+/-5 sq wv 

+/-5 sq wv 

+1-5 sq wv 

+1-5 sq wv 

+/-5 sq wv 

10 sec pis 

10 sec pis 

10 sec pis 

10 sec pis 

'FINAL' 
VALUE 

1.10 

1.03 

1.08 

1.13 

1.17 

1.10 

1.20 

1.13 

1.17 

0.88 

CONVERGENCE 
TIME 

10.15 

6.7 

15.28 

6.2 

15.05 

11.5 

12.05 

9.1 

13.97 

10.7 

1__5 INSTRUMENTAL VARIABLE TECHNIQUES 

INTRODUCTION TO INSTRUMENTAL VARIABLES 

The second approach to reducing the bias in the estimates involves the use of 

instrumental variables [7-9, 7-13] . 

The use of instrumental variables was initially criticised for its failure to consider a 
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noise model [2-15]. By 1976 the Refined Instrumental Variable Method had been developed to 

include an A R M A noise model [7-9]. For the simulations considered above, the introduction of 

such a general noise model would be inappropriate. 

A further criticism of the use of instrumental variables concerns their use in parameter-

adaptive control systems (i.e. a combination of a parameter estimator and a controller design 

to obtain a closed loop system ). In such applications the instrumental variable methods require 

a perturbation signal in the loop, or will produce biased estimates [7-10]. This criticism is not 

a problem for the work considered in this thesis, but it is mentioned as a possible problem in 

applications of instrumental variable methods. 

THE ORDINARY IV METHOD AS A MEANS OF REDUCING ESTIMATE BIAS 

Equation 4-28 may be rewritten in the form : 

(n \ n 7-12 

k^-k 
\k=i ) 

n k-i 

where jjr r is defined by Equation 4-43, and is the signal vector. The parameter vector 

Q_, is defined such that: 

6/ = [ax d2 Sx B2] 7-13 

where the 'carat' denotes an estimate of that coefficient. 

With the Ordinary IV Method [7-9] Equation 7-12 is replaced by: 

p,*/U--£V. 
7-14 

where the "IV vector", &k, is given by: 

tk = [«i % -*i -W
 7"15 

This vector contains instrumental variables in place of the output values of the signal 

vector. There are numerous techniques for generating instrumental variables [7-6, 7-9]. T w o of 
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these techniques were tested. The first of these generated the instrumental variables by 

applying the known input sequence into an adaptive filter. The second approach was to use a 

delayed version of the output sequence as the source of instrumental variables [7-12], 

In all cases the estimator was initially run without the introduction of the instrumental 

variablesso as to retain the rapid convergence of the basic least squares solution. Further, for 

the technique involving an adaptive filter, this initial non-use of instrumental variables allowed 

the efficient initialisation of the coefficient values of the filter. 

In the subsequent work the Ordinary IV Method will be implemented on the "reduced" 

information matrix derived in Chapter Six. 

Equation 6-5 may be rewritten in the form of Equation 7-12, in which case: 

Uf/ = [ux u2 byx] 7-16 

and 

8 / = [dx d2 S2] 7-17 

Hence it is necessary to generate an "IV vector" of the form: 

&k
T = [ux u2 byx] 7-18 

where 

b$x = sry2
 7-19 

The modified least squares equations can thus be expressed as: 

YM2 YMXU2 Yuxbyx 

YMXU2 YM2 Yu2byx 

Yuxbyx Yu2byx Ybyxbyx 

RESULTS OF THE SIMULATIONS USING INSTRUMENTAL VARIABLES 

Simulations were performed using a number of different techniques for generating the 

instrumental variables. The results of these simulations revealed some significant problems in 

the choice of the instrumental variables. In all cases the estimators used instrumental variables 

k 
•a2 

k 
= 

YMxby0 

Yji2by0 

Ybyxby0 

7-20 
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within an Information Matrix, as the basis of a solution using L U Factorisation. 

The first attempts at an estimator using instrumental variables generated these variables 

by an adaptive filter in the form of an Auxilliary Adaptive Model of the unknown system. This 

approach has two major problems: 

i) the initial convergence of the estimates was slowed. The adaptive filter 

necessarily having to use previously estimated values of the parameters. 

ii) the estimators proved to be highly sensitive to both the values of the initial 

parameters of the adaptive filter, and to the timing of the input sequence 

applied to it. The consequence of an unfortunate choice in either of these 

resulted in a systematic 'bursting' of short duration but large errors in the 

estimates. The bursts appeared as narrow, large amplitude spikes on an 

otherwise well-behaved RMSE vs. Time characteristic. 

Attempts to improve the performance of the estimators by low-pass filtering of the 

parameters of the adaptive, auxilliary model [7-8] were not succesful. The 'bursting' 

phenomenon raises serious doubts about the stability of estimators using instrumental variables 

derived from an adaptive filter. 

Greater success was achieved by using 'Delayed Signal' sequences as the source of the 

instrumental variables. The simulation result presented in Figure 7-6 below, used a delayed 

version of the {5 y(kT)} sequence. 

It was found that the rate of convergence of the estimates was improved by initially 

running the estimator without the use of instrumental variables. Instrumental variables were 

then allowed to enter the Information Matrix once the estimates approached their asymptotic 

value. 

From the simulations it was found that, over the period of the simulation, the 3 

Parameter RLS Method consistently outperformed all of the methods using instrumental 

variables. 
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Only one result from the simulations using instrumental variables is presented here, as 

Figure 7-6. This simulation uses the same combination of test input signal, sampling rate and 

process model that was used to produce the results of Figure 5-24. The estimator in Figure 5-

24 was the basic 4 Parameter LU Factorisation Method, and in the simulation it failed to 

maintain stability. Using LU Factorisation, but with only 3 parameters and instrumental 

variables, the new estimator maintained its stability throughout the duration of the simulation. 

The simulations whose results are presented below may be summarised as follows: 

TABLE 7-3 SUMMARY OF RESULTS PRESENTED USING AN INSTRUMENTAL 

VARIABLE PARAMETER ESTIMATOR 

FIGURE/METHC 

7-6/3IV(LU) 

7-7/3RLS 

>D ESTIMATOR 
PERIOD, T 

0.05 

0.05 

SNR 
(dB) 

64.9 

64.9 

RMS 
NOISE 

0.01 

0.01 

INPUT 
SIGNAL 

+5/+0.01 sq wv 

+5/+0.01 sq wv 
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In Table 7-4 a comparison is made of the performance of the various estimators tested 

using the combination of input signal, sampling rate and process that resulted in the instability 

of the 4 Parameter LU Factorisation Method. 

i.e. a square wave input signal of 2 seconds periodic time and amplitudes of +5 and 

+0.01. The ARMA process and estimator both using a clock of 0.05 seconds. An RMS noise 

value of 0.01, giving an SNR of 64.9 dB. 

TABLE 7-4 COMPARISON OF FINAL VALUES AND CONVERGENCE TIMES OF 

SEVERAL METHODS UNDER THE SAME TEST CONDITIONS 

FIGURE/METHOD 'FINAL' CONVERGENCE 

5-24/4LU 

5-25/4RLS 

7-6/3IV(LU) 

7-7/3RLS 

VALUE 

Unstable 

1.07 

1.05 

1.05 

TIME 

Unstable 

10.0 

7.20 

6.05 

RELATIVE MERITS O F T H E T H R E E P A R A M E T E R RLS A N D T H R E E P A R A M E T E R 

INSTRUMENTAL VARIABLE METHODS 

In all cases the 3 Parameter RLS Method outperformed all varieties of method that 

used instrumental variables. The 3 Parameter Instrumental Variable Estimator, using LU 

Factorisation had a required computation time of 73 microseconds, compared with the 61 

microseconds required by the 3 Parameter RLS Method. 

Further, the observation of the phenomenon described as 'bursting' suggests that 

considerable care should be taken when implementing instrumental variable methods in which 

the instrumental variables are derived from an adaptive filter. 
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CHAPTER 8 T H E APPLICATION O F T H E T H R E E P A R A M E T E R 

ESTIMATORS T O T H E R E A L POSITIONAL S E R V O S Y S T E M 

H DESCRIPTION OF THE POSITIONAL SERVOSYSTEM 

The positional servosystem used consisted of the following components: 

i) a 40W, permanent-magnet DC motor. 

ii) a two-channel, incremental optical encoder, permanently coupled to the 

armature shaft of the motor. 

iii) a 71:1 planetary gearhead, permanently coupled to the armature shaft of the 

motor. 

iv) a detachable turntable mounted on the output shaft of the gearbox. 

v) a pulse width modulation unit, used to control the armature current of the 

motor. 

vi) interface circuitry to enable the above components to be controlled and 

monitored by a Transputer System. 

The complete servosystem is described in Appendix B, with a comprehensive 

description of each of the above components. Figure B-l of Appendix B is a block diagram, 

indicating the interconnection of the above components. The Transputer System is described in 

Appendix A. 

__l THE DETERMINATION OF THE LOCATION OF THE UNKNOWN SYSTEM 

POLE 

INTRODUCTION 

The first order model of the motor, described by Equation 3-38, was used as the basis 

for the following work. In particular it was decided to estimate the location of the unknown 

pole, p. 
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In Section 3-6, based upon theoretical considerations and data sheet values, the 

unknown pole was predicted to be at the location of 29.6 radians per second. It should be 

noted that the data-sheet values of rotor inertia, J, and the coefficient of viscous friction, B, 

were for the motor alone. In all of the practical work the motor was permanently coupled to 

both the gearbox and the optical encoder. 

The simulations of Chapters 5, 6 and 7, indicated the superiority of the 3 Parameter 

methods over the others considered. Accordingly these methods were used on the real 

servosystem. Experiments were performed both with and without the turntable, which having a 

mass of 1.3 kilograms and a diameter of 0.45 metres, provided a convenient means of 

changing the inertial load on the system. 

THE STEP RESPONSE OF THE SERVOSYSTEM 

Prior to performing the parameter estimation experiments, two Speed Step Response 

Tests were performed on the servosystem. The first test was conducted without the turntable, 

the second with the turntable fitted. The results of these tests are presented in Figures 8-1 and 

8-2. 

The responses were obtained by applying a 'zero' to 'positive maximum' output 

voltage step from the DAC circuit. The change in position of the armature shaft was measured 

at a sampling rate of 200 samples per second (i.e. T = 5 milliseconds). The ordinate axes of 

both Figures 8-1 and 8-2 are labelled in terms of radians of the output shaft, rather than of the 

armature shaft itself.1 

'Comments are made in Section B-6 of Appendix B concerning the measurement of shaft 
angle as performed in these Step Response Tests. These comments concern some practical 

restrictions resulting from the hardware design. 
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Speed step response of motor and gearbox, without turntable 
Plot of Change In position vs Time IncremQnt 
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FIGURE 8-1 SERVOSYSTEM SPEED STEP-RESPONSE WITHOUT TURNTABLE 

Speed step response of motor and gearbox, with turntable 
Plot of Change In position vs Time Increment 
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Measurements taken from the results presented as Figures 8-1 and 8-2 indicate the 

following system time constants: 
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Without turntable, T = 165 milliseconds 

With turntable, T = 185 milliseconds 

Accepting the validity of the first order model of Equation 3-38, then the above figures 

indicate poles located at 6.1 and 5.4 radians per second respectively. 

__l USE OF THE THREE PARAMETER RLS ESTIMATOR WITHOUT MOTOR 

STOPPING OR REVERSAL 

THE NEED TO AVOID MOTOR STOPPING OR REVERSAL 

As noted in Chapter 3, there are many deficiencies in the simple linear model adopted 

to describe the servosystem. The most significant failings of the model are due to: 

i) neglect of backlash and deadzone behaviours of the system 

ii) the assumption of a Constant of Viscous Friction, B. 

To minimise the effects of backlash and deadzone the first experiments were designed 

to ensure that the motor rotated continuously, in one direction, throughout the duration of the 

test run. 

THE TEST INPUT SIGNAL 

The experiments consisted of twenty consecutive runs, each of four seconds duration. 

Each run of four seconds consisted of two complete cycles of a square wave. The run starting 

with the DAC switching to its 'maximum positive' output voltage. In the second half-cycle of 

this input signal the DAC delivered a small, positive voltage, sufficient to ensure that the 

motor continued to rotate in the same direction. 

At the start of each of the twenty runs both the position counter and the variables of 

the parameter estimator were initialised. The estimates of the coefficients of the ARMA 

Process being reset to zero. The Error Covariance Matrix being reset as an Identity Matrix 

scaled by a factor of 10000. 
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Within each run the pole location was calculated at each sampling instant of the 

estimator. 

RESULTS FROM THE THREE PARAMETER RLS ESTIMATOR WITHOUT MOTOR 

STOPPING OR REVERSAL 

Figures 8-3 to 8-8 show the results of using the 3 Parameter RLS Estimator with the 

above test input signal. Each figure shows the results from twenty consecutive runs of the 

estimator. The centre trace in each figure shows the mean estimate of the pole location. This 

trace is enclosed by traces showing the +/- two standard deviations spread in estimates, from 

those twenty runs. It should be stressed that this spread is calculated directly from the 

population of twenty estimates, and is not derived from the contents of the Error Covariance 

Matrix. 

The sample period of the estimator was reduced from 100 msecs. to 2 msecs. as 

detailed below in Table 8-1. The 'Final Mean Estimate' is the mean estimate of the pole 

location at the end of each run, i.e. the mean of the twenty estimates of pole location at t = 

4.0 sees.. The 'Mean at t=(1.0-T)' is included to indicate the response of the estimator to the 

single leading edge of the input signal. This mean is most useful in revealing the convergence 

rate achieved by each estimator. 
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TABLE 8-1 RESULTS FOR 3 PARAMETER RLS ESTIMATOR, WITHOUT M O T O R 

STOPPING OR REVERSAL, WITHOUT THE TURNTABLE 

ESTIMATOR 

PERIOD 

(msecs) 

100 

50 

20 

10 

5 

2 

FINAL M E A N 

ESTIMATE 

(Rad/sec) 

6.74 

6.97 

7.33 

7.80 

9.29 

20.01 

MEAN<§ 

(Rad/sec) 

5.12 

6.10 

7.05 

8.61 

14.29 

52.48 

FIGURE 

8-3 

8-4 

8-5 

8-6 

8-7 

8-8 

Estimation of Plant Pole Location., without turntable 
Monotonlc Increase In Angular Displacement, Estimator T = 100 msec 
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Estimation of Plant Pole Location, without turntable 
Monotonlc Increase In Angular Displacement, Estimator T = 30 msec 
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FIGURE 8-4 THREE PARAMETER RLS T = 50 ms 

Estimation of Plant Pole Location., without turntable 
Monotonlc Increase In Angular Displacement, Estimator T = 20 msec 
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Estimation of Plant Pole Location, without turntable 
Monotonlc Increase In Angular Displacement, Estimator T = 10 msec 
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FIGURE 8-6 THREE PARAMETER RLS T = 10 ms 

Estimation of Plant Pole Location., without turntable 
Monotonic Increase In Angular Displacement, Estimator T = 5 msec 
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FIGURE 8-7 THREE PARAMETER RLS T = 5 ms 
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FIGURE 8-8 T H R E E P A R A M E T E R RLS (HIGHEST S A M P L I N G RATE) T = 2 ms 

INTERPRETATION O F T H E R E S U L T S USING T H E RLS E S T I M A T O R W I T H O U T 

MOTOR STOPPING OR REVERSAL 

i) As the sampling rate increases the 'Final Estimate' (i.e. the estimate at t = 4.0 

seconds) also increases. This is clearly shown in Table 8-1. 

The Speed Step Response of Figure 8-1 suggested a pole location of 6.1 

radians per second. Accepting this value as correct, an increase in sampling rate 

resulted in a deterioration in the value of the 'Final Estimate'. Further this 

deterioration became significant at the higher sampling rates. 

ii) From the start of each run, the pole estimates decrease monotonically until the 

effects of the second transition of the input signal at t = 1.0 seconds influence the 

estimator. In Table 8-1 the column headed 'Mean @ t=(1.0-T)' enables the effect of 
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the sampling rate upon this transient to be considered. From this column, and the 

corresponding traces of Figures 8-7 and 8-8 it will be noted that the high sampling rate 

estimators fail to achieve a rapid convergence towards the expected pole location (6.1 

radians/s) during this first second of operation. It is this reduced convergence rate that 

results in the less accurate estimates at the end of the four seconds of each run. The 

low sampling rate estimators make better use of the first transition of the input signal at 

t = 0.0 seconds. 

The rate of fall of the estimates towards the expected value of 6.1 radians per 

second is greatest during the periods of high motor velocity (approximately 0 < t < 1 

and 2 < t < 3 seconds). The estimator is unable to make significant improvements to 

the estimate during the periods of low motor velocity. 

The transitions of the input signal result in discontinuities in the estimate vs. 

time traces. The amplitudes of these discontinuities will be dependent upon both the 

magnitude of the prediction error and the adaptive gain remaining with the RLS 

estimator. The effect of sampling rate upon the rate of fall of adaptive gain in the RLS 

algorithm is considered in Section 8-5, and Figures 8-21 and 8-22 in particular. 

The envelope defined by the +/- two standard deviations traces is narrow 

compared with the amplitudes of the fluctuations in the values of the estimates. 

Assuming a Normal Distribution of estimates, a spread of +/- two standard deviations 

should include 95% of those estimates. The estimator can thus be seen to produce 

consistent but incorrect estimates. 

There is a tendency for the width of the +/- two standard deviations spread to 

increase as the sampling rate is increased. This may be attributed to an increase in 

sampling rate causing a reduction in the signal-to-noise ratio of the measured shaft 

position. These measurements have an error independent of the sampling rate, this 

error being fixed by the resolution of the optical encoder and its associated counter 
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circuit. The magnitude of the change in shaft-angle between consecutive sampling 

instants should obviously fall with increased sampling rate. 

During some preliminary experiments there was a problem due to interference 

from the VMOS Gate Drive Circuits coupling into the input of the PWM Unit. This 

interference resulted in a significant increase in the +/- two standard deviations spread. 

All of the results presented here are from experiments where this interference was 

minimised by modification to the layout of the various connecting cables and circuit 

boards. 

CONCLUSION DRAWN FROM THE ABOVE RESULTS 

For these experiments increasing the estimator sampling rate did not improve the 

performance of the estimator. Quite the opposite, both the accuracy and convergence rate of 

the estimates deteriorated with increased estimator sampling rate. This conclusion being 

appropriate to the input signal and estimator used in obtaining these results. 

From iii) above it is concluded that the RLS estimator fails to achieve adequate 

convergence when presented with "small" signals. 

£4 THE EFFECT OF INCREASED INERTIAL LOAD 

The experiments described in Section 8-3 were repeated with an increased inertial load. 

This increase was achieved by connecting the turntable to the output shaft of the gearbox. The 

Speed Step Response measurements, as presented in Figures 8-1 and 8-2, indicate that the 

finite system pole should shift from 6.1 radians per second (without turntable), to 5.4 radians 

per second (with turntable). All other aspects of the experiment remained unchanged from 

those described in Section 8-3. 
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RESULTS FROM THE THREE PARAMETER RLS ESTIMATOR ON THE SYSTEM WITH 

TURNTABLE, AND WITHOUT MOTOR STOPPING OR REVERSAL 

Figures 8-9 to 8-14 show results (with turntable) equivalent to those of Figures 8-3 to 

8-8 (without turntable) respectively. The effect of the turntable upon the 'Final Mean Estimate' 

(i.e. the estimate at t = 4.0 seconds) is summarised below in the Table 8-2. 

TABLE 8-2 COMPARISON OF FINAL ESTIMATES FOR THE SYSTEM WITH AND 

WITHOUT THE TURNTABLE, USING THE THREE PARAMETER RLS 

ESTIMATOR 

PERIOD 

(msecs) 

100 

50 

20 

10 

5 

2 

Soeed SteD Re 

ESTIMATOR 

FINAL M E A N 

WITHOUT T/T 

(Rad/sec) 

6.74 

6.97 

7.33 

7.80 

9.29 

20.01 

soonse 6.1 

FINAL M E A N 

WITH T/T 

(Rad/sec) 

6.29 

6.37 

6.60 

7.07 

8.64 

18.4 

5.4 
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Estimation of Plant Pole Location, with turntable 
Monotonic Increase In Angular Displacement, Estimator T = 100 msec 
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FIGURE 8-9 THREE PARAMETER RLS (LOWEST SAMPLING RATE) T = 100 ms, 
WITH TURNTABLE 

Estimation of Plant Pole Location., with turntable 
Monotonic increase In Angular Displacement, Estimator T = 50 msec 
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FIGURE 8-10 THREE PARAMETER RLS T = 50 ms, WITH TURNTABLE 
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Estimation of Plant Pole Location, with turntable 
Monotonic increase In Angular Displacement, Estimator T = 20 msec 
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FIGURE 8-11 THREE PARAMETER RLS T = 20 ms, WITH TURNTABLE 

Estimation of Plant Pole Location^ with turntable 
Monotonic Increase In Angular Displacement, Estimator T = 10 msec 
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Estimation of Plant Pole Location, with turntable 
Monotonic increase In Angular Displacement, Estimator T = 3 msec 
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IGURE 8-13 THREE PARAMETER RLS T = 5 ms, WITH TURNTABLE 

Estimation of Plant Pole Location., with turntable 
Monotonic Increase In Angular Displacement, Estimator T = 2 msecs 
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INTERPRETATION OF T H E RESULTS WITH INCREASED INERTIAL L O A D 

The results closely resemble those of Section 8-3, the addition of the inertial load 

having the effect of moving the traces of estimate vs. time downwards. This is consistent with 

the results obtained from the Speed Step Response measurements presented in Section 8-2. 

8-5 T H E USE OF T H E THREE PARAMETER RLS ESTIMATOR WITH 

M O T O R REVERSALS 

THE TEST INPUT SIGNAL USED T O OBTAIN M O T O R REVERSALS 

The test input signal again consisted of twenty consecutive runs each of four seconds 

duration. This time however the DAC was switched between its 'maximum positive' and its 

'maximum negative' output voltage. 

RESULTS FROM THE THREE PARAMETER RLS ESTIMATOR WITH MOTOR 

REVERSALS 

Figures 8-15 to 8-20 show results (without turntable) equivalent to those of Figures 8-3 

to 8-8 (without turntable) respectively. 

TABLE 8-3 RESULTS FOR 3 PARAMETER RLS ESTIMATOR, WITH MOTOR 

REVERSALS, WITHOUT THE TURNTABLE 

ESTIMATOR FINAL MEAN MEAN @ t=(1.0-T) 

PERIOD (msecs) ESTIMATE (rad/sec) (rad/sec) 

100 9.49 4.97 

50 9.38 5.84 

20 9.26 6.84 

10 9.35 8.39 

5 9.76 13.76 

2 14.03 55.79 
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Estimation of Plant Pole Location, without turntable 
Non-monotonic Increase in Angular Displacement, Estimator T = 100 msec 
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FIGURE 8-15 THREE PARAMETER RLS (LOWEST SAMPLING RATE) T = 100 ms, 
WITH REVERSALS 

Estimation of Plant Pole Location., without turntable 
Non-monotonic Increase In Angular Displacement, Estimator T = 30 msec 
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FIGURE 8-16 THREE PARAMETER RLS T = 50 ms, WITH REVERSALS 
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Estimation of Plant Pole Location, without turntable 
Non-monotonic Increase in Angular Displacement, Estimator T = 20 msec 
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FIGURE 8-17 THREE PARAMETER RLS T = 20 ms, WITH REVERSALS 

Estimation of Plant Pole Location., without turntable 
Non-monotonic Increase In Angular Displacement, Estimator T = 10 msec 

12 

TJ 
CL 

o 
o 
CD 10 
en 
i_ 

cu 
a 
en 

£ 8 

•D 
03 

cr 
6 

A 

FIGURE 8-18 THR 

0. 

EI 

^ 

y\ 0.51 1.01 1.51 2.01 2.51 3.01 3.51 

Time CsecsD 

iPARA METER RLST = 10 m. 3, WITH REVEF LSALS 

132 



Estimation of Plant Pole Location, without turntable 
Non-monotonic Increase In Angular Displacement, Estimator T = 5 msec 
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FIGURE 8-19 THREE PARAMETER RLS T = 5 ms, WITH REVERSALS 

Estimation of Plant Pole Location., without turntable 
Non-monotonic Increase In Angular Displacement, Estimator T = 2 msec 
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I N T E R P R E T A T I O N O F T H E R E S U L T S U S I N G T H E R L S E S T I M A T O R W I T H M O T O R 

REVERSALS 

i) The linear model of the servomechanism would suggest that the 'Final Mean 

Estimates' of Table 8-3 (with reversals in motor direction) should be the same as those 

of Table 8-1 (without reversals), both sets of results being for the system without the 

turntable. 

These tables reveal that the use of an input signal that causes the motor to 

reverse direction results in the estimate of the pole location rising. This increased value 

of the estimate is further from that suggested by the Speed Step Response of Section 8-

2. 

It should be noted that the assumptions on which the linear model of the 

servomechanism was based are less valid for a motor that either stops or reverses 

direction. The linear model fails to include the non-linearities associated with backlash 

and deadband, and assumes that the Coefficient of Viscous Friction is a constant. 

ii) The two test input signals used in Sections 8-3 and 8-5 were the same up to the 

transition at t = 1.0 seconds. Accordingly the columns headed 'Mean @ t=(1.0-T)' in 

Tables 8-1 and 8-3 should provide the same values. The differences between these 

corresponding values give an indication of the repeatability expected of these 

experimental results. 

iii) The transitions of the input signal again cause discontinuities in the estimate vs. 

time traces. These discontinuities are larger in Section 8-5 (with motor reversals), than 

those of Section 8-3 (without motor reversals). The non-modelled behaviour of the real 

system clearly provides increased excitation to the estimator, which unfortunately does 

not result in improved estimates. 

iv) The rise in the value of the 'Final Mean Estimate' with increased sampling rate 

is not so significant in Section 8-5 (with motor reversals) as it was in Section 8-3 
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(without motor reversals). In Section 8-3 the 'Final Mean Estimate' rose from 6.74 

radians per second (T = 100 msecs) to 20.01 radians per second (T = 2 msecs). 

These values correspond to a change in pole position from 9.49 radians per second to 

14.03 radians per second, when the input signal causes the motor to switch from its 

extreme speed in one direction, to the extreme in the other direction. 

The input signal in this section, Section 8-5, therefore provides greater 

excitation to the system. It is argued here that this increase in excitation makes the 

estimator accuracy less sensitive to an increase in sampling rate. 

v) In Figure 8-20 it is seen that the high sampling rate estimator again has an 

unacceptably slow convergence towards its asymptotic value. An hypothesis to account 

for this slow convergence was tested, the results of this test are presented below in 

Figures 8-21 and 8-22. 

It was hypothesised that the high sampling rate estimator might suffer from 

being 'swamped' by many 'low-information' content signals at the start of its 

operation. Such 'swamping' might result in the adaptive gain of the estimator falling 

too rapidly, prior to the estimator receiving signals permitting a more accurate estimate 

of pole location, p. 

Figures 8-21 and 8-22 show the fall of adaptive gain for the RLS estimator 

with sampling rates of 10 and 200 samples per second respectively. 

The adaptive gain of the RLS estimator may be interpreted as j$f .£>_1 (as per 

Equation 4-59), where W is here a vector of three elements. The estimate of pole 

location is calculated as per Equation 5-5, using $2, the third element of the Parameter 

Vector Q_k. 

i.e. 
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B2 = e3 8-1 

The third element of W i.e. W., is the element used to determine the 

adaptive gain plotted in Figures 8-21 and 8-22. 

Adaptive Gain = W..D'1 

i.e. 

8-2 

Examination of Figures 8-21 and 8-22 shows that the adaptive gain of the high 

sampling rate estimator did not fall faster than that of the low sampling rate estimator. The 

hypothesis concerning "swamping" is thus disproven. 
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Adaptive Gain of RLS Estimator, T = 100 msecs 
Non-monotonic Increase In Angular Displacement, without turntable 

K 
I -^\s 

0.1 0.6 1,6 2.1 2.6 

Time Csecs} 

FIGURE 8-21 DECREASE OF ADAPTIVE GAIN OF A L O W SAMPLING RATE RLS 
ESTIMATOR 
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Adaptive Gain of RLS Estimator, T = 5 msecs 
Non-monotonic Increase in Angular Displacement, without turntable 
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FIGURE 8-22 DECREASE IN ADAPTIVE GAIN OF A N HIGH SAMPLING RATE RLS 
ESTIMATOR 

CONCLUSION DRAWN FROM THE ABOVE RESULTS 

In this section (as compared with Section 8-3) the estimator is presented with an 

improved test input signal, which provides more excitation to the system. However this signal 

causes the motor to operate over a wider range, that includes non-linearities. As a consequence 

the model of the plant is less valid. This inadequacy of the plant model results in inferior 

estimates. 

S_6 USE OF THE THREE PARAMETER LU FACTORISATION ESTIMATOR 

WITHOUT MOTOR STOPPING OR REVERSAL 

THE REASON FOR RECONSIDERING THE LU FACTORISATION ALGORITHM 

The RLS algorithm was adopted as the preferred method following the work detailed in 

Section 5-5. The computer simulations of that section revealed that the LU Factorisation 
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algorithm was prone to loss of its numerical stability. 

In Section 5-4 it was noted that the LU Factorisation Method outperformed the RLS 

algorithm in some high sampling rate applications. Provided the LU Factorisation retains its 

stability, it is superior to the RLS Method. Further, the stability of the LU Factorisation 

Method may be enhanced by: 

i) Pivotting (at a penalty of increased computation time) 

or ii) Information Matrix resetting offers the advantage of inhibiting the drift of the 

Least Squares Equations towards a singular condition. 

The results of Sections 8-3 to 8-5 inclusive show the RLS algorithm estimates 

becoming less accurate with increased sampling rate. These results, and the earlier simulations 

of Section 5-4 indicated that the RLS algorithm is inferior to the LU Factorisation Method 

when presented with small amplitude signals. 

THE EXPERIMENTAL SET-UP 

The work of Section 8-3 was repeated using a different estimator. The Three Parameter 

RLS algorithm of Section 8-3 being replaced by a Three Parameter LU Factorisation 

algorithm. Neither pivotting nor Information Matrix resetting were used, these refinements 

being unnecessary due to the estimator retaining its numerical stability throughout the duration 

of each four second run. 

At the start of each run the Information Matrix and the parameter estimates were all 

initialised with values of zero. 
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RESULTS F R O M THE THREE PARAMETER LU FACTORISATION ESTIMATOR 

WITHOUT MOTOR STOPPING OR REVERSAL 

Figures 8-23 to 8-28 show the result of using the Three Parameter LU Factorisation 

Estimator, without the turntable. Figures 8-23 to 8-28 compare directly with Figures 8-3 to 8-8 

(which resulted from the use of the 3 Parameter RLS Estimator) respectively. 

Table 8-4 compares the estimates produced by these two estimators. 

TABLE 8-4 COMPARISON OF FINAL ESTIMATES FOR THE SYSTEM USING THE 

RLS AND LU FACTORISATION ESTIMATORS 

ESTIMATOR 

PERIOD 

(msecs) 

100 

50 

20 

10 

5 

2 

FINAL M E A N 

3RLS 

(Rad/sec) 

6.74 

6.97 

7.33 

7.80 

9.29 

20.01 

FINAL M E A N 

3LU 

(Rad/sec) 

6.63 

6.80 

7.11 

7.22 

7.21 

7.86 
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Estimation of Plant Pole Location, without turntable 
Monotonic Increase in Angular Displacement, Estimator T = 100 msec 
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FIGURE 8-23 THREE PARAMETER LU FACTORISATION (LOWEST SAMPLING 
RATE) T = 100 ms 

Estimation of Plant Pole Location, without turntable 
Monotonic Increase In Angular Displacement, Estimator T = 50 msec 

12 

c 

o 
CD 10 

en 
cu 
Q 
en 

£ a 

TD 
ta 
cc 

6 

FIGURE 8-24 THR 

^5: 

y^. 

f 3 

""-" — = ^ ^ 

• 1 1 1 1 1 I 1 1 • 1 1 • • i • • • • • > • i . • > • 

0.O5 0.55 1.05 1.55 2.05 2.55 3.05 3.55 

Time Csecs} 

El 31 PARA METER LUFA( :TORIS, ATION -r = so i ns 

140 



Est 1 ma 

•M 

12 

n 
c 
o 
cu ia 
en 
i_ 

cu 
Q 
en 
§ • 
go 

cr 
s 

A 

t I on of Plant Pole Location, without turntable 
Monotonic Increase In Angular Displacement, Estimator T = 20 msec 

^ ^ 

0.02 0.S2 1.02 1.52 2.02 2.52 3.02 .3.52 

Time Csecs} 
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Estimation of Plant Pole Location, without turntable 
Monotonic Increase In Angular Displacement, Estimator T = 10 msec 
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Estimation of Plant Pole Location, without turntable 
Monotonic Increase In Angular Displacement, Estimator T = 3 msec 
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Estimation of Plant Pole Location, without turntable 
Monotonic Increase In Angular Displacement, Estimator T = 2 msecs 
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FIGURE 8-28 THREE PARAMETER LU FACTORISATION (HIGHEST SAMPLING 
RATE) T = 2 ms 
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INTERPRETATION OF THE RESULTS USING THE LU FACTORISATION ESTIMATOR 

WITHOUT MOTOR STOPPING OR REVERSAL 

0 Tne 'Final Mean' estimate produced by the LU Factorisation Method shows an 

increase with increased sampling rate. The LU Factorisation Method offers the 

advantage of being less sensitive to the selected sampling rate than the RLS algorithm. 

ii) In all cases the LU Factorisation Method produced 'Final Mean' estimates 

closer to the value obtained from the Speed Step-Response of Section 8-2. The Speed 

Step-Response suggesting a finite pole located at 6.1 radians per second. 

iii) Notwithstanding the above comments, the LU Factorisation Estimator returned 

less accurate estimates as the sampling rate increased. 

iv) In each case the effect of a transition in the input signal resulted in a reversal in 

the trend of the estimates of pole location. After the falling edges of the input signal 

(i.e. during the low motor speed periods of 1 <t < 2 and 3 < t < 4) there was a 

tendency for the estimated value to rise. Conversely, during the high motor speed 

periods (i.e. 0 < t < 1 and 2 < t < 3 seconds) the estimates tended towards lower 

values. 

An explanation of this effect is that the estimator used an excessively simple 

model of the plant. In minimising the chosen performance index the estimator must 

produce different values for the estimate for the different motor speeds. This 

explanation is reinforced by the results to be presented in Section 8-7, in which the 

Information Matrix was reset with each change in the input signal. 

v) The 'discontinuities' in the traces of estimate vs. time resulting from transitions 

in the input signal decreased as time increased. As the contents of the Information 

Matrix grew the estimator tended to average out the preferred value of p. The 'Final 

Value' (at t = 4.0 seconds) is a compromise between the two preferred values for high 

and low speed of rotation. 
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CONCLUSIONS D R A W N F R O M THE A B O V E RESULTS 

0 The LU Factorisation Method outperformed the RLS Method, especially at 

increased sampling rates. 

ii) Tne raising of the sampling rate did not result in more accurate estimates, nor 

in an improved convergence rate of the estimates. The results obtained indicate that 

raising the sampling rate of the estimator led to a deterioration in the quality of the 

estimates. 

_d THE THREE PARAMETER LU FACTORISATION METHOD WITH 

INFORMATION MATRIX RESETTING 

INTRODUCTION 

The results of Section 8-6 suggest that the estimator attempted to return two different 

values for the pole location, p. These values corresponding to the two motor speeds resulting 

from the square wave, test input signals used. In all of the above experiments using the real 

system, the estimator produced an estimate that was a compromise or average of the two 

different values. To confirm this interpretation of the results, the experiment of Section 8-5 

was repeated using LU Factorisation with Information Matrix resetting. 

At the start of each run (t = 0.0 seconds) the Information Matrix and all parameter 

estimates were initialised with values of zero. At each subsequent transition of the input signal 

(t = 1.0, 2.0 and 3.0 seconds) the Information Matrix was reset to zero, the parameter 

estimates were left unchanged. Only at the start of each run (i.e. immediately after t = 0.0 

seconds) was it necessary to wait for the data vector to fill, to enable the Least Squares 

Equations to become soluble. 

RESULTS OF USING INFORMATION MATRIX RESETTING 

Figures 8-29 to 8-34 show the results obtained using Information Matrix resetting for 
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the experiment conducted: 

i) without the turntable fitted 

and ii) with the DAC switching between its 'Maximum Positive' and 'Maximum 

Negative' output voltages (i.e. with reversals of direction of rotation). 

INTERPRETATION OF THE RESULTS FOR INFORMATION MATRIX RESETTING 

i) The results confirm that the Least Squares estimator attempted to fit two values 

of p to the servosystem, corresponding to the two values of motor speed used. This 

reveals the inadequacy of the simple, linear model used to describe the servosystem. 

ii) At the higher sampling rates the +/- two standard deviation spread was 

observed to have increased in width. This is especially evident in Figure 8-34, for the 

highest sampling rate of 500 samples per second. The crude resetting of the 

Information Matrix to zero made the estimator very sensitive to noise in the signal 

sequences. 

iii) Consider the initial convergence of the estimates through the periods 0.0 < t 

< 1.0 seconds. As the sample rate was increased the value of the estimate at t = 1.0 

seconds also increased. This is an indication that the increase in sampling rate resulted 

in a deterioration in the estimate convergence rate. 

CONCLUSIONS CONCERNING INFORMATION MATRIX RESETTING 

i) Increasing the sampling rate failed to improve the performance of the 

estimator. 

ii) The simple linear model used to describe the real servosystem was inadequate, 

As a consequence the estimator attempted to switch the value of the estimate of pole 

location with each change in input signal, so as to minimise the estimator's 

Performance Index. 
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Estimation of Plant Pole Location, without turntable 
Monotonic Increase In Angular Displacement, Estimator T = 100 msec 
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FIGURE 8-29 THREE PARAMETER LU FACTORISATION (LOWEST SAMPLING 
RATE) T = 100 ms, WITH INFORMATION MATRIX RESETTING 
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FIGURE 8-30 THREE PARAMETER LU FACTORISATION T = 50 ms, WITH 
INFORMATION MATRIX RESETTING 
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Estimation of Plant Pole Location, without turntable 
Monotonic Increase in Angular Displacement, Estimator T = 20 msec 
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FIGURE 8-31 THREE PARAMETER LU FACTORISATION T = 20 ms, WITH 
INFORMATION MATRIX RESETTING 

Estimation of Plant Pole Location, without turntable 
Monotonic Increase In Angular Displacement, Estimator T = 10 msec 
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FIGURE 8-32 THREE PARAMETER LU FACTORISATION T = 10 ms, WITH 
INFORMATION MATRIX RESETTING 
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Estimation of Plant Pole Location, without turntable 
Monotonic Increase in Angular Displacement, Estimator T = 3 msec 
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FIGURE 8-33 THREE PARAMETER LU FACTORISATION T = 5 ms, WITH 
INFORMATION MATRIX RESETTING 

Estimation of Plant Pole Location, without turntable 
Monotonic Increase in Angular Displacement, Estimator T = 2 msecs 
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C H A P T E R 9 C O N C L U S I O N S 

94 I N T R O D U C T I O N 

The work described in this thesis originated from a need to perform parameter 

estimation as rapidly as possible. One method of reducing the parameter estimation time 

involved increasing the sampling rate of the estimator. This increased the number of signal-pair 

samples available to the estimator in any given interval of time. Section 9-2 comments upon the 

failure of this approach. 

Section 9-3 provides conclusions on the choice of algorithm for solving the least 

squares equations. With hindsight the initial selection of methods of solution was naive. The 

work revealed the importance of the problems of numerical instability in the solution of sets of 

least squares equations. 

Section 9-4 presents further conclusions concerning the algorithms considered. The 

more complex algorithms (Extended Least Squares and those using instrumental variables) 

were found to offer no advantages for this work. The greatest success was achieved by 

integrating prior knowledge of the integral action of the plant into the model used by the 

estimator. 

Finally in Section 9-5 some observations are made on the application of the transputer 

in this work. 

__\ INVESTIGATION OF INCREASED SAMPLING RATE AS A MEANS OF 

REDUCING THE PARAMETER ESTIMATION TIME 

CONCLUSIONS BASED UPON MEASUREMENTS ON THE REAL SYSTEM 

i) Increasing the sampling rate of the estimators resulted in a deterioration in the 

quality of the estimates. This was true for the estimators using both LU Factorisation 

and RLS algorithms. 
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ii) The L U Factorisation Method outperformed the R L S Method, especially at the 

higher sampling rates. The LU Factorisation Method suffering less from the decrease 

in output signal amplitude, as the sample rate was increased. 

iii) Increasing the sampling rate effectively decreased the signal to noise ratio of 

the output signal sequence. The measurement error of the output sequence was 

determined by the resolution of the optical encoder and its associated counter. This 

error was thus independent of the sampling rate. The output signal, being the number 

of counts between sampling instants, decreased as the sampling rate increased. 

iv) The main limitation on estimate convergence of an estimator during its start-up 

period is the paucity of the information content of the signals available to it. Increasing 

the sampling rate does not, of itself, offer a means of circumventing this restriction. 

Increasing both the sampling rate and the level of signal excitation may result in a 

reduction in the settling time of the estimates. 

DISCUSSION CONCERNING THE SIMULATIONS 

The results presented in Table 5-6 suggested that an increase in the estimator sampling 

rate would result in an improvement in both the accuracy and rate of convergence of the 

estimate of pole location p. 

This improvement is something of an artifice of the simulations. The ARMA process of 

the simulations ran with a periodic time of T = 0.05 seconds. The noise sequence added to the 

output sequence was folded back into the ARMA process by its passage through the data vector 

of the process. This noise sequence thus served as a supplementary source of excitation of the 

autoregressive (AR) section of the process. 

The highest sampling rate estimator of the simulations also operated with a sampling 

period of T = 0.05 seconds and thus sampled all elements of the noise corrupted, output 

sequence of the ARMA process. The other estimators (with T = 0.2 s and T = 0.5 s) only 
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accessing every fourth or every tenth element of this sequence, therefore had a more restricted 

view of the disturbance excitation of the AR section of the process. 

In a real system, the problem is one of measurement noise rather than an additive 

disturbance signal so an increase in the estimator sampling rate would not therefore result in an 

increased excitation of the AR section of the process. 

SELECTION OF SAMPLING RATE 

The strategy of increasing the sampling rate is one whereby the intended time-window 

used for parameter estimation is shortened. The narrowing of this window necessarily reduces 

the quality of the signals available to the estimator because of: 

i) a reduction in the number of transitions of the input signal 

and ii) a reduction in the quantity of output signal variation. 

The results presented in this thesis indicate that the estimator time-window should not 

be made too short, with respect to the time constant of the process. Improvements in 

microprocessor technology will permit increased sampling rates, by the reduction of required 

time for computation. The above comments show that, rather than use this spare computational 

capacity to increase sampling rates, a more profitable avenue would involve the use of either a 

more elaborate system model, or the incorporation of some supervisory, expert system. 

9j£ USE OF INFORMATION MATRIX RESETTING TO IMPROVE THE NUMERICAL 

STABILITY OF PARAMETER ESTIMATORS 

THE PROBLEM OF NUMERICAL INSTABILITY 

All least squares estimation algorithms are prone to loss of numerical stability. For a 

particular least squares algorithm the following factors will all influence the maintenance of 

stability: 

i) input signal 
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ii) noise levels 

iii) sampling rate 

iv) duration of the estimation process 

There are a variety of techniques that may be used to enhance the stability of the 

solution of the least squares equations: 

i) Pivotting 

It is well known that the direct methods (e.g. Gaussian Elimination, Gauss-

Jordan Method) require the use of pivotting [9-1]. Experience gained in this work 

confirms the advice given by Press et al [9-2] that the LU Factorisation Method also 

requires pivotting to enhance its stability. 

ii) Square Root Methods and Double Precision Arithmetic 

At the expense of increased computation time the onset of instability may be 

delayed by the use of either square root methods or double precision arithmetic. 

iii) Singular Value Decomposition 

Press et al [9-3] recommend the use of Singular Value Decomposition for the 

solution of sets of least squares equations. 

The LU Factorisation Method used in this work was not selected on the basis of its 

numerical stability, and this was found, on occasions, to be a problem. Superficially LU 

Factorisation resembles Cholesky Decomposition, since the information matrix of the estimator 

is always symmetrical [9-4]. 

i.e. for the LU Factorisation Method 

R = LU. 9-1 

where the elements of the main diagonal of £ are all unity. Whereas for Cholesky 

Decomposition : 

R = LLT 9"2 

152 



For L U Factorisation the first row, first column element of U is equal to that of R, 

i.e. 

rn = "n 9" 

For Cholesky Decomposition the corresponding equation is: 

r = I I 9-

The Cholesky Decomposition should therefore possess superior numerical properties, 

but does require the need to use a "Square Root" procedure. 

Bierman [9-5] proposed a "Square Root Free Cholesky Decomposition" 

R = LD.LT 9" 

Press et al [9-4] comment that pivotting is not necessary when using Cholesky 

Decomposition. Bierman [9-6] comments that matrix triangular factorisations are "generally 

unaffected" by the use of pivotting. 

The one clear point in all of this is that there is a significant probability of not 

obtaining a correct solution of the least squares equations. None of the above methods, with or 

without pivotting, guarantee numerical stability. 

The R L S Method proved to be more robust throughout both the simulations and 

practical experiments. The literature does however contain references to numerical problems 

with this method [e.g. 2-14,2-16]. Unfortunately, in the work considered here, the RLS 

algorithms proved less useful due to the slower convergence of their estimates towards 

asymptotic values. 

THE PREFERRED SOLUTION 

For the work considered in this thesis, the solution of the least squares equations using 

an information matrix is preferable to the use of an R L S algorithm. Table 8-4 presented results 

which indicate that the R L S algorithm was both less accurate in its predictions and less robust 

to errors resulting from an increased sampling rate. It is necessary however to ensure that the 
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chosen solution maintains its numerical stability. 

Frequent resetting of the information matrix should ensure that the least squares 

equations are not permitted to drift towards a singular condition. Such resetting should also 

bestow adaptibility upon the estimator. 

The resetting strategy used in Section 8-7 was very primitive on two counts. Firstly a 

very crude trigger for information matrix resetting was employed. Secondly the matrix was 

reset to zero, making the subsequent estimates extremely sensitive to noise. However this 

strategy was adequate to display the inadequacies of the mathematical model, as explained in 

Section 8-7. 

The following factors should all be considered in determining a suitable instant for 

information matrix resetting, e.g. 

i) the magnitude of the change in input signal value 

ii) the magnitude of the prediction error 

iii) the 'richness' of the input signal in a particular period (i.e. whether or not good 

estimates are achievable from a given section of the input signal sequence) 

iv) a knowledge of the non-linearities in the system. 

The trigger and degree of resetting may well be best supervised by some form of 

expert system. 

_A COMPARISONS OF DIFFERENT LEAST SQUARES ALGORITHMS 

A total of six different Least Squares algorithms were considered in this work: 

i) a standard, four parameter, LU Factorisation algorithm 

ii) a standard, four parameter, RLS algorithm 

iii) a reduced-order, three parameter, LU Factorisation algorithm 

iv) a reduced-order, three parameter, RLS algorithm 

v) a reduced-order, three parameter, LU Factorisation algorithm utilising 
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instrumental variables 

vi) a Recursive Extended Least Squares algorithm with six parameters. 

A number of conclusions were made based on the experience gained in considering 

different methods: 

Recursive algorithms usually have shorter execution times than the non-

recursive, direct solutions, this being especially true as the number of unknown 

parameters increases. However, for simple models of four (or less) parameters there is 

little advantage in using a recursive method as a means of reducing the required time 

for solving the least squares problem. 

Recursive Least Squares is more numerically robust than the direct methods 

considered in this work. 

LU Factorisation algorithms outperform RLS algorithms when presented with 

signals from a weakly excited system. 

The Extended Least Squares (ELS) and Instrumental Variables (IV) Methods 

offered no advantages over the standard algorithms in the work considered here. Both 

ELS and IV methods are primarily designed to tackle the problem of estimate bias due 

to correlated residuals. During the initial period of the estimation process these 

correlated residuals have had little opportunity to build up within the information 

matrix (or conversely to influence the covariance matrix of a recursive method). 

A number of different methods of generating instrumental variables were 

considered. Most success was achieved by deriving the instrumental variables from a 

delayed version of the output sequence. 

Estimators using instrumental variables derived from an adaptive model of the 

unknown process proved to be numerically ill-behaved. This behaviour raises doubts as 

to their performance and stability. Having concluded that IV methods were not a 
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probable source of superior estimates, the cause of these numerical problems was not 

investigated. 

Experiments revealed that IV methods were best operated initially without the 

use of instrumental variables. The instrumental variables were incorporated into the 

solution of the estimation-problem (no longer the least squares equations !) after some 

empirically chosen delay. 

In terms of both reduced computation time and superior estimate accuracy and 

convergence rate the three parameter, reduced order estimators proved the most 

successful. The reduced order estimators achieved these advantages by using prior 

knowledge, namely that the servosystem was of Type One (i.e. contained integral 

action). 

OBSERVATIONS ON THE USE OF A TRANSPUTER IN REAL-TIME 

DIGITAL CONTROL 

The transputer design offers a number of very useful features for applications in 

engineering: 

It forces a modular approach to the design which eases the subsequent 

expansion or enhancement of the control system. Such development may involve the 

addition of an extra processor to enable more computation to be performed in a given 

time interval. Alternatively further processes (i.e. tasks) may be added to an existing 

transputer controlled system, with simple interfaces between the new and old parts. 

The interfaces between processes are clearly defined by the link interconnections and 

their associated protocols. 

The provision of an easily accessible one microsecond clock enables very 

accurate timing of events and execution times. 

The folding Editor of the TDS software gives good support for sound, top-

down designs. 
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The Occam2 programming language is legible and disciplined, resulting in 

efficient real-time operation of the transputer. 

The documentation supporting both software and hardware produced by Inmos 

has proved to be complete and intelligible. 

The main problems encountered were: 

The restriction of four hardware links on each processor. 

The need for the links to be operated in an electrically quiet environment. The 

simple message acknowledgment of the links is easily upset by a noise spike. In real 

applications the processes should include safeguards against process deadlocks as a 

result of such disruptions of inter-process communications. 
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APPENDIX A DESCRIPTION O F T H E TRANSPUTER S Y S T E M 

A 4 T R A N S P U T E R H A R D W A R E 

The transputer system used throughout this work was manufactured by Inmos Limited 

and consisted of the following components: 

i) B008 Motherboard, enabling the transputer system to operate within an IBM XT 

desktop computer [A-l]. 

ii) A transputer module (TRAM) with a T800-17MHz transputer, 2 MBytes of DRAM 

and 32 KBytes of static RAM. 

iii) Two ADC20 analogue-to-digital TRAMs [A-3]. 

iv) A digital input-output interface TRAM. The design of this module is described in 

Appendix B, Section B-6. 

Figure A-l shows the interconnections between the components of the transputer 

system and their interface to the real servosystem. The "Links" shown are the links of the 

various transputer modules [A-4]. The numbers on the arrows at each TRAM give the memory 

offset at which each link is positioned [A-5]. The numbers on the arrows of the C004 

Linkswitch indicate the "link numbers" of the C004 integrated circuit [A-6]. These link 

numbers are dependent upon the printed circuit board layout of the B008 motherboard. 

The "Slots" are the locations on the B008 motherboard, where each TRAM may be 

connected [A-7]. 

A-2 TRANSPUTER SOFTWARE 

CHOICE OF SOFTWARE ENVIRONMENT 

Initially the intention was to use the analogue-to-digital converters already available in 

the Control Laboratory of the Victoria University of Technology. These converters were of 

type DT2801, manufactured by 'Data Translation' [A-9]. Their use required the first programs 
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to be written using the Inmos Alien File Server, "Afserver" [A-2]. This server included 

library routines whereby the transputer could access the ports of the IBM PC. 

The DT2801 cards required an indeterminate, nominal 'trigger' delay of one 

millisecond. Apart from this period being unacceptably long (i.e. greater than the computation 

time of the parameter estimators used !), the indeterminancy resulted in synchronisation 

problems between the DT2801 card and the time-slicing of the T800 transputer. 

This problem was solved by the purchase of two ADC20 TRAMS, providing input-

output capability to the transputer system itself [A-3]. This purchase also enabled the programs 

to be written using the file server of the Transputer Development System (TDS) [A-2]. All of 

the work presented in this thesis makes use of the TDS and its libraries. 

PROGRAMMING LANGUAGE 

All programs were written in Occam2 [5-7,5-8]. Samples of the source code are given 

in Appendices E and G. 

A-3 DYNAMIC SWITCHING OF THE SYSTEM CONFIGURATION 

EXPLANATION OF 'DYNAMIC SWITCHING' 

The transputer design deals with parallel processing by mapping the various processes 

(tasks) onto the available processors. The processes communicate via "channels", the names of 

channels and their protocols are fixed by declarations within each program. Processes that 

communicate with processes on a different processor must have their channel (a software 

connection) placed onto a transputer "link" (a serial, hardware connection). A major problem 

with the T800 generation and earlier transputers is their restriction to only four links per 

processor. 

On the B008 motherboard this constraint is alleviated by the provision of a 

programmable linkswitch, the C004 integrated circuit [A-l]. The B008 motherboard can 
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support up to ten T R A M s , all of which have at least one of their links connected to the 

linkswitch. 

Inmos provide a software package, the Module Motherboard Software (MMS2), 

intended to permit the configuration of the links between the TRAMs on the motherboard, 

prior to their operation of the application software [A-8]. Rather than use this software, the 

programs have been written so as to permit the application software itself to control the 

linkswitch. The application program is thus able to reconfigure the hardware as it executes. 

The hazard in doing this is the risk of breaking a link mid-way through an information 

exchange. 

THE NEED FOR DYNAMIC SWITCHING 

Dynamic switching was unavoidable in this work due to financial restrictions. Funds 

were only available for the purchase of one transputer TRAM. This TRAM had to be placed in 

Slot 0 of the motherboard, in order to act as the Root Transputer of the system (i.e. to provide 

an interface to the host IBM XT). 

In Slot 0 the transputer has only one link connected to the C004 linkswitch. This is the 

only hardware connection available that can be connected to the ADC20 interface TRAMs. The 

ADC20 TRAMs are constructed with only one link (Link 3). Thus for the T800 to 

communicate with two ADC20 TRAMs it was necessary for the program to be able to switch 

the links between the TRAMs. 

This switching was achieved by loading a short program into the on-chip RAM of the 

T212 transputer, supplied on the B008 motherboard as a 'linkswitch controller'. The source 

code of this program is given in Appendix G, under the heading "Source Code Enabling 

Control of the B008 Motherboard Link Switch". 

The availability of only one transputer for all calculations and control led to the tasks 

being written as a single, sequential process. The programs therefore avoid the hazard of 
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breaking a currently active link. 

A-4 T I M I N G 

The T800 transputer makes available two clocks, with periods of 64 microseconds and 

one microsecond. The T800 allows parallel processes to have two levels of priority. The low 

level priority processes having access to the slower clock, whereas the high level priority 

processes have access to the one microsecond clock. If no priority is specified, the default 

clock available is the 64 microsecond clock. 

As noted above the programs were written as single, sequential processes. However to 

make the one microsecond clock available, it was necessary to declare this single process as an 

high priority parallel process. This required the addition of a 'dummy' low priority parallel 

process, consisting of a single 'SKIP' operation. 
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APPENDIX B DESCRIPTION OF T H E SERVOSYSTEM 

BA DESCRIPTION OF T H E C O M P L E T E POSITIONAL SERVOSYSTEM 

The positional servosystem consists of the following components: 

i) A 40 Watts, permanent magnet DC servomotor. 

ii) A two-channel, incremental optical encoder, providing a resolution of 1000 

counts per armature shaft revolution. 

iii) A 71:1 planetary gearhead. 

iv) A detachable turntable, mounted on the output shaft of the gearbox. 

v) A Pulse Width Modulator (PWM) Unit, used to switch a bridge of VMOS 

power transistors. This circuitry controlled the armature current of the motor. 

vi) Circuitry to interface the above hardware to the Transputer System. This 

consists of two main sections. Firstly a Digital-to-Analogue Converter (DAC), 

whereby the Transputer could control the duty cycle of the PWM Unit. 

Secondly a Counter Circuit, whereby the Transputer could monitor the angular 

change in position of the armature shaft. 

Figure B-l is a block diagram showing the interconnection of these components, and 

their connections to the components of the Transputer System. 

B_2 THE PERMANENT MAGNET DC MOTOR 

The DC motor was manufactured by Interelectric AG of Switzerland, under the trade 

name of "Maxon", catalogue number 2260-811-51.216.200. The manufacturer provides 

comprehensive data on this range of motors [3-17], including the following details :-

Assigned power rating 40W 

Nominal voltage 18V 

No load speed 4500 rpm 
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Stall torque 

Speed/torque gradient 

No load current 

Starting current 

Terminal resistance 

Terminal inductance 

Max. permissible speed 

Max. continuous current 

Max. power output @ 18V 

Max. efficiency 

Torque constant 

Mechanical time constant 

Rotor inertia 

Number of commutator segments 

880 m N m 

5.35 rpm/mNm 

387 m A 

24. IA 

0.747 ohms 

0.23 m H 

5000 rpm 

3.31A 

98.9W 

73.0% 

36.5 mNm/A 

35.5 ms 

635 gem2 

26 

__3 T H E OPTICAL E N C O D E R 

The armature of the motor was directly coupled to a Hewlett-Packard HEDS 6010 

Digital Optical Encoder. This encoder giving a resolution of 1000 pulses per revolution of the 

armature shaft [B-2]. 

B4 THE PLANETARY GEARHEAD 

The motor was fitted with a planetary gearhead, giving a reduction of 71:1. The total 

no load backlash of the gearhead is specified as no more than 2.7 degrees [3-17]. 
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FIGURE B-3 CIRCUIT DIAGRAM OF THE TRIANGLE WAVE GENERATOR OF THE 

PWM UNIT 
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B_5 T H E PULSE-WIDTH M O D U L A T O R ( P W M ) UNIT A N D P O W E R BRIDGE 

Figures B-3 and B-4 show the circuitry of the PWM Unit. The Power Bridge circuit is 

shown in Figure B-5. 

The PWM Unit contains a triangle wave generator (Figure B-3), based upon an 8038 

waveform generator integrated circuit [B-l]. This circuit produces an ultrasonic (nominal 

22kHz) triangle waveform, VT used as an input to the two comparators of the PWM Unit 

(Figure B-4). 

The other comparator inputs are derived from the output of a DAC, voltage V. (Figure 

B-4). A deadband in the switching of the power transistors is provided by a DC Level Shifter 

circuit. This circuit consists of a 2.1 KQ. resistor, and a current sink. 

The outputs of the comparators are used to generate the gate drive signals of the 

VMOS transistors of the power bridge. The gate drive signals are available at the terminals 

labelled A,B,C and D of Figure B-4. 

The VMOS bridge itself was supplied from a commercial DC Power Supply, with a 

current limit of up to 5 Amps used to protect both the power bridge and the DC motor. The 

other components of the bridge circuit (Figure B-5) are diodes required to protect the power 

transistors, and capacitors included to reduce interference problems. 

__6 THE INTERFACE CIRCUITRY 

THE TRANSPUTER DIGITAL INTERFACE MODULE 

Figure B-7 shows the circuit and layout of a digital input module, designed and built to 

provide an interface for reading from the 16-bit position counter. The module uses the C011 

Link Adaptor integrated circuit [B-3]. A "Size 2" TRAM [B-4] was designed to enable this 

adaptor to be mounted on the B008 motherboard. The design enables the contents of the 16-bit 

counter to be read as two bytes. 
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T H E D I G I T A L - T O - A N A L O G U E C O N V E R T E R (DAC) 

A simple 8-bit DAC circuit was used (Figure B-2). This circuit enables the transputer 

to generate the voltage Vr used as an input to the PWM Unit. This voltage controls the duty-

cycle of the PWM Unit. 

THE COUNTER CIRCUIT 

Figure B-6 shows the 16-bit counter circuit, used to monitor the position of the 

armature shaft. 

The signals "OCI" and "OCQ" are the quadrature square waves generated by the 

optical encoder mounted on the armature shaft. Signal "OCI" is used to control the 'up-down' 

connection of the counter. Signal "OCQ" is used to clock the counter circuit. 

The inputs prefixed by "J3" are connected to the terminals labelled "J3" of the ADC20 

Module in slot 7 of the B008 motherboard [B-5]. 

The counter circuit design includes a strobed latch to enable the separation of the 

counting process from that of reading the counter. The reading process does not interrupt the 

counting process. 

THE COUNTER CIRCUIT CONTROLLER 

The control of the counter circuit is primarily performed by the software, resulting in a 

relatively simple hardware design. The source code listing of Appendix G contains sequences 

of code that generate the necessary bit patterns for: 

i) initialisation of the counter 

ii) latching the counter contents and reading the contents as two bytes of data. 

and iii) performing the necessary handshaking with the C011 Link Adaptor of the 

Digital Transputer Interface Module. 
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R E S T R I C T I O N S O N T H E C O U N T E R CIRCUIT U S E 

The optical encoder, having a resolution of 1000 counts per revolution, and being fitted 

to the armature shaft, produced a count of 71000 for each revolution of the output shaft. The 

16 bit counter used to record the output of the optical encoder had a maximum count value of 

65536. It was therefore essential that the program monitoring the counter correctly interpreted 

the overflows and underflows of the counter. 

The program can only be certain of a correct interpretation by sampling the counter at 

an adequately high rate. The counter cannot be allowed to change its count by more than one 

half of its total count range between consecutive sampling instants. Thus, for a 16 bit counter, 

the 'distance' between consecutive position measurements must not exceed 32768, equivalent to 

32.768 rotations of the armature shaft. This value determines the lowest permissible sampling 

rate of the system. 

Using the no-load speed of the motor as the maximum possible speed, results in a 

maximum permissible sampling period of 0.4369 seconds. 

The highest sampling frequency is determined by the calculation time of the selected 

algorithm, plus the time required to acquire the signal samples and write out the next output 

signal. 

The designs described above require 157 microseconds to 

i) write out a new value via the DAC 

and ii) read two bytes from the position counter. 

A Three Parameter Estimator can be designed to estimate the pole location with an 

execution time of less than 163 microseconds. These figures suggest that a period of at least 

320 microseconds must elapse between samples from the position counter for real-time 

estimation of the unknown pole location. 
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APPENDIX C NON-RECURSIVE SOLUTION OF THE LEAST SQUARES 

EQUATIONS 

Qzi THE SEQUENCE OF EQUATIONS NECESSARY TO SOLVE A FOUR 

PARAMETER PROBLEM USING LU FACTORISATION 

INTRODUCTION 

The use of LU Factorisation for the solution of a set of simultaneous equations was 

outlined in Section 4-3. The following listing shows the sequence of equations necessary to 

solve a set of four equations in four unknowns, using this method. The listing is provided as a 

bridge between Section 4-3 and the Occam2 Source Code listing of Appendix E. The use of 

such a sequence, rather than matrix manipulation, resulted in reduced computation time. 

SEQUENCE OF EQUATIONS FOR LU FACTORISATION SOLUTION - FOUR 

PARAMETER CASE 

lxo=^> C-l 

I J.™ C-2 
'20 roo 

/ Jjzl C-3 
'30 roo 

u =r -I r C-4 
"n 'n ho-'01 

, _r21 *20-roi C-5 
'21 

"11 
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/ _r31 *30r01 
t31 
"ll 

C-6 

M12-ri2 ^10-r02 C-7 

M22~r22 *21M12 ^20-r02 C-8 

; _r32 *31M12 *30-r02 
'32 

*22 

C-9 

K13 rl3 *10*r03 
C-10 

M23 r23 *21'M13 *20-r03 C-ll 

M33 r33 *32*W23 *31*U13 *30-r03 
C-12 

C0 r04 
C-13 

Cl~rl4 *10-r04 
C-14 

C2 r24~^21-Cl ^20'r04 
C-15 

C3 r34 ^32,C2 ^3rCl~^30*r04 
C-16 

e3=- l33 

C-17 
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02 = 
C2-K23.63 

C-18 
u. 22 

0! = 
Cj-Mj3.63-Mi2.O2 

'11 

C-19 

%= 
CO~rO3-63"rO2-e2~rOl-0l 

'00 

C-20 
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APPENDIX D PSPICE SIMULATIONS OF T H E A R M A T U R E M O D E L 

This Appendix contains further information on the PSpice simulations of Section 3-6. 

The source code is of a simulation with a 90% PWM duty cycle. The pulse voltage sources of 

this listing model the action of the PWM Unit and its VMOS Bridge. 

A R M A T U R E - P W M UNIT STEP RESPONSE 
.width out = 80 
vx 1 2 pulse(0 15 0 0 0 10 10.2) 
vy 4 2 pulse(0 15 9 0 0 0.1 10.2) 
ra 1 0 0.747 
la 0 3 0.23m 
rm 3 4 45.7 
c 3 4 46.32m 
.tran le-3 0.5 
.options itl5=0 
.probe 
.end 
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APPENDIX E 0 C C A M 2 SOURCE C O D E OF T H E SIMULATION P R O G R A M S 

The following source code listings in Occam2 are of the programs used to perform the 

simulations described in this thesis. The programs make extensive use of the library procedures 

of the "Transputer Development System", a programming environment most commonly 

referred to as TDS. [A-2] 

The following code gives the full program used to compare the Lower-Upper 

Factorisation and the Recursive Least Squares Methods of solution of a set of four normal 

equations, in four unknown parameters. 

- FOUR P A R A M E T E R SOLUTION B Y L U FACTORISATION & RLS 
#USE interf 
#USE userio 
#USE snglmath 
#USE dblmath 
- DECLARATIONS OF C O M M O N VARIABLES 
INT t.start.i,t.start.ii,t.end.i,t.end.ii,td.i,td.ii: 
INT kbdip,ichar,conv.no,run.no,cc,rr,n,r,c: 
INT32 i.ran.s: 
INT64 i.ran.d: 
REAL32k,a,sample.period.secs,sq.y.error,sq.yO,sq.y0.n,sq.uO,conv.n,run.n: 
R E A L 3 2 y.error.y.error.scale,true.al ,true.a2,true.bl ,true.b2: 
REAL32uO,ul,u2,yO,y0.n,yl,yl.n,y2,y2.n: 
REAL32h,sm,rnTs.uO,rms.yO,rms.y0.n,rms.error: 

R E A L 3 2 rand.s: 
R E A L 6 4 rand.d: 
T I M E R clock: 
C H A N O F A N Y to.file: 
[63]BYTE filename: 
INT result.name.len: 
V A L dos.filename IS "estvals.dat": 
-DECLARATIONS OF VARIABLES FOR SOLN. BY L U & RLS M E T H O D S 
REAL32ull,ul2,ul3,u22,u23,u33,110,120,121,130,131,132,cl,c2,c3: 

[4]REAL32 Ti: 
[4][5]REAL32 R,R.temp: 
[101]REAL32Ti.sq0,Ti.sql,Ti.sq2,Ti.sq3: 
REAL32 error,D,error.over.D: 
[4]REAL32 W,Tii: 
[4][4]REAL32 P: 
[101]REAL32Tii.sqO,Tii.sql,Tii.sq2,Tii.sq3: 
SEQ -START OF PROCESSES 
PRIPAR 
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SEQ 

ichar : = O(INT) -INITIALISATION OF MISC. VARIABLES 
i.ran.s := 1(INT32) 
i.ran.d := 3(INT64) 
k := 0.5(REAL32) 
a: = 1.0(REAL32) 
sample.period.sees := 0.2(REAL32) 
sq.y.error := 0.0(REAL32) 
sq.yO : = 0.0(REAL32) 
sq.yO.n : = 0.0(REAL32) 
sq.uO : = 0.0(REAL32) 
conv.no : = 50(INT) 
run.no := lOOO(INT) 
conv.n : = REAL32 R O U N D (conv.no) 
run.n : = REAL32 R O U N D (run.no) 
- INITIALISATION O F VARIABLES REQ. FOR VARIANCE CALCULATION 
cc : = #00 
WHILE cc < conv.no 
SEQ 
Ti.sq0[cc] : = 0.0(REAL32) 
Ti.sql[cc] := 0.0(REAL32) 
Ti.sq2[cc] := 0.0(REAL32) 
Ti.sq3[cc] := 0.0(REAL32) 
Tii.sqO[cc] := 0.0(REAL32) 
Tii.sql[cc] := 0.0(REAL32) 
Tii.sq2[cc] : = 0.0(REAL32) 
Tii.sq3[cc] : = 0.0(REAL32) 
cc := cc + l(INT) 

cc:= O(INT) 
newline(screen) -REQUEST LEVEL OF NOISE REQUIRED 
write.full.string(screen, "Enter the required y.error.scale ") 
read.real32(keyboard,y.error.scale,ichar) 
- CALCULATION O F V A L U E S T O BE SUBSEQUENTLY ESTIMATED 
true.b2 := EXP((-a)*sample.period.secs) 
true.bl := (-1.0(REAL32)) - true.b2 
true.al := (k/(a*a))*(((a*sample.period.secs) - 1.0(REAL32)) + true.b2) 
true.a2 := (k/(a*a))*((1.0(REAL32)-true.b2)-

((a*sample.period.secs)*true.b2)) 
- LOOP OF 1000 R U N S T O EXERCISE B O T H ESTIMATORS 
SEQ 
rr:= O(INT) 
WHILE rr < run.no 
SEQ 
~ INITIALISATION O F SIGNAL V E C T O R FOR R U N rr 
u2 : = 0.0(REAL32) 
ul := 0.0(REAL32) 
y2 : = 0.0(REAL32) ~ ie noise free outputs req for SNR calc. 
yl := 0.0(REAL32) 
yl.n : = 0.0(REAL32) - ie ouputs of system, 
y2.n := 0.0(REAL32) - inc noise generated components 
cc : = O(INT) 
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- INITIALISATION OF VARIABLES FOR LU & RLS SOLUTIONS 
SEQ n = 0 FOR 4 
Ti[n] : = 0.0(REAL32) ~ vector of parameter estimates, theta 

SEQ 
SEQ r = 0 FOR 4 
SEQ c = 0 FOR 5 
R[r][c] := 0.0(REAL32) 

- VARIABLES USED IN RLS SOLUTION 
SEQ 

10000.0(REAL32) 
10000.0(REAL32) 
10000.0(REAL32) 
10000.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 
0.0(REAL32) 

P[0][0] 
P[l][l] 
P[2][2] 
P[3][3] 
P[0][1] 
P[0][2] 
P[0][3] 
P[1][0] 
P[l][2] 
P[l][3] 
P[2][0] 
P[2][l] 
P[2][3] 
P[3][0] 
P[3][l] 
P[3][2] 
SEQ n = 0 FOR 4 
Tii[n] := 0.0(REAL32) - vector of parameter estimates, theta 

WHILE cc < conv.no 
SEQ - GENERATE N E X T INPUT SIGNAL 
rand.d.i.ran.d := DRAN(i.ran.d) 
uO := REAL32 R O U N D ((rand.d - 0.5(REAL64))*10.0(REAL64)) 
- GENERATE ADDITIONAL NOISE O N 0/P SIGNAL 
y.error : = 0.0(REAL32) 
SEQ n = 0 FOR 12 
SEQ 
rand.s,i.ran.s := RAN(i.ran.s) 
y.error := y.error + (rand.s - 0.5(REAL32)) 

y.error := y.error * y.error.scale 
y0.n:=(((true.al*ul)+(true.a2*u2)) - ((true.bl*yl.n) + 

(true.b2*y2.n)))+y.error 
yO : = ((true.al*ul) + (true.a2*u2)) - ((true.bl*yl) + 

(true.b2*y2)) 
- this noise free o/p required to calculate SNR 
- CALCULATIONS REQ. FOR DETERMINATION OF R M S VALUES 
sq.y.error := sq.y.error + (y.error*y.error) 
sq.yO : = sq.yO + (yO*yO) 
sq.yO.n : = sq.yO.n -I- (y0.n*yO,n) 
sq.uO : = sq.uO + (uO*uO) 
SEQ - 4 P A R A M E T E R SOLUTION BY LU FACTORISATION 
clock ? t.start, i 
R[0][0] := R[0][0] + (ul*ul) - U P D A T E MATRIX R 

181 

http://conv.no


R[0][1] + (ul*u2) 
R[0][2] -(ul*yl.n) 
R[0][3] - (ul*y2.n) 
R[0][4] + (ul*y0.n) 
R[0][1] 
R[l][l] + (u2*u2) 
R[l][2]-(u2*yl.n) 
R[l][3] - (u2*y2.n) 
R[l][4] + (u2*y0.n) 
R[0][2] 
R[l][2] 
R[2][2] + (yl.n*yl.n) 
R[2][3] + (yl.n*y2.n) 
R[2][4] - (yl.n*y0.n) 
R[0][3] 
R[l][3] 
R[2][3] 
R[3][3] + (y2.n*y2.n) 
R[3][4] - (y2.n*y0.n) 

R[0][1] 
R[0][2] 
R[0][3] 
R[0][4] 
R[1][0] 

R[l][l] 
R[l][2] 
R[l][3] 
R[l][4] 
R[2][0] 
R[2][l] 
R[2][2] 
R[2][3] 
R[2][4] 
R[3][0] 
R[3][l] 
R[3][2] 
R[3][3] 
R[3][4] 
IF 
cc > #03 ~ S O L V E C U R R E N T M A T R I X R 
S E Q 
R.temp : = R 
110 := R.temp[l][0]/R.temp[0][0] 
120 := R.temp[2][0]/R.temp[0][0] 
130 := R.temp[3][0]/R.temp[0][0] 
ull := R.temp[l][l] - (R.temp[0][l]*U0) 
IF 
ull = 0.0(REAL32) 
SKIP 

T R U E 
S E Q 
121 := (R.temp[2][l] - (R.temp[0][l]*120))/ull 
131 := (R.temp[3][l] - (R.temp[0][l]*130))/ull 
ul2 := R.temp[l][2] - (R.temp[0][2]*110) 
u22 := R.temp[2][2] - ((ul2*121) + (R.temp[0][2]*120)) 
IF 
u22 = 0.0(REAL32) 
SKIP 

T R U E 
S E Q 
132 := (R.temp[3][2] - ((131*ul2) + 

(130*R.temp[0][2])))/u22 
ul3 := R.temp[l][3] - (110*R.temp[0][3]) 
u23 := R.temp[2][3] - ((121*ul3) + 

(120*R.temp[0][3])) 
u33 := R.temp[3][3] - ((132*u23) + 

((131*ul3) + (130*R.temp[0][3]))) 

IF 
u33 = 0.0(REAL32) 
SKIP 
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T R U E 
SEQ 
cl := R.temp[l][4] - (110*R.temp[0][4]) 
c2 := R.temp[2][4] - ((121*cl) + 

(120*R.temp[0][4])) 
c3 := R.temp[3][4] - ((132*c2) + 

((131*cl) + (130*R.temp[0][4]))) 
Ti[3] : = c3/u33 
Ti[2] := (c2 - (u23*Ti[3]))/u22 
Ti[l] := (cl - ((ul3*Ti[3]) + (ul2*Ti[2])))/ull 
Ti[0] := (R.temp[0][4]-((R.temp[0][3]* 

Ti[3])+((R.temp[0][2]* 
Ti[2]) + (R.temp[0][l]* 
Ti[l]))))/R.temp[0][0] 

TRUE 
SKIP 

clock ? t.end.i 
SEQ ~ 4 P A R A M E T E R SOLUTION B Y RLS 
clock ? t.start.ii 
~ C A L C U L A T E E R R O R IN PREDICTION 
error := (y0.n-((Tii[0]*ul)+(Tii[l]*u2)))+((Tii[2]*yl.n) + 

(Tii[3]*y2.n)) 
- U P D A T E V E C T O R W 
W[0] := ((P[0][0]*ul) + (P[0][l]*u2)) - ((P[0][2]*yl.n) + 

(P[0][3]*y2.n)) 
W[l] := ((P[l][0]*ul) + (P[l][l]*u2)) - ((P[l][2]*yl.n) + 

(P[l][3]*y2.n)) 
W[2] := ((P[2][0]*ul) + (P[2][l]*u2)) - ((P[2][2]*yl.n) + 

(P[2][3]*y2.n)) 
W[3] := ((P[3][0]*ul) + (P[3][l]*u2)) - ((P[3][2]*yl.n) + 

(P[3][3]*y2.n)) 
- C A L C U L A T E D 
D := (((W[0]*ul)+(W[l]*u2))+1.0(REAL32))-((W[2]*yl.n)+ 

(W[3]*y2.n)) 
IF 
D = 0.0(REAL32) 
SKIP 

T R U E 
SEQ 
- C A L C U L A T E ESTIMATES (VECTOR T H E T A ) 
error.over.D := error/D 
Tii[0] := Tii[0] + (W[0]*error.over.D) 
Tii[l] := Tii[l] + (W[l]*error.over.D) 
Tii[2] := Tii[2] + (W[2]*error.over.D) 
Tii[3] := Tii[3] + (W[3]*error.over.D) 
- U P D A T E T H E P M A T R I X 
P[0][0] := P[0][0] - ((W[0]*W[0])/D) 
P[0][1] := P[0][1] - ((W[0]*W[1])/D) 
P[0][2] := P[0][2] - ((W[0]*W[2])/D) 
P[0][3] := P[0][3] - ((W[0]*W[3])/D) 
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P[0][1] 
P[l][l] - ((W[1]*W[1])/D) 
P[l][2] - ((W[1]*W[2])/D) 
P[l][3] - ((W[1]*W[3])/D) 
P[0][2] 
P[l][2] 
P[2][2] - ((W[2]*W[2])/D) 
P[2][3] - ((W[2]*W[3])/D) 
P[0][3] 
P[l][3] 
P[2][3] 
P[3][3] - ((W[3]*W[3])/D) 

P[1][0] 
P[l][l] 
P[l][2] 
P[l][3] 
P[2][0] 
P[2][l] 
P[2][2] 
P[2][3] 
P[3][0] 
P[3][l] 
P[3][2] 
P[3][3] 

clock ? t.end.ii 

~ U P D A T E V A R I A B L E S R E Q . F O R C A L C U L A T I O N O F V A R I A N C E S 
Ti.sq0[cc]: =Ti.sqO[cc]+((Ti[0]-true.al)*(Ti[0]-true.al)) 
Ti.sql[cc]: =Ti.sql[cc]+((Ti[l]-true.a2)*(Ti[l]-true.a2)) 
Ti.sq2[cc]: =Ti.sq2[cc]+((Ti[2]-true.bl)*(Ti[2]-true.bl)) 
Ti.sq3[cc]: =Ti.sq3[cc]+((Ti[3]-true.b2)*(Ti[3]-trae.b2)) 
Tii.sqO[cc]: =Tii.sqO[cc]+((Tii[0]-true.al)*(Tii[0]-true.al)) 
Tii.sql[cc]: =Tii.sql[cc]+((Tii[l]-true.a2)*(Tii[l]-true.a2)) 
Tii.sq2[cc]: =Tii.sq2[cc] +((Tii[2]-true.bl)*(Tii[2]-true.bl)) 
Tii.sq3[cc]:=Tii.sq3[cc] + ((Tii[3]-true.b2)*(Tii[3]-true.b2)) 
- U P D A T E T H E D A T A ( R E G R E S S O R ) V E C T O R , PSI 
u2 : = ul 
ul : = uO 
y2.n := yl.n 
y2:=yl 
yl.n := yO.n 
yi :=y0 
cc := cc + 1(INT) - E N D OF INNER LOOP 

rr : = rr + l(INT) - E N D OF OUTER LOOP 
rms.error := sq.y.error/(conv.n*run.n) -CALCULATE R M S VALUES & SNR 
rms.error := POWER(rms.error,0.5(REAL32)) 
rms.yO := sq.yO/(conv.n*run.n) 
rms.yO.n := sq.y0.n/(conv.n*run.n) 
rms.uO := sq.u0/(conv.n*run.n) 
rms.yO := POWER(rms.yO,0.5(REAL32)) 
rms.yO.n := POWER(rms.y0.n,0.5(REAL32)) 
rms.uO := POWER(rms.uO,0.5(REAL32)) 
snr : = 20.0(REAL32) * ( ALOG10(rms.yO/rms.error)) 
newline(screen) ~ WRITE O U T VALUES F R O M RUNS TO SCREEN 
write.full.string(screen," y.error.scale = ") 
write.real32(screen,y.error.scale,4,4) 
newline(screen) 
newline(screen) 
write.full.string(screen," R M S y.error = ") 
write. real32(screen, rms. error ,4,4) 
write.full.string(screen," R M S yO = ") 
write. reaI32(screen,rms .y0,4,4) 
newline(screen) 
write.full.string(screen," R M S uO = ") 
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write.real32(screen,rms.u0,4,4) 
write.full.string(screen," S N R = ") 
write. real32(screen,snr ,4,4) 
write.full.string(screen," R M S yO.n = ") 
write. real32(screen,rms.y0.n,4,4) 
newline(screen) 
td.i := t.end.i M I N U S t.start.i 
td.ii := t.end.ii M I N U S t.start.ii 
newline(screen) 
write.full.string(screen,"Calculation time in usees for L U method = ") 
write.int(screen,td.i,8) 
newline(screen) 
write.full.string(screen, "Calculation time in usees for RLS method = ") 
write. int(screen, td. ii, 8) 
newline(screen) 
write.full.string(screen, "conv.no = ") 
write. int(screen,conv. no, 8) 
write, full. string(screen," run.no = ") 
write. int(screen, run. no, 8) 
cc : = O(INT) - C A L C U L A T E M S E F R O M C U M U L A T I V E V A L U E S 
W H I L E cc < conv.no 
S E Q 
h : = 0.5(REAL32) 
Ti.sqO[cc] : = ((POWER((Ti.sqO[cc]/run.n),h))/true.al)*100.0(REAL32) 
Ti.sql[cc] : = ((POWER((Ti.sql[cc]/run.n),h))/true.a2)*100.0(REAL32) 
Ti.sq2[cc] : = ((POWER((Ti.sq2[cc]/run.n),h))/true.bl)*100.0(REAL32) 
Ti.sq3[cc] : = ((POWER((Ti.sq3[cc]/run.n),h))/true.b2)*100.0(REAL32) 
Ti.sq2[cc] := -(Ti.sq2[cc]) - note, true.bl is a -ve number 
Tii.sqO[cc] :=((POWER((Tii.sqO[cc]/run.n),h))/true.al)*100.0(REAL32) 
Tii.sqlfcc] :=((POWER((Tii.sql[cc]/run.n),h))/true.a2)*100.0(REAL32) 
Tii.sq2[cc] :=((POWER((Tii.sq2[cc]/run.n),h))/true.bl)*100.0(REAL32) 
Tii.sq3[cc] : = ((POWER((Tii.sq3[cc]/run.n),h))/true.b2)* 100.0(REAL32) 
Tii.sq2[cc] : = -(Tii.sq2[cc]) - note, true.bl is a -ve number 
cc:= cc + l(INT) 

newline(screen) ~ W R I T E T O S C R E E N T R U E V A L U E S & THEIR ESTIMATES 
write.full.string(screen, "Expected coeffs ") 
write.real32(screen,true.al ,4,4) 
write.full.string(screen," ") 
write. real32(screen,true. a2,4,4) 
write, full. string(screen," ") 
write.real32(screen,true.bl ,4,4) 
write.full.string(screen," ") 
write.real32(screen,true.b2,4,4) 
newline(screen) 
write, full. string(screen," Estimates by L U method ") 
write.real32(screen,Ti[0],4,4) 
write.full.string(screen," ") 
write.real32(screen,Ti[l],4,4) 
write. full. str ing(screen," ") 
write. real32(screen,Ti[2] ,4,4) 
write.full.string(screen," ") 
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write. real32(screen,Ti[3] ,4,4) 
newline(screen) 
write.full.string(screen, "Estimates by R L S method ") 
write.real32(screen,Tii[0],4,4) 
write.full.string(screen," ") 
write. real32(screen,Tii[ 1 ] ,4,4) 
write.full.string(screen," ") 
write. real32(screen,Tii[2] ,4,4) 
write. full. string(screen," ") 
write.real32(screen,Tii[3],4,4) 
newline(screen) 
~ FREEZE SCREEN TO ENABLE DUMPING TO PRINTER 
newline(screen) 
write.full.string(screen,"Strike any key to terminate") 
keyboard ? kbdip 

SKIP - dummy low priority process 
- OUTPUT RMSEs TO DOS TEXT FILE FOR BOTH M E T H O D S 
PAR 
SEQ 
name.len := SIZE dos.filename 
[filename F R O M 0 FOR name.len] := dos.filename 
scrstream.to.server(to.file,from.filer,to.filer,name.len, 

filename.result) 
S E Q 
cc:= O(INT) 
W H I L E cc < conv.no 
S E Q 
write. real32(to.file,Ti. sqO[cc] ,10,6) 
write.full.string(to.file," ") 
write.real32(to.file,Ti.sql[cc],10,6) 
write.full.string(to.file," ") 
write.real32(to.file,Ti.sq2[cc],10,6) 
write.full.string(to.file," ") 
write.real32(to.file,Ti.sq3[cc],10,6) 
write.full.string(to.file," ") 
write.real32(to.file,Tii.sqO[cc],10,6) 
write.full.string(to.file," ") 
write.real32(to.file,Tii.sql[cc],10,6) 
write.full.string(to.file," ") 
write.real32(to.file,Tii.sq2[cc],10,6) 
write.full.string(to.file," ") 
write.real32(to.file,Tii.sq3[cc],10,6) 
write.full.string(to.file," ") 
write.int(to.file,cc,6) 
write.full.string(to.file," ") 
newline(to.file) 
c c : = cc + l(INT) 

write. endstream(to .file) 
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SOURCE CODE OF THE METHOD OF USING A PRIORI INFORMATION TO REDUCE 

THE NUMBER OF NORMAL EQUATIONS BY ONE 

The following code shows an alternative method of parameter estimation appropriate to 

a second order, type one system. The method utilises the a priori knowledge of a plant pole at 

s = 0. The variable declarations and initialisation required for this method are not listed. An 

RLS version of the Three Parameter Estimator is given in the source code listing of Appendix 

G. The following uses LU Factorisation: 

SEQ 
clock ? t.start.c 
delta.yl : 
delta.yO : 
Rc[0][0] : 
Rc[0][l] : 
Rc[0][2] . 
Rc[0][3] : 
Rc[l][0] : 
Rc[l][l] : 
Rc[l][2] : 
Rc[l][3] : 
Rc[2][0] : 
Rc[2][l] : 
Rc[2][2] 
Rc[2][3] : 

= yl.c - y2.c 
= yO.n - yl.c 
= Rc[0][0] + (ul.c*ul.c) 
= Rc[0][l] + (ul.c*u2.c) 
= Rc[0][2] + (ul.c*delta.yl) 
= Rc[0][3] + (ul.c*delta.yO) 
= Rc[0][l] 
:= Rc[l][l] + (u2.c*u2.c) 
:= Rc[l][2] + (u2.c*delta.yl) 
:= Rc[l][3] + (u2.c*delta.y0) 
:=Rc[0][2] 
:= Rc[l][2] 
:= Rc[2][2] + (delta.yl*delta.yl) 
:= Rc[2][3] + (delta.yl*delta.yO) 

SEQ 
R.temp := Re 
110 := R.temp[l][0]/R.temp[0][0] 
120 := R.temp[2][0]/R.temp[0][0] 
ull := R.temp[l][l] - (R.temp[0][l]*110) 
IF 
ull = 0.0(REAL32) 
SKIP 

T R U E 
S E Q 
121 := (R.temp[2][l] - (R.temp[0][l]*120))/ull 
ul2 := R.temp[l][2] - (R.temp[0][2]*110) 
u22 := R.temp[2][2] - ((ul2*121) + (R.temp[0][2]*120)) 

IF 
u22 = 0.0(REAL32) 
SKIP 

T R U E 
SEQ 
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cl := R.temp[l][3] - (110*R.temp[0][3]) 
c2 := R.temp[2][3] - ((120*R.temp[0][3]) + (121 *cl)) 
Tc[2] := c2/u22 
Tc[l] :=(cl-(ul2*Tc[2]))/ull 
Tc[0] := (R.temp[0][3]-((R.temp[0][l]*Tc[l]) + 

(R. temp[0] [2] *Tc[2])))/R.temp[0] [0] 
TRUE 
SKIP 

u2.c := ul.c 
ul.c := uO 
y2.c := yl.c -
yl.c := yO.n 
clock ? t.end.c 

SOURCE C O D E FOR T H E E X T E N D E D LEAST SQUARES M E T H O D 

The following source code is for the solution by the method referred to as ELS or 

Panuska's Method. The variable declarations and initialisation are not given. Since this method 

increases the number of parameters to be estimated to six a recursive form of the solution is 

given: 

- 6 PARAMETER RECURSIVE EXTENDED LEAST SQUARES SOLUTION 
SEQ 
clock ? t.start.p 
- CALCULATE PREDICTION ERROR 
error := ((y0.n-((Tp[0]*ul.p)+(Tp[l]*u2.p)))+((Tp[2]*yl.p)+ 

(Tp[3]*y2.p)))-((Tp[4]*el)+(Tp[5]*e2)) 
- UPDATE VECTOR W 
W[0] := (((P[0][0]*ul.p) + (P[0][l]*u2.p)) - ((P[0][2]*yl.p) + 

(P[0][3]*y2.p))) + ((P[0][4]*el)+(P[0][5]*e2)) 
W[l] := (((P[l][0]*ul.p) + (P[l][l]*u2.p)) - ((P[l][2]*yl.p) + 

(P[l][3]*y2.p))) + ((P[l][4]*el)+(P[l][5]*e2)) 
W[2] := (((P[2][0]*ul.p) + (P[2][l]*u2.p)) - ((P[2][2]*yl.p) + 

(P[2][3]*y2.p))) + ((P[2][4]*el)+(P[2][5]*e2)) 
W[3] := (((P[3][0]*ul.p) + (P[3][l]*u2.p)) - ((P[3][2]*yl.p) + 

(P[3][3]*y2.p))) + «P[3][4]*el)+(P[3][5]*e2)) 
W[4] := (((P[4][0]*ul.p) + (P[4][l]*u2.p)) - ((P[4][2]*yl.p) + 

(P[4][3]*y2.p))) + «P[4][4]*el)+(P[4][5]*e2)) 
W[5] := (((P[5][0]*ul.p) + (P[5][l]*u2.p)) - ((P[5][2]*yl.p) + 

(P[5][3]*y2.p))) + ((P[5][4]*el)+(P[5][5]*e2)) 
~ CALCULATE D 
D := ((((W[0]*ul.p)+(W[l]*u2.p))+1.0(REAL32))-((W[2]*yl.p)+ 

(W[3]*y2.p))) + ((W[4]*el)+(W[5]*e2)) 
IF 
D = 0.0(REAL32) 
SKIP 
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T R U E 
S E Q 

- C A L C U L A T E ESTIMATES (VECTOR T H E T A ) 
error.over.D := error/D 
Tp[0] := Tp[0] + (W[0]*error.over.D) 
Tp[l] := Tp[l] + (W[l]*error.over.D) 
Tp[2] := Tp[2] + (W[2]*error.over.D) 
Tp[3] := Tp[3] + (W[3]*error.over.D) 
Tp[4] := Tp[4] + (W[4]*error.over.D) 
Tp[5] := Tp[5] + (W[5]*error.over.D) 
~ C A L C U L A T E E R R O R IN PREDICTION 
error := ((y0.n-((Tp[0]*ul.p)+(Tp[l]*u2.p)))+((Tp[2]*yl.p) + 

(Tp[3]*y2.p)))-((Tp[4]*el)+(Tp[5]*e2)) 
- U P D A T E T H E P M A T R I X 
P[0][0] 
P[0][1] 
P[0][2] 
P[0][3] 
P[0][4] 
P[0][5] 
P[1][0] 

P[l][l] 
P[l][2] 
P[l][3] 
P[l][4] 
P[l][5] 
P[2][0] 
P[2][l] 
P[2][2] 
P[2][3] 
P[2][4] 
P[2][5] 
P[3][0] 
P[3][l] 
P[3][2] 
P[3][3] 
P[3][4] 
P[3][5] 
P[4][0] 
P[4][l] 
P[4][2] 
P[4][3] 
P[4][4] 
P[4][5] 
P[5][0] 

P[5][l] 
P[5][2] 
P[5][3] 
P[5][4] 
P[5][5] 

u2.p := ul.] 

= P[0][0] - ((W[0]*W[0])/D) 
= P[0][1] - ((W[0]*W[1])/D) 

((W[0]*W[2])/D) 
((W[0]*W[3])/D) 
((W[0]*W[4])/D) 
((W[0]*W[5])/D) 

= P[0][2] 
= P[0][3] 
= P[0][4] 
= P[0][5] 
= P[0][1] 
= P[l][l] - ((W[1]*W[1])/D) 
= P[l][2] - ((W[1]*W[2])/D) 

((W[1]*W[3])/D) 
((W[1]*W[4])/D) 
((W[1]*W[5])/D) 

= P[l][3] 
= P[l][4] 
= P[l][5] 
= P[0][2] 
= P[l][2] 
= P[2][2] - ((W[2]*W[2])/D) 
= P[2][3] - ((W[2]*W[3])/D) 
= P[2][4] - ((W[2]*W[4])/D) 
= P[2][5] - ((W[2]*W[5])/D) 
= P[0][3] 
= P[l][3] 
= P[2][3] 
= P[3][3] - ((W[3]*W[3])/D) 
= P[3][4] - ((W[3]*W[4])/D) 
= P[3][5] - ((W[3]*W[5])/D) 
= P[0][4] 

= P[H[4] 
= P[2][4] 
= P[3][4] 
= P[4][4] - ((W[4]*W[4])/D) 
= P[4][5] - ((W[4]*W[5])/D) 
= P[0][5] 
= P[l][5] 
= P[2][5] 
= P[3][5] 
= P[4][5] 
= P[5][5] - ((W[5]*W[5])/D) 
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ul.p : 
y2.p: 
yl.p : 
e2: = 
el : = 
clock 

= uO 
= yl.p 
= yO.n 
el 
error 
? t.end.p 

SOURCE C O D E FOR T H E SOLUTION USING INSTRUMENTAL VARIABLES 

The following source code is for a method that uses instrumental variables. The 

instrumental variables are derived from a delayed output signal sequence. 

- I N S T R U M E N T A L VARIABLE SOLUTION 
SEQ 
clock ? t.start.e 
delta.yl.e := yl.e-y2.e 
delta.yO.e := yO.n-yl.e 
- U P D A T E M A T R I X Re 
IF 
cc < #10 
delta.yl.hat := delta.yl.e 

T R U E 
delta.yl.hat := delta.d5 

= Re[0][0] + (ul.e*ul.e) 
= Re[0][l] + (ul.e*u2.e) 
= Re[0][2] + (ul.e*delta.yl.e) 
= Re[0][3] + (ul.e*delta.y0.e) 

= Re[0][l] 
(u2.e*u2.e) 
(u2.e*delta.yl.e) 
(u2.e*delta.y0.e) 
(ul.e*delta.yl.hat) 
(u2.e*delta.yl.hat) 
(delta.y 1 .hat*delta.y 1 .e) 

= Re[l][l] 
= Re[l][2] 
= Re[l][3] 
= Re[2][0] 
= Re[2][l] 
= Re[2][2] 

+ 
+ 
+ 
+ 
+ 
+ 

Re[0][0] 
Re[0][l] 
Re[0][2] 
Re[0][3] 
Re[l][0] 

Re[l][l] 
Re[l][2] 
Re[l][3] 
Re[2][0] 
Re[2][l] 
Re[2][2] 
Re[2][3] 
IF 
cc > #02 
- S O L V E M A T R I X Re 
S E Q 
R.temp := Re 
110 := R.temp[l][0]/R.temp[0][0] 
120 := R.temp[2][0]/R.temp[0][0] 
ull := R.temp[l][l] - (R.temp[0][l]*110) 

IF 
ull = 0.0(REAL32) 
SKIP 

T R U E 

= Re[2][3] + (delta.y l.hat*delta.y0.e) 
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S E Q 

121 := (R.temp[2][l] - (R.temp[0][l]*120))/ull 
ul2 := R.temp[l][2] - (R.temp[0][2]*110) 
u22 := R.temp[2][2] - ((ul2*I21) + (R.temp[0][2]*120)) 
IF 
u22 = 0.0(REAL32) 
SKIP 

T R U E 
S E Q 

cl := R.temp[l][3] - (110*R.temp[Q][3]) 
c2 := R.temp[2][3] - ((120*R.temp[0][3]) + (121 *cl)) 
Te[2] 
Te[l] 
Te[0] 

T R U E 
SKIP 

delta.d5 
delta.d4 
delta.d3 
delta. d2 
delta, dl 
u2.e := ul.e 
ul.e := uO 
y2.e := yl.e 
yl.e := yO.n 
clock ? t.end.e 

= c2/u22 
= (cl -(ul2*Te[2]))/ull 
= (R.temp[0][3]-((R.temp[0][l]*Te[l]) + 

(R.temp[0][2]*Te[2])))/R.temp[0][0] 

= delta.d4 
= delta.d3 
= delta.d2 
= delta, dl 
= delta.yl.e 
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APPENDIX F T H E L E A S T S Q U A R E S NOISE M O D E L 

The following work justifies the use of the "Least Squares Noise Model" to describe 

the process resulting from the simulation programs of Chapter 5. 

Consider a noise free system that may be described by Equation 4-18. The output 

sequence generated by this system would be such as to obey the following equations :-

y2 = axUs+apA-bxy3-b_yA F-l 

yx = a^+a^-bfo-bfo F-2 

y0 = ̂ j + o ^ - V r V : F"3 

Next consider how added output noise would change the above evolution of the output 

sequence. Consider that the first noise to contaminate the output sequence is v2, added to the 

output term y2. This noise contaminated output term will be denoted as y^, in which case 

y2n =y2
 + v2 F"4 

Alternatively a more general notation would be 

y* = y2
 + e2 F"5 

where e2 represents the error due to all previous added output noise terms. Since the 

first noise is v2 it is clear that in this case 

e = v F-6 
e2 v2 

Similarly the subsequent output value will be contaminated by further additional noise, 

v r This output value, including noise components, is denoted by yXn, such that 

yin = axu2+a2u3-bxy2n-b^^vx 

= yrbiv2+vi = yi+ei F"7 

where ex denotes the difference between yXn and yx due to all past, added output noise 

terms. 

192 



Similarly it can be seen that 

>W = fli«i+¥2-Vi»-V2»+vo 

= y0
 + eo F-8 

where 

e0 = -bxex-b2e2+v0 F-9 

This discrete-time, difference equation suggests a noise model described by the transfer 

function: 

Eiz) _ 
Viz) Ubxz-

l+bf-2 B(z) 

This is consistent with the "LS-model" of noise given by Isermann [F-l]. 

The above suggests that the following process-and-noise model is adequate. This 

model is restricted to the case where the only colouring of the white noise input sequence is 

due to the passage of this sequence through the regressor vector. 

F-10 

V(z 

Ufz 

B(z 

-> 
A(z 

Bfz 

Yfz 

+ 

i 4-
n z 

-> 

FIGURE F-l THE LEAST SQUARES PROCESS-AND-NOISE MODEL 
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APPENDIX G OCCAM2 SOURCE CODE OF THE PROGRAMS USED TO TEST 

THE REAL SERVOSYSTEM 

SOURCE CODE REQUIRED TO PERFORM PARAMETER ESTIMATION OF THE REAL 

SERVOSYSTEM 

The following source code is run on the T800 Root Transputer in Slot 0 of the B008 

Motherboard. It is typical of the programs used in this work, this particular program 

containing an estimator using the Three Parameter RLS Method discussed in Chapter 6. 

#USE interf - T D S LIBRARIES U S E D 
#USEuserio 
#USE snglmath 
B Y T E dac.val,ls.byte,ms.byte: - D E C L A R A T I O N S O F VARIABLES 
INT16 ls.word.ms.word: 
REAL32 dac.volts,dac.volts.high,dac.volts.low: 
C H A N O F INT16 to.t212,from.t212: 
C H A N O F B Y T E to.ad: 
C H A N O F B Y T E from.ad: 
C H A N O F B Y T E from.tram2: 
PLACE to.t212 A T 1: 
PLACE from. t212 A T 5: 
PLACE to.ad A T 3: 
PLACE from.ad A T 7: 
PLACE from.tram2 A T 6: 
INT16 t212.reply: 
REAL32 pole,error3,D3,error.over.D3: 
REAL32 ul,u2,delta.y0,delta.yl: 
[3]REAL32 W3,Ti: 
[3][3]REAL32 P3: 
[4001]REAL32 tempi,temp2,pole.mean,pole.sd,pole.sum,pole.sq.sum: 
C H A N O F A N Y to.file: 
[63]BYTE filename: 
INT result,name.len: 
V A L dos.filename IS "a:p.dat": 
REAL32 run.n,conv.n,sample.period.secs,run.secs,conv.secs: 
REAL32 delta.radians: 
INT16 new.position,old.position,delta.position: 
INTn,r,c,kbdip,ichar,run.no,rr,conv.no,cc,ip.cc: 

INT16 position.ls,position.ms: 
INT time,t.start,sample.period.int: 
INT t.end.calc,t.end.pos.read,t.end,tdl,td2,td3: 

B Y T E tram2.byte: 
TIMER clock: 
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SFQ -START OF MAIN PROGRAM 

SEQ -MAKE THE MOTOR STATIONARY 
to.t212 ! 3(INT16) -connect to ADC20 in slot 6 
from.t212 ? t212.reply 
IF 
t212.reply = 6(INT16) - ie successful connection of adc in slot 6 
SKIP 

T R U E 
SEQ 
newline(screen) 

write.full.string(screen,"UNsuccessful connection of adc in slot 6 ") 
to.ad ! #7F(BYTE) - ie 0 volts o/p via dac for 5 0 % duty cycle 
from.ad ? Is.byte 
from.ad ? ms.byte 

ichar : = O(INT) -REQUEST K E Y B O A R D I/P OF ESTIMATOR PERIOD 
newline(screen) 
write.full.string(screen, "Enter the required sample period ") 
read.real32(keyboard,sample.period.secs,ichar) 
sample.period.int := INT R O U N D ( sample.period.secs/1.0E-6(REAL32)) 
run.secs := 4.0(REAL32) -INITIALISATION OF VARIABLES 
conv.n := run.sees/sample.period.sees 
run.no : = 20(INT) 
conv.no : = INT R O U N D (conv.n) -number of sample periods/4 sec. run 
run.n : = REAL32 R O U N D (run.no) 
newline(screen) -CALIBRATION OF D A C 
write.full.string(screen,"Type y if you wish to measure D A C output") 
newline(screen) 
write.fuIl.string(screen,"Type n to skip, and use default values") 
keyboard ? kbdip 
IF 
(kbdip = (INT'y')) O R (kbdip = (INT 'Y')) 
SEQ 
newline(screen) 
write.full.string(screen,"Take first reading of dac output") 
to.ad ! #6B(BYTE) - ie dac.volts.low 
from.ad ? Is.byte 
from.ad ? ms.byte 
newline(screen) 
write.full.string(screen,"Enter the voltage measured ") 
read.rea!32(keyboard,dac. volts, low.ichar) 
newline(screen) 
write.full.string(screen,"Take second reading of dac output") 
to.ad ! #00(BYTE) - ie dac.volts.high 
from.ad ? Is.byte 
from.ad ? ms.byte 
newline(screen) 
write.full.string(screen,"Enter the voltage measured ") 
read.reaI32(keyboard,dac.volts.high,ichar) 
to.ad ! #7F(BYTE) - ie 0 volts for 5 0 % duty-cycle 
from.ad ? Is.byte 
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from.ad ? ms.byte 
TRTfF 
^ ~ ie accept following default values 

dac.volts.low := 0.73(REAL32) 
tec.volts.high := 4.33(REAL32) 

WHIIE^C < conv.no "INITIAUSA™N 0F CUMULATIVE VARIABLES 

SEQ 

pole.sum[cc] : = 0.0(REAL32) 

pole.sq.sumfcc] := 0.0(REAL32) 
pole.mean[cc] := 0.0(REAL32) 
pole.sdfcc] .= 0.0(REAL32) 
templ[cc] := 0.0(REAL32) 
temp2[cc] := 0.0(REAL32) 
cc := cc + 1(INT) 

cc : = O(INT) 

- START OF MULTIPLE RUNS OF PARAMETER ESTIMATION 
SEQ 
rr : = O(INT) 

WHILE rr < run.no -counter of outer loop of run number 
SEQ 

SEQ -INITIALISATION OF RLS ESTIMATOR VARIABLES for run rr 
P3[0][0] : = 10000.0(REAL32) 
P3[l][l] := 10000.0(REAL32) 
P3[2][2] := 10000.0(REAL32) 
P3[0][l] : = 0.0(REAL32) 

P3[0][2]:=0.0(REAL32) 
P3[l][0]:= 0.0(REAL32) 
P3[l][2] :=0.0(REAL32) 
P3[2][0] :=0.0(REAL32) 

P3[2][1]:=0.0(REAL32) 
SEQ n = 0 FOR 3 

Ti[n] : = 0.0(REAL32) - vector of parameter estimates, theta 
pole.= 0.0(REAL32) 
delta.yl := 0.0(REAL32) 
ul : = 0.0(REAL32) 
u2 := 0.0(REAL32) 

~ CODE TO ZERO THE POSITION COUNTER 

to.t212 ! 2(INT16) - connect adc20 in slot 7 to access counter cct 
from.t212 ? t212.reply 
IF 

t212.reply = 5(INT16) - ie successful connection of adc in slot 7 
SKIP 

TRUE 
SEQ 

newline(screen) 

write.full.string(screen, "UNsuccessful connection of adc in slot 7 ") 
- prepare to parallel load counter with all zeros 

to.ad ! #9D(BYTE) - clear Ivalid,prepare H'l load, select Is latch 
from.ad ? Is.byte 
from.ad ? ms.byte 
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to.t212 ! 3(INT16) - connect adc20 in slot 6 to enable dac access 
from.t212 ? t212.reply 
IF 

t212.reply = 6(INT16) — ie successful connection of adc in slot 6 
SKIP 

TRUE 
SEQ 
newline(screen) 

write.full.string(screen, "UNsuccessful connection of adc in slot 6 ") 
- run motor to generate pulses for parallel loading of counter cct. 
to.ad ! #FF(BYTE) - ie +5 volts o/p via dac 
from.ad ? Is.byte 
from.ad ? ms.byte 
clock ? time 

clock ? AFTER time PLUS 500000 - ie 0.5 sees delay 
dac.val := #7F(BYTE) 
to.ad ! dac.val — return dac o/p to 0 volts 
from.ad ? Is.byte 
from.ad ? ms.byte 
clock ? time — delay to ensure motor stationary 
clock ? AFTER time PLUS 500000 ~ ie 0.5 sees delay 
to.t212 ! 2(INT16) - reconnect adc20 in slot 7 for counter access 
from.t212 ? t212.reply 
IF 

t212.reply = 5(INT16) — ie successful connection of adc in slot 7 
SKIP 

TRUE 
SEQ 
newline(screen) 
write.full.string(screen, "UNsuccessful connection of adc in slot 7 ") 

— restore counter circuit 
to.ad ! #B5(BYTE) - enable Ivalid f/f, inhibit ll'l loading 

from.ad ? Is.byte 
from.ad ? ms.byte 
new.position : = #0000(INT16) — necessary to initialise old.position 
~ READING OF CONTENTS OF POSITION COUNTER 
to.ad ! #B4(BYTE) ~ freeze latch contents 

from.ad ? ls.byte 
from.ad ? ms.byte 
to.ad ! #A4(BYTE) ~ Ivalid goes high 
from.tram2 ? tram2.byte 

from.ad ? ls.byte 
from.ad ? ms.byte 
position.ms : = (INT16 tram2.byte) 
to.ad ! #AC(BYTE) - Ivalid goes low 

from.ad ? ls.byte 
from.ad ? ms.byte 
to.ad ! #7C(BYTE) ~ Prepare to read Is byte 

from.ad ? ls.byte 
from.ad ? ms.byte 
to.ad ! #74(BYTE) - Prepare Ivalid f/f 
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from.ad ? ls.byte 
from.ad ? ms.byte 
to.ad ! #64(BYTE) - Ivalid goes high 
from.tram2 ? tram2.byte 
from.ad ? ls.byte 
from.ad ? ms.byte 
position.ls := (INT16 tram2.byte) 
position.ls := position.ls/\#00FF(INT 16) 
position.ms := position.ms< <(8) 
old.position : = new.position 
new.position := INT16 (position.ms + position.ls) 
delta.position : = new.position MINUS old.position 
- TEST C O U N T E R FOR U N D E R / O V E R F L O W 
IF 
delta.position > #7FFF(INT16) 
SEQ 
delta.position : = #FFFF(INT16) - delta.position 
delta.radians :=-((REAL32 R O U N D delta.position)*8.84956E-5(REAL32)) 

T R U E 
delta.radians := (REAL32 R O U N D delta.position)*8.84956E-5(REAL32) 

to.ad ! #AD(BYTE) — unfreeze latches,Ivalid low,select ms byte 
from.ad ? ls.byte 
from.ad ? ms.byte 
to.ad ! #BD(BYTE) ~ prepare f/f clock 
from.ad ? ls.byte 
from.ad ? ms.byte 
to.ad ! #B5(BYTE) - prepare Ivalid f/f 
from.ad ? ls.byte 
from.ad ? ms.byte 
dac.val : = #00(BYTE) - ready for entering loop 
cc:=0(INT) 
- C O N N E C T ADC20 SLOT 6 FOR D A C O/P A T START O F N E X T R U N 
to.t212 ! 3(INT16) 
from.t212 ? t212.reply 
IF 
t212.reply = 6(INT16) — ie successful connection of adc in slot 6 
SKIP 

T R U E 
SEQ 
newline(screen) 
write.full.string(screen,"UNsuccessful connection of adc in slot 6 ") 

- START O F R U N N U M B E R rr O F T H E P A R A M E T E R ESTIMATOR 
W H I L E cc < conv.no -counter of sample periods within run rr 
SEQ 
clock ? t.start 
- WRITE OUT VIA THE DAC TO THE P W M UNIT 
to.ad ! dac.val - output via dac 
from.ad ? ls.byte 
from.ad ? ms.byte 
- R E A D C O N T E N T S O F POSITION C O U N T E R 
to.t212 ! 2(INT16) - connect adc20 slot 7 for access to counter cct. 
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from.t212 ? t212.reply 
IF 

t212.reply = 5(INT16) - ie successful connection of adc in slot 7 
SKIP 

TRUE 
SEQ 

newline(screen) 

write.full.string(screen,"UNsuccessful connection of adc in slot 7 ") 
to.ad ! #B4(BYTE) - freeze latch contents 
from.ad ? ls.byte 
from.ad ? ms.byte 

to.ad ! #A4(BYTE) - Ivalid goes high 
from.tram2 ? tram2.byte 
from.ad ? ls.byte 
from.ad ? ms.byte 

position.ms : = (INT16 tram2.byte) 
to.ad ! #AC(BYTE) - Ivalid goes low 
from.ad ? ls.byte 
from.ad ? ms.byte 

to.ad ! #7C(BYTE) - Prepare to read Is byte 
from.ad ? ls.byte 
from.ad ? ms.byte 
to.ad ! #74(BYTE) - Prepare Ivalid f/f 
from.ad ? ls.byte 
from.ad ? ms.byte 
to.ad ! #64(BYTE) ~ Ivalid goes high 
from.tram2 ? tram2.byte 
from.ad ? ls.byte 
from.ad ? ms.byte 
position.ls := (INT16 tram2.byte) 
to.ad ! #AD(BYTE) - unfreeze latches,Ivalid low,select ms byte 
from.ad ? ls.byte 
from.ad ? ms.byte 
to.ad ! #BD(BYTE) ~ prepare f/f clock 
from.ad ? ls.byte 
from.ad ? ms.byte 
to.ad ! #B5(BYTE) - prepare Ivalid f/f 

from.ad ? ls.byte 
from.ad ? ms.byte 
clock ? t.end.pos.read - end of period taken in signal capture 

- PROCESSING OF SIGNALS 

IF 
dac.val = #7F(BYTE) 
dac.volts : = 0.0(REAL32) 

dac.val = #00(BYTE) 
dac.volts := dac.volts.high 

dac.val = #6B(BYTE) 
dac.volts := dac.volts.low -value for monotonic increase in shaft angle 

position.ls := position.ls/\#00FF(INT 16) 

position.ms := position.ms < <(8) 
old.position : = new.position 
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new.position := INT16 (position.ms + position.ls) 
delta.position : = new.position MINUS old.position 
IF 
delta.position > #7FFF(INT16) 
SEQ 

delta.position : = #FFFF(INT16) - delta.position 
delta.radians :=-((REAL32 R O U N D delta.position)*8.84956E-5(REAL32)) 

T R U E 
delta.radians := (REAL32 R O U N D delta.position)*8.84956E-5(REAL32) 

- C O D E FOR T H E 3 P A R A M E T E R RLS ESTIMATOR 
SEQ 
delta.yO := delta.radians 
~ C A L C U L A T E E R R O R IN PREDICTION 
error3 := (delta.yO-((Ti[0]*ul)+(u2*Ti[l])))-(Ti[2]*delta.yl) 
- U P D A T E V E C T O R W 
W3[0] := (P3[0][0]*ul) + ((P3[0][l]*u2) + (P3[0][2]*delta.yl)) 
W3[l] := (P3[l][0]*ul) + ((P3[l][l]*u2) + (P3[l][2]*delta.yl)) 
W3[2] := (P3[2][0]*ul) + ((P3[2][l]*u2) + (P3[2][2]*delta.yl)) 
~ C A L C U L A T E D 
D3 := (1.0(REAL32)+(W3[0]*ul))+((W3[l]*u2)+(W3[2]*delta.yl)) 
IF 
D3 = 0.0(REAL32) 
SKIP 

T R U E 
SEQ 
- C A L C U L A T E ESTIMATES (VECTOR THETA) 
error.over.D3 := error3/D3 
Ti[0] := Ti[0] + (W3[0]*error.over.D3) 
Ti[l] := Ti[l] + (W3[l]*error.over.D3) 
Ti[2] := Ti[2] + (W3[2]*error.over.D3) 
- C A L C U L A T E ESTIMATE O F POLE LOCATION 
pole:= 0.0(REAL32) 
IF 
Ti[2] > 0.000001 (REAL32) -protection against run time errors 
SEQ 
pole := (-(ALOG(Ti[2])))/sample.period.sees 
pole.sumfcc] := pole.sum[cc] + pole 
pole.sq.sum[cc] := pole.sq.sumfcc] + (pole * pole) 

T R U E 
SKIP 

- U P D A T E T H E P MATRIX 
P3[0][0] 
P3[0][l] 
P3[0][2] 
P3[l][0] 
P3[l][l] 
P3[l][2] 
P3[2][0] 
P3[2][l] 
P3[2][2] 

P3[0][0] - ((W3[0]*W3[0])/D3) 
P3[0][l] - ((W3[0]*W3[1])/D3) 
P3[0][2] - ((W3[0]*W3[2])/D3) 
P3[0][l] 
P3[l][l] - ((W3[1]*W3[1])/D3) 
P3[l][2] - ((W3[1]*W3[2])/D3) 
P3[0][2] 
P3[l][2] 
P3[2][2] - ((W3[2]*W3[2])/D3) 

U P D A T E ESTIMATOR D A T A V E C T O R 
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u2 := ul 
ul := dac.volts 
delta.yl := delta.yO 

~ CALCULATE V A L U E OF NEXT D A C OUTPUT 
conv.secs := sample.period.secs*(REAL32 R O U N D (cc+l(INT))) 
IF 
conv.secs > 3.0(REAL32) 
dac.val : = #6B(BYTE) - ie nominal -0.82 volts 

conv.secs > 2.0(REAL32) 
dac.val := #00(BYTE) - ie nominal -5 volts 

conv.secs > 1.0(REAL32) 
dac.val : = #6B(BYTE) 

TRUE 
dac.val := #00(BYTE) 

- CONNECT ADC20 IN SLOT 6 FOR D A C ACCESS 
to.t212 ! 3(INT16) 
from.t212 ? t212.reply 
IF 
t212.reply = 6(INT16) - ie successful connection of adc in slot 6 
SKIP 

T R U E 
SEQ 
newline(screen) 
write.full.string(screen, "UNsuccessful connection of adc in slot 6 ") 

cc := cc + l(INT) 
clock ? t.end.calc - end of period required for all calculations 
-WAIT UNTIL N E X T ESTIMATOR SAMPLING INSTANT IS D U E 
clock ? AFTER t.start PLUS (sample.period.int - 2(INT)) - D E L A Y 
clock ? t.end 

rr := rr + l(INT) 
- O U T P U T 0 VOLTS VIA D A C T O TIDY UP AFTER LAST R U N 
to.ad ! #7F(BYTE) - ie 0 volts o/p via dac 
from.ad ? ls.byte 
from.ad ? ms.byte 
- O U T P U T TIMING INFORMATION T O T H E SCREEN 
tdl : = t.end.calc MINUS t.start 
td2 := t.end.pos.read MINUS t.start 
td3 : = t.end MINUS t.start 
newline(screen) 
write.full.string(screen,"Time to end of position reading = ") 
write. int(screen,td2,4) 
write.full.string(screen," usees ") 
newline(screen) 
write.full.string(screen, "Time to end of calculations = ") 
write. int(screen,tdl ,4) 
write.full.string(screen," usees ") 
newline(screen) 
write.full.string(screen,"Time to end of cycle = ") 
write.int(screen,td3,4) 
write.full.string(screen," usees ") 
newline(screen) 
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write.full.string(screen,"Strike any key to terminate") 
keyboard ? kbdip 

SKIP — dummy low priority process 
- C A L C U L A T E & O U T P U T VALUES T O D O S TEXT FILE 
SEQ 
cc : = O(INT) 
W H I L E cc < conv.no 
SEQ 
pole.meanfec] := pole.surn[ec]/run.n 
pole.sdfcc] := pole.sq.sum[cc]/run.n 
pole.sd[cc] := pole.sd[cc]-(pole.mean[cc]*pole.mean[cc]) 
pole.sd[cc] := POWER(pole.sd[cc],0.5(REAL32)) 
templfcc] := pole.mean[cc] + (2.0(REAL32)*pole.sd[cc]) 
temp2[cc] : = pole.meanjcc] - (2.0(REAL32)*pole.sd[cc]) 
cc := cc + 1(INT) 

PAR 
SEQ 
name.len := SIZE dos.filename 
[filename F R O M 0 FOR name.len] := dos.filename 
scrstream.to.server(to.file,from.filer,to.filer,name.len, 

filename, result) 
SEQ 
cc : = O(INT) 
W H I L E cc < conv.no 
SEQ 
conv.secs := sample.period.secs*(REAL32 R O U N D (cc + l(INT))) 
write.real32(to.file,pole.mean[cc],10,6) 
write.full.string(to.file," ") 
write.real32(to.file,templ [cc], 10,6) 
write.full.string(to.file," ") 
write.real32(to.file,temp2[cc],10,6) 
write.full.string(to.file," ") 
write.real32(to.file,conv.sees,10,6) 
write.full.string(to.file," ") 
write.int(to.file,cc,6) 
newline(to.file) 
cc := cc + l(INT) 

write. endstream(to .file) 

SOURCE C O D E ENABLING C O N T R O L OF T H E B008 M O T H E R B O A R D LINK SWITCH 

The following source code is for the program loaded onto the T212 transputer used to 

control the Link switch of the B008 motherboard. The need for dynamic switching of the 

transputer module links is discussed in Section A-3 of Appendix A. 

PROC t212.control.c004(CHAN OF INT16 from.t8, to.t8,CHAN OF B Y T E to.c004) 
INT16 val.rec: 
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V A L connect.link IS l(BYTE) 
V A L setup.cmd IS 3(BYTE): 
V A L master.reset IS 4(BYTE) 
V A L slot0.1ink3 IS 10(BYTE) 
V A L slot7.1ink3 IS 17(BYTE) 
V A L slot8.1ink3 IS 18(BYTE) 
V A L slot6.1ink3 IS 16(BYTE) 
V A L slotl.link3 IS ll(BYTE) 
SEQ 
val.rec := 0(INT16) 
W H I L E val.rec < > 9(INT16) 
SEQ 
from.t8 ? val.rec 
IF 

val.rec = 1 (INT 16) - master reset of c004 
S E Q 

to.c004 ! master.reset 
to.t8 ! 4(INT16) 

val.rec = 2(INT16) - connect to adc in slot 7 
S E Q 
to.c004 ! master.reset 
to.c004 ! connect.link 
to.c004 ! slot0.1ink3 
to.c004 ! slot7.1ink3 
to.c004 ! setup.cmd 
to.t8 ! 5(INT16) 

val.rec = 3(INT 16) - connect to adc in slot 6 
S E Q 

master, reset 
connect.link 
slot0.1ink3 
slot6.1ink3 
setup.cmd 

connect to digital i/o in slot 1 

to.c004 
to.c004 
to.c004 
to.c004 
to.c004 
to.t8 ! 6(INT16) 

val.rec = 4(INT16) 
S E Q 
to.c004 
to.c004 
to.c004 

to.c004 
to.c004 

to.t8 ! 9(INT16) 
val.rec = 9(INT16) 
SEQ 
to.c004 ! master.reset 
to.t8 ! 7(INT16) 
S T O P 

TRUE 
to.t8 ! 8(INT16) - signifies error in operation 

master, reset 
connect.link 
slot0.1ink3 

slotl.link3 
setup.cmd 

- terminate P R O G 

C H A N O F INT16 from.root, to.root: 
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C H A N OF BYTE to.config: 
PROCESSOR 0 T2 
PLACE from.root A T 5: 
PLACE to.root A T 1: 
PLACE to.config A T 3: 
t212. control. c004(from.root,to.root,to.config) 
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