
TIME VARYING PROBABILITY OF FAILURE 
OF STEEL FLOOR BEAMS SUBJECTED TO REAL FIRE 

by 

J.R.LAW, HNC(Mining), BSc, BE(Civil) 

Supervised b 
P. Clancy 

A thesis submitted in fulfillment of the requirements for the degree of 

Master of Engineering at the Victoria University of Technology. 

School of the Built Environment 

(Thesis undertaken in the former Department of Civil and Building Engineering) 
Victoria University of Technology 

Victoria 

Australia 

December 1997 



FTS THESIS 
628.9222011 LAW 
30001005971983 

%Z varying P™b-bility of 
failure of steel fl~r bea.s 
subjected to real fire 



TABLE OF CONTENTS 

C H A P T E R 1: I N T R O D U C T I O N 

1.0 Introduction 2 

1.1 Aim 3 

1.1.1 General 3 

1.1.2 Specific 4 

C H A P T E R 2: FIRE SEVERITY S U B M O D E L 

2.0 Introduction 7 

2.1 Standard Fire 7 

2.2 Real Fire 9 

2.3 Heat Sources and Loses in Post-Flashover Fires. 11 

2.3.1 Rate of Heat Release 12 

2.3.2 Heat Loss by Convection through Openings 14 

2.3.3 Heat Loss to the Walls 15 

2.3.4 Heat Loss Through Openings 17 

2.4 The Effect of Ventilation and Fire Load Density on Post-flashover Fires 18 

2.4.1 Transition Criteria between Ventilation and Fuel Control 20 

2.4.2 Opening factor 22 

2.5 Fire load density 23 

2.5.1 Fire load statistics 24 

2.5.2 Fuel type 27 

2.6 Mathematical models for compartment fire temperatures 29 

2.6.1 Kawagoe and Sekine, 1963 29 

2.6.2 Magnusson and Therlandersson, 1970 31 



2.6.3 Babrauskas and Williams, 1978 32 

2.6.4 Law, 1983 33 

2.6.5 Lie, 1976 34 

2.6.6 Harmathy, 1983 36 

2.7 Summary of compartment fire models 38 

2.8 Selection of Fire Severity Sub-Model 38 

2.9 Comparison of Predictions of Selected Fire Severity Submodel with Test Results 

and Predictions of Other Models. 40 

2.9.1 Comparison with Kawagoe' s results 43 

2.9.2 Comparison between alternative models. 45 

2.9.3 Comparison between Lie model and experimental results (Butcher) 46 

2.9.4 Comparison between Lie model and experimental results (Lathem)49 

2.10 Summary 51 

2.10 Conclusion 52 

C H A P T E R 3: H E A T T R A N S F E R S U B M O D E L 

3.0 Introduction 55 

3.1 Heat Transfer 56 

3.1.1 Convection 56 

3.1.2 Radiation 58 

3.1.3 Conduction 60 

3.2 Prediction of Temperature of Fire Exposed Members 62 

3.2.1 Numerical Methods 63 

3.2.2 Comparison with Test Results 65 

3.2.3 Commentary 65 

3.3 Current Recommendations for the Calculation of the Temperature of Steel 

Members 66 

3.3.1 Simplified Heat Transfer Analysis 66 



3.3.1.1 Simplified Heat Transfer Analysis of Unprotected Steel Members 

66 

3.3.1.2 Simplified Heat Transfer Analysis of Insulated Steel Members 71 

3.3.1.3 Considerations for Three Sided Exposure 76 

3.3.1.4 Density of steel 79 

3.3.1.5 Thermal Conductivity of Steel 79 

3.3.1.6 Thermal Conductivity of Insulation 80 

3.3.1.7 Influence of Moisture 83 

3.3.2 Regression Method 86 

3.4 Selection of Thermal Submodel 87 

3.4.1 Calculation of Unprotected Steel Temperature 89 

3.4.1.1 Heat Transfer Coefficient and Emissivity 8 9 

3.4.1.2 Specific Heat of Steel 90 

3.4.1.3 Time Step 91 

3.4.1.4 Comparison between Calculated Steel Temperature Versus Time 

Curve and Experimental Test Data - Uninsulated steel 92 

3.4.2 Calculation of Insulated Steel Temperature 96 

3.4.2.1 Arrangement of Insulation 97 

3.4.2.2 Thermal Conductivity 97 

3.4.2.3 Thermal Conductivity - Derived from Test Data 100 

3.4.2.4 Comparison between Calculated Steel Temperature-Time Curve 

and Experimental Test Data - Insulated Steel 106 

3.5 Conclusion 108 

C H A P T E R 4: M E C H A N I C A L PROPERTIES S U B M O D E L 

4.0 Introduction 111 

4.1 Mechanical Properties of Steel 112 

in 



4.1.1 Stress - Strain at R o o m Temperature 112 

4.1.2 Stress - Strain at Elevated Temperature 113 

4.2 Measurement of Stress-Strain Relationships 113 

4.2.1 Steady State Tests 114 

4.2.2 Transient Heating Tests 115 

4.3 Models of Stress-Strain Relationships 116 

4.4 Models of Variation of Steel Strength with Temperature 119 

4.4.1 Influence of Creep and Heating Rate on Time and Temperature of Collapse 

121 

4.4.2 Effective Yield Stress of Steel at Elevated Temperature 124 

4.5 Strength Reduction Model for Australian Steel 130 

4.5.1 Current Model 132 

4.5.2 Alternative Strength Reduction Model 136 

4.5.3 Alternative Strength Reduction Model -Three Sided Exposure 136 

4.6 Comparison between Strength Reduction Model and Test Results 138 

4.7 Conclusion 143 

C H A P T E R 5 : S T R U C T U R A L S U B M O D E L 

5.0 Introduction 145 

5.1 Statically Determinate Beams 146 

5.2 Plastic Analysis 147 

5.2.1 Ambient Temperature 147 

5.2.2 Elevated Temperature - Four sided Exposure 149 

5.2.3 Elevated Temperature - Three Sided Exposure 150 

5.3 Flexural Capacity 153 

5.3.1 Comparison between Measured and Calculated Moment Capacity for Four 

Sided Exposure 154 

5.4 Conclusion 156 

IV 



CHAPTER 6: LOAD SUBMODEL 

6.1 Load Model - Code Requirement 159 

6.2 Load Model - Probabilistic 160 

6.2.1 Dead Load 160 

6.2.2 Live Load 161 

CHAPTER 7: RELIABILITY MODEL 

7.0 Introduction 164 

7.1 Reliability Theory 164 

7.1.1 Calculation of Probability of Failure 164 

7.1.2 Second Moment Methods 167 

7.1.3 Advanced Second Moment Method 170 

7.1.4 Simulation Method 171 

7.2 Commentary 173 

7.3 Reliability Sub-Model 176 

CHAPTER 8: MODEL FOR PREDICTING THE PROBABILITY OF 

FAILURE OF STEEL FLOOR BEAMS IN REAL FIRE 

8.0 Introduction 179 

8.1 Description of Reliability Model 179 

8.1.1 Fire Severity Submodel 180 

8.1.2 Heat Transfer Submodel 180 

8.1.3 Mechanical Properties Submodel 181 

8.1.4 Structural Response Submodel. 184 

8.1.5 Load Submodel 182 

8.1.6 Reliability Submodel 183 

8.2 Program Operation 184 

8.2.1 Variance Reduction 186 

8.3 Validation of model 189 



8.3.1 General Comparison - Ambient Temperature 190 

C H A P T E R 9: SENSITIVITY A N A L Y S I S 

9.0 Sensitivity Analysis 193 

9.1 Fire load density 194 

9.1.2 Probability of Failure - Time Independent 195 

9.1.2.1 Mean value of fire load density 195 

9.1.2.2 Coefficient of variation of fire load density 197 

9.1.2.3 Probability density function 201 

9.1.3 Probability of Failure - Time Varying 203 

9.1.3.1 Mean value of fire load density 204 

9.1.3.2 Coefficient of variation of fire load density 207 

9.1.4 Conclusion 209 

9.2 Probability of Failure as a function of Ventilation 210 

9.2.1 Opening Factor 210 

9.2.2 Probability of Failure - Time Independent 211 

9.2.2.1 Variation in mean value of opening factor 211 

9.2.2.2 Variation in coefficient of variation of opening factor 212 

9.2.3 Probability of failure - Time varying 213 

9.2.3.1 Variation in mean value of opening factor 213 

9.2.3.2 Variation in the coefficient of variation of opening factor 215 

9.2.4 Discussion 216 

9.2.5 Conclusion 219 

9.3 Insulation thickness 220 

9.3.1 Probability of failure - Time independent 221 

9.3.2 Probability of failure-Time dependent 222 

9.4 Load ratio and load type 224 

9.4.1 Probability of Failure-Time independent 226 

9.4.1.1 Variation in load type ratio 226 

VI 



9.4.1.2 Variation in load ratio 227 

9.4.2 Probability of Failure-Time varying 228 

9.4.2.1 Variation in load type ratio 228 

9.4.2.2 Variation in load ratio 230 

9.4.3 Conclusion 232 

5 Exposure condition 233 

9.5.1 Probability of Failure - Time dependent 233 

9.5.1 Probability of Failure - Time dependent 234 

6 Strength reduction model 235 

9.6.1 Probability of failure 236 

9.6.2 Conclusion 237 

7 Conclusion 238 

Vll 



List of Figures and Tables used in Chapter 2: 

Figure 2.1 Standard temperature-time curve specified for the fire resistance test A S 
1530 Part 4. 

Figure 2.2 Real fire development in an enclosure. 

Figure 2.3 The effect of ventilation opening on the potential enthalpy release rate in 
a compartment fire (after Babrauskas). 

Figure 2.4 Frequency distribution of room fire load data for private office building 
(after Culver) and fitted theoretical distribution. 

Figure 2.5 Cumulative frequency distribution of fire load data for office buildings 
(after Pettersson) and fitted theoretical distributions. 

Figure 2.6 Average combustion gas temperature (°C) for different fuels and types of 
ignition. Fire load density = 15 kg/m2; opening parameter = 0.06 m'72 

after [Lathem, 1987]. 

Figure 2.7 Temperature time curve for a range of opening factors 1) = 0.03 m1/2; 
2) = 0.06 m1/2; 3) = 0.12 m1/2; (Fire load density = 40 kg/m2). 

Figure 2.8 Temperature time curve for a range of fire loads. (1 = 20 kg/m2; (2 = 40 
kg/m2; (3 = 60 kg/m2 (Fire load referenced to floor area): Opening 
parameter, F = 0.08 m1/2. 

Figure 2.9 Comparison between temperature-time curves obtained by solving a 
heat balance and those described by expression (2.17) for ventilation 
controlled fires in compartments bounded by predominantly heavy 

materials [p > 1600 kg/m3 ) [after Lie, 1992]. 

Figure 2.10 Comparison between temperature-time curves obtained by solving a heat 
balance and those described by expression (2.17) for ventilation 
controlled fires in compartments bounded by predominantly light 

materials (p < 1600 kg/m3 ) [after Lie, 1992], 

Figure 2.11 Comparison between gas temperature curves calculated using the Lie 
model and that adopted for use in the Swedish Building Regulations. 

Figure 2.12 Comparison between theoretical and experimental temperature-time 
curves. Fire load density = 60 kg/m2. 

Figure 2.13 Comparison between theoretical and experimental temperature-time 
curves. Fire load density = 30 kg/m2. 

viii 



Figure 2.14 Comparison between theoretical and experimental temperature-time 
curves. Fire load density = 1 5 kg/m2. 

Figure 2.15 Comparison between theoretical and experimental temperature-time 
curves. Opening factor = 0.06 m"1/2. Fire load density = 10, 15 and 20 
kg/m2 - Author. 

Figure 2.16 Comparison between theoretical and experimental temperature-time 
curves. Fire load density = 15 kg/m2. Opening factor = 0.03, 0.06 and 
0.12 m",/2-Author. 

Table 2.1 Top line - Required dimensions of windows for a range of compartments 
fitted with a standard door (2.0*0.9 m ) , to achieve near stoichiometric 
burning. Bottom line - Minimum fuel load expressed in kg/m2 of floor 
area (cribs/furniture) at which fuel control burning occurs. Opening 

factor = 0.08 m • > _ 

Table 2.2 Variable fire load densities in offices, q/, per unit floor area (MJ/m2). 

List of Figures and Tables used in Chapter 3: 

Figure 3.1 Influence of variation in emissivity on average temperature of insulated 
and uninsulated steel members. 

Figure 3.2 Temperature time curve of a lightly insulated steel beam calculated 
using a temperature dependent specific heat of steel and a constant value 
specific heat. 

Figure 3.3 Influence of heat transfer coefficient on calculated steel temperature. 

Figure 3.4 Relationship between the 1983 and 1990 recommendations for the 
calculation of the temperature of heavily insulated steel members. 

Figure 3.5 Heating rate of insulated steel sections as a function of exposed surface 
area to mass ratio (ESM). 

Figure 3.6 Temperature time curve of a lightly insulated steel beam calculated 
using a temperature dependent thermal conductivity (lamda) of 
insulation and a constant value of thermal conductivity based on 
expected maximum steel temperature. 

Figure 3.7 Temperature rise of 250 UB steel beams exposed to the standard fire and 
protected by a range if insulation thicknesses. 

ix 



Figure 3.8 Relative change in the calculated average maximum steel temperature as 
a function of time increment. 

Figure 3.9 Comparison of experimental and calculated steel temperature using 
Equation (3.14). 

Figure 3.10 Comparison between measured steel temperatures, obtained from 
simulated office fire, and calculated steel temperature using one-
dimensional heat transfer. 

Figure 3.11 Comparison between calculated and test data of free standing column 
exposed to natural fire. 

Figure 3.12 Comparison between calculated and test data of free standing column 
exposed to natural fire. 

Figure 3.13 Arrangement of insulation. 

Figure 3.14 Comparison between experimental and calculated temperature-time 
curves in which Equation (3.24) was used to represent the thermal 
conductivity of the insulation - 3 - sided exposure. 

Figure 3.15 Comparison between experimental and calculated temperature-time 
curves in which Equation (3.24) was used to represent the thermal 
conductivity of the insulation - 4 - sided exposure. 

Figure 3.16 Method of calculating slope of temperature-time response curve. 

Figure 3.17 Variation in calculated thermal conductivity as a function of moisture 

content. 

Figure 3.18 Values of thermal conductivity derived using experimental data in 

Equation (3.21) for temperatures up to 100 °C. 

Figure3.19 Values of thermal conductivity derived using experimental data in 

Equation (3.14) for temperatures over 100 °C. 

Figures 3.20 - Comparison of modelled and measured temperatures of insulated steel 

3.24 beams exposed to fire on three and four sides for a range of insulation 

thicknesses (INS) and mass to surface area ratios (ESM). 

x 



Table 3.1 Emissivities of surfaces in fire compartment Drysdale (1985). 

Table 3.2 Ratio of temperature of top flange to bottom flange for box protected 

steel beams. 

Table 3.3 Thermal conductivity, X, (W/m°C) of some insulation materials as a 

function of insulation temperature. 

Table 3.4 Calculation of delay time due to moisture, 

List of figures and Tables used in Chapter 4. 

Figure 4.1 Variation with temperature of the stress - strain curve of Australian 

Grade 250 steel. 

Figure 4.2 Various proposed yield stress reduction models. 

Figure 4.3 Stress-strain curves at elevated temperature for Fe 360 steel. 

Figure 4.4 Reduction in effective yield stress, expressed as a ratio of yield stress at 

ambient conditions, for a range of strains at first yield from E C C S and 

EC3. 

Figure 4.5 Reduction in effective yield stress, expressed as a ratio of yield stress at 

ambient conditions, for a range of total strains from British Standards B S 

4760 and B S 5059, (combined Grades 43 and 50 steel sections). 

Figure 4.6 Tensile curves for a Grade 43A steel derived from transient tests. 

Figure 4.7 Comparison between strength reduction models based on Equations (4.2) 

and (4.3) and that given in B S 5950: Part 8. 

Figure 4.8 Strength reduction models. Curve AA - AS 4100. BB - derived 

xi 



polynomial based on test data of Grade 250 and 350 steel. 

Figure 4.9 Influence of linear temperature gradient on moment capacity. Numbers 

in legend indicate ratio of the temperature of the compression flange/ 

temperature of the tensile flange i.e. TioP/Tbottom = 0.6. 

Figure 4.10 Moment capacity ratio as a function of bottom flange temperature 

(Tbtm.) an(*unear temperature gradient 1 - Ttop/Tboaom for Australian 

sections - Author. 

Figure 4.11 Comparison between strength reduction models and test data (four sided 

exposure). 

Figure 4.12 Comparison between calculated and experimental time to failure. 

Table 4.1 Variation in steel temperature at 1 % strain for a range of heating rates 

and two levels of stress, ( A S 1205 Grade 250 steel). 

Table 4.3 Comparison between measured and calculated time to failure using 

AISC/AS4100 and proposed strength reduction model, Equation 4.4 and 

4.5. [Test Data - B H P Melbourne Research Laboratories (MRL), 1983], 

Table 4.5 Comparison between measured and calculated time to failure using 

proposed strength reduction model, Equation 4.4 and 4.5 and proposed 

heat transfer models. [Test Data - B H P Melbourne Research 

Laboratories (MRL), 1983], 

List of Figures and Tables used in Chapter 5. 

Figure 5.1 Loading arrangement - point load. 

Figure 5.2 Loading arrangement - uniformly distributed load. 

xu 



Figure 5.3 Stress-strain distribution for plastic analysis. 

Figure 5.4 (a) - ideal elastic-plastic moment curvature relationship. 

(b) - actual moment curvature relationship for different section shapes. 

Figure 5.5 Stress distribution four sided exposure. 

Figure 5.7 Moment capacity ratio as a function of bottom flange temperature 

( T D t m ) and linear temperature gradient 1 - Ttop/Tbonom for Australian 

sections - Author. 

Table 5.1 Comparison between calculated moment capacity using AS 4100 model 

and measured capacity at collapse. Test data derived from B H P M R L 

Reports (1983). 

Table 5.2 Comparison between calculated moment capacity using Equation (4.4) 

model and measured capacity at collapse. Test data derived from B H P 

M R L Reports (1983). 

List of Figures and Tables used in Chapter 6. 

Figure 6.1 Statistical distribution of live load (figure based on 50 m2). 

Table 6.1 Statistical properties of office floor live loads (ATrib = tributary area). 

List of Figures and Tables used in Chapter 7. 

Figure 7.1 Inconsistency in safety index due to variation in volume of failure 

region. 

xiii 



Figure 7.2 Simulated load distribution and variation in mean value and shape of 

distribution of resisting moment of steel beam exposed to fire for 0 - 150 

minutes. 

Figure 7.3 Comparison between the shape of the resisting moment distribution 

obtained by simulation and that obtained using second moment methods 

in which the resisting moment is assumed to be lognormally distributed -

Author. 

List of Figures and Tables used in Chapter 8. 

Figures 8.1 A-Top), B-Mid) and C-Btm.) - Frequency distribution of fire load 

density ( main chart) and fire load at failure (insert) [ fire load: A ) = 18 

kg/m2 floor area; B) = 12 kg/m2; C ) = 6 kg/m2; opening factor = 0.08 

m1/2; Ins = 20 m m ] - Author. 

Figured.2 Distribution of fire load at failure as a function of insulation thickness 

[Fire load = 40 kg/m2; Ventilation parameter = 0.04 mV_] - Author. 

Table 8.1 Statistical properties used in heat transfer submodel. 

Table 8.2 Table of minimum fire load to be used in simulation for given design 
fire load, Author. 

Table 8.3 Comparison between code and simulated safety index for a range of load 
ratios -Author. 

Table 8.4 Statistical models for load and resistance effect used in the code 
development 

xiv 



List if Figures and Tables used in Chapter 9 

Figure 9.1 Time independent probability of failure as a function of fire load density 

(FL) kg/m2 floor area (opening factor ( O F) = 0.08 m1/2, C O V = 0.35), 

[Insert shows relationship between -Log Probability of failure and 

probability of failure] - Author. 

Figure 9.2 Time independent probability of failure as a function of fire load density 

F L (kg/m2) and thickness of insulation (mm) - Author-

Figure 9.3 Probability of failure as a function of fire load density and coefficient of 

variation of fire load density (OF = 0.08 m1//2) - Author. 

Figure 9.4 Time independent probability of failure as a function of coefficient of 

variation of fire load density and insulation thickness (based on fire load 

density of 40 - • and 60 - x kg/m2; O F = 0.08m,/2) - Author. 

Figure 9.5 Frequency distribution of fire load for a range of values of coefficients of 

variation - Author. 

Figure 9.6 Theoretical distributions of fire load density (based on mean fire load 

density =40 kg/m2 and C O V =0.35). 

Figure 9.7 Time varying probability of failure as a function of fire load density (OF 

= 0.08 mVi A = 20, = 30, C = 40, D = 60, E = 80 kg/m2) - Author. 

Figure 9.8 Idealised probability of failure curve. 

Figure 9.9 Time varying probability of failure as a function of COV of fire load 

density for two mean values fire load density (refer Table 9.2 for 

details) - Author. 

xv 



Figure 9.10 Time independent probability of failure as a function of opening factor 

(m*) and insulation thickness (mm). C O V of opening factor = 0.1 factor 

(mw), FL = 40 kg/m2 -Author. 

Figure 9.11 Time independent probability of failure as a function of coefficient of 

variation (COV) of opening factor and insulation parameter ( O F = 0.08 

m1/2 and FL = 40 kg/m2) - Author. 

Figure: 9.12 & Table 9.5 Probability of failure as a function opening factor and 

two values of mean fire load density - Author. 

Figure 9.13 Time varying probability of failure as a function of coefficient of 

variation of opening factor (refer Table 9.5 for details) - Author. 

Figure 9.14 Time independent probability of failure as a function of thickness of 

insulation (OF = 0.08 m1/2, C O V Insulation = 0.1) - Author. 

Figure 9.15 & Table 9.6 Probability of Failure as a function of Insulation 

Thickness (Fire Load = 1 8 kg/m; ventilation parameter = 

0.08). Insulating material Harditherm 700 -Author. 

Figure 9.16 Probability density of load moment generated by RSB for different ratios 

of dead load to live load (simply supported beam point load mid-span) -

Author. 

Figure 9.17 Time varying probability of failure as a function of load type ratio of 

arbitrary point in time live load and dead load (FL =80 kg/m2; O F = 0.08 

m1/2) -Author. 

Figure 9.18 Time varying probability of failure as a function of load type ratio of 

xvi 



arbitrary point in time live load and dead load (FL =40 kg/m2; O F = 0.08 

m1/2) - Author. 

Figure 9.19 Time varying probability of failure as a function of variation in load 

ratio (FL = 40 kg/m2; O F = 0.08 m,/2) -Author. 

Figure 9.20 Time varying probability of failure as a function of variation in load 

ratio (FL = 80 kg/m2; O F = 0.08 m,/2) - Author. 

Figure 9.21 Time independent probability of failure as a function of exposure 

condition for medium-high and vary-high fire load density ( O F = 0.08 

m1/2) - Author. 

Figure 9.22 Time varying probability of failure as a function of exposure condition 

for medium-low and high fire load density (OF = 0.8 mI/2) - Author. 

Figure 9.23 Strength reduction model for British steel based on 0.2 and 1.0% proof 

strain. 

Figure 9.24 Time varying probability of failure for alternative strength reduction 

models ( F L = 60 kg/m2; O F = 0.08 m'/a; INS = 30 m m ; 4-sided 

exposure) - Author. 

Table 9.1 Time independent probability of failure as a function of fire load density 

(FL) kg/m2 floor area (opening factor ( OF) = 0.08 m1/2, C O V = 0.35). 

Table 9.2 Probability of failure as a function of fire load density and coefficient of 

variation of fire load density (OF = 0.08 m1/2). 

Table 9.3 Area under tail of distribution with increase in COV (based on Lognormal 

distribution). 

xvii 



Table 9.4 Time independent probability of failure as a function of probability 

density function (FL @ F A L L denotes average fire load density at 

failure) - Author. 

Table 9.7 Mean and standard deviation of load moment derived from load models 

and load ratio expressed as a percentage of design capacity. 

Table 9.8 Time independent probability of failure as a function of load ratio. 

Table 9.9 Time independent probability of failure as a function of a reduced 

maximum nominal design load ratio (FL = fire load density). 

Table 9.10 Period of fire resistance at probability of failure of 0.00022. 

xviii 



ACKNOWLEDGEMENTS 

The author would like to thank both James Hardie & Co. Pty. Ltd. N S W and B H P 

Melbourne Research Laboratories, for making available test data used in this project. I 

would also like to thank my supervisor, Mr Paul Clancy for his help, guidance and 

perseverance throughout this project. Lastly, I would like to thank Mr Ian Campbell for 

pushing me over the line. 



ABSTRACT 

A model for estimating the time-dependent reliability of steel beams under real fire 

conditions has been developed. It gives a more rational basis than time of failure 

modelling does for design. From risk modelling, some small resistance time from the 

probabilistic distribution times of failure can be deduced, which gives an acceptably 

small risk of failure. Time of failure modelling by itself can only give the mean time of 

failure which could lead to excessive risk if the variability of time of failure is large. The 

model comprises submodels for fire severity, heat transfer, mechanical properties, loads, 

structural analysis and reliability. Simple submodels have been adopted commensurate 

with the level of accuracy of other models in fire safety engineering. The submodel for 

real fire severity is Lie's. Heat transfer submodels have been adopted for three and four 

sided exposure and have been taken from work by the European Regional Organisation 

for Steel Construction and the French Technical Centre for Steel Construction. Three 

sided arises when the beam supports a concrete slab. The mechanical properties 

submodel was derived from an empirical fit to available test data. It gave better results 

than the current model in AS4100. It is appropriate for the model but is too complex for 

replacing the model in AS4100. The structural model four sided exposure was 

developed from simple plastic theory. For three sided exposure, discrete element 

analysis was adopted. The load submodels were lognormal for dead load and Weibull 

arbitrary point in time values for live load. The Monte Carlo method was adopted for the 

reliability submodel. The overall model was used to obtain the following sensitivities. 

An increase of lOkg.nr2 in fire load density can increase the risk of failure by 40%. In 

relation to the sensitivity of risk to ventilation, a reduction of the opening factor from 



0.12 to 0.04 m0-5 increases the risk of failure approximately 200 times. Doubling the 

insulation thickness reduces the risk of failure by a factor ten. Increasing the live load 

has less effect on the risk of failure than increasing the dead load. If the load present is 

predominantly live load, there is much less risk of failure than if the load is 

predominantly live load. Four sided exposure has ten times the risk of failure compared 

with three sided exposure. Accepting larger proof strains reduces the risk of failure; for 

example, increasing proof strain from 0.2% to 1% reduces the risk of failure by 50%. 



CHAPTER ONE 

INTRODUCTION 



1.0 Introduction 

Approximately seventy percent of the Building Code of Australia (BCA) is concerned 

with provisions for the prevention, containment and control of fire. The BCA has evolved 

over many decades and reflects the traditional approach to fire safety. Many of the 

regulations pertaining to fire are experience-based and prescriptive in nature. Prescriptive 

regulations implies procedures and the use of materials with little scope for rational 

engineering design. Regulations have been added leading to an excess of fire safety 

requirements with little regard for building function. It has been estimated in a recent 

review conducted by the Building Regulations Review Task Force, [Grubitts,. 1992], that 

the additional impost due to unnecessary and inappropriate regulation relating to fire in the 

building industry amounts to $250 Million annually. There is a recognised need for cost-

effective fire regulations based on a rational engineering design philosophy which maintain 

Australia's good fire safety record. 

A Draft National Building Fire Safety Systems Code [1992] has been developed that 

adopts a systems approach to building fire safety and protection design, based on risk 

assessment models (RAM) and fire engineering design techniques. Fire safety systems and 

subsystems are those assemblages of hardware and equipment such as fire extinguishment, 

alarms, smoke management, people management and structures and aspects of physical 

construction that contribute to or influence the level of fire safety of occupants or 

firefighters. Systems may be active such as sprinklers or passive such as compartment 

barriers. This systems view of fire safety and protection is a significant departure from 

the traditional approach to fire engineering. A RAM identifies those combinations of 
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building subsystems that provide the required level of safety in a cost-effective manner. 

The efficacy of such an approach depends on the accurate modelling of the identified sub

systems. 

A passive system provides fire safety without actively responding to the fire. This 

includes horizontal and vertical structural separating elements (floors and walls) which act 

as a barrier to the spread of smoke and flame. Because of the time required to evacuate a 

building the time based performance of such elements when subjected to fire is an 

important consideration in the risk assessment of fire safety in buildings. 

It is also necessary to consider realistic fires. Currently there are fire models which will 

predict the critical temperature of steel members, refer subsection (3.2), and hence time to 

failure of particular elements of construction subject to standard-fire testing. The author is 

not aware of any work done to model the time dependent reliability of passive subsystems 

subjected to real fire conditions. 

1.1 Aim 

1.1.1 General 

The aim of the research is to develop a barrier model to estimate the time-dependent 

reliability of steel floor beams under real fire conditions. The model will make a 

significant contribution to the development of Risk Assessment Modeling. 
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Specific 

It is proposed to obtain time dependent reliability of steel floor beams by 

developing the following submodels 

a) Fire severity submodel. 

b) Heat transfer submodel. 

c) Mechanical properties submodel. 

d) Loads submodel 

e) Structural analysis submodel. 

0 Rehability submodel. 

The aim of each submodel is to model dominant phenomena as simply as possible 

with an accuracy commensurate with that of current risk assessment models. 

An attempt has been made at estimating the reliability of steel beams [Thor, 

1976: Beck, 1986], at any time during a fire, that is time independent reliability. A 

measure of reliability, on its own, is useful only in a comparative sense. A n 

insulated steel beam tested in the standard fire has a probability of failure of one. 

Such knowledge in itself is not immediately useful. It is not sufficient to know that 

an event has a certain likelihood of occurring but rather what is the probability of 

occurrence at a particular time so that one can assess whether occupants will 

evacuate before structural failure. With this information a more accurate 

assessment can be made of the risk to life and fire safety systems in buildings. 
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CHAPTER TWO 

FIRE SEVERITY SUBMODEL 



Introduction 

This chapter aims to describe in published literature important concepts in fire 

severity. Some existing fire severity models are investigated from which a 

compartment fire severity submodel is chosen for use in the model. 

Comparisons of submodel predictions are made with published test results. 

All fires referred to in this research are compartment fires. Other fires such as 

bush fires and oil platform fires are outside the scope of this research. 

Standard Fire 

Because of the complexity of real fire the response and fire resistance of 

elements of building construction to exposure to elevated temperature has been 

determined on the basis of standard fire tests, conducted in accordance with 

procedures set down in standards and codes. A standard temperature-time 

curve is used in most countries to for testing full-scale samples of building 

elements in large furnaces. There is little difference between the curves from 

the various countries. The Australian standard fire exposure specified in AS 

1530 Part 4 is defined by the following: 

Tf = To + (345* Logio(S*t +1)) (°C) (2.1) 

where To = the initial temperature 
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Tf the furnace temperature at time / 

(minutes) 

The furnace is controlled so that the temperature of thermocouples adjacent 

to the exposed surface of the element of construction undergoing a fire 

resistance test follows the standard curve shown in Figure 2.1. 

o 

y 

20 40 60 80 

TIME (Minutes) 

100 120 140 

Figure 2.1: Standard temperature-time curve specified for the fire resistance test A S 

1530 Part 4. 

The heat transferred to the element can vary depending on the fuel used and 

the furnace design. The reproduciblity of fire tests as measured by the 

coefficient of variation of fire resistance times can be as high as 0.15 [ASTM, 

1983]. 

The standard fire is not a realistic representation of a compartment fire model. 

It makes no attempt to simulate real compartment fires rather the standard fire 

has evolved as representing a fire severity that would not be expected to be 

exceeded in a building fire [ Lie, 1992]. It is well recognised Purkis [1988], 



that the standard fire test, expressed in terms of maximum temperature and 

duration of exposure, is more severe than exposure to real fire. The differences 

between standard fires and real fires are detailed below in the next subsection. 

Real Fire 

"Real" fire is a complex phenomenon, the nature of which is dependent upon 

a large number of variables. 

A compartment fire is a real fire confined within some enclosure within a 

building. The rate of increase of temperature, the maximum temperature 

reached and the duration of the fire can vary over a wide range. The 

development of fire in a compartment may be divided into three phases 

[Drysdale, 1987], refer Figure 2.2: 

Figure 2.2 - Real fire development in an enclosure. 
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a) the growth phase 

b) the fully developed phase 

c) the decay phase 

The growth phase is characterised by a localised zone of burning, above 

which, hot gas is transported in a narrow plume to the ceiling. Provided 

window openings are small enough sufficient net accumulation of heat will 

occur in a short period of time, as short as five minutes. The layer of hot gas at 

the ceiling reaches a temperature whereby enough radiation is produced to 

simultaneously ignite all combustible surfaces in the enclosure. This sudden 

involvement of all of the materials and gases in all parts of the room is known 

as flashover. The foregoing scenario is termed ventilation control. If heat 

losses are large the fire is fuel controlled. A number of criteria have been used 

to define flashover [Thomas, 1983]. After flashover the temperature in the 

compartment rises quickly. The fire will continue to burn - the fully developed 

phase - until the fuel sources are exhausted, thereafter the compartment 

temperature will fall - the decay phase. 

The amount of combustibles in the enclosure which is referred to as the fire 

load density effects ventilation and fuel controlled fires. Fire load density 

increases the duration of ventilation controlled fires and the maximum 

temperature of fuel controlled fires. 

In terms of the fire resistance of structural members the low temperatures in 

the compartment during the growth phase are not considered significant. 
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Actual risk of failure of structural members in fire will only occur during the 

postflashover or fully developed phase of the fire. For this reason, only 

postflashover compartment fire models will be reviewed here. 

Flashover is essentially a phenomenon associated with smaller compartment 

volumes typical of office or residential buildings. In the case of larger building 

spaces such as atria, auditoriums and industrial buildings a fully developed fire 

may occur without flashover of the entire volume. The foregoing is an 

important distinction in that a fire which could locally cause failure can develop 

in a building space but are technically not postflashover fires - the object of this 

study. Such fires require a different modelling approach to that for smaller 

compartment fires. Much of the research conducted into fire modelling 

assumes flashover or total involvement of the compartment volume. The plan 

area of the compartments used in the majority of experiments and from which 

much of the data used to develop fire models has been obtained, would rarely 

exceed 50 m2. 

The following subsection describes the variables affecting post-flashover fires 

for small to medium compartments. 

Heat Sources and Loses in Post-Flashover Fires 

The basis for predicting time of flashover and temperature versus time of 

post-flashover fires is the first law of thermodynamics. It can be applied in the 

form of equation 2.2. 
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qF = qG + qw + qR (2 

where 

qF = rate of heat release by combustion inside the 

compartment 

qa = rate of heat loss by convection in the openings 

qw = rate of heat loss through bounding walls, floors and 

ceilings 

qR = rate of heat loss by radiation through the openings 

1 Rate of Heat Release 

The quantity of heat released in the compartment per unit of time by 

combustion, QF, is given by: 

Rqm 

where R = mass burning rate of wood cribs 

q = the calorific value of wood 

m = ratio of complete combustion 



Kawaoge [1958] using full scale and reduced scale fire tests, demonstrated 

that the mass burning rate of wood cribs in enclosures (the rate of heat release) 

can be related to the size and shape of the compartments ventilation opening 

(air flow factor). The semi-empirical relationship is given by 

R = 5.5 AW4H (kg/s) (2.4) 

where A w and H are the area (m2) and height (m) of the ventilation 

opening respectively. Similar expressions to (2.4) were proposed [Thomas et 

al., 1967; Rockett, 1976] in which the constant was attributed values of 0.5 

and 0.4 to 0.61 respectively depending on the discharge coefficient. An 

alternative relationship is given by Saito [1979] in which the size of the 

compartment is taken into account and by Law [1983] in which the depth to 

width ratio of the fire compartment is accounted for. Thomas [1972] 

demonstrated that the mass burning rate of the fuel as given by equation (2.4) 

is only appropriate for a limited range of A wy/H. It was apparent from 

experimental results that when the ventilation opening was small the flow rate 

of air into the compartment controlled the combustion process (ventilation 

control - refer subsection 2.4 and 2.4.1). If the ventilation opening is 

progressively enlarged a condition is reached such that the rate of burning 

becomes independent of the size of the opening. In such cases the rate of 

burning is controlled by a number of parameters (fuel control - refer subsection 

2.4 and 2.4.1). The most significant of these parameters is the exposed surface 

area of the fuel, however specific fuel bed properties such as average thickness 
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of the fuel, spatial orientation and porosity are also important, [Butcher et al., 

1968]: [Bullen, 1977]. 

A theoretical derivation of equation (2.4) in which stoichiometric burning 

occurs indicate that radiative feedback from the surrounds has negligible 

effect. This apparently anomalous result supports the observations of Thomas 

and is explained Harmathy [1978], by either protection afforded the burning 

surface by the formation of char or by shielding due to the arrangement of the 

wood cribs typically used in fire tests. Although some form of equation (2.4) is 

used to calculate the amount of heat released by the fuel in a number of fire 

models, it is apparent that its use should be limited to fires in which the fuel 

source is cellulose. 

Heat Loss by Convection through Openings 

The dominant heat loss from the compartment is due to the removal of hot 

gases from the compartment. [Drysdale, 1987]. The exchange of combustion 

gases is driven by buoyant flow due to the reduced density of the hot gas. The 

theoretical treatment is based on the fundamental assumption that there is a 

linear pressure distribution in the vertical direction over the ventilation opening. 

By means of Bernoulli's equation the gas exchange . is calculated from the 

following: 



fiac-, = %cMhffPff*{%-1) (15) 

QGW = %cMK)KPofg(l-Pf/£) (2-6) 

where Q = flow coefficient 

Bv = width of opening (m) 

hf = distance from neutral layer to top of opening 

(m) 

h0 = distance from neutral layer to bottom of opening 

(m) 

Ot - density of combustion gases (kg/m3) 

p0 = density of air (kg/m
3) 

g = acceleration de to gravity (m/s ) 

A more realistic treatment must consider rate of burning and ventilation 

separately in order to accommodate the movement of unburnt volatiles from 

the compartment. 

2.3.3 Heat Loss to the Walls 

Heat transfer from the hot gas to the walls occurs by two mechanisms: 

radiation and convection. Both mechanisms are very complex [Siegal and 

Howell, 1972]. An acceptable modelling approach in which the wall losses are 

modelled using small number of variables is to consider the walls (including the 
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ceiling) to be part of an infinite slab. The heat transferred to the walls, Qw, is 

given by the general expression: 

Qw = A w 

X 
(T*-Ti) + a(Tf-Tw) 

~-w ) 

(2.7) 

where L W 

tf&W 

Tf&w 

a 

total internal surface area of fire compartment 

(m2) 

emissivity of the flame and walls 

temperature of flame and walls 

convective coefficient of heat transfer 

Large-scale turbulence due to the interaction of boundaries, plumes, ceiling 

jets and openings precludes a specific expression for the convective coefficient 

of heat transferor. Given the assumption of a well stirred reactor and that 

radiation is dominant at temperatures which occur during fire, either a mean 

value for the convective coefficient of heat transfer is adopted or a simplified 

expression, in which the coefficient is temperature dependent, is used 

[McAdams, 1954]. 

Heat transfer to the walls must be balanced by the heat transmitted through 

the walls, stored in the walls and that portion of the energy radiated back into 

the compartment. Solution of heat loss involves the evaluation of non-linear 

radiation terms and the inclusion of temperature dependent thermophysical 
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parameters such as thermal conductivity and specific heat. Additional 

complexity derives from the influence of different groups of thermophysical 

parameters have on gas temperature at different stages of a compartment fire 

[Babrauskas and Williams, 1979]. 

Heat Loss Through Openings 

The quantity of heat dissipated by radiation through openings in the 

compartment, QR, can be calculated using the Stefan-Boltzman law: 

QR =AVCJ(T;-T:) (2.8) 

where Av _ Area of ventilation openings 

o = Stefan-Boltzmann Constant 

Tf&o = Temperature of flame and outside of 

compartment. 

The emissivity outside the window is generally taken to be that of a black 

body. 

Models developed to predict postflashover temperatures assume that the gas 

within the compartment is at or near a uniform temperature throughout the 

compartment volume, except near the floor (the well mixed reactor model) 

because of small compartment volume, turbulence and radiation [Croce, 1978]. 
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Depending on whether the fire is controlled by the available oxygen or the 

amount of fuel the heat loss characteristics vary. In the former case the ratio of 

the total heat loss by each of the three mechanisms qa : qw: qR is 0.55 : 0.34 

: 0.11 whereas in the later case the ratio is 0.81 : 0.14 : 0.05 [Magnusson and 

Therlandersson, 1974]. In both cases the radiant heat loss through the 

windows is relatively small the dominant heat loss mechanism being convective 

gas flow through the openings. 

The Effect of Ventilation and Fire Load Density on Postflashover Fires 

There are two distinct regimes of burning for postflashover fires, namely, 

ventilation and fuel controlled fires. The rate of pyrolysis of the fuel is a 

function of temperature, fuel type and geometry of the fuel. The potential 

enthalpy of the pyrolysed fuel, hp, may not be realised if there is insufficient 

oxygen in the compartment since the maximum rate of burning is stoichiometric 

combustion, reduced by some factor due to incomplete mixing [Babrauskas and 

Williamson, 1978]. The rate of heat release for stoichiometric combustion, hs, 

is related to the mass inflow of air, mair, expressed in terms of the opening 

parameter, Aw -fh , refer subsection 2.4.1 for definition, and the gas 

temperature. Figure 2.3 shows that the actual enthalpy release rate in the 

compartment, hc, will be the lesser of hp and /^reduced by some factor due to 

incomplete mixing. 



?'7/v/rr. Z:7&-v?-. 
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Figure 2.3: The effect of ventilation opening on the potential enthalpy release rate in a 

compartment fire (after Babrauskas). 

When hp )hs there is more pyrolysed fuel in the compartment than can be 

burnt inside it - ventilation control. This unburnt faction of the fuel (the cross-

hatched region when the ventilation opening is small) may cause significant 

flaming and be a potential hazard where it discharges from the compartment. 

W h e n hp {hs the enthalpy rate is controlled by the available fuel. The 

convective flow of excess air into the compartment under fuel control can be 

large causing a significant dilution of the pyrolysed fuel. Under these 

conditions the temperature of the compartment is lower. O n the other hand the 

loss of enthalpy due to heating of the unburnt products of pyrolysis in the case 

of ventilation control, is relatively small in comparison. The compartment 

temperature will therefore approach a maximum at the point of switchover 

between ventilation controlled and fuel controlled regimes. 

Most compartment fire models assume ventilation control because it is 

considered the most severe [Pettersson, 1976]. It is evident from Figure 2.3 
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that the assumption of ventilation control could significantly overestimate the 

enthalpy rates in a compartment fire. Magnusson and Therlanderrson, [1974], 

demonstrated that the average gas temperatures of fuel controlled fires are 

significantly lower and of longer duration than that of ventilation controlled 

fires. There is little difference in the maximum temperature of insulated steel 

exposed to either curve while in the case of lightly insulated and uninsulated 

steel exposed to ventilation controlled fires the steel temperatures are higher. 

Transition Criteria between Ventilation and Fuel Control 

Transition from a fuel controlled fire to a ventilation controlled fire occurs 

when enclosure openings are not large to enough to let sufficient oxygen to 

enter the enclosure to satisfy the oxygen demand of the fire. This occurs when 

the ratio of fire load, Q, to window area, A w, exceeds approximately 150 

kg/m2 [Thomas et al., 1967]. Alternatively values of the factor, Av/4hjAT, 

greater than 0.1-0.125 m'1 correspond to fuel control fires [Thomas & 

Heselden, 1972]. Here A T is the area of the walls and ceiling of the 

compartment, excluding the ventilation area A w ( AT normally defines the total 

internal surface area) and h represents the weighted mean of the height of the 

ventilation openings in the enclosure. The average value of opening factor for 

offices obtained from survey data, given as 0.08 m~'2 [Ellingwood and Shaver, 

1980] (calculated using the total surface area), lies within this range. Table 2.1 

shows the area of window at which the transition between fire regimes would 



occur for a range of compartment sizes. Fires in compartments with window 

areas less than that in Table 2.1 will be controlled by the available oxygen and 

are likely to produce flaming over the building facade. Compartments in which 

the window area equals that given in Table 2.1 will burn at maximum 

temperature while those compartments with larger areas will be fuel controlled. 

In this case the fire temperatures will be lower and of longer duration. 

1 1 
| DEPTH (m) | 

3.0 

4.0 

5.0 

6.0 

7.0 

1 3.0 
1.5 * 0.95 

28.0/44.5 

1.5 * 1.5 
24.0/38.4 

1.5 * 2.0 

23.8/38.1 

1.5 *2.5 
23.5/37.6 

1.5 * 3.0 

23.0/36.8 

COMPARTMENT WIDTH (to) 

4.0 

1.5*2.1 
23.5/37.6 

1.5 * 2.7 

22.5/36.0 

1.5 * 3.2 

21.0/33.6 

1.5*3.8 

20.3/32.5 

5.0 

1.5 * 3.3 

20.5/32.8 

1.5 * 4.0 

19.7/31.5 

1.5 * 4.7 

19.2/30.7 

6.0 

1.5 * 4.7 

18.7/29.9 

1.5*5.6 

18.1/28.9 

7.0 

1.5 * 6.4 

17.6/28.1 

Table 2.1: Top line - Required dimensions of windows for a range of compartments 

fitted with a standard door (2.0*0.9 m), to achieve near stoichiometric burning. 

Bottom line - Minimum fuel load expressed in kg/m2 of floor area (cribs/furniture) at 

_y 
which fuel control burning occurs. Opening factor = 0.08 m n . 

A criterion to distinguish between ventilation and fuel controlled fires 

involving cellulosic fuels [Harmathy, 1986], is given by the following: 

Ventilation control 
pAwifhg 

A~f 
< 0.235 (2.9) 

Fuel control 
pAwJhg 

Af 
> 0.290 (2.10) 
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where A/, is the fuel surface area. Based on expression (2.10) the fuel load 

(kg/m2) which would result in fuel control burning is given in Table 2.1. The 

first value assumes a typical specific surface of the fuel for cribs; the second 

value uses a value typical of a furnished room. It is apparent from Table 2.1 

that for wood based fuels a much larger fuel load (60%) is required in small 

compartments to achieve fuel control. 

For fuels other than cellulose the change in burning regime does not occur, 

refer Sub-section 2.4.2. 

Opening Factor 

The burning rate of the fuel is linked to the mass flow of air into the 

compartment through vertical openings in the compartment. The combined 

influence of the compartment size and the amount and shape of the openings is 

expressed by the opening factor: 

AT 

The terms have been defined in Subsection 2.4.1. Calculation of the opening 

factor for compartments with a number of openings of different size and shape 

is given in [Pettersson, 1976]. It is assumed that ordinary glass is immediately 

destroyed when flashover occurs and that doors are closed. Neither of these 



situations may necessarily occur and as a consequence the value of the opening 

factor may either be smaller than the calculated value or vary from a very small 

value to a maximum. The foregoing can have a significant effect on 

temperature development in the fire compartment. In general it is assumed that 

a ventilation controlled fire with a large opening factor will produce a higher 

temperature and as a consequence will be more severe. Therefore the 

assumption made above is a conservative one. It should be noted however fires 

in which the opening factor is large and the fire load is small is firstly, fuel 

controlled, and secondly, will burn out very quickly and have little influence on 

exposed structural steel. Care must be taken in determining the worse case 

scenario in terms of the effect of fire on the compartments structure. It is not 

appropriate to consider the amount of ventilation as a sole indicator of 

potential fire severity but rather the ratio of fire load to window area as noted 

in subsection 2.4.1. 

2.5.0 Fire Load Density 

Fire load has been identified as one of the principal variables influencing fire 

severity [International Iron and Steel Institute, 1993]. All things being equal, 

the larger the fire load the higher the maximum temperature in the fire 

compartment and the longer the duration of the fire. 

Fire load as it relates to a fire compartment is defined as the quantity of heat, 

Q, released during the complete combustion of all combustible material 
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contamed inside the compartment. The total heat, Q, divided by a reference 

area, which may be either the total internal surface area, At, or the floor area, 

As, gives the fire load density, q. The fire load density are given by the 

following: 

V = YAf ^mvHv (MJ/m
2) (2.12) 

V = YA t ^mvHv (MJ/m2) (2-13) 

where mv = total mass of combustible material (kg) and Hv= calorific value of 

combustible material (MJ/kg). Fire load comprises two components, 

permanent fire load and variable fire load. The former includes surface 

materials and all linings and coverings on the walls, roof and floor as well as the 

load-bearing and non load-bearing-bearing structure or structural members and 

permanently installed devices, the latter comprises furnishings and contents. 

Fire loads may be adjusted by a derating factor which accounts for incomplete 

combustion of the fire load. Some difficulty exists in determining and applying 

these factors. As a consequence a conservative approach can be adopted 

where-by such factors are ignored. 

Fire Load Statistics. 

Accurate prediction of temperature versus time in a compartment fire relies on 

knowledge of the expected fire load density. Fire load statistics for offices 
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have been determined from a number of surveys. Table 2.2 presents some 

results from a number of surveys. It can be seen that there is considerable 

variation between the average values of the variable fire load both between 

surveys and between different categories of room within each survey. As 

expected the largest coefficient of variation (COV) in each survey is for 'all 

rooms' combined. The more general the classification the greater the variation 

in the fire load. The COV for the classification 'all offices' varies from 0.34 to 

1.12. The variation in the results may be due to a combination of national 

differences and different sampling and evaluation techniques. 

Type of fire 
compartment. 

Technical offices 

Admin' offices 

All rooms 

Technical offices 

Admin' offices 

All rooms 

Admin' offices 

All rooms 

General office 

Clerical office 

All rooms 

General office 

Clerical office 

All rooms 

Average 
(MJ/m2) 

552 
462 
526 
280 
420 
410 
380 
330 
555 
415 
555 
525 
465 
580 

Standard 
Deviation 
MJ/m2 

138 
143 
179 
108 
210 
310 
180 
400 
285 
425 
625 
355 
315 
535 

Coefficien of 
Variation 

0.25 

0.31 

0.34 

0.39 

0.5 
0.8 
0.47 

1.21 

0.51 

1.02 

1.12 

0.67 

0.67 

0.92 

Source 

Pettersson 1976 

CIB W 1 4 1983 

Bonetti, 1975 

Culver, 1976 

(Government 

Bid) 

Culver, 1976 

(Private Bid) 

Table 2.2 — Variable fire load densities in offices, qf, per unit floor area (MJ/m2). 

Fire load is a random variable which can be fully described by its first three 

moments - mean, standard deviation and skewness, or alternatively, by its first 

two moments and a plot of the frequency distribution of the data. 
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In order to utilise the available statistics on fire load in a reliability analysis the 

data must be fitted to a theoretical distribution. 
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Figure 2.4: Frequency distribution of room fire load data for private office building 

(after Culver) and fitted theoretical distribution. 

Figure 2.4 and 2.5 show a plot of the frequency distribution and cumulative 

frequency distribution of fire load data obtained from the surveys conducted by 

Culver [1976] and Pettersson [1976] respectively. Attempts to fit several 

theoretical distributions to the data show that the data is well represented by a 

lognormal distribution. Assuming fire load is lognormally distributed is 

intuitively appealing in that in that the problem of negative results is avoided. 
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Figure 2.5: Cumulative frequency distribution of fire load data for office buildings 

(after Pettersson) and fitted theoretical distributions. 

Fuel Type 

The shape of the temperature versus time curve of a postflashover 

compartment fire can vary significantly depending on the type of fuel. The 

majority of the fire load in a modern office is cellulose based, however, 

between 10 and 25 % of the fire load is made up of plastic fuels, [Lathem, 

1987]. The combustion enthalpy and rate of heat release for plastics are 

significantly higher than that for wood. Typically the calorific value of plastics 

can be up to two and a half times that of wood. The rate of pyrolysis of 

plastics, under the influence of purely convective heating, is 2 to 3 times 

greater compared to wood and, under the purely radiative heating, up to 20 

times as great [Babrauskas, 1988]. Given the stoichiometric requirement of 

different fuels the combustion enthalpy per unit mass of air is nearly 

independent of the type of fuel and is approximately 3000 KJ/kg. As long as a 
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fire is ventilation control the combustion enthalpy will be much the same 

despite the type of fuel. Fuel control is essentially a phenomena associated 

with cellulose based fuels and relates to the rate at which timber is pyrolysed 

and the formation of char. Plastics however do not exhibit this behaviour, their 

rapid rate of pyrolysis and different mechanism of decomposition, will, given 

sufficient oxygen result in much higher temperatures than can be achieved in 

wood fuel fires. 

POLYPROPYLENE / WOOD FUEL 

WOOD - SIMULTANEOUS IGNTTION 

WOOD - GROWING FIRE 

6<JO — . 

10 20 30 ^o 50 -o 

Time (Minutes) 

Figure 2.6: Average combustion gas temperature (°C) for different fuels and types of 

ignition. Fire load density = 15 kg/m2; opening parameter = 0.06 m_1/2 after [Lathem, 

1987] 

Figure 2.6 shows the influence of mixed-fuel fires in which 2 5 % of the wood 

fuel was replaced with polypropylene. Mixed-fuel fires are characterised by 

higher maximum average temperatures of 200 to 300 °C, attained in less than 

half the time taken for wood fuel fires, followed by a rapid loss in temperature. 
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The figure also shows the significant reduction in the maximum average 

temperature and the increase in the time to attain maximum temperature when 

a fire is allowed to grow naturally, compared with simultaneous ignition of the 

fuel. As a consequence of the foregoing, noticeable differences can occur 

between temperature versus time curves obtained from room burn experiments 

in which realistic fuels and fire initiation are used and those obtained from 

traditional wood-crib fires. 

2.6.0 Mathematical Models for Compartment Fire Temperatures 

Several models are reviewed which predict the likely temperature-time history 

of a potential compartment fire. The objective of such models is to specify for 

design purposes the thermal stresses to which structural members are exposed 

during fire. It is necessary that such models are not merely empirical 

correlations but that they are of sufficient detail to reflect the influence of the 

more important parameters involved in the fire process. 

2.6.1 Kawagoe and Sekine, 1963 

Kawagoe (1963) and his coworkers were the first group to attempt to model 

a compartment fire. The compartment comprised a concrete enclosure with 

one or more vertical wall openings. Heat loss to the walls was calculated using 

Schmidts method in which the walls are assumed to be serm-infinite slabs. The 

emissivity and the surface temperature inside the compartment was assumed to 
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be uniform. The emissivity of the flame was taken to be 1 and the emissivity of 

the space outside the window that of a black body. Using the foregoing 

assumptions an equation of heat balance was set-up and solved iteratively. 

Equation (2.4) is used to calculate the rate of burning. The density of the gas 

within the compartment was calculated assuming a gas temperature of ~ 900 

°C. The expression was verified experimentally in a series of full scale and 

reduced scale tests. The heat of combustion of the fuel source (wood) was 

modified assuming a ratio of complete combustion of 0.6 (based on 

experiment). This served to correct for the volatiles lost to the atmosphere 

during ventilation control and to account for the inflow of excess cold air in the 

event of fuel control. 

The duration of the fire or the time taken to reach the maximum temperature 

ie. the time taken for all the combustibles to be consumed, is obtained by 

dividing the total fire load by the rate of burning. The rate of decrease of 

temperature was obtained by observation of test fires. The predicted 

compartment temperatures were compared with a series of full scale fire tests 

in which the ventilation opening and thermal properties of the bounding 

surfaces were varied. 

As a consequence of the foregoing assumptions the model will predict a more 

rapid increase in the compartment temperature since the rate of inflow of air is 

overestimated initially and a higher maximum temperature since the decay 

period of the fire is effectively ignored. 
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Magnusson and Therlandersson, 1970 

Magnusson and Therlandersson developed a model to predict the 

temperature-time curve for the complete process of fire development for wood 

fuel fires. The model was subsequently used in the "Swedish Fire Engineering 

Design of Steel Structures" [Pettersson and Magnusson, 1976], to calculate 

representative gas temperature versus time curves for different fire loads and 

ventilation conditions represented by the opening factor (2.11). 

This model is very similar in structure to that of Kawagoe but differs in some 

aspects. Firstly the wall thickness is taken to be finite and an explicit finite 

difference method is used to calculate the heat loss due to conduction. A 

second and more important difference is that the Swedish researchers 

attempted to model both the postflashover phase of the fire and the decay 

period. Although the relationship between the rate of burning and the 

ventilation opening is accepted in principal (and therefore both models 

presuppose ventilation control) the Swedish model calculates the variation with 

time of the rate of heat release in the compartment. This was achieved by 

varying the rate of heat release-time curve until full agreement was obtained 

between theoretical and experimental temperature-time curves while satisfying 

the requirement that the area under the rate of heat release-time curve matched 

the total heat released in the fire [Magnusson and Therlandersson, 1974]. The 

foregoing implies that the mass loss of the fuel must not be greater than 

stoichiometric, that is no excess fuel burning outside the compartment can be 

accounted for. Essentially the model is correlated to test results by means of 



the rate of heat release-time curve. The model assumes a "standard fire 

compartment" the thermal properties of which are representative of concrete 

and brick. For compartments constructed of materials with significantly 

different thermal properties the temperature-time curves for the standard 

compartment may be converted by means of equivalent fire loads and opening 

factors. 

The procedure involved in calculating the gas temperature-time curve is both 

lengthy and complicated. It is necessary to use numerical integration 

techniques (Runga-Kuttas) in which five iterations are performed for each time 

step; the time step used is one minute. The results of the model are generally 

presented in graphical form. 

Babrauskas and Williams, 1978 

This model, as does the previous two models, uses the principal of heat 

balance to calculate the compartment gas temperature. It involves a more 

rigorous analysis than the previous two models but does not, however require 

input data that would not generally be available. The model solves the gas 

phase heat balance and the heat conduction through the walls simultaneously. 

The model accommodates change in the burning regime as the fire develops. 

As a consequence the model does not assume burning near or at stoichiometry 

nor that rate of burning is directly related to rate of inflow of air as above. 

The heat conduction equation contains non-linear radiation terms which can 



incorporate temperature dependent thermophysical wall properties. The 

desired calculations are achieved using either explicit, implicit or the Crank-

Nicolson finite difference techniques. This model is the basis of the computer 

program COMPF2 in reference [Babrauskas, 1979]. 

Law, 1983 

Based on the results of a large number of experimental fires [Thomas and 

Heselden, 1972], Law developed an expression to calculate the maximum gas 

temperature, Tg, as a function of the compartment size (internal surface area 

At) and area of ventilation opening (A) and height (H) of ventilation opening: 

max T. = 6000V ,- ; (°C) (2.14) 
g 

ti 

(A, - A ) 
where r\ = - — T = - (2.14A) 

The expression ignores the contribution of fire load and presupposes ventilation 

control. The temperature in the compartment due to the combustion of a given 

fire load, (L), at a given time, (T) , can be calculated using the following: 

Tg=Tg(mx)(l-e^) CC) (2.15) 
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where yr = . === (kg/m2) (2.16) 
^A(A, - A) 

The mass burning rate of the fuel is based on correlation with experimental 

results: 

The above equations are based on average temperatures measured during the 

fully developed period of wood fuelled fires. The model does not consider the 

decay period of the fire, nor is any indication given as to the thermal properties 

of the bounding surfaces on which the equations are based. The model does 

however show that the shape of the compartment is important in determining 

the burning rate. 

Lie, 1976 

Lie formulated an algorithm to facilitate studies of fire resistance of buildings 

components exposed to fires of different severity. The algorithm (2.17 ) 

models the temperature versus time curves for ventilation controlled fires, 

proposed by Kawaoge and Sekine, calculated using heat balance - refer 

Subsection 2.6.1. The algorithm (2.17) calculates the compartment gas 

temperature, Tg, at time t after flashover, using readily available data in the 

form of fire load density, Q, and ventilation parameter, F: 



T, =250(10^«^,-'[3(l-e-)-(l-e-")+<l-,-
|2')]+c(f J V c ) (2.17) 

where C is a constant to take into account the influence of the properties of 

the boundary materials on the temperature. The time taken to achieve the 

maximum temperature (duration of the fully developed phase of the fire) i, is 

determined by: 

T = Q (hr) (2.18) 
330 F 

The temperature during the decay period is assumed to decrease linearly at a 

rate of 10 °C/min or 7 °C/min depending on whether the duration of the fire is 

less than or greater than one hour. This corresponds with a value of 10 °C/min 

used in the Swedish building code and values of 15 - 20 °C/min observed in a 

series of short test fires [Butcher, 1966 & 68]. The temperature course of the 

fire in the decay period is given by: 

Tg =-6001 + 71 (°C) (2.19) 
•f 

T w o materials were chosen as representative bounding materials: one with 

thermal properties resembling those of a heavy material (high heat capacity and 

conductivity) and one representing those of a light material (low heat capacity 

and conductivity). In practice normal weight concretes and bricks are 
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considered as belonging to the group of heavy materials and lightweight and 

cellular concretes and plasterboards are considered light materials. 

Although formulated in 1974, the Lie algorithm is still well regarded. It is 

represented in the current edition (Ed. 14) of the NFPA Handbook and is the 

only model presented in the ASCE manual on Structural Fire Protection, 

[ASCE, 1992]. The model compares well with the only other model currently 

used in the rational design of structures exposed to real fire [Magnusson and 

Therlandersson, 1974], - refer Sub-section 2.6.2. 

Harmathy, 1983 

Harmathy has developed the concept of the normalised heat load (NHL) 

which can be used to correlate "real-world" compartment fires with standard 

test fires. The method models compartment fires by calculating the NHL, the 

total heat absorbed by a unit area of the boundaries of a compartment during 

any fire, divided by the thermal inertia of the boundaries, rather than the gas 

temperature. The normalised heat load H, is given by the following equation: 

H=ib^d' (220 

where -yjkpc = thermal inertia (k: thermal conductivity, 

p: density, c: specific heat). 



For "real-world" compartment fires, //', can be approximated by the 

following semi-empirical equation: 

W = 106 . lUSS + l(! (ApL) (2.21) 

AtJkpc+935j<&AFL
y F ' K } 

in which the heat flux to the compartment boundaries is expressed in terms of 

the main parameters used in the heat balance approach viz., fire load, (L), 

ventilation factor, (<_>), area of the floor, {AF ), total area (A,), and thermal 

inertia. The NHL in standard fire tests, H", is a function only of the duration 

of the test, T, and is described by the following equation: 

r = 0.11+0.16_i-4tfl,+0.13_i-9(#11)2 (2.22) 

Harmathy asserts that the destructive potential of "all" fires can be quantified 

by this single parameter H. Further, his theory of uniformity of normalised heat 

load states that H is approximately the same for the fire enclosure as a whole as 

for the individual boundary elements. Following from this, the fire resistance 

period of a compartment can be obtained by calculating H', equating H' with 

H" and solving for T. 

This is not a compartment fire model as such but rather a correlation of fire 

test results expressed in terms of the parameters known to influence the 
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development of fire. The model is not applicable to boundary elements made 

from or supported by material of high thermal inertia ie., unprotected steel. 

Summary of Compartment Fire Models 

The models described in subsections 2.6.1 to 2.6.5 have been developed to 

predict the temperature-time history of compartment fires. The model by 

Kawaoge does not model the decay period of the fire and accounts for the 

thermal properties of the bounding surfaces in an approximate way. Both the 

model developed by Therlandersson and the model developed by Babrauskis 

are more rigorous in their approach than that of Kawaoge's however both 

involve complex and lengthy computations. The model by Law relies on a 

correlation between maximum temperature and the term, Q., which describes 

the geometry of the compartment and the ventilation opening however it does 

not specifically account for the nature of the compartment, the decay period 

nor defines limits for its use. The model by Lie is essentially that of Kawaoge 

but in a computationally simplified form. Finally the model by Harmathy is too 

general in its approach for the purposes of this study. 

Selection of Fire Severity Sub-Model 

The aim of the current project is to develop a simple model to estimate the 

time varying probability of failure of steel beams subject to real fire. In order 

to achieve the specified aim of the project, the time varying temperature of the 

compartment, as a function of the significant factors that influence fire severity, 



must be calculated. In view of the basic aims of rigour as noted in subsection 

(1.4), the model by Lie (1974), has been adopted for this purpose. In selecting 

Lie's model consideration has been given as to the influence of the following 

factors on the calculated compartment temperature: 

a. the approximate nature of available models. 

b. the uncertainty associated with the size of the fire load. 

c. the type, surface area and distribution of the fuel. 

d. ventilation conditions. 

e. the influence of the bounding surfaces. 

f. the substantial effect that wind velocity and direction can have on the 

fire development, . 

The algorithm is considered suitable for the current project for the following 

specific reasons: 

a. suitable for initial development of reliability model. 

b. models basic fire phenomena. 

c. predicts with reasonable accuracy the expected compartment 

temperature. 

d. the algorithm is simple to calculate. 

e the algorithm can be computed quickly and is therefore suitable for 

many probability simulations. 

f. the algorithm uses readily available input data. 

g. the data can be expressed in probabilistic terms. 
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h time dependent thermal properties of materials can be incorporated 

into the analysis. 

i the algorithm facilitates literally a minute by minute analysis of the 

structural element being investigated. 

j. the algorithm acts as an independent module. A more sophisticated 

temperature time model can be used without altering the structure of 

the program to estimate structural reliability. 

Comparisson of Predictions of Selected Fire Severity Submodel with Test 

Results and Predictions of Other Models. 

The model adopted to calculate the compartment temperature-time curve is 

that proposed by Lie (1974). The model is an analytical expression based on 

temperature curves for ventilation-controlled fires calculated according to the 

method described by Kawagoe and Sekine (1963), refer subsection (2.6.1). 

The following expression calculates the gas temperature, Tg, during the fully 

developed phase of the fire (Curve OA - Figure 2.7) as a function of the 

opening factor, F, and the time in hours from the occurrence of flashover: 

r, =miOF)°^e^[il-e^Ui-^h4l-e-mh0jcQ (2.17) 

A4H „ 
where F = —-— (nr1/2) (2.23) 
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Figure 2.7: Temperature time curve for a range of opening factors l) = 0.03mI/2; 2) 

= 0.06 m,/2; 3) = 0.12 m,/2; (Fire load density = 40 kg/m2). 
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Figure 2.8: Temperature time curve for a range of fire loads. (1 = 20 kg/m2; (2 = 40 

kg/m2; (3 = 60 kg/m2 (Fire load referenced to floor area): Opening parameter, F = 

0.08 m1/2. 

The constant C takes into account the thermal properties of the compartment 

boundary material on the temperature. C = 0 for heavy materials 

(p > 1600 kg/m3 ), and C = 1 for light materials (p < 1600 kg/m3 ). The 

duration of the fire, T, is determined by: 
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T=
 QAT = — Q — (hr) (2.18) 
330AV// 330 F 

where the fire load, Q (kg/m2), is the fire load per unit area of the surfaces 

bounding the compartment. The model presupposes a wood (cellulose 

based) fuel. In the event of the all or part of the fuel being a material other 

than cellulose the fire load must be expressed in terms of wood equivalent, in 

which the calorific value of wood is taken to be 18.8 MJ/kg. The expression 

(2.17) is valid for: 

f < — + 1 (hr) (2.24) 

and 

0.01<F<0.15 (m"1/2) (2.25) 

The temperature during the decay period (Curve AB - Figure 2.6) has been 

assessed from experimental test fires. The temperature course of the fire in the 

decay period is given by: 

5(XG r. =-6001-1 + 7; (°C) (2.19) 

Characteristic temperature time curves, obtained from expressions (2.17) and 

(2.19) are illustrated for a range of fire loads and ventilation openings - refer 

Figures 2.7 and 2.8. It is apparent that for a given fire load, the duration of the 

fire increases while the maximum temperature decreases as the opening factor 
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decreases. Conversely for a constant value of opening factor, the maximum 

temperature and duration of the fire increases as the fire load increases. 

Comparison with Kawaoge's results 

Comparative plots between temperature-time curves obtained by solving heat 

balance (Kawagoe) and those described by expression (2.17) - refer Figures 2.9 

and 2.10 show that in the first two hours after flashover for p> 1600 kg/m3 (C 

= 0): 

a. F = 0.04 the plots are almost coincident. 

b. F < 0.04 expression (2.17) over-estimates the temperature. 

c. F > 0.04 expression (2.17) under-estimates the gas temperature. 

t_ 

— 3 

1 2 3 4 5 

TIME (hr) 
Figure 2.9: Comparison between temperature-time curves obtained by solving a heat 

balance and those described by expression (2.17) for ventilation controlled fires in 

compartments bounded by predominantly heavy materials (p > 1600 kglm3 j [after 

Lie, 1992], 
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For p < 1600 kg/m3 (C = 1) the trend is similar although the differences 

between corresponding curves is greater. 

< 
c_ 

O i i i o r 
Sf-----==--r--------^Vi: 

200 

J 
0 1 2 3 4 5 6 7 8 

T I M E (hr) 

Figure 2.10: Comparison between temperature-time curves obtained by solving a heat 

balance and those described by expression (2.17) for ventilation controlled fires in 

compartments bounded by predominantly light materials (p < 1600 kg/m3 ) [after 

Lie, 1992]. 

Lie was aware of the large degree of uncertainty associated with the 

calculation of temperature time curves - primarily due to uncertainty in the 

magnitude of the fire load. In developing his model he set out to predict a 

curve "whose effect, with reasonable probability, will not be exceeded during 

the use of the building". It is not clear how this statement is to be interpreted 

nor how this probability was to be assessed and what constitutes a "reasonable 

probability". 

There appears to be no consistent safety factor incorporated in to the 

temperature-time curves themselves. The duration of the fully developed fire 
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and hence the maximum compartment temperature is a function of the fire load, 

expression (2.19), Lie's statement can be interpreted that fire resistance design 

should be performed using temperature curves generated by a fire load density 

equivalent to the 80, 90 or 95tn percentile of the fire load distribution rather 

than assuming some inbuilt factor of safety in the temperature-time curves. 

The foregoing is a salient point given the proposed use of the Lie model in a 

reliability analysis. 

Comparison Between Alternative Models. 

A comparison of temperature-time curves calculated using the Lie model and 

the temperature time curves recommended by the Swedish Building 

Regulations Board for use in the rational fire engineering design of buildings 

[Pettersson, 1976], Figure 2.11, show good agreement. 

LIE (Q = 66 kg/m2) 
C = l 
C = 0 

OPENING FACTOR = 0.08 mH 
EFFECTIVE CALORIFIC VALUE OF 
WOOD FUEL = 18.4 MJ/kg 

60 80 100 120 140 

FIRE DURATION (Minutes) 

Figure 2.11: Comparison between gas temperature curves calculated using the Lie 

model and that adopted for use in the Swedish Building Regulations. 
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The curves illustrated are calculated using an average opening factor (0.08 

m"1/2) and fire loads of 18 and 66 kg/m2 (100 and 377 MJ/m2) referenced to 

floor area; representative of a low and high office fire load . The compartment 

used in the modeling of the Swedish curves has thermal properties 

corresponding with the average values for concrete, brick and lightweight 

concrete. Designated Type "A", the thermal inertia -Jkpc of this 

compartment is approximately equal to 1166 Jm~2s'2K~\ Based on the 

thermal properties of the "representative" bounding materials adopted by Lie, 

p> 1600 kg/m2 (C = 0) corresponds to a thermal inertia of 1558 

Jm~2s '2K~\ while p< 1600 kg/m2 (C = 1) corresponds to a thermal inertia 

of 780 Jrri2s'2K~l. Accordingly the curve representing the average 

temperature obtained from the two Lie curves would have a thermal inertia 

equal to a Type A compartment. The Swedish fire load expressed in MJ/m2 is 

converted to an equivalent fire load assuming the effective calorific value of 

wood to be 18.8 MJ/kg. Consideration of the foregoing indicate a difference 

between the maximum gas temperature predicted by the two models of 

approximately 40 °C, and a difference in the time to reach maximum 

temperature of approximately 8 minutes. 

Comparison between Lie Model and Experimental Results (Butcher) 

The theoretical temperature time curves are compared Figures 2.12, 2.13 & 

2.14 with temperature curves obtained by experiment [Butcher et. ai, 1966]. 



The compartment in the Butcher fire tests had a floor area of 28 m2. The walls 

were made from brick and the floor and roof were made from refractory 

concrete slabs. The thermal inertia of the internal bounding surface would 

correspond with a Type "A" compartment. 
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UE - 60 / 0.12 (C=l) 

* UE - 60 / 0.06 (C=l) 

UE-60/0.03(01) 
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Figure 2.12: Comparison between theoretical and experimental temperature-time 

curves. Fire load density = 60 kg/m2. 
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Figure 2.13: Comparison between theoretical and experimental temrjerature-time 

curves. Fire load density = 30 kg/m2. 

The Lie temperature versus time curves have been calculated assuming C = 1. 

This means that the calculated temperatures will on average be 45 °C high due 

to the assumed, lower, thermal inertia. For high fire loads (60 kg/m2) and 
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large ventilation conditions (0.12 m-1/2 ), refer Figure 2.12, there is good 

agreement between the calculated and measured values. For low to medium 

ventilation conditions (0.3 - 0.6 m"1/2 ) the algorithm overestimates the time to 

achieve the average maximum temperature by 10 to 30 minutes. The algorithm 

also consistently underestimates the actual gas temperature by as much as 200 

C°. For low fire loads (15 kg/m2), refer Figure 2.14, the algorithm predicts 

average maximum gas temperatures 150 - 250 C° higher than that measured 

and underestimates the time to achieve the average maximum gas temperature 

by approximately 5 minutes. Inspection of Figure 2.13 shows that in the case 

of an average fire load (30 kg/m2), there is reasonable agreement between the 

predicted temperatures and the experimental results. 
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15 kg/iri1 FLOOR AREA AND A VENTILATION PARAMETER OF 0.12 n« 
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Figure 2.14: Comparison between theoretical and experimental temperature-time 

curves. Fire load density = 15 kg/m2. 

The Butcher fire test data was used in the development of the Swedish model 

[Magnusson &Therlandersson, 1974]. Given the good agreement between the 

Lie algorithm and the Swedish temperature versus time curves the degree of 
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correspondence between the theoretical and experimental results in this case is 

disappointing. 

Comparison between Lie Model and Experimental Results (Lathem) 

A more recent investigation into the rate of heating of steel members in 

natural fires [Lathem et.al., 1987], has provided compartment temperature 

versus time plots considered to be typical of multi-storey office blocks; low fire 

loads and comparatively large ventilation conditions. The compartment had a 

floor area of 50 m2 and was constructed of spall resistant insulating refractory 

brick with a concrete roof slab lined with ceramic fibre tiles. This highly 

insulating environment (thermal inertia approximately 413 Jm s/2K ) was 

later modified by lining walls with fire resistant plasterboard and removing the 

ceramic roof tiles. The thermal inertia of the modified compartment 

(1060/m~2s '2K~l) was now similar to the thermal inertia of the compartment 

used by Butcher. The modification to the wall and roof lining had a significant 

effect on the maximum average temperature attained in the fire; specifically, 

for a fire load of 15 kg/m2 and 0.06 m"1/2 ventilation opening, the introduction 

of the plasterboard reduced the maximum average compartment temperature in 

a cellulosic fire from 851 °C to 700 °C. This result serves to highlight the 

importance of the thermal properties of the compartment boundary. 
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Figure 2.15: Comparison between theoretical and experimental temperature-time 

curves. Opening factor = 0.06 m"1/2. Fire load density = 10, 15 and 20 kg/m2 -

Author. 
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Figure 2.16: Comparison between theoretical and experimental temperature-time 

curves. Fire load density = 1 5 kg/m2. Opening factor = 0.03, 0.06 and 0.12 m'1/<z 

Author 

The results of a series of test fires in which wooden cribs were simultaneously 

ignited are shown Figures 2.15 and 2.16. For average values of opening factor 

(ventilation conditions) agreement between the calculated temperature and the 
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experimental result is good for fire-loads of 20 kg/m. Similarly agreement 

between calculated temperatures and experimental results is good when the 

opening factor is small, becoming less so as the opening factor increases. 

The results show that the Lie model predicts, for very low fire-loads, average 

maximum gas temperatures 150 - 200 C° higher than that recorded in test 

results. The Lie model also predicts that maximum temperatures will be 

achieved earlier and that the duration of the fire will be shorter. 

2.10 Summary 

Based on comparisons with fire test data the accuracy with which the Lie 

algorithm predicts the maximum gas temperatures varies. At high fire load the 

maximum temperature may be underestimated by up to 150 °C, while at low 

fire load the algorithm may overestimate the gas temperature by a similar 

amount. Of greater concern is the variation between theory and experiment in 

the time taken to attain the maximum gas temperature. An insulated structural 

member exposed to a long duration fire will eventually heat to a temperature 

close to that of the ambient gas temperature. The probability of failure of the 

member is greatly increased and the time to failure affected. 

The insensitivity to the thermal properties of the compartment boundaries is 

also a weakness in the model. As noted previously the Lie model identifies two 

broad classes of building materials as represented by their density. One group, 

51 



with thermal properties resembling those of a heavy material (high heat 

capacity and conductivity) and a second group, representing those of light 

materials (low heat capacity and conductivity). Typical values of thermal 

inertia range from 2200 Jm2s '2K~l for normal weight concrete down to 

-2 -V -1 
4007m s /2K for wood. A compartment constructed with materials with low 

values of thermal inertia will experience significantly higher compartment gas 

temperatures. 

At high fire load and ventilation opening (60 kg/m2 & 0.12 m~1/2) there is good 

agreement between the theoretical and experimental temperature curves. For 

larger ventilation opening however considerable disparity occurs between the 

two sets of curves both in maximum temperature attained and time to 

maximum temperature. At low fire load (15 kg/m2) a similar but opposite trend 

is evident. There is a reasonable match between the theoretical and 

experimental curve when the ventilation opening is small (0.03 m-1/2) becoming 

less so as the ventilation opening increases. 

2.11 Conclusion 

A number of compartment fire models have been investigated. The model by 

Lie has been selected for use in the simulation model to determine the reliability 

of steel beam in fire. Based on comparisons with test data the model gives 

acceptable representations of compartment gas temperature versus time curves. 
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The model is suitable for simulation in that it is simple to calculate, requires 

only two input variables, fire load density and opening factor, both of which 

have available statistical descriptors. 
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CHAPTER THREE 

MODELLING HEAT TRANSFER TO STEEL 



3.0 Introduction 

In the following chapter a brief description is given of the mechanisms by 

which heat is transferred from a fire to a steel section. Alternative methods of 

calculating the temperature rise in a fire exposed steel beam are investigated 

and the current recommendations reviewed. The accuracy of the heat transfer 

submodel selected for use in the proposed simulation model to calculate the 

time varying probability of failure of steel beams is assessed. 

The rate at which the temperature of structural steel increases during 

exposure to fire depends on a number of factors. Not least amongst these is 

the gas temperature-time curve to which the steel is exposed. In the previous 

chapter it was demonstrated that an irifinite range of real fire scenarios are 

possible depending primarily on ventilation, the nature and type of fire load and 

the compartment in which the fire occurs. To accurately model the increase in 

temperature of a fire exposed steel beam, the thermal properties of the steel 

such as thermal conductivity, specific heat and density must be assessed. The 

geometry and layout of the section are also important considerations. If the 

steel is insulated then the thermal and material properties of the insulating 

material must also be assessed. 
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3.1 Heat Transfer 

The transfer of heat from one location or material to another is affected by 

three mechanisms, namely, conduction, convection and radiation. In a fire, 

heat is transferred from the fire to an exposed object is by convection and 

radiation. The heat transferred by convection to an object is generally less than 

10% of the radiative heat [Trinks and Mawhinney, 1961]. The heat transfer 

through the steel and insulation material takes place exclusively by the 

conduction process. 

3.1.1 Convection 

The transfer of heat by the contact of flowing gas to and over a solid surface 

is by the process of convection. The heat flux, 0, transferred to a solid surface 

per unit time and area by a gas moving over it is given by [Burmiester, 1983]: 

t = h(T<»-Ts) (3.1) 

where h = convection heat transfer coefficient 

r~ = free stream gas temperature 

Ts = surface temperature of object 

The heat transfer process occurs in the region adjacent to the surface within a 

region known as the boundary layer. The convective heat transfer coefficient, 
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h, is a function of the boundary layer, its dimensions, nature and velocity of 

flow as well as the properties of the gas, thermal conductivity, density and 

viscosity. The calculation of the convective heat transfer from a gas to a 

surface involves the derivation or measurement of the coefficient h. This may 

be accomplished by either: exact mathematical analysis; analogy between heat 

and momentum transfer; direct measurement of heat transfer coefficients 

coupled with correlation based on the basis of dimensional analysis. 

The convection process can be described as forced, in which case the gas is 

flowing as a continuous stream over the solid surface, or as natural, where the 

gas flow occurs as a result of density differences arising from temperature 

variations in the gas. In both cases the gas flow may be laminar or turbulent. 

The situation that exists during a compartment fire is complex and at some time 

during the fire both types of convection will occur and both types of flow. 

Accordingly the deterrnination of the convective heat transfer coefficient is 

difficult. For this reason the use of direct measurement and correlation is the 

preferred method of determining the coefficient h. Typical values he in the 

range 5 -25 W/m2 °C for free convection and 10 - 500 W/m2 °C for forced 

convection in air [Drysdale, 1985]. A theoretical analysis [Wade, 1942] 

determined that, for free and forced convective heat transfer between a vertical 

steel plate and air, the coefficient h to be 6 -8 W/m2 °C and 8 - 12 W/m2 °C 

respectively. Based on approximate calculations of the relative contributions of 

convective and radiative heat transfer in a boiler [Gray et ai, 1974], show that 

the convective component is comparatively small, less than 10%. As a 
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consequence in many analysis a simple estimate of the convective heat transfer 

is adopted or, in some cases, it is neglected. 

3.1.2 Radiation 

All substances are capable of emitting and absorbing energy in the form of 

thermal electromagnetic radiation. The radiative energy emitted from a 

substance increases rapidly with temperature. An ideal radiator (a black body) 

will emit energy at a rate proportional to the fourth power of the absolute 

temperature of the body. The total energy, Q, emitted by a body is given by 

the following semi-empirical relationship [Hottel and Sarofim, 1967]: 

Q = ecYT4 (3.2) 

where T = the temperature in degrees Kelvin 

£ - emissivity (surface radiation efficiency) 

CT - Stefan-Boltzmann constant 

The emissivity, £, of a body or surface is the ratio of the radiative heat flux 

emitted by the body to that emitted by a black body at the same temperature. 

Since the rate at which radiation is emitted varies with wavelength, the 

emissivity varies accordingly. A simplification adopted in the calculation of 

heat transfer is to assume a grey body. A grey body is defined as one whose 
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emissivity is constant with wavelength. Some typical values of emissivities are 

given in Table 3.1. 

Surface 

Luminous flame 

Oxidised steel 

Concrete floor slab 

Firebrick 

Beam exposed to direct flame 

Beam protected from direct 

flame or above high ceiling 

Emissivity 

0.6 - 0.9 

0.8 - 0.9 

0.8 

0.75 

0.5 - 0.7 

0.3 -0.7 

Source 

Drysdale (1985) 
n 

n 

II 

Kirby (1986) 
n 

Table 3.1: Emissivities of surfaces in fire compartment Drysdale (1985). 

In an actual fire the exposed steel receives heat from luminous flames, which 

has a surface radiation efficiency, £/, greater than 90 %, which approaches that 

of a black body. It is generally assumed that the radiative heat transfer to an 

exposed member is approximately that of a black body [Kawagoe, 1963]; 

[Babrauskas, 1975]; [Lie, 1992]. 

Because radiation travels in straight lines only part of the radiation emitted 

from the flame surface will reach the steel member. In order to calculate the 

radiant intensity at a point distant from the heat source a configuration or 

geometric view factor, £g, is introduced. Values of Eg for various shapes and 

geometries can be obtained from tables and charts given in the literature 

[Hottel and Sarofim, 1967]. Since all bodies and surfaces in the fire 

compartment emit radiation and the steel is completely enclosed, one 

dimensional radiative exchange between fire and steel is often assumed. The 

59 



resultant emissivity, £>, [Simonson, 1967] for one dimensional radiative heat 

transfer to exposed steel members is: 

* = V»-U-i (33; 

where £/ = emissivity of the flames 

& = emissivity of the steel 

The resultant emissivity accounts for the emissivity of the flames, combustion 

gases and exposed surfaces and may take into account the configuration factor 

[Pettersson, 1976]. The use of the resultant emissivity has been disputed by 

[Mooney, 1992]. The radiation to which floor beams are subject depends on 

the width to height ratio of the beam and on the space to height ratio of the 

beams. Depending on the foregoing the resultant emissivity is reduced 

approximately 15 - 20% to accommodate the beam geometry and layout 

[Pettersson, 1976]. The resultant emissivity and the configuration factor have a 

significant effect on the calculated value of heat transferred between two 

bodies. Both of these terms can be difficult to determine and are often 

interdependent. The emissivity and view factors axe derived semi-empirically 

and serve to correlate theory with observed temperatures. 

Conduction 

Conduction is the inter-molecular transfer or flow of heat through solids, 

liquids and gases. The second law of thermodynamics requires that heat 
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transfer between and within bodies occurs when a temperature gradient or 

imbalance in the internal energy of the system exists and that heat will flow 

from the location of the highest temperature to the location of the lowest 

temperature. Assuming energy is conserved and given sufficient time a body 

subject to a temperature gradient will achieve a steady heat flow. The steady 

state heat flow, Q, between two points in an isotropic material is given by: 

Q ~ ~ ^ (3.4) 

where k = constant of proportionality 

T1 — T2 = temperature difference between points 

d = distance between points 

A = area normal to direction of heat flow 

Equation ( 3.4) can be written more generally as 

* = 7 = -4 ™ 
A dx 

where (j) = the heat flux (the heat flow per unit area 

per unit time across any surface) 

X = coefficient of thermal conductivity 

Since steel has a high thermal conductivity transient conductivity need not be 

considered. Equation (3.5) - Fourier's law - is used to describe one-
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dimensional steady state conduction in a slab. Equation (3.5 ) can be expanded 

to deal with conduction through a system of plane slabs of different material. 

The constant of proportionality represented by the coefficient of thermal 

conductivity, X, is dependent upon the temperature and composition of the 

material. Values for thermal conductivity are determined from measurements 

of the time necessary to restore thermal equilibrium to a body exposed to a 

temperature gradient. Accurate information on the thermal conductivity of 

materials is essential for predicting the increases in temperature of a body due 

to heat transfer by conduction. 

One-dimensional conduction does not often occur in practice since a body 

would have to be either perfectly insulated at its edges or so large that 

conduction would be one-dimensional at the centre. Calculation of the heat 

transferred into insulated steel beams is essentially two-dimensional at corners 

of box-protected beams. 

Prediction of Temperature of Fire Exposed Members 

A number of methods exist for predicting temperatures of structural members 

exposed to fire. Of the available theoretical methods available at present, 

numerical methods are the most popular due to their versatility. Numerical 

methods are used to predict he temperature distribution in a steel member 

exposed to fire by solving non linear heat flow equations. These equations can 

be solved using either finite elements [Zienkiewitz and Cheung, 1967] or finite 
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difference methods [Dusinberre, 1961]; [Lie, 1977]. Such methods permit the 

calculation of temperature distributions in one, two or three directions and can 

accommodate composite sections and box-protected sections in which a 

volume of air is enclosed by the insulating material. 

Computer programs have been developed that analyse the thermal response of 

structural steel elements and assemblies exposed to fire. The programs Fires-

T3 [Iding, 1977], Tasef-2 [Pualsson,1983] and Tempcalc [Anderberg, 1985] 

are three such programs which with appropriate sizing of the grid and accurate 

modelling of boundary conditions, yield accurate results [Wickstrom, 1989]. 

Fires-T3 employs a finite element method using implicit backward difference , 

coupled with time-step integration while Tasef-2 uses explicit forward 

difference time integration. 

3.2.1 Numerical Method 

The flowing is a brief description of a two-dimensional finite difference 

method for the calculation of insulated steel members currently used by the 

National Research Council of Canada [Lie, 1992]. 

The cross-section of the protected member is divided into an orthogonal grid 

of closely spaced nodes. The heat balances of equations (3.1), (3.2) and (3.4) 

are expressed between adjacent nodes. Nodes located on the outside edge of 

the insulating material are subject to thermal radiation from the fire and heat 
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transfer by conduction to adjacent elements. Convective heat transfer to the 

insulation is usually ignored in this model for the reasons given above (sub

section 3.2.1). Allowances can be made for heat generation or absorption due 

to decomposition or dehydration of the material. Heat transfer between 

elementary regions within the insulation occurs by conduction only. For box 

protected steel beams in fire heat transfer to the steel from the inside face of the 

insulation may occur by either of the three processes described above however 

convective heat transfer in the air gap is considered insignificant. It has been 

reported [Lie, 1992] that the rise in temperature due to convective heating is 

less than 1% of the maximum steel temperature [Lie and Harmathy, 1972]. 

The steel in contact with the insulation is heated by conduction while the steel 

in contact with air is heated by radiation. The temperature of the steel core is 

determined by equating the enthalpy of the steel core to that of the sum of the 

enthalpy's of the constituent steel pieces. That is the conductivity of the steel is 

assumed to be infinite and that the steel temperature is uniform over the cross-

section of the member. 

In order to simplify the calculation the expressions of heat transfer used 

assume steady-state conditions whereas the temperature of the compartment 

varies with time. In order to calculate the temperature-time response of the 

steel the increase in temperature is calculated in a step-wise manner for a 

suitably small increment of time over which it is assumed steady-state 

conditions exist in the fire compartment. 
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3.2.2 Comparison with Test Results 

A comparison with calculated and experimental results is reported [Lie, 

1992], in which steel columns of various sizes and protected by number of 

protecting materials show a maximum deviation of approximately 15%. Both 

the standard temperature-time relation and a temperature-time curve that 

resembles an actual fire temperature curve was used [Lie and Harmarthy, 

1970]; [Konicek and Lie, 1974]. 

3.2.3 Commentary on Numerical Method 

The finite difference method briefly described above can be considered as a 

reasonably sophisticated model for the calculation of the temperature of 

insulated steel members. It should be stressed however that even such a model 

ignores the contribution of convection both from the fire and in the air gap, in 

the case of box protected members; that the conductivity of the steel is 

assumed to be infinite; that the reported accuracy of the method is predicated 

on the density, specific heat, emissivity and thermal conductivity of the 

protection material being available. 
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3.3 Current Code Methods for the Calculation of the Temperature of Steel 

Members 

A method for the calculation of the temperature of steel beams and columns 

exposed to the standard fire is given in the European Recommendations for the 

Fire Safety of Steel Structures [ECCS, 1983], and by the French Technical 

Centre for Steel Construction [CTICM, 1976]. The calculation procedure is 

essentially the same as that proposed in the draft Eurocode EC3, [Design of 

Steel Structures, 1990] and the draft Actions of Fires [CIB Commission W81, 

1992]. The recommendations are based on the Swedish manual Fire 

Engineering Design of Steel Structures [Pettersson et. al., 1976]. 

3.3.1 Simplified Heat Transfer Analyses 

3.3.1.1 Simplified Heat Transfer Analyses of Unprotected Steel Members 

The calculation procedures in the European Recommendations for the Fire 

Safety of Steel Structures [ECCS, 1983] {ECCS}are based on a simplified 

one-dimensional heatflow analysis in which the basic equations governing heat 

transfer are used in conjunction with lumped heat capacity analysis. The 

method is based on the following assumptions: 

a) the beams are exposed to fire on four sides. 
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b. the steel offers no resistance to heat flow and therefore at any point in time 

is at uniform temperature. That is the thermal conductivity of the steel is 

assumed to be infinite. 

Given infinite conductivity of the steel the rate of increase of internal energy 

of the steel given by: 

q = CspsV— (3.6) 
dt 

where q = the rate of increase of energy (W) 

Cs = the specific heat capacity of steel (J/kg °C) 

ps = the density of steel (kg/m3) 

V = the volume of the body (m3) 

Ts = the temperature of the body (°C) 

t = time (sec) 

and the energy transmitted to the body from the fire is given by: 

q = A[(ar + ac)[Tf-Ts) (3.7) 

where A = the surface area exposed to fire (m2) 

CU = the coefficient of heat transfer due to radiation 

from the fire to the exposed surface of the 

member (W/m2°C) 
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Ck = the coefficient of heat transfer due to convection 

from the fire to the exposed surface of the 

member (W/m2°C) 

Tf = the temperature of the furnace (°C) 

it follows from equations ( 3.6 ) and ( 3.7 ) that: 

A[(ccr+ac)(Tf-Ts)] = CspsV 
dT\ 

dt 

dTs , s.AJTf-T,) 
-— = {ar+ac)—- os) 
dt v CJV Csps ^-o; 

in which Ok, CCr and G are given as [ECCS]: 

Oc = 25 (3.9) 

Or 
5.67.5, f 7^273 ̂ 4 f Ts+212, \4 
Tf-Tr[\ 100 j \ 100 (3.9A) 

Cs = 3Sxl0~'TsI+20x20~2Ts + 470 (3 10) 
A-5^,2 

where £r - the resultant emissivity. 

The ECCS recommend a value of 0.5 for the resultant emissivity or the use of 

equation (3.3) for a more accurate value. Both [Pettersson, 1976] and 

• The value of the Stefan-Boltzmann constant given in the ECCS (1983) document and in 
• the Swedish design manual (1976) of 5.77 is incorrect and should be 5.67. 
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[CTICM, 1976] { C T I C M } suggest a value of 0.7 with additional adjustment 

for view factor for beam construction. It is found that in the case of an 

insulated beam, the value of the emissivity has little or no effect on the 

temperature of the steel beam. Variation in the value of the emissivity in the 

case of an uninsulated beam however can have a significant effect on the 

temperature-time curve of the member, refer Figure 3.1. 

FIRE DURATION ( Minutes ) 

Figure 3.1 — Influence of variation in emissivity on average temperature of insulated 

and uninsulated steel members. 

The recommended value of CCc is based on experimental investigations of 

standard and natural fire exposures. A slightly different value of 23 W/m2 °C is 

suggested by Pettersson and CTICM for Ok. 

The specific heat of steel, G, is a function of the steel temperature. The 

ECCS recommendations suggest however that a temperature independent 

value of 520 J/kg°C may be used. The effect of using a single value of specific 

heat on the calculated temperature versus time curve is compared with that 
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calculated using a temperature dependent specific heat is demonstrated in 

Figure 3.2. 

10 20 30 40 50 60 70 

FIRE DURATION ( Minutes ) 

80 90 

Figure 3.2: Temperature time curve of a lightly insulated steel beam calculated using 

a temperature dependent specific heat of steel and a constant value specific heat. 

By using equation ( 3.8 ) in a step-by step calculation in which the time 

interval Ar satisfies: 

Ar < 
2.5 x\04 

A/V 
(3.11) 

the time-temperature relationship of the steel member is obtained. The E C C S 

and CTICM both recommend that for any increment of time, the gas 

temperature, Tf, used in the calculation of the steel temperature should be the 

average gas temperature during the time period. 
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3.4.1.2 Simplified Heatflow Analysis of Protected Steel M e m b e r s 

The method follows on from that developed for heat transfer to uninsulated 

steel members. Two additional assumptions are required as follows: 

a) the insulating material has negligible thermal capacity and therefore 

has a linear temperature gradient between the fire exposed surface 

and the inner surface next to the steel. 

b) the resistance to heat flow between the inner surface of the 

insulating material and the steel is negligible. 

The temperature rise in fire exposed steel beams can be significantly 

influenced by the presence of insulation material. Similarly to equation (3.7) 

the heat transfer from the furnace to the surface of the insulation is given by: 

q = Aio[(otr + ok)(Tf-Tio)] (3.12) 

where A io = outer surface area of the insulation per unit 

length (m2) 

Tio = temperature of outside surface of insulation.(°C) 

while the transfer of heat through the insulation by means of conduction based 

on equation (3.5) is given by: 
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a = —r{Tio-Ts) (3.13) 

where A i = internal surface area of insulation per unit length 

(m2) 

/ = thickness of the insulation material (m) 

Using equations ( 3.6 ), ( 3.12 ) and ( 3.13 ) and assuming the conductivity of 

the steel to be infinite and that Ad = Ai, the temperature rise in a lightly 

insulated member is obtained from: 

dTs = L^—\Tf-Ts)dt (3.14) 
Cs • ps V 

The C I T C M suggest the following expression for the heat transfer coefficient 

for lightly insulated beams: 

(ccc + ar) = 23.2+1.388 xlO-5 (7/+ 273)3 (3.15) 

Both Pettersson (1976) and the ECCS recommend that the surface heat 

transfer term (ar +ac) may be ignored when calculating the rise in 

temperature of an insulated steel beam when the value of this term is small in 

comparison to the value of the insulation thickness divided by the thermal 

conductivity of the insulating material, dijh. In which case Equation (3.14) 

may be written as: 
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dTs = /di Al 
Cs-ps' V 

(Tf-Ts)dt (3.16) 

This simplification however will lead to significantly higher average steel 

temperatures, as much as 100 °C higher, in the case of small values of dijh, as 

shown in Figure 3.3.. 

_ _ 

S_ 

700 T 

600 

500 

THERMAL CONDUCTIVITY / INSULATION THICKNESS = 0.05 
HEAT TRANSFER COEFFICIENT IGNORED 
HEAT TRANSFER COEFFICIENT INCLUDED 

10 20 30 40 50 60 

FIRE DURATION ( Minutes ) 

70 80 90 

Figure 3.3 — Influence of heat transfer coefficient on calculated steel temperature. 

When the ratio of insulation thickness to thermal conductivity is small the steel 

temperature is significantly over-estimated. 

Equation (3.14) is based on the assumption that the heat capacity of the 

insulation is zero, that is, the temperature distribution across the insulation is 

linear. It has been shown [Rohsenow and Choi, 1961] that this is the case for 

thin bodies. Insulation may be considered thin if the following inequality is 

satisfied: 

Cs-ps-V>2Ci-piA,di (3.17) 

where O specific heat of the insulation 
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P' = density of the insulation 

In the case of this inequality not being satisfied an alternative equation (3.18) 

is recommended by the ECCS which is less conservative than (3.14). The 

alternative equation (3.18) assumes that the heat capacity of the insulation is 

lumped at a representative depth within the insulation. The equation is given as: 

h 1 Ai 
dT, = -j--— — -

di dps V 

r \ \ (fly 
- — \Tf-Ts).dt-7 x (3.18) 
i + c, J 1+ 7£ 

y Ci-pi-Ai-di, 
? = 2Cs-Ps-V

 (319) 

This equation should only be used when £ > 0.25. The lumped heat is 

assumed by the ECCS to occur at the inside face of the insulation. This results 

in a significant reduction in the steel temperature due to heat being absorbed by 

the insulation. This is considered unrealistic [Bennetts et. al., 1986] who 

suggests that the lumped heat should be at mid-depth in the insulation, dt/2, in 

which case the reduction in the temperature of the steel is halved. The ECCS 

recommendation could be considered unconservative. An alternative 

simplified calculation method is also given [ECCS, 1983], in which equation 

(3.14) is used. In this method the thermal capacity of the steel is increased by 

* The definition of this expression in the draft Eurocode EC3 Part 10, is in error - the code uses 
thermal conductivity in place of thickness of insulation. 
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one half of the thermal capacity of the insulation material. This method is to be 

used only with the standard fire exposure. 

The draft Eurocode [EC3, 1990] proposes a modified version of equation 

(3.18) for the calculation of the increase in temperature of all insulated 

members as follows: 

h 1 Ai 
dTs = ~•—-• — • 

di C*ps V 
1 + 2/ 3J • (Tf - Ts) • dt • -[e% -1) • dTf (3.20) 

A comparison of calculated temperature versus time curves calculated using 

equations (3.18) and (3.20) reveal a considerable difference in Figure 3.4. 

Using the modification proposed by Proe, there is a much improved match 

between the curves obtained from the two equations. By assuming the 

reference depth di/2.5 even better agreement is achieved. A comparison of 

equations (3.15) and (3.20) show reasonable agreement for thicknesses of 

insulation less than 20 mm. 
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Figure 3.4: Relationship between the 1983 and 1990 recommendations for the 

calculation of the temperature of heavily insulated steel members. (2) = reference 

depth = I; (4) - reference depth = 1/2; (5) - reference depth = 1/2.5. [ Test case 350 U B 

box insulated with 40 m m fibre silicate ] - Author. 

3.4.1.3 Considerations for Three Sided Exposure 

A beam supporting a concrete slab will typically exhibit a temperature 

gradient over the depth of the cross-section of the member. The gradient is 

due to both the large heat capacity of the concrete which results in a transfer of 

heat from the top of the beam to the concrete, and to the reduced exposed 

surface area of the steel section due to the top flange being protected from 

direct exposure to the fire. 

The temperature distribution in a fire exposed steel beam can be idealised as 

either a linear distribution for box protected steel beams, Figure 3.5 A(l&2) or 
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as two isothermal zones for unprotected or contour protected steel sections, 

refer Figure 3.5 B(l&2). 

Figure 3.5: Simplified temperature distributions observed in tests. 

A) - box protected steel section; B) - contour protected steel section 

The magnitude and shape of the temperature gradient depends on the length 

of fire exposure, depth of the beam and the mass of the section. Beams with 

thin fire protection and /or are heavily loaded are exposed to the fire for a 

shorter period and are therefore expected to exhibit a small temperature 

gradient. Deep beams or beams with a small exposed surface area to mass 

ratio - such as universal bearing piles (UBP) - are expected to display a large 

temperature gradient. These expectations are supported by test results of 

bottom flange, web and top flange temperatures from a series of twenty one 

fire tests of contour protected steel beams supporting a concrete slab [Proe, 

1989]. The average difference in temperature between the top and bottom 

flange was 260 °C. The average ratio of top flange to bottom flange 
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temperature, ^L , was 0.61 in which the largest ratio, smallest temperature 
bottom 

gradient, was 0.82 and the smallest ratio was 0.42. Only one lightly insulated 

section exhibited a shape of temperature gradient as shown in Figure 3.5 B(l) 

in which the bottom flange and web are essentially the same temperature. In 

the remaining sections the shape of the temperature gradient corresponds with 

that shown in Figure 3.5 B(2) in which the web temperature was on average 

0.86 that of the bottom flange temperature. From test results it was also 

apparent that the thermal gradient of heavily insulated contour protected steel 

beams approaches a linear distribution, refer Figure 3.5 A(l). Table 3.2 show 

T / 
s values of ,oyT derived from test results of maximum and average steel 

/ bottom 

temperatures for box protected beams [BHP, 1983]. 

Section 

100 uc 
100 uc 
200 UBP 
200UBP 

Insulation Thickness 
(mm) 
19 
50 
25 
50 

/ * bottom 

0.88 
0.79 
0.80 
0.56 

Table 3.2: Ratio of temperature of top flange to bottom flange for box protected steel 

beams. 

From the foregoing it can be assumed that under normal conditions the 

Tt0f/r ratio of a steel beam supporting a concrete slab is likely to vary 
/ bottom 

between 0.9 to 0.5. 

The simplified thermal model does not account for the effect of a thermal 

gradient in the steel. It has been shown however, [Proe, 1900] that it is 
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appropriate to use the temperature of the steel beam, as a weighted average of 

the temperature over the cross-section, to calculate the strength of the member 

at elevated temperature, refer Subsection (4.5.3). Alternatively a factor may be 

applied in the structural response analysis that allows for the additional 

reduction in strength of the beam due to the presence of the thermal gradient. 

3.4.1.4 Density of Steel 

The density of steel is normally taken to be 7850 kg/m3 for structural steel. A 

small decrease in the density, ~ 3%,occurs when Grade 43A structural steel is 

heated up to a temperature of 700 °C [Wainman, 1990]. The effect of such a 

small change is considered to be a second order effect in the modelling of the 

temperature of steel and will be ignored in this analysis. 

3.4.1.5 Thermal Conductivity of Steel 

The error associated with the assumption of heat transfer through steel being 

uniform and instantaneous (infinite conductivity) has been assessed. A 

comparison of steel temperatures [Barthelemy, 1976] calculated using the 

simplified method and a two-dimensional analysis using finite elements agree to 

within 10% for sections with an exposed surface area to mass ratio, ESM, 

greater than 10. All but the largest universal beam (UB) steel sections and 

some bearing piles (UBP) available in Australia have an ESM greater than 10. 
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The effect of E S M on the rate of heating of insulated steel sections insulated 

with the same thickness of insulation material is shown in Figure 3.6. 

600 T 

w g 400 1 

9k _a 300 t 

50 100 150 200 

FIRE DURATION (Minutes) 

250 

Figure 3.6: Heating rate of insulated steel sections as a function of exposed surface 

area to mass ratio (ESM). A) - E S M = 40; B) - E S M = 26.7; C) - E S M = 9. 

Insulation 38 m m Harditherm 700. 

3.4.1.6 Thermal Conductivity of Insulation 

A true measure of the thermal conductivity of insulating material is difficult to 

obtain. Values of thermal conductivity for a number of insulating materials as a 

function of the insulation temperature are given in Table 3.2 , [Pettersson, 

1976]. N o information is given in the reference as to whether the values of 

thermal conductivity are derived from theoretical considerations, measured 

values or by correlation with the results of fire tests. 
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Insulating 

Material 

Vermiculite 

Slab 

Mineral 

Wool 

Gypsum 
Plaster 

Temperature °C 

100 
0.099 

0.051 

0.12 

200 
0.108 

0.068 

0.14 

300 
0.116 

0.094 

0.157 

400 
0.13 

0.127 

0.181 

500 
0.137 

0.173 

0.198 

Table 3.3: Thermal conductivity, X, (W/m°C) of some insulation materials as a 
function of insulation temperature. 

It is evident from Table 3.3 that there are considerable differences in the value 

of thermal conductivity for different materials and as a function of temperature. 

It is recognised that the thermal conductivity has a strong influence on the fire 

resistance of the structural element [Lie, 1992]. The ECCS recommend that 

the thermal conductivity of the insulation material Xi be determined 

experimentally as a function of the mean temperature of the insulating material 

by using Equation (3.14). Such an approach takes into account the 

arrangement of the insulation as well as the thermal and mechanical behaviour 

of the insulating material under fire conditions. It is stressed that such a value 

of A is not equivalent to the conventional value of the thermal conductivity as 

given in handbooks on heat transfer, rather it acts as a correlating factor. 

Using Equation (3.14) and experimental values of the thickness of the 

insulating material, the steel temperature, the slope of the time-temperature 

response curve and furnace temperature, obtained from the theoretical standard 

temperature-time relationship, [Bennetts et. al., 1986] and [Barthelemy, 1976] 

derived equations for thermal conductivity for a number of steel sections and 

insulating materials as a function of the temperature of the insulating material. 
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The thermal conductivity versus temperature relationship for the insulating 

material for temperatures below 100 °C was given by extrapolation. Equations 

(3.21) and (3.22) were used to determine the value of the moisture content of 

the material, p. Hence two correlating terms, X and p are determined in 

order to match theoretical and measured steel temperatures. 

It has been demonstrated by calculation [Pettersson, 1976] that the average 

temperature of the insulation during exposure to fire is generally approximately 

the same as the average maximum temperature attained by the steel member. 

As a result of this the E C C S permit the thermal conductivity of the insulation 

to be represented by a single value, determined as a function of the expected 

maximum steel temperature. The result of adopting such a simplification is 

demonstrated in Figure 3.7 where the temperature versus time curve for an 

insulated steel beam is calculated using an expression for thermal conductivity 

LAMDA VARIABLE 

LAMDA CONSTANT 

20 30 40 50 60 70 

FTRE D U R A T I O N (Minutes) 

90 

Figure 3.7: Temperature time curve of a lightly insulated steel beam calculated using 

a temperature dependent thermal conductivity (lambda) of insulation and a constant 

value of thermal conductivity based on expected maximum steel temperature. 

(Insulation thickness = 20 m m ) 
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that varies with the steel temperature and a single value of thermal conductivity 

based on the expected maximum temperature of the steel. 

From the work of Bennetts it was apparent that there was considerable 

variation in the calculated thermal conductivity obtained from the results of 

tests on similar specimens, and that there was also systematic variation between 

the various sections. Much of this variation was ascribed to the method of 

calculating the exposed surface area to mass ratio. Because of this the 

foregoing method can only be employed in a general way if the mass ratio is 

taken in to account as a dependent variable. 

3.4.1.7 Influence of Moisture 

The presence of water in the insulating material can significantly delay the 

time to reach a given temperature. Free water in the pores will evaporate when 

it reaches 100 °C. Because water has a large latent heat of evaporation most of 

the heat supplied to the material is used to evaporate the water. This process 

results in a delay time during which the temperature of the steel either increases 

slowly or remains constant. Figure 3.8 shows some test results, [Hardies, 

1981], that exhibit the delay time phenomenon. 
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Figure 3.8: Temperature rise of 250 U B steel beams exposed to the standard fire and 

protected by a range if insulation thicknesses. A plateau in the temperature-time curve 

at 100 °C becomes evident as the thickness of the insulation increases. 

The delay time is a function of the absolute volume of moisture, which for a 

particular material will increase in proportion to the thickness of the material. 

Materials in which water of crystallisation is also present will suffer delay time 

but at temperatures greater than 100°C depending on the rate of heating. 

Based on the method by C T I C M , the following equation for calculation of the 

change in temperature, ATs, of the steel member over the interval of time, At, 

has been proposed [Bennetts, 1986]: 

ATs = 
Ya + YlX C % , + (4180p/) 

(Tf-Ts)At (3.21) 

where moisture content of the insulation material by 

volume 

4180 = the heat capacity of water in kJ/m3-°C 
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Equation (3.21) presupposes that the temperature of the insulation to be the 

average of the furnace (fire) and steel temperature. It further assumes a 

particular temperature distribution through the insulation, for which there is no 

theoretical justification, but results in predictions of steel temperatures which 

are in accordance with experimental results. This expression is considered 

valid up to a steel temperature of 100 °C. At 100 °C the delay time, td, is 

calculated by equating the total heat flux to the member (post 100 °C) to the 

energy required to vaporise the water as follows: 

u+td 

j(Tf-l00)dl = 60-2.26X10 6 P/(X + KA) (322) 

where 2.26 x 105 = the energy required to convert water to 

steam at 100°C in kJ/m3 

The ECCS (1983 and 1990) provide an empirical expression from which to 

determine td as follows: 

pp:di\io2 

X 
td (minutes) 

4 8 12 16 20 24 28 

5 15 25 30 40 50 55 

Table 3.4: Calculation of delay time due to moisture. 
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Regression Method 

A method is given in [AS 4100, 1990], for the calculation of the time for steel 

members to reach a specified limiting temperature. The method, which is 

applicable to steel members subject to both three and four sided exposure, is 

based on interpolation of temperature versus time curves from a series of fire 

tests using the regression equation (3.23) subject to a number of limitations. 

The relationship between temperature, T, and time, t, as a function of the 

thickness of insulation, hi, and the mass to surface area ratio, ksm is calculated 

by least-squares regression as follows: 

( hi \ (hiT\ 
t = h> + kihi + k2 — l+ksT+kthiT+ks — 

V ksm J V ksm J 

+ fcl 
k ksm 

(3.23) 

where ko to ke = regression coefficients 

A minimum of nine fire tests, in which the thickness of insulation and ESM 

are varied, are required to determine the regression coefficients. The 

regression method is limited to the temperature range, 200 °C to 600 °C, -

being the interval in which the relationship between time and temperature is 

observed to be near to linear. The regression method was developed to 

provide a simple means of determining the fire rating of insulated steel 

members from test data for use in the design environment. Importantly, it 

avoids the difficulty of obtaining a measure of the thermal conductivity of the 

insulating material. 



The method is limited in that it can only be used for deterniining response of 

structural members to exposure to the standard test fire. The method could 

possibly be extended to model real fire exposure however the additional 

number of independent variables would be increased by at least two and as a 

consequence the number of fire tests required to determine the regression 

coefficients would become quite uneconomical. 

Selection of Heat Transfer Submodel 

It Iras been demonstrated that for unprotected and protected steel beams 

exposed to fire on four sides the temperature versus time curve obtained by 

using the simplified one dimensional heat transfer model is within 10% of the 

result obtained by using a two-dimensional finite element analysis [Barthelemy, 

1976]. Such a level of accuracy corresponds with that required under Aims of 

Project, refer Subsection (1.1.2). The use of more complex numerical methods 

to determine the temperature of a section is only appropriate where 

temperature distribution either through or along the member varies. It was 

explained in Subsection (3.4.1.3) that a thermal gradient exists in a steel 

member exposed to fire on three sides. It is still appropriate, however, to use 

the simplified one-dimensional heat transfer model in this case as the calculated 

temperature versus time curve corresponds with that of the bottom flange 

(maximum temperature) of the steel beam. The effect of the thermal gradient 

can be taken into account by the use of either a strength reduction factor or a 

modified strength reduction model, refer Subsection (4.5.3). 



The fire severity model adopted, refer Subsection (2.8), assumes a uniform 

gas temperature throughout the compartment volume. While this assumption is 

not always valid, it precludes temperature variation along the length of the 

beam. Further, because one of the aims of the project is to determine the 

strength in bending of a simply supported floor beam it is only necessary to 

know the temperature of the steel where the bending moment is at a maximum, 

the mid-point of the beam. Modeling of temperature variation along the beam 

is, therefore, neither possible with the adopted fire model nor necessary given 

the aims of the project. The use, therefore, of the simplified one dimensional 

heat transfer method is justified in that appropriate accuracy is achieved for the 

calculation of the strength of fire exposed steel beams. 

The heat transfer model to calculate the temperature of steel beams in fire that 

has been adopted for use in the proposed simulation model to calculate the time 

varying probability of failure of steel beams is based on that published in the 

European Regional Organisation for Steel Construction document, [ECCS, 

1983] - European Recommendations for the Fire Safety of Steel Structures, 

and by the French Technical Centre for Steel Construction, [CTICM, 1976]. 

The recommendations are written specifically for "load-bearing steel elements 

and structural assemblies exposed to the standard fire, providing an alternative 

to the standard fire resistance test", [ECCS, 1983]. ECCS and CTICM 

recommend that the concept of "effective fire duration" in which the 

temperature attained by a sample exposed to a real fire is expressed as the time 

for the sample to reach the same temperature when subject to the standard fire. 

The use of this concept is not necessary however as the method outlined in the 
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recommendations is equally suited to input data based on temperature time 

curves representing natural fires, [Thor et al., 1977]. 

3.5.1 Selected Submodel Equation for Calculation of Unprotected Steel 

Temperature 

The calculation of the temperature of unprotected steel will follow the method 

outlined in sub-section 3.4.1. The increase in the average temperature of a 

steel member is given by Equation (3.8) which was: 

dTs . .A(Tf-Ts) 
= (ctv + ctc)-dt V Csps 

(3.8) 

3.5.1.1 Heat Transfer Coefficient and Emissivity for Heat Transfer Submodel 

In this analysis the coefficient of heat transfer due to convection Ofc, is taken 

as 23 W/m2 °C [Pettersson, 1976], [CTICM, 1976]. The temperature 

dependent coefficient of heat transfer due to radiation, ou, is calculated using 

Equation (3.9A) obtained from the ECCS recommendations as follows: 

Gr = 
5.67-V 

Tf-Ts 

( T/ + 273 V (TM+ 273') 

100 100 
(3.9A) 
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where &, the resultant emissivity of the flames, combustion gases and exposed 

surface is taken as 0.5 for a beam exposed to flame on four sides. In the case 

of an I-beam supporting a concrete slab, in which the flames can penetrate 

between the girders, both the CTICM and the Swedish Institute of Steel 

Construction, [Pettersson, 1976], the recommended resultant emissivity factor 

of 0.7 has been adopted for use in calculating the temperature-time response 

curve for use in the simulation model 

3.5.1.2 Specific Heat of Steel adopted in Submodel 

The specific heat of steel, Cr, is a function of the steel temperature. In this 

analysis the specific heat will be determined from equation (3.10) which was: 

Cs = 3Sxl0~5Ts2+20x20~2Ts + 470 (3.10) 

The effect of using equation (3.10) reduces the calculated average maximum 

steel temperature by approximately 3.5% compared with that obtained from 

using a temperature independent value of specific heat as shown previously -

refer Figure 3.2. When incorporated in to the simulation model the use of the 

temperature dependent value will reduce the variance of the maximum 

temperature by 2% . This has a small effect on the estimate of probability of 

failure. 
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3.51.3 Time Step 

Equation (3.8) is applied in small discrete time steps, Ar. A limit for the 

time increment is specified by equation (3.11) as follows: 

At < 
2.510' 

Ai/V 
(3.11) 

Assuming a maximum value of surface area to volume ratio, A «/V, of 160 

m~ , the effect of the chosen time increment on the calculated maximum steel 

temperature is shown in Figure 3.9. A recommended time increment of 150 

seconds is adequate for the range of sections encountered in practice. A time 

increment of 60 seconds was adopted however in the simulation model to 

predict time to failure to the nearest minute. This had the effect of reducing the 

L.015 

z, 
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X < 
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0.995 " 

g 0.99 t P 
0.985 
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SIZE OF TIME STEP (Seconds) 

300 

Figure 3.9: Relative change in the calculated average maximum steel temperature as a 

function of time increment - assuming an A i/V ratio of 165 - Author. 
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calculated maximum steel temperature by 1%. The sensitivity of the 

calculation of the steel temperature to the size of the time increment decreases 

as the thickness of the insulation increases. 

3.5.1.4 Comparison between Calculated Steel Temperature versus Time Curve 

and Experimental Test Data - Uninsulated Steel 

It can be demonstrated that the simplified heat transfer model predicts the 

temperature-time response curve of uninsulated steel sections exposed to either 

the standard fire or real fires with acceptable accuracy. The calculated steel 

temperature versus time curve of an uninsulated steel beam supporting a 

concrete slab was compared with the temperature versus time curve measured 

in a standard fire test [Pettersson, 1976]. Good agreement (within 30 °C) was 

obtained between the calculated temperatures and the temperatures measured 

on the lower flange of the steel beam. The temperature in the top flange was 

consistently lower than in the rest of the beam. This is due to the top flange 

being protected from direct radiation and to the continuous conduction of heat 

away from the top flange into the cooler slab. 

The accuracy with which the simplified method is capable of predicting the 

temperature of a steel beam supporting a concrete slab when exposed to real 

fire has also been assessed. Gas temperature versus time curves measured in a 

series of test fires conducted at the joint British Steel Corporation / Fire 
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Research Station [Lathem et al, 1986], were modelled and used as input 7/ in 

Equation (3.14) to calculate the temperature of the steel, refer Figure 3.10. 

| 200 •• 

5 ioo •• 

20 30 40 

FIRE D U R A T I O N (Minutes) 

Figure 3.10: Comparison of experimental and calculated steel temperature using 

Equation (3.14). Measurements taken on Iowa- flange of uninsulated beam supporting 

concrete slab. Fire test data after Lathem (1987), - open shapes: modelled temperatures 

- solid line. (Opening Factor = 0.06 m1/2 Fire load density (kg/m2): A = 10; B = 15; C 

= 20) - Author. 

Agreement to within 5 % is obtained between the calculated temperature 

versus time curves and those temperatures measured at the lower flange of 

uninsulated beams supporting a concrete slab. 
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Figure 3.11: Comparison between measured steel temperatures, obtained from 

simulated office fire, and calculated steel temperature using one-dimensional heat 

transfer - Author. 

Figure 3.11 shows the steel temperature of the web, top and bottom flanges 

of a castellated 510 U B 9 0 beam recorded during a simulated office fire, [BHP, 

1992]. The beam supports a lightweight concrete slab and is shielded from the 

direct effect of fire by a 3 0 m m thick, cast plaster ceiling tiles. The temperature 

of the gas in the ceiling space was modelled using a curve fit program and used 

as input to calculate the steel temperature using Equation (3.14). The resultant 

emissivity used in the calculation was determined from the charts given in 

Pettersson [1976]. This is a more difficult situation to model due to the 

protection afforded the bottom flange by the ceiling tiles: the relatively high 

surface area to mass ratio of the web: the heat sink effect of the slab. The 

normal linear temperature distribution over the depth of the steel section is not 

evident. Unlike the previous example, in which the simplified method predicted 

the lower flange temperature accurately, there is reasonable agreement - to 

within 1 0 % - with the average temperature of the steel section. The influence 
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of the emissivity of the top of the suspended ceiling (which has only been 

estimated) on the calculated steel temperature will be significant. Despite the 

complex nature of the situation it is evident that use of the simplified method to 

predict the temperature of steel exposed to real fire produces acceptable 

results. 

The use of Equation (3.14) for predicting the temperature versus time curve 

of sections exposed to real fire on four sides [Butcher et al., 1966], is 

demonstrated in Figures 3.12 and 3.13. 

0 5 10 15 20 25 30 35 40 

FIRE DURATION (Minutes) 

Figure 3.12: Comparison between calculated and test data of free standing column 

exposed to natural fire. Fire load = 30 kg/m2; ventilation = 0.08 mI/2 - Author-. 

Figure 3.12 represents a reasonably severe fire (fire load of 30 kg/m2 floor 

area) in which the columns are assumed to be surrounded by emissive flames. 

In this case an emissivity of 0.7 was adopted as recommended for internal 

columns by Kirby [1986]. Equation (3.14) underestimates the maximum steel 

temperature by approximately 20 °C but matches well, within 15%, over the 

temperature range in which loss of strength is likely to be critical. 
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Figure 3.13 represents a relatively small fire (fire load 7.5 kg/m2 floor area) in 

which heat loss to the surroundings was apparent. As a consequence of the 

foregoing an emissivity of 0.4 was adopted in the calculation of the steel 

temperature. Again good agreement, within 10%, is achieved between 

calculated and measured temperature-time curves, the calculated temperature 

being conservative in this situation. 
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Figure 3.13: Comparison between calculated and test data of free standing column 

exposed to real fire. Fire load =15 kg/m2; ventilation = 0.12 m,/2 - Author. 

Calculation of Temperature for Insulated Steel 

The increase in the mean temperature of a steel member protected by dry 

insulation material was given by equation (3.14) as follows: 

((Xc + (Xr) + %l. At , 
dTs = &-±-{Tf-Ts).dt 

Cs • ps V 

(3.14) 
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3.5.2.1 Arrangement of Insulation 

A number of basic geometries are possible for steel beams protected by 

insulating material, depending on whether the insulating material is the spray 

type or board material and whether the beam supports a concrete floor directly 

on its upper flange or not. Two arrangements have been used in the submodel 

as shown in Figure 3.14. 

2 

II | I 

ii "mmwvvvvi 

I | 
li I 
1! I 
ii mmmmmm Figure 3.14: Arrangement of insulation: A) - three-sided exposure. B) - four-sided 

exposure. 

The term Ai/ 
/Vp> 

in Equation (3.14) is determined from the length of 

insulation measured around the interior face of the insulation exposed to fire, 

Ai, divided by the cross-sectional area of the steel section and by the density of 

steel (ps = 7850kg/m3). 

3.5.2.2 Thermal Conductivity of Insulation 

Harditherm 700, a calcium silicate based board {Thomas and Bennetts, 1982], 

has been adopted as the only type of insulation material to be considered in this 
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project. Harditherm is used throughout the construction industry and is 

representative of the type of insulating board currently available in Australia 

The thermal conductivity of Harditherm 700 was assessed by Thomas and 

Bennetts. The relationship describing the variation in the thermal conductivity 

as a function of the maximum steel temperature, (TSM), was given as follows: 

h = (0.09402 + (9.24 x 10~5 • TSM)) (3.24) 

Equation (3.24) was used in Equation (3.14) to calculate the temperature-

time response curve for a number of steel beams insulated with Harditherm 700 

and exposed to the standard fire. The results are presented in Figures 3.15 and 

3.16. 

INS = 19 mm 

INS = 50 M M 

50 100 150 200 

FIRE D U R A T I O N (Minutes) 

250 

Figure 3.15: Comparison between experimental and calculated ten_perature-time 

curves in which Equation (3.24) was used to represent the thermal conductivity of the 

insulation - 3 - sided exposure. (Dashed line represents test data) -Author. 
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It is apparent from Figures 3.15 and 3.16 that use of Equation (3.24) does 

not result in an acceptable match between experimental and calculated 

temperature versus time curves. 
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Figure 3.16: Comparison between experimental and calculated teriiperature-time 

curves in which Equation (3.24) was used to represent the thermal conductivity of the 

insulation - 4 - sided exposure. (Dashed line represents test data) - Author. 

The poor result can in part be explained by the use of a constant value of 

thermal conductivity in the calculation. It was demonstrated in Figure 3.2 that 

use of a constant value for the thermal conductivity results in a significant 

increase (up to 9%) in the steel temperature. It was further demonstrated, 

Figure 3.7, that the presence of moisture in the insulating material can 

significantly alter the shape of the temperature-time curve leading to a 

significant increase in the time to heat the steel. Finally, variation in the 

exposed surface area to mass ratio is not specifically accounted for by Equation 

3.24 rather it represents an average value of thermal conductivity derived from 

test results. The sections used in the calculation for Figures 3.14 and 3.15 

represent an average value of E S M for beam sections of -26. Temperature-

time curves for sections with higher or lower ESM's would diverge from the 

experimental curves by an even greater amount. The discrepancies between 

the calculated and measured steel temperatures will have a significant effect on 
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both the estimate of probability of failure and time to failure when used in the 

simulation model. 

3.6.2.3 Thermal Conductivity of Insulation - Derived From Test Data 

As a consequence of the foregoing an alternative expression for thermal 

conductivity has been derived by correlation with experimental data based on 

the method described by Bennetts et al (1986). 

The experimental data relates to steel beams box insulated with Harditherm 

700 insulating material - refer Figure 3.14. 

The slope of the steel temperature-time response curve at time U is obtained 

by calculation of the slope of the straight line joining data points at the 

beginning and end of the time interval under consideration, Figure 3.17. T w o 

time intervals were tried, ti + At, u ± 2At. There was little difference in the 

final expression for thermal conductivity obtained from using either time 

interval however the scatter associated with the longer time interval was 

reduced. The foregoing was a consideration in determining the magnitude of 

the modelling error to be attributed to thermal conductivity in the simulation 

model. 
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Figure 3.17: Method of calculating slope of temperature-time response curve - Author. 

Equation (3.14) was used to derive an expression for thermal conductivity for 

temperatures greater than 100°C. Rather than use extrapolation to obtain an 

optimal value of moisture content, measured values of moisture content were 

used in conjunction with Equation (3.21) to obtain an expression for X for 

steel temperatures up to 100°C. This differs significantly from the method of 

Bennetts et al (1986). The foregoing procedure was adopted because the 

variation in the measured moisture contents was relatively small (less than 

15%) and the sensitivity of the temperature-time curve to variation in the 

values of thermal conductivity, due to variation in moisture content, was, 

contrary to the findings of Bennetts, small - refer Figure 3.18. 
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Figure 3.18: Variation in calculated thermal conductivity as a function of moisture 

content. B) - average moisture content. A) and C) - B) ± 30% - Author. 

The variation in thermal conductivity as a function of temperature and exposed 

surface area to mass ratio is shown in Figures 3.19 and 3.20 for beams exposed 

to fire on four sides. 
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Figure 3.19: Values of thermal conductivity derived using experimental data in 

Equation (3.21) for temperatures up to 100 °C. Heavy line indicates modelled 

response - Author. 
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- Author. 

The following expressions have been derived to represent the thermal 

conductivity (X) of Harditherm 700 insulation board in the calculation of the 

average temperature, Ts, of box protected steel beams exposed to fire on four 

sides. 

Average steel temperature 0 - 100 °C 

X = 0.099 + 
6.84 (-

4.31- 382.53 
/ESM) 

ESM' T li 

Is 

(3.25) 

Average steel temperature >100 °C 

11.03 (-6.94-0.023ESM) 
X = 0.8504 + ̂ T7TT + ESM' ylfs 

(3.26) 
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where E S M = mass to surface area ratio (m2/tonne). 

Delay time due to presence of moisture is given by: 

0.55+0.00013573 (3.27) 

where I = thickness of insulation (mm). 

Equations 3.25, 3.26 and 3.27 are limited to sections in which the mass to 

surface area ratio lies between the values 9 and 40 m2/tonne and to thicknesses 

of insulation no greater than 50 mm. 

The following expressions have been derived to represent the thermal 

conductivity (X) of Harditherm insulation board in the calculation of the 

average temperature of box protected steel beams (Ts) exposed to fire on three 

sides. 

Average steel temperature 0 - 100 °C 

36.46-33L6Vn 
X = 0.2977 - 0.0077ESM+ - _. / ' E M' (3.28) 

Is 

Average steel temperature >100 °C 
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(2093.7 -0.036_SSM3) 
X = 0.592-0M5ESM+± r.

 J- + 
Tsls 

(- 5332.7 + 0.103ESM*)LnTs 

Ts2 

(3.29) 

Delay time due to presence of moisture is given by: 

0.497 +0.0087/2 (3.30) 

Equations 3.28, 3.29 and 3.30 are limited to sections in which the mass to 

surface area ratio lies between the values 6 and 27 m2/tonne and to thicknesses 

of insulation no greater than 50 mm. 

Equations (3.27) and (3.30), which determine the delay time due to moisture, 

were obtained by curve fitting rather than by the CTICM method described in 

sub-section (3.4.1.4) the results from which, when used in conjunction with 

Equations (3.25, 26, 28 and 29), proved to be inconsistent. The use of curve 

fitting is justified in that the CTICM Equation (3.22) is also based on 

correlation with experimental data and is very sensitive to the reference depth 

of the lumped heat. In both the CTICM method and ECCS method (Table 3.3) 

the delay time is calculated independently of the exposed surface area to mass 

ratio but requires a value for the thermal conductivity. The value of thermal 

conductivity obtained from the equations derived above however is a function 

of the exposed surface area ratio. It is recognised that there is no connection 

between these two variables and that the derived expressions for thermal 
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conductivity are correlating terms in order to match experimental data. As 

such the derived values are inappropriate for use in either Equation (3.22) or 

Table 3.3. 

3.6.2.4 Comparison between calculated steel temperature-time curve and 

experimental test data - insulated steel 

A comparison between measured and calculated steel temperatures using 

Equations (3.14) and (3.21), in which the thermal conductivity is given by 

Equations (3.25, 26 and 27), is given in Figures 3.21, 3.22 and 3.23 for a range 

of insulation thicknesses and mass to surface areas for beams exposed to fire on 

four sides. 

FIRE D U R A T I O N (Minutes) 
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Figures 3.21, 3.22 and 3.23: Comparison of modelled (solid lines) and measured 

(dashed lines) temperatures of insulated steel beams exposed to fire on four sides for a 

range of insulation thicknesses (INS) and mass to surface area ratios (ESM). Beams 

box protected with Harditherm 700 insulation board Author. 

A comparison between measured and calculated steel temperatures using 

Equations (3.14) and (3.21), in which the thermal conductivity is given by 

Equations (3.28, 29 and 30), is given in Figures 3.24 and 3.25. for a range of 

insulation thicknesses and mass to surface areas for beams exposed to fire on 

three sides. 
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Figures 3.24 and 3.25: Comparison of modelled and measured temperatures of 

insulated steel beams exposed to tire on three sides for a range of insulation 

thicknesses (INS) and mass to surface area ratios (ESM). Beams box protected with 

Harditherm 700 insulation board - Author. 

Conclusion 

The use of the derived expressions for thermal conductivity result in very 

good agreement between the calculated temperature versus time curves and the 
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test data. Although the test data is based on exposure to the standard fire it has 

been demonstrated in Section (3.5.1.4) that the simplified method can be used 

to predict the temperature versus time curve of steel sections exposed to real 

fires. 
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CHAPTER FOUR 

MECHANICAL PROPERTIES SUBMODEL 



4.0 Introduction 

During fire the mechanical properties of steel are affected by its temperature. 

The effect of change in the mechanical properties of steel on the structural 

performance of a particular member will depend on the forces in the member 

due to the action of applied loads, conditions of support and whether the 

member is axially restrained. 

The present study is limited to failure of simply supported, axially 

unrestrained steel beams in bending. As will be demonstrated in the next 

chapter the strength of a beam in bending can be predicted by application of 

simple plastic theory using the two parameters section modulus (S) and yield 

strength (Fsy). As a consequence of the foregoing only a knowledge of the 

variation in the yield strength of steel with temperature is required in order to 

predict the strength of steel beams in bending at elevated temperature. 

The chapter commences with a review of the stress-strain relationship of 

structural steel at elevated temperature and examines the influence of the 

particular method of measuring the strength of steel at elevated temperature 

has on proposed strength-temperature relations. Recommended strength 

reduction curves for structural steel are reviewed and a relationship, based on 

test data, is presented which predicts the change in strength of Australian 

structural steel as a function of temperature. 
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Mechanical Properties of Steel 

All of the mechanical properties of steel are strongly influenced by 

temperature. These include yield strength, modulus of elasticity and 

coefficient of thermal expansion. As the temperature of steel increases changes 

occur in the crystalline structure of the steel which effect its behaviour. For the 

carbon steels typically used in buildings construction in Australia the changes in 

crystalline structure occur at temperatures greater than 600 - 650 °C [Jeanes, 

1980]. Under normal loading a beam is likely to be close to failure or to have 

failed before such temperatures are attained. Changes in the crystalline 

structure therefore are ignored in fire engineering design. 

Stress - Strain at Room Temperature 

Two modes of behaviour are evident when a steel specimen is subject to an 

axial load in a tensile testing machine. On removal of the load, the elongation 

disappears - the steel displays an elastic response. If, on the other hand, there 

is residual elongation , the material has exhibited a plastic response. The elastic 

limit is reached at a strain of approximately 0.15% , the corresponding stress is 

defined as the yield stress, Fsy . Up to this point the stress is proportional to 

the strain, the ratio of the stress to strain defines the elastic modulus (E) [Lay, 

1982]. 
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Stress - Strain at Elevated Temperature 

Results from steady state tensile 

2 3 -
STRAIN 1%) 

Figure 4.1- Variation with temperature 
of the stress-strain curve of Australian 
Grade 250 steel. 

tests on Australian Grade 250 steel 

show that as the steel is heated 

above a temperature of 

approximately 200 °C, its yield 

stress reduces by about 15% and 

the tensile strength increases. The 

strain increases for a given stress 

and the slope of the initial part of the 

stress - strain graph reduces. 

The elastic modulus therefore reduces with increasing temperature. At 

elevated temperature (above 300 °C) the clearly defined yield point disappears, 

refer Figure 4.1. In its place a softly rounded yielding transition develops and 

the tensile strength progressively decreases [Stevens et al., 1971]. Similar 

results have been reported for American [Harmathy & Stanzack , 1970], 

Japanese [Furamura et al., 1985] and British steels [Jerath et al., 1980]. 

4.2 Measurement of Stress-Strain Relationships 

Analytical models describing the behaviour of steel at high temperature are 

based on test data of stress and deformation characteristics at different 

temperatures. The material properties measured in tests are closely related to 



the method used [Anderberg, 1988]. There are a number of testing procedures 

from which the variation of flow of stress of a steel sample at elevated 

temperature can be obtained. These can be arranged as transient heating tests 

and steady state tests. 

4.2.1 Steady State Tests 

Steady state tests are often referred to as isothermal. In such tests the 

unloaded sample is heated at a predetermined rate until thermal equilibrium is 

attained at the required reference temperature. Depending on the information 

required, the sample is either stressed or strained at a uniform rate while the 

resulting elongation or load is recorded. A family of load-elongation 

relationships can be obtained by repeating the test at different reference 

temperatures as shown in Figure 4.1.. In stress-rate controlled tests the strain 

measured before the load is applied corresponds to the thermal strain. Such 

tests are usually terminated when the 0.2% proof strain is reached. If a 

specimen is maintained at constant temperature and constant load the creep 

strain can be measured however in stress rate controlled isothermal tests the 

stress-strain relationship is often obtained at a high rate of loading whereby the 

maximum load is applied within one to two minutes thereby avoiding the effect 

of creep. 
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Transient Heating Tests 

Transient heating tests are often referred to as anisothermal. In these the load 

on the steel specimen is maintained constant while the temperature of the 

specimen is increased at a constant rate. A family of strain versus temperature 

curves are obtained in which each curve corresponds to an applied stress. 

Heating rates and duration of exposure experienced in real fires can be simulated 

using this method of testing. As a consequence the effect of high temperature 

creep is automatically accounted for. Tests carried out under transient 

conditions are considered to represent the behaviour of structures in fire, and 

thus provide data of direct relevance to evaluating mechanical properties of steel 

at elevated temperature. 

Information derived from transient heating tests are presented in two forms: 

a) as a series of derived stress/strain curves at elevated temperature; 

b) as a relationship between the ratio of the elevated temperature stress to the 

yield stress at 20 °C. 

Models of Stress-Strain Relationships 

Models by which the stress/strain relationship of steel at elevated temperature 

are described can be categorised as those that include the effect of creep 

explicitly, those in which the effect of creep is included implicitly and finally 
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those that ignore creep. Creep is the change in strain which occurs in a 

member under constant load conditions. This categorisation by 'creep' reflects 

the nature of the test data used to derive the model and the intended use for the 

model. 

Sophisticated models that include the effect of creep explicitly [Harmathy, 

1967], [Thor, 1973] and [Anderberg, 1983] use the concept of temperature-

compensated time proposed by Dorn [1954]. Furamura et al. [1985] presents a 

creep model for Japanese steel SS41. The model by Thor was used to establish 

critical steel temperature as a function of load for use in the Swedish manual 

for the Fire Engineering Design of Steel Structures [1976]. The model by 

Anderberg is incorporated in to the structural computer package Steelfire 

[1988]. 

Models of stress-strain relationships that include the creep explicitly are based 

on the combined results of different steady state tests. Strain at transient high 

temperatures comprises three components defined by the constitutive equation: 

£ = £th(T) + &,(<7,T) + £cr(<J,T,t) (4.1) 

where &h = thermal strain 

£a = instantaneous stress related strain 

Ecr = creep strain 
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A linear relationship between thermal strain and temperature is generally 

assumed, the type and strength of the steel having little influence [Anderberg, 

1988]. 

Analytical descriptions of instantaneous stress-strain curves as a function of 

temperature derived from steady state tests can be approximated by either a 

number of straight lines, two straight lines connected by an ellipse [Purkiss, 

1988] or by a modified expression of Ramberg and Osgood [1943] as used by 

Magnusson [1974]. 

Creep strain measured in steady state tests is used in order to predict the 

contribution of creep during transient heating conditions. Variation in load 

resistance at transient high temperature can be accounted for in such models by 

considering strain hardening. 

It has been demonstrated by Anderberg, [1988] that models based on steady 

state heating tests can satisfactorily predict total deformation as a function of 

temperature and load level in a transient heating test when load levels are low. 

Significant discrepancies occur however between modelled results and test data 

at high load level due to an instability phenomenon peculiar to transient heating 

tests. Since load levels on beams rarely exceeds 60% of capacity in load 

resistance factored design (LRFD) and will be less during fire, the 

discrepancies at high load level can be ignored. 
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Simpler analytical models of stress-strain relationships at elevated temperature 

that include the effect of creep implicitly are used in computer structural 

models such as "STABA-F" [1984] and CEFICOSS [1990] in which finite 

element methods are used to calculate the distortion of frames and sub

assemblies, restraining forces and member capacities. Such material models 

are based on the results of transient heating tests performed at a particular 

heating rate in which the effect of thermal strain has been isolated and 

considered independently. It has been demonstrated that the magnitude of 

creep strain is influenced by the rate of heating of the steel [Skinner, 1970]. 

Heating rates can vary widely due to different fire exposures, presence and 

thickness of insulation material and type of fuel. As a consequence, models in 

which creep is included implicitly will only account for the effect of creep in an 

approximate way. 

In both the British code of practice for fire resistant design BS 5950: Part 8 

[1990] and the Commission of the European Communities EC3: Part 10 

[1990] the materials models are based on the results of transient heating tests. 

The British model is based on the results of a major anisothermal tensile-testing 

programme in which the performance of structural steels were evaluated for a 

range of heating rates (2.5 to 20 °C/min) and range of applied stress. In the 

case of the EC 3 the materials model is based on the results of anisotherm.al 

tests on large scale models using scales of 1:4 to 1:6. in which simply 

supported beams were subject to a range of load ratios (the ratio of actual load 

to ultimate load-bearing capacity at normal temperature) varying from 0.85 to 

0.05 and heating rates varying from 2.67 to 32 °C/min [Rubert et ai 1985]. 
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The complete stress/strain behaviour was derived numerically from the 

measured deflections 

4.4 Models of Variation of Steel Strength with Temperature 

A number of relationships have been proposed that describe the decrease in 

yield stress with increase in temperature. These are shown in Figure 4.2 and 

are for the American ASTM AS36 steel [Lie and Stanzak, 1974], European 

regional organisation ECCS [1979], National Research Council of Canada 

[Lie, 1992], British BS4360 Grade 43 [Jerath et al., 1980], French statutory 

body CTICM [1976] and Australian Grade 250 steel [Bennetts et al., 1981]. 

It is apparent from Figure 4.2 that models of loss in strength as a function of 

temperature vary widely. This is due to in part to variation in the chemical 

composition of the individual steels used in the tests, the manner in which the 

steels were processed and whether the steel is strain aged. More importantly 

much of the variation in the strength models is attributable to differences in 

choice of strain at first yield, load rate and rate of increase of temperature. 

119 



Figure 4.2 Various proposed yield stress reduction models. 

Models of variation in yield strength of steel as a function of temperature 

were derived directly from tensile tests or indirectly from established 

stress/strain relationships as follows: 

a) steady state tests conducted at very high rate of loading or high rate of 

strain - creep strain not accounted for. 

b) steady state tests conducted at very low rate of loading or low rate of strain 

- creep strain accounted for implicitly. 

c) derived from constitutive models based on steady state data - creep strain 

accounted for explicitly. 

d) transient heating tests - creep strain accounted for implicitly. 

T w o issues arise from a consideration of the source of the data used in the 

model: 
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a) has the effect of creep been accounted for. 

b) the value of reference strain at which the strength of the steel was assessed. 

Influence of Creep and Heating Rate on Time and Temperature of Steel 

at Collapse 

Creep is only present at significant levels in steels under high temperature 

conditions, that is, at temperatures in excess of 400 °C [Malhotra, 1982]. The 

occurrence of creep means that the deformation and collapse behaviour of a 

steel structure depends on the load history and the shape of the fire 

temperature time curve to which it is subjected. The more highly loaded the 

member and the longer the high temperature exposure, the greater is the creep 

effect. This is demonstrated in Table 4.1 which shows the variation in steel 

temperature from a series of transient tests at a reference strain of 1 % for a 

range of heating rates [Skinner, 1970]. 

STEEL TEMPERATURE C 
STRESS 
LEVEL 
0.33Fsy 

0.66Fsy 

H E A T I N G R A T E ( °C/min) 

1.67 

632 
542 

4.2 
645 
-

10 
671 
574 

30.0 

696 
610 

Table 4.1 - Variation in steel temperature at 1% strain for a range of heating rates and 

two levels of stress, ( AS 1205 Grade 250 steel). 

It can be deduced from Table 4.1 that when steel is heated slowly, creep 

strain has a loner duration over which to develop, therefore the higher the rate 
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of increase in the strain rate. This results in the strain in the steel being larger 

at a given temperature than if creep were ignored. 

The extent to which the maximum temperature at which the 1% plastic strain 

is attained is dependent on the heating rate, has been estimated by Kirby 

[1988]. By combining the results of British tests with that of others [Skinner, 

1972], [Copier, 1972] and [Ruge, 1980], he shows that relative to the 10 

°C/min heating rate an increase of 10 °C/min increases the temperature at 

which 1% strain is achieved by 15 °C. The European Code for structural 

Steelwork, EC3 [1990] strength reduction model represents the lower limit of 

heating rates (2.67 °C/min) investigated during testing. A model based on the 

higher heating rate investigated (32 °C/min) would be less conservative, 

resulting in a shift along the temperature axis of approximately 40 °C. 

It has been demonstrated [Magnusson et al., 1976] that the increase in the 

maximum steel temperature at the time of first yield for the extreme case of a 

lightly insulated steel beam compared with the case of a heavily insulated steel 

beam is 20 °C . The heating rate of steel subject to the standard fire varies 

between 50°C/min (non and lightly insulated members) and 5°C/min (heavily 

insulated members) [Twilt, 1988]. Therefore considering that heavily insulated 

steel is most likely to suffer most creep, the calculated critical temperature of 

steel at collapse is likely to be overestimated by 20 °C if the reduction in Fy 

due to creep is ignored. The time of failure would be overestimated by four 

minutes. This data suggests that creep does not have a substantial effect on 

time to failure. Thus it can be concluded that the deformation behaviour and 

hence the collapse temperature of beams is not significantly influenced by the 
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rate of temperature rise providing that the above mentioned rates of heating ar< 

not exceeded and that the maximum steel temperature does not exceed 600°C 

[Witteveen, et al., 1977] and [Knight, 1975]. Table 5.1 shows however that 

for the case of a lightly loaded steel beam the temperature exceeds 600 °C for 

all heating rates. 

The influence of creep on the deformation of a fire exposed steel beam has 

been reported by Anderberg [1988]. W h e n the effect of creep is ignored the 

time to collapse is increased by 19 %, from 17.2 - 20.4 minutes and the 

temperature at failure is increased from 700 °C to 760 °C. 

The heating rates of steel in real mixed fuel fires can be as high as 80 °C/min 

[Lathem, 1987]. Thus in real fires creep is even less of an issue. The short 

duration of real fires does not give creep strains time to develop. 

It can be concluded that strength reduction models in which the influence of 

creep is accounted for will predict a more rapid loss of strength for 

temperatures greater than 400 °C than those models in which creep is ignored. 

It can also be concluded that some of the variation in the published strength 

reduction models is likely to be attributable to the use of data derived from 

tests performed at different rates of heating and whether, if creep effects have 

been included, they have been included implicitly or explicitly. The use of 

transient heating tests performed at low rates of heating as a source of data for 

strength reduction models are a conservative alternative to steady state tests, 

which do not include creep effects, and transient heating tests that use high 

rates of heating, both of which raise the critical temperature. 

The effect of creep on the time to failure of a steel beam exposed to real fire 

has been shown to be a second order consideration. Given the desired 
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accuracy of the project as declared in subsection ( 1.1.2), the inclusion of a 

model that takes into account the effect of creep is not warranted. 

Effective Yield Stress of Steel at Elevated Temperature 

It was noted previously (Subsection 4.1.2) that at elevated temperature the 

onset of yield occurs over a band of strain value rather than sharply defined at a 

single value of strain as occurs in ambient conditions. In order to apply 

elementary plastic theory it is necessary to define an arbitrary point on the 

stress-strain curve which marks the transition from elastic to plastic behaviour 

of the steel. This is done by specifying a plastic strain at which the effective 

yield stress is determined. The choice of strain has a significant effect on the 

shape of the yield strength reduction curve. A consistent and widely used 

method of defining the yield point of steel, [Lay, 1982], both at ambient and 

elevated temperature, is to adopt the concept of proof stress, more specifically 

an arbitrary plastic strain of 0.2%. 

Z50 

200 
effective yield 
stress levels 

500 *C 

effective yield 
strain for 
t 0 0 « » « 6 Q 0 *C 

D . 0 5 

strain e in % 

0.6 

Figure 4.3: Stress-strain curves at elevated temperature for Fe 360 steel [ECCS, 

1983]. 
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In the E C C S [1983] recommendations the "effective yield stress" is arbitrarily 

defined as the total strain beyond which, the stress is constant with strain. This 

is demonstrated in Figure 4.3 for Fe 360 steel. The effective yield stress is 

reached at a total strain of 0.16% at ambient temperatures, increasing to 0.5% 

total strain for steel temperatures > 400 °C. The European Code for structural 

Steelwork, [EC3, 1990] has adopted a value equivalent to 2% total strain at 

which to determine the effective yield stress. 

The strain at which the effective yield stress of the steel is derived has a 

significant effect on the shape of the strength reduction curve. This is 

demonstrated in Figure 4.4 in which the ECCS [1983] recommendation is 

compared with four strength reduction models derived from the stress-strain 

relationships of steel given in EC3 [1990]. The four models correspond to the 

effective yield stress ratio as a function of temperature for strains of 0.2, 0.5, 

1.0 and 2.0 %. 

0 H U . l-H 1 1 1 1 1 

0 100 200 300 400 500 600 700 800 

STEEL TEMPERATURE (°C) 

Figure 4.4: Reduction in effective yield stress, expressed as a ratio of yield stress at 

ambient conditions, for a range of strains at first yield from E C C S [1983] and EC3 

[1990]. 
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Between 500 - 600 °C, the temperature at which beams generally fail in fire, 

the predicted loss of effective stress determined using 0.2% strain, results in a 

24 % reduction in the load carrying capacity of the beam than if the 2.0% strain 

was used. At 400 °C, the temperature at which a heavily loaded beam in fire 

may be expected to fail, the difference is approximately 3 8 % . 

o -• 1 1 1 1 1 1 1 1 

0 100 200 300 400 500 600 700 800 

TEMPERATURE ( °C) 

Figure 4.5 - Reduction in effective yield stress, expressed as a ratio of yield stress at 

ambient conditions, for a range of total strains from British Standards B S 476 

[1972]and B S 5950 [1990], (combined Grades 43 and 50 steel sections). 

A comparison of strength reduction models from the superseded British 

Standard B S 476 [1972] and the current code of practice for fire resistant 

design B S 5950 [1990] show a similar range of values for Fy, refer Figure 4.5. 

It has been accepted practice to use the 0.2% proof strain to define the yield 

stress. The reason for this is essentially historical in that the relatively simple 

steady state tensile test requires a reference strain at which to terminate the test 

[Skinner, 1970]. A value of 0.2% strain had traditionally been used in tension 

tests at ambient temperature and had resulted in predictions of failure in 
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bending of steel beams that were in accordance with test results. Tension tests 

at elevated temperature accordingly adopted this value. Adoption of this value 

of strain to define the effective yield stress has been justified in that it is a 

conservative approach which will ensure that at any temperature the 

corresponding yield stress will be lower than that which would be obtained if 

the yield stress was associated with a higher proof stress [Bennetts et al. 

1981]. 

A number of studies on the elevated tensile properties of Australian [Skinner, 

1970], German [Rubert and Schaumann, 1986] and British [Kirby, 1988] steels 

demonstrate there is a dramatic change in strain rate during transient tensile 

tests. Figure 4.6 shows that, irrespective of the applied load, once a total strain 

of 1% is reached, a small increase in temperature results in large rates of strain 

due to the rapid emergence of creep strain. During standard fire resistance 

tests of beams, strains of approximately 2-3% have been recorded at the 

centre of the tensile flange when the deflection attains the limiting value (span / 

30) [Kirby, 1988]. It is apparent that when the strain in the tensile flange of a 

steel beam reaches 1% imminent failure could be expected with a relatively 

small further rise in temperature. It is because of this close correlation between 

structural instability and strain that in the two most recent codes of practice for 

fire resistant design, BS 5950, Part 8 [1990] and Eurocode No 3 [1990], 

values of strain of 1.5% and 2% respectively have been adopted at which to 

determine strength reduction factors for non-composite members in bending. 
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Figure 4.6: Tensile curves for a Grade 43 A steel derived from transient tests [Kirby, 

1988] 

The practical implications of differences in material models has been 

investigated by Twilt [1988], in which the a comparison is made between 

models based on E C C S [1983] and data used in the draft British Standard 

5950 [1985]. The critical steel temperature (the temperature at which the 

applied stress equals the temperature affected member capacity) calculated 

using a mechanical model for British steel in which the stress at the beginning 

of yield of steel is determined at 0.5% strain, is 55 °C lower than if the model 

using the 1 % strain was used. Assuming heating rates of steel of 5 - 50 °C/min 

there is a maximum increase of 11 minutes in the fire resistance period by 

adopting the model based on the 1 % strain. According to Twilt this would 

result in an approximate increase in thickness of insulation by 2 0 % . A 

comparison between E C C S and British steel based on 0.5 % strain differed by 

as much as 100 °C. The seemingly significant difference in critical temperature 

however translated to an increase in the fire resistance time of five minutes. 

The author concluded that despite large differences in the value of strain at 



which to determine the effective yield stress, for practical situations, these 

differences do not lead to significant differences in time of failure. Therefore 

design should be based on time of failure which is insensitive to stress ratio, 

rather than ensuring steel temperatures are less than some critical value which 

is very sensitive to the variety of Fy values recommended in the literature. 

It has been demonstrated that models of stress ratio based on higher proof 

stress differ significantly in shape in comparison with curves based on the 0.2% 

proof stress. Stress ratio models in which higher proof strains are used result 

in higher critical steel temperatures and as a consequence, increase the fire 

resistance period of the steel, depending on the rate of heating, by a few 

minutes. The use of higher proof stress is justified in that it better predicts 

structural instability while a lower proof stress would prescribe a lower yield 

stress and underestimate maximum structural resistance. 

Much of the information available on the change in strength of steel when 

exposed to high temperatures relates to steel subject to steady state heating 

conditions. It is argued that data based on tests which simulate the thermal 

exposure to which members are exposed in real fire should be used to derive 

models of loss of strength with increase in temperature. The two most recent 

codes of practice for fire resistant design, BS 5959, Part 8 [1990] and 

Eurocode No 3 [1990] have adopted models based on transient heating 

conditions in which creep effects are accounted for and realistic strains are 

used to define effective stress. Such models are better suited for realistic 

predictions of likelihood of failure and time to failure of fire exposed steel 

beams. These models further reduce the need to consider creep and facilitate 

simple and accurate design. 
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4.5 Strength Reduction Model for Australian Steel 

4.5.1 Current Model 

A strength reduction model for Australian steel is based on data obtained 

from steady state temperature tension tests conducted by Australian Iron and 

Steel (AIS) and by Melbourne Research Laboratories (MRL) [Bennets et 

al.,1981] on samples taken from Grade 250 plate and on tests on British Grade 

43 steel [BSC, 1980]. The British Grade 43 steel is virtually identical in 

composition and method of manufacture to that of the Australian Grade 250 

steel. 

A linear regression was conducted on the combined British Grade 43 and 

Australian Grade 250 data. Only data points falling within the range 300 - 700 

°C were used as this is the range over which the variation of the stress ratio 

with temperature is nearly linear. The recommended stress ratio - temperature 

relationship, based on the lower 95% confidence limit to the least squares fit, is 

given by the following: 

_?___. = !______ 0oC<T5<300°C 
FY20 2000 

Fm (895 -Ts) 
(4.2) 

FY20 700 
3 0 0 ° C < 7 s < 8 9 5 ° C 

where 
Ts = steel temperature C 

Fm = yield strength at temperature 7* 

The Australian model in Equation 4.2 is compared with alternative strength 

reduction curves in Figure 4.2. 

The Australian strength reduction curve given in the Australian Steel Code AS 

4100 [1990] is given as: 
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Fm = 1.0 
FY20 

Fm (905 -Ts) 
FY20 690 

0oC<T.<215°C 

215°C<7s<905°C 
(4.3) 

This is a slightly simpler version of Equation (4.2 ) and corresponds to the 

mean value linear regression of the same data on which Equation (4.2) was 

based. Equation (4.3) is the adopted expression for use in calculating the 

period of structural adequacy (PSA) for those structural members required to 

satisfy the requirements of the Building Code of Australia. Both model are 

shown in Figure 4.7. 
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Figure 4.7 - Comparison between strength reduction models based on Equations (4.2) 

and (4.3) and that given in BS 5950: Part 8. 

The strain rates used in the Australian tests were very low, varying from 2 to 

17 millistrain per minute. As a consequence some allowance for creep is 

accounted for implicitly. This allowance is considered adequate, as the period 

for which the steel is maintained at temperatures in excess of 400 °C, during 
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exposure to a 4 hour standard fire-resistance test, is not sufficient to justify an 

explicit allowance for creep [Proe, 1989]. The strength reduction model is 

based on the 0.2% proof stress. It has been demonstrated in Sub-section (4.4.2 

) that use of the 0.2% proof strain is very conservative. Since the Australian 

model is based, in part, on British test data it is suggested that a model for 

Australian steel based on transient heating and higher proof strain would be 

similar to the model given in BS 5950, Part 8 for Grade 43A steel. A 

comparison between the Australian models and the British model is shown in 

Figure 4.7. 

Alternative Strength Reduction Model 

The mechanical properties of steel at elevated temperature may vary due to 

differences in chemical composition or manufacturing process. Because of this 

individual steels may require a separate strength reduction model. In Eurocode 

EC3: Part 10 a [1990] alternative models are given for Fe 360 and Fe 510 

steels whereas in BS 5950: Part 8 [1990] for grades A43 and A50 steels a 

single strength reduction model is given. 

The Australian Standard AS 4110 is applicable to steel members for which 

the value of yield stress used in design does not exceed 450 MPa. It is implicit 

that the model of variation of yield stress with temperature given in Section 12 

of AS 4100 , Equation (4.3), which is based on Grade 250 and A43 steel, is 

considered suitable for grades of steel other than Grade 250. 

The results from seventy one steady state tensile tests of samples of Grade 

350 plate and samples taken from the web and flanges of Grade 350 universal 

section have been combined with the Grade 250 and A43 data and is shown in 

132 



Figure 4.8 A statistical analysis of the Grade 250 and 350 data demonstrated 

no significant difference between the two sets of data. The Grade 350 data 

provides additional data in the temperature range 200 - 500 °C. 
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Figure: 4.8 - Strength reduction models. Curve A A - AS 4100. B B - derived 

polynomial based on test data of Grade 250 and 350 steel. 

An alternative strength reduction model has been derived using the combined 

data and is shown as curve BB in Figure 4.8 and given by the following 

equation: 

800 

Fm 
FY20 

1 — 
71 > 

r,<200 
1487.6 J 

A + BTs + CTs2 Log(Ts) + D-Ts25 + ET3 200 < T < 600 (4.4) 

'(600- T)^ 
0.433-

473 
600 > T < 800 

where T, = 

A 

B 

C 

: Steel temperature 

2.9907 

-0.0238 

4.7523E5 
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D = -1.5891E"5 

E = 1.964E"7 

The model is more complex than that given by Equations (4.2) and (4.3) but 

better represents the available test data. The model is more conservative than 

the model used in A S 4100 for temperatures up to 400 °C, in that it predicts a 

more rapid loss of strength with increase in temperature. For temperatures 

between 400 and 600 °C, the temperature range during which most failures 

would occur, Equation (4.4) predicts a higher yield strength than Equation 

(4.3). 

An alternative strength reduction model was derived for the following 

reasons: 

a) an estimate of the modelling error associated with the strength reduction 

model is required for inclusion as a random variable in the reliability 

submodel, refer Subsection (8.1.3). A n estimate of the modelling error 

based on Equations (4.2) or (4.3) was not considered to be 

representative. Both Equation are based on linear regression and 

represents the test data reasonably well for the temperature range 400 -

600 °C. For temperatures outside this range Equations (4.2) and (4.3) 

are less effective. In order to reduce the estimate of modelling error 

Equation (4.4) has been used since the line that best fits the data 

automatically minimises the standard error of fit. 
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b) the model is more general in its application than that given in A S 4100 in 

that it is based on both Grade 250 and Grade 350 steel. 

c) the temperature range over which the model can be used with 

confidence, has been extended down to 200 °C. This is particularly 

important in terms of the simulation of failure of a steel beam in fire. It is 

evident that there is a finite probability of failure of a steel beam at 

ambient temperature due to variation in material properties and loading 

conditions. The model in AS 4100 does not permit failure due to 

temperature effects until the steel reaches 215 °C. The probability of 

failure will therefore remain constant until steel is heated beyond this 

temperature. Results from both steady state and transient heating tensile 

tests [Kirby, 1988] show that a reduction in the proof stress of steel 

occurs at temperatures between ambient and 215 °C. It follows that 

failure can occur at any temperature, and that the probability of failure 

will increase with increasing temperature. 

In order to account for the possibility of failure at low temperatures a 

materials model must apply to the temperature range likely to be experienced 

by a steel beam in fire and must be based, as far as possible, on all relevant test 

data. 
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Alternative Strength Reduction Model -Three Sided Exposure 

Equation (4.4) assumes a uniform temperature gradient across the steel 

section. In Subsection (3.4.1.3) it was noted that steel beams supporting a 

concrete slab on their compression flange exhibit a temperature gradient over 

the depth of the beam which alters the strength of each fibre and hence its 

contribution to the moment capacity of the section. 

In this analysis the temperature gradient in the steel beam subjected to 

exposure on three sides is assumed to be linear from a maximum at the bottom 

(tensile) flange to a niinimum at the top (compressive) flange supporting the 

concrete slab, refer Figure (3.5). Based on the method described in Sub

section (5.2.3) the stress ratio of Australian universal beams were calculated 

using the strength reduction model given by Equation (4.4) for a range of linear 

temperature gradients. Figure 4.9 shows the influence of a range of linear 

temperature distributions, as expressed by the ratio of the top flange 

temperature to bottom flange temperature, Ttop/Tbottom, on the stress ratio for 

a 250UB37. 
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Figure 4.9 - Influence of linear temperature gradient on moment capacity. Numbers in 

legend indicate ratio of the temperature of the compression flange/ temperature of the 

tensile flange i.e. Ttop/Tbottom = 0.6 - Author. 

It can be seen from Figure 4.9 that, in comparison with a uniformly heated 

beam, for a given bottom flange temperature, as the temperature gradient 

increases, the stress ratio increases and therefore the strength of the section 

The strength of a steel beam with a temperature gradient can be calculated by 

either: 

a) using equation (4.3) modified by a strength reduction factor determined 

for a particular temperature gradient refer Subsection (5.2.3). 

b) use a modified strength reduction model. 

In this analysis option a) is suitable for uninsulated steel beams with a 

temperature gradient for which the proposed heat transfer model, refer 
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Subsection (3.5.1), predicts the maximum (lower flange) temperature. In the 

proposed heat transfer model developed in Subsection (3.6.2) for insulated 

steel beams the average temperature was used as the characteristic 

temperature for the steel in the exercise of calibration of the heat transfer 

model. As a consequence an alternative strength reduction model has been 

developed which for a given average steel temperature and thermal gradient, 

calculates the strength of the section. A general strength reduction model is 

proposed for insulated steel beams with a thermal gradient, expressed as a 

function of the maximum steel temperature, as follows: 

Tm , 
— = Exp[Al+Bl-Ts + Cl-Ts2+DlTs3+ El-Ts4) (4.5) 

Equation (4.5) is assumed to have the same statistical properties as Equation 

(4.4). 

Comparison between Strength Reduction Model and Test Results 

In Figure 4.11 the AISC/AS4100 strength reduction model for the 

temperature range 450 - 700 °C is shown along with the proposed model, 

Equation 4.4, and the British model given in BS 5950. Results of stress ratio 

and temperature at failure from fire tests, [BHP, 1983], of beams exposed to 

fire on four sides are also plotted. As expected there is not a large difference 

between the AISC/AS4100 model and the proposed model since over this 
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temperature range both models are based essentially an the same data. Due to 

the small number of test results it is not possible to draw definite conclusions 

however in general the current AISC/AS4100 model and the proposed model 

correspond with the lower bound of the test data and are therefore 

conservative. The British model, which is based on transient axial test data, 

appears to represent the available data well. These observations support the 

argument that the strength reduction models should be based on transient test 

data in which the effective stress is determined at strains o 1 or 2% rather than 

at the nominal 0.2% proof stress. 

The numbers adjacent to the data points in Figure 4.11 represent the fire 

duration time. It is expected that beams exposed to temperatures greater than 

400 °C for a long period would show some evidence of creep and as such 

would represent the lower bound of the data plot. This is not evident from the 

small sample of test results available. 

u TEST DATA 

EQIT 4.4 

BS5950 

" " " " AS4100/AISC 
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TEMPERATURE (°C) 

Figure 4.11: Comparison between strength reduction models and test data (four sided 

exposure) - Author. 
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The purpose in modelling the loss of strength at elevated temperature is to 

predict the duration of exposure of fire exposed beams before collapse occurs. 

The importance of variation in strength reduction models and the degree to 

which the models represent the available data is best assessed by the influence 

of the models on he time to failure. In Table 4.3 a comparison between 

measured time to failure of beams exposed to the standard fire and the 

calculated time to failure using the current AISC/AS4100 model and the 

proposed model, Equations 4.4 and 4.5, is given. The measured temperature 

at failure was used in the calculation. Both models are on average conservative 

COMPARISON BETWEENMEASURED AND CALCULATED 
TIME TO FAILURE 

USING MATERIALS MODEL 
MRL TEST 

NO. 
SECTION EXPERIMENTAL 

(Minutes) 
AS 4100 
MODEL 

MODEL 
ERROR 
% 

STRENGTH 
REDUCTION 
MODEL 
(Minutes) 

MODEL 
ERROR 

% 

4 - SIDED EXPOSURE 

BFT108 
BFT124 
BFT110 
BFT 93 
BFT106 
BFT 122 
BFT 99 
BFT 114 
BFT 142 
BFT 143 

250 UB 37 
250 UB 37 
250 UB 37 
250 UB 37 
100 UC 15 
100 UC 15 
100 UC 15 

200 UBP 122 
127 X 4.9 SHS 
203 x 9.5 SHS 

192 
102 
139 
175 
150 
113 
87 
143 
151 
119 

198 
97 
130 
158 
143 
100 
74 
123 
183 
131 

+ 3.1 

-4.9 

-6.9 

-9.7 

-4.7 

-11.5 

-14.9 

-13.9 

+ 21.2 

+ 10.1 

196 
97 
137 
166 
149 
106 
77 
131 
173 
129 

+ 2.1 
-4.9 
-1.4 
-5.7 
-0.7 
-6.2 

-11.5 

-8.4 

+ 14.5 

+ 8.4 

3 - SIDED EXPOSURE 

BFT 168 
BFT 169 
BFT 170 
BFT 172 
BFT 173 

310 UB 40 
100 UC 15 
100 UC 15 

200 UBP 122 
200 UBP 122 

201 
124 
246 
241 
340 

176 
131 
238 
223 
336 

j AVE' ERROR 

-12.4 
+ 5.6 

-3.3 

-7.5 

-1.2 

8.7 

188 
125 
240 
234 
346 

-6.4 

+ 0.8 

-2.4 

-2.9 

+ 1.8 

5.2 

Table 4.3: Comparison between measured and calculated time to failure using 

A1SC/AS4100 and proposed strength reduction model, Equation 4.4 and 4.5. [Test 

Data - B H P Melbourne Research Laboratories (MRL), 1983]. 
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in that they both predict earlier time to failure. The average error using the 

AISC/AS4100 model is -6.3% and -3.5% for the proposed model. These 

values are a measure of the modelling error associated with each strength 

reduction model. 

Results from two tests in which Square Hollow Section (SHS) were used, test 

numbers B F T 142 and 143, compare poorly with calculated values. The steel 

used for these sections is 400 Mpa. Steel of this grade was not used in the 

formulation of either of the models and as such the strength reduction models 

may be considered to be inappropriate for steel sections of this grade. Since 

results indicate that values of calculated time to failure of S H S are 

unconservative caution should be exercised if steel of this grade is to be used in 

such an analysis. 

The combined modelling error associated with the heat transfer model 

proposed in Chapter 3 and strength reduction models, Equations 4.4 and 4.5 is 

shown in Table 4.5 and Figure 4.11. Based on the section size, thickness of 

insulation and exposure condition (three or four sided) the temperature versus 

time curve has been calculated for each of the test cases. The time of failure is 

obtained when the temperature affected moment capacity of each section equal 

the applied moment. The average combined model error, excluding B F T 142 

and 143, is -3.3% with the largest error being -8.8%. 
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Figure 4.11: Comparison between calculated and experimental time to failure 

Author. 

COMPARISON BETWEEN MEASURED AND CALCULATED 
TIME TO FAILURE 

USING STRENGTH REDUCTIO & HEAT TRANSFER MODELS 

MRL TEST 
NO. 

1 BFT 108 
BFT 124 
BFT 110 
BFT 93 
BFT 106 
BFT 122 
BFT 99 
BFT 114 
BFT 142 
BFT 143 

BFT 168 
BFT 169 
BFT 170 
BFT 172 
BFT 173 

SECTION 

250 UB 37 
250 UB 37 
250 UB 37 
250 UB 37 
100 UC 15 
100 UC 15 
100 UC 15 

200 UBP 122 
127 X 4.9 SHS 
203 x 9.5 SHS 

310 UB 40 
100 UC 15 
100 UC 15 

200 UBP 122 
200 UBP 122 

EXPERIMENTAL 
(Minutes) 

STRENGTH REDUCTION 
AND HEAT TRANSFER 

1 MODEL 
(Minutes) 

4 - SIDED EXPOSURE 

192 
102 
139 
175 
150 
113 
87 
143 
151 
119 

3 - SIDED EXPOSU1 

201 
124 
246 
241 
340 

196 
101 
136 
167 
150 
105 
80 
132 
167 
131 

MODEL 
ERROR 
% 

+ 2.1 
-1.0 
-2.1 
-4.6 
0 

-6.2 

-8.8 

-7.7 

+10.6 

+10.1 

IE 
186 
124 
239 
224 
348 

Average % Error 

-7.4 

0 
-2.8 

-7.1 

+2.3 

-3.3 

Table 4.5: Comparison between measured and calculated time to failure using 

proposed strength reduction model, Equation 4.4 and 4.5 and proposed heat transfer 

models. [Test Data - B H P Melbourne Research Laboratories (MRL), 1983]. 
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Again there is a large error associated with the S H S , the thermal model 

predicting a more rapid increase in the steel temperature than occurred in 

reality. The thermal model developed in Chapter 3 was calibrated using box 

protected universal beams. It is evident that a separate thermal model would 

be required for insulated hollow sections. 

Conclusion 

Much variation exists between available strength reduction models. This 

variation is attributable to inherent differences in the nature of the data on 

which the models are based and the assumptions made in the modelling 

process. It has been demonstrated that rate of heating, creep and the value of 

strain at which effective stress is measured influence the shape of the strength 

reduction curve. 

An alternative mechanical properties submodel has been derived from 

available test data: refer to Equations 4.4 and 4.5. The model allows for loss of 

strength at temperatures below 215 °C and accommodates the increased 

capacity of sections with temperature gradients. The submodel gives a better 

prediction of strength than the current model in AS4100. It is well suited to 

the research in this thesis but is not proposed as an alternative to the model in 

AS4100 because it is not as simple to use in engineering design. 
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CHAPTER FIVE 

STRUCTURAL RESPONSE SUBMODEL 



Introduction 

Modeling structural response involves structural analysis that is the 

application of the principals of equilibrium, compatibility and strength of 

materials in order to determine the strength and deformation of a structure 

under load. The structure under consideration in this thesis is a simply 

supported, axially unrestrained, steel floor beam. 

Modelling must be based on a knowledge of the material behaviour and 

applied loads. For an isolated statically determinate member the forces and 

moments acting on the member are already known. The strength of a steel 

beam in bending should be determined for conditions at collapse when steel 

behaves plastically. Hence plastic analysis only is considered here. 

This chapter shows how basic structural theory for ambient conditions is 

applied to steel at elevated temperature and is adopted for the structural 

response submodel. Strength is assumed to be limited by bending rather than 

shear or other modes of failure. From experience, this is true for most practical 

beams. 
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Statically Determinate Beams 

During a fire temperatures may vary in exposed steel members but during 

deformation plane sections remain. Variations in stiffness along determinate 

members do not affect the distribution of bending moment. Therefore analysis 

for ambient conditions applies to steel beams at elevated temperature. For a 

simply supported beam subject to a point load P (kN), the maximum moment, 

MMAX , is given by: 

«_• *, Tab 

MMOX = Mc = (kNm) (5.1) 

Figure 5.1: Loading arrangement - point load. 

For a simply supported beam carrying a uniformly distributed load, w (kN/m), 

refer Figure 5.2, the moment at x is given by: 

u, = _____?_ (kNm) (52) 
2 2 

where L = span (m) 

Figure 5.2: Loading arrangement - uniformly distributed load. 
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Based on linear elastic analysis the moment due to a combination of point 

and uniformly distributed loads is determined by superposition. 

5.2 Plastic Analysis 

5.2.1 Ambient Temperature. 

The ultimate load capacity or collapse load of a simply supported steel beam 

can be determined in accordance with the principles of plastic analysis [Trahair 

& Bradford; 1988]. Tests show that the distribution of strain stays linear over 

the depth of the section after yield by means of plastic flow in the yielded 

region [Moy, 1985], refer Figure 5.3. The assumption of plane sections 

remaining plane is therefore still valid. 

Figure 5.3: Stress-strain distribution for plastic analysis. 

The moment capacity MP at a plastic hinge is obtained from the product of 

the plastic section modulus, S, and the yield or 0.2% proof stress, FY. The 

calculated maximum moment capacity of a beam is given by: 

MP = FYS (5.3) 

147 



The use of plastic analysis in the design of steel structures at ambient 

temperatures is governed by Section 4.5 of A S 4100 (1990). The analysis is 

limited to hot formed, doubly symmetric I-sections which satisfy the 

requirements specified for a compact section in Clause 5.2.3 A S 4100. 

An idealised moment-curvature relationship assumed in plastic analysis is 

shown in Figure 5.4(a). The actual moment-curvature, shown in Figure 5.4(b), 

for two sections, is asymptotic to the ideal relationship. The degree to which 

the ideal curve matches the actual moment curvature is a measure of the 

accuracy of the model. 

Figure 5.4: (a) - ideal elastic-plastic moment curvature relationship. 

(b) - actual moment curvature relationship for different section shapes. 

In the plastic analysis of beams elastic strains are ignored as well as the effect 

of strain hardening which causes the moment-curvature relationship to rise 

above the fully plastic limit. The analysis further assumes that the effect of high 

shear forces which cause small reductions in M P - due to reductions in the 

plastic bending capacity of the web - can be ignored. The consequence of 

these assumptions in the theoretical behaviour of a simply supported beam 
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supporting a point load is to underestimate the moment capacity of the beam at 

collapse by up to 24% [Yura et al.; 1978]. In the case of a simply supported 

beam supporting a uniform load the assumptions lead to an underestimation of 

the moment capacity of between 2 - 8% [Yura et al.; 1978] and 1.4% 

[Fukumoto and Kubo; 1977]. 

5.22 Elevated Temperature - Four sided Exposure 

The collapse load of a simply supported steel beam at elevated temperatures 

can be determined using plastic analysis if the relevant value of yield stress is 

used for each fibre according to the temperature at that point [Proe et al., 

1989]. For the case of a steel beam with a uniform temperature throughout, 

refer Figure 5.5, 

^V(20) Fy{T) 

Strain Section Temperature 
Distribution 

Figure 5.5: Stress distribution four sided exposure. 

Stress 
Distribution 

the temperature affected strength is the same throughout the section therefore 

the moment capacity at temperature T , MpT, is given by: 

MpT = SF, yT 
(5.4) 
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where FyT = yield stress of steel at temperature T 

Elevated Temperature - Three Sided Exposure 

In subsection 3.4.1.3 it was demonstrated that the temperature gradient 

through the depth of the steel section was a function of length of fire exposure, 

insulation thickness and beam depth. The difference in strength between 

uniformly heated beams and beams with a temperature gradient is accounted 

for in the European Recommendations for the Fire Safety of Steel Structures 

[1983] by means of a calibration factor. The load ratio, the ratio of the applied 

load in fire to the member load capacity at room temperature, calculated 

assuming a uniform temperature distribution is modified by a load multiplier 

which increases the capacity of the beam under fire conditions as the load ratio 

decreases. The multiplier was determined assuming a 100 °C difference 

between the bottom and top flange [Pettersson & Witteveen; 1980]. This 

factor also accommodates the use of a nominal value of yield stress in the 

ECCS recommendations. The dependence of the multiplier on load ratio is 

reasonable - a lightly loaded beam will fail at a higher temperature and 

therefore be expected to develop a greater temperature gradient - however no 

account is taken of the dependence of load capacity with variation in 

temperature gradient. 



Proe [1989] has demonstrated that for simply supported composite steel 

beams in fire the strength of the beam, calculated from the room-temperature 

capacity and a reduction steel yield stress based on the effective uniform 

temperature, give good results. The effective uniform temperature, Te, is the 

weighted average of the bottom flange, web and top flange temperature 

7] Tw and Tt defined as: 

Te = (27;+7;+7;)/4 (5.6) 

The structural response submodel for three sided exposure is developed from 

modelling four sided exposure. Since the yield strength of each element of 

steel, and hence its contribution to the moment capacity of the section, depends 

both its temperature and its relative position in the section, refer Figure 5.6, 

Equation (4.4) is no longer directly applicable. The strength of a section has 

been calculated using a discrete element method as described by Proe et al. 

[1990], in which the beam depth is divided into 50 elemental fibres. For a 

given temperature distribution the temperature at the mid-height of each fibre is 

determined by interpolation. For this analysis the yield stress of each fibre has 

been obtained from the strength reduction model, Equation (4.4). The neutral 

axis is detennined by balancing compression and tensile forces and hence the 

moment capacity of the section for the given temperature regime determined. 

The strength reduction model for three sided exposure, Equation (4.5) given in 

subsection (4.5.3), was derived in this way. 



Fyfr) 

Section Temperature 

Distribution 

py{n) 
Stress 

Distribution 

Figure 5.6: Stress distribution, three-sided exposure. 

An analysis of all Australian universal beam sections [Proe, ], reveals that 

a similar fraction of their ambient temperature moment capacity, under any 

given temperature distribution, is maintained, refer Figure 5.7. 
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Figure 5.7: Moment capacity ratio as a function of bottom flange temperature (TDtnL) 

and linear temperature gradient 1 - Ttop/Tbottom for Australian sections - Author . 

Figure 5.7 shows that, for a bottom flange temperature of 600 °C, there is a 

2 0 % relative increase in the moment capacity of the section as the ratio 
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TtoP/ decreases from 0.8 to 0.4. There are significant gains in strength and 
•'Al

as a consequence in the fire duration of beams supporting concrete slabs 

compared with beams exposed to fire on all sides. 

Flexural Capacity 

In the determination of flexural capacity the following assumptions are made 

in the submodel for structural response: 

a) the temperature distribution along the member is uniform. 

b) axial forces due to expansion of the member are not generated. 

c) creep is of little significance. 

Temperature variation along a beam can vary by many hundreds of degrees 

[Pettersson and Witteveen, 1980], depending on the location of the beam 

relative to the fire, duration of the fire and protection afforded the beam. The 

formation of a plastic hinge is assumed to occur at the location of maximum 

moment. This will not necessarily be the case if the temperature of the beam 

varies. The structural analysis is simplified if the location of maximum 

temperature matches the location of maximum moment. This assumption 

corresponds with that relating to the fire severity model in which it is assumed 

that the fire compartment is uniformly heated. 



It is also assumed that if a member is designed for ambient temperatures in 

accordance with Section 4.5 of AS4100 [1990] and that the strength of the 

member in bending is adequate under fire conditions, then the member is 

adequate in regards alternative modes of failure such as shear and connector 

capacity failure in fire conditions. Little data is available to substantiate this 

assumption [Kruppa, 1979]. In the case of a beam supporting a concrete slab 

however, the degree of restrain afforded by the slab will reduce the possibility 

of the top flange buckling or of flexural torsional buckling. Despite its 

acceptance as an appropriate method of analysis of structural elements at 

elevated temperature it should be used with some caution as the stress-strain 

behaviour of structural steel at elevated temperature is essentially different 

from that encountered at normal temperatures [Rubert and Schaumann, 1986]. 

5.3.1 Comparison between Measured and Calculated Moment Capacity for 

Four Sided Exposure 

Error in the prediction of the moment capacity of a beam at elevated 

temperature is attributable to assumptions associated plastic theory and to 

inaccuracies in the materials model used to predict the change in yield strength 

with temperature. It is not possible here to separate these two effects. In 

Tables 5.1 and 5.2 a comparison between the measured and calculated moment 

capacity of steel beams with a uniform temperature distribution is given. The 

material properties models used in the calculations are the recommended model 
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for Australian steel given in Section 12 of A S 4100 (1990), refer Subsection 

(4.5.1), and Equation (4.4), refer Subsection (4.5.2). 

Moment Capacity 

Comparison between Experimental and Structural Response Submodel Results 

MRL Test 
No. 

Section Experimental 
(kNm) 

Structural Res. 
Submodel (kNm) 

Model Error 
% 

4 - Sided 
Exposure 

BFT 108 
BFT 124 
BFT 110 
BFT 93 
BFT 106 
BFT 122 
BFT 99 

250 UB 37 
250 UB 37 
250 UB 37 
250 UB 37 
100 UC 15 
100 UC 15 
100 UC 15 

15.7 

15.7 

79.5 

81.8 

13.0 

13.4 

10.94 

16.6 

14.3 

71.2 

68.2 

11.8 

11.1 

11.5 

+5.7 

-8.9 

-10.4 

-16.6 

-8.9 

-17.4 

+5.4 

Table 5.1: Comparison between calculated moment capacity using AS 4100 model 

and measured capacity at collapse. Test data derived from B H P M R L Reports (1983). 

The data in Table 5.1 relates to simply supported beams supporting a centrally 

located point load. In the experiment beams were deemed to have failed when 

the maximum deflection exceeded span/30. The critical deflection corresponds 

with the formation of a plastic hinge and therefore structural collapse. 

The model underestimates the moment capacity by as much as 17.4% and on 

average-7.3%. It appears that in comparison with the results of beams at 

ambient temperature, in which the moment capacity at collapse was 

underestimated by as much as 24% [Yura, et al., 1978], the errors associated 

with the two models may be cancelling one another. 
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Moment Capacity 

Comparison between Experimental and Structural Response Submodel Results 

MRL Test 
No. 

Section Experimental 
(kNm) 

Structural Res. 
Submodel (kNm) 

Model Error 
% 

4 - Sided 
Exposure 

BFT 108 
BFT 124 
BFT 110 
BFT 93 
BFT 106 
BFT 122 
BFT 99 

250 UB 37 
250 UB 37 
250 UB 37 
250 UB 37 
100 UC 15 
100 UC 15 
100 UC 15 

15.7 
15.7 
79.5 
81.8 
13.0 
13.4 
10.94 

19.4 
16.7 
83.2 
78.56 
13.6 
12.65 
11.4 

+23.5 
+6.4 
+4.8 
-3.9 
+4.6 
-5.6 
+4.2 

Table 5.1: Comparison between calculated moment capacity using Equation (4.4) 

model and measured capacity at collapse. Test data derived from B H P M R L Reports 

(1983). 

The model based on Equation (4.4), overestimates the moment capacity at 

failure in one case (BFT 108) by 23.5%. The average error is 4.86% and 

1.75% if the anomalous result (BFT 108) ignored. This is a significant 

improvement on the recommended model given in A S 4100 and shows that the 

use of plastic analysis and the strength reduction model, Equation (4.4), is 

sufficiently accurate for use in the simulation model to predict the probability 

of failure of steel beams in real fire. 

Conclusion 

The ultimate moment capacity of simply supported steel beams in fire can be 

calculated using plastic analysis in which the yield strength of steel is modified 

for the effects of temperature using the strength reduction model described in 

subsection (4.5.2). The method is equally suited to steel beams supporting a 

concrete slab if account is taken of the increased moment capacity due to the 
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presence of a thermal gradient in the steel. This can be achieved by using 

either the weighted average temperature or calculating the elevated 

temperature moment capacity using discrete element analysis. 

Plastic analysis is particularly suited for use in the probability simulation 

because of its simplicity. Comparison with test results have given a measure of 

the combined error associated with the structural analysis model and the 

strength reduction model. This information is required as input in the 

probability model. 
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CHAPTER SIX 

LOAD SUBMODEL 



Load Model - Code Requirement 

The design of a steel structure for strength limit state in accordance with AS 

4100 [1990] shall account for the action effects arising directly from loads. 

The total load on a floor is the sum of a dead load and an independent live load 

that is the resultant of a sustained live load component and a transient live load 

component. Loads for beams, designed in accordance with strength limit state, 

are factored and combined to produce the most adverse affects [AS 1170.1, 

1989]. The basic combination and load factor appropriate for floor beam 

design is: 

1.25G + 1.5Q (6.1) 

where G = dead load 

Q = live load 

For fire limit state, the design load is obtained from the following combination 

of factored loads: 

1.1G + YCQ (6.2) 

where y/cQ = live load combination factor for the 

strength limit state 
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The reason for the lower load factor in the fire limit state is that fire is an 

extreme event. Rational design considers similar probabilities for each limit 

state. The probability of fire and lower loads is the same as the probability of 

no fire and extreme load. The dead load and live load specified above are 

nominal design dead load, Gn, and live load Qn determined according to AS 

1170.1 [1989]. 

6.2 Load Model - Probabilistic 

Loads are by nature stochastic and time varying. Models of load effect are 

obtained from load surveys [Choi, 1988 and 1992]. 

6.2.1 Dead Load 

Dead load is effectively sustained at a constant value for the life of the 

structure. Essentially dead load comprises the self-weight of the structure 

which cab be estimated with reasonable accuracy. Dead load affect is 

considered a random variable with a lognormal distribution [Pham, 1984], The 

distribution parameters are as follows: 

G = 1.05G„ a n d C O V ( G ) = 0.1 



where G = the mean value of G 

(COV) = coefficient of variation 

6.22 Live Load 

Live load comprises two components: a sustained load associated with normal 

use, termed arbitrary point in time live load (APT), LA , and an extraordinary 

load, which is a transient load due to unusual events, termed peak live load, 

Lp. Stochastic properties of arbitrary point in time live load and peak live load 

are given in Table 6.1 [Pham, 1984]. 

^mb. (m2) 

10 
23 
50 
100 
250 

Arbitrary Poi 

Live Load (A 

Weibull Disi 

LjLn 

0.21 
0.19 
0.27 
0.25 
0.31 

int-in-Time 

J>T) 

ribution 

C O V ( L A ) 

0.90 
0.79 
0.72 
0.78 
0.67 

Peak Live Load 
Gumbel Distribution 

Lp/Lfi 

0.68 
0.70 
0.74 
0.80 
0.88 

COVz^ 

0.41 
0.26 
0.25 
0.24 
0.19 

Table 6.1: Statistical properties of office floor live loads (ATrib = tributary area) 

Table 6.1 shows that live load is dependent on the tributary area, ATrih, (the 

floor area supported by the beam) and that there is a small increase in live load 

with tributary area. The table also shows that the permanent component 
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The relationship, between arbitrary point in time live load and peak live load, 

which is valid for both ambient and elevated temperature conditions is 

demonstrated in Figure 6.1. 
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Figure 6.1: Statistical distribution of live load (figure based on 50 m ). 

The nominal design live load for fire conditions in offices is 5 0 % greater than 

the average arbitrary point-in-time live load. 



CHAPTER SEVEN 

RELIABILITY MODEL 



7.0 Introduction 

In this chapter a literature review giving a brief overview of types of reliability 

models is presented. In accordance with the aims of this project Subsection 

(1.1.2), a model is selected that predicts probability of failure with time, that is 

simple and has an accuracy commensurate with other submodels adopted in this 

project. 

7.1 Reliability Theory. 

7.1.1 Calculation of Probability of Failure 

The basic structural reliability problem considers a single load and resistance 

effect. The resistance R and the load S are independent random variables, 

characterised by their probability density functions fr and/5. In relation to the 

limit state for strength a structural element will be considered to have failed 

when its resistance R is less than the load effect S. The probability of failure p/ 

of the structural element can be expressed in either of the following ways 

[Melchers, 1987]: 

p/ = P(R<S) (7.1) 

pf={R -S <0) (72) 
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or in general 

P[G(R,S)<0] (7.3) 

where G() is termed the limit state function and the probability of failure is 

identical with the probability of limit state violation. 

In classical reliability analysis, assuming R and S are independent, pr is 

obtained from: 

pf = P(R - S < 0) = f" I""' fr{r)fs{s)drds (7.4) 

For any random variable X, the cumulative distribution function Fx(x) is given 

by: 

F*(x) = P(X) <x = f_J*{y)dy (7.5) 

hence 

pf = P{R - S < 0) = J_" FR(x)fs{x)dx (7.6) 

The convolution integral above presupposes that the distribution functions are 

known. The cumulative distribution function FR(X) is the probability that the 

resistanceR is some value less than x, R<x while fs{x) is the probability 

that the load effect will have a value between x and x + Ax in the limit as 
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Ax -> 0. Combining the two probabilities and summing over the range of x 

provides the total probability of failure. For the special case in which both R 

and S are either normal, lognormal or weibull distributions a closed form of the 

convolution integral exists. For distribution functions other than those noted or 

for combinations of distribution functions approximate numerical methods such 

as the trapezoidal rule are used. For more accurate solutions Simpson's rule or 

a method based on polynomials can be employed. If/? and S are not 

independent or if the reliability problem is formulated using constituent random 

variables rather than R and S then the probability of failure is obtained from the 

general expression: 

pf = P[G{X)<0] = \... \fx{x)dx (7.7) 
G(x)<0 

where fx{x) is the joint probability density function for the n vector X of 

basic variables. Computation of this multiple integral is in general not tractable 

(unless multinomial). Application of numerical integration techniques is time 

consuming and often result in large-round off errors. There are three 

approaches to the solution of the multiple integral as follows: 

a) second moment methods that represent the random variable by its first 

two moments, mean and variance. 

b) advanced second moment methods that transform the original problem 

such that the probability density function for each variable is 

approximated by a normal distribution. 
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c) Monte Carlo methods which determine the probability of failure by 

many repeated numerical trials. 

Second Moment Methods 

In this approach estimates of reliability are calculated using random variables 

represented by their first two moments, mean and variance. This implies a 

normal distribution for the variables being that it is the only continuous 

probability distribution completely described by its first two moments. The 

special case of the two parameter, R and S, reliability problem in which both 

distributions are normally distributed can be solved analytically. The safety 

margin Z = R - S has a mean and variance given by [Melchers, 1987]: 

then 

pz = p*-Hs 

Oz = <TR+ (TS 

p/ = P(R-S<0) = P(Z < 0) = <_>( 
0~/iz 

(7.8) 

/?/ = <_> 
-{v*-ns) 

(sr2 _1_ * 2 V2 

\G S + O R) 

= <_>(-/?) (7.9) 

where <l> is the standard normal distribution function and P is defined as the 

"safety index". 
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If the limit state function is formulated using constituent random variables the 

forgoing is easily applied since the limit state function, expressed as the safety 

margin, Z(X), is given by: 

Z(X)=a0+axXl+a2X2+ a„Xn (7.10) 

and 

n n 

pz = Y,alMi and var(Z) = ^ai
2 var(X) (7.11) 
i=i ;=i 

The safety index (_ is calculated as before. If the limit state function is not 

linear it is necessary to linearise G(X) to obtain the first two moments [k and 

crz. This is achieved using the first terms of the Taylor series expansion about 

the point x*. The expansion is often taken about the means of the basic 

random variables or in more refined second order methods, about the "design 

point". Such approximating methods are known as mean value second moment 

(MVSM) and first order second moment methods (FOSM). 

The calculated value of P using FOSM methods can vary depending on the 

way the problem is formulated. A structural reliability problem in which the 

limit state function is formulated in terms of stress rather than strength can 

result in a difference of two orders of magnitude in the estimate of probability 

of failure [Nowak, AS., 1994]. To obtain a safety index which is invariant, it 

may be necessary to transform the constituent random variables using the 

Hasofer-Lind transformation [1974]. The Hasofer-Lind reliabihty index B, is 

the shortest distance from the origin to the limit state function in reduced 
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variable space and is defined as the cumulative area under the marginal 

distribution curve in the failure region. 

The reliability problem is complicated when the limit state equation is non

linear. The point about which the limit state equation is expanded is not known 

a priori. The solution to the reliability problem involves deterrriining the 

linearisation coordinates in transform space which niinimises the distance p. 

This minimisation problem can be solved using calculus of variations 

[Shinozuka, 1983] . 

For reliability problems involving a large number of constituent random 

variables and /or complex limit state equations alternative techniques are 

available. The recommended method of solution [Melchers,1987] for a non

linear function is the modified gradient projection method. If such a vector 

cannot be found, algorithms are available [Beveridge and Schechter,1970; 

Schittkowski, 1980] which solve a non-linear minimisation problem subject to 

non-linear inequality constraints. Alternatively a more accessible iterative 

method has been formulated which allows for an increasingly efficient selection 

of checking point such that the condition of perpendicularity between the 

tangent hyperplane and the P direction is achieved [Fiessler et al., 1976; 

Ellingwood et al., 1980]. The method rapidly converges to a stable value of p. 

In the case of a highly non-linear limit state function the iterative technique may 

fail to converge. 

169 



The first order methods outlined above are approximate methods to be used 

when the limit state function is non-linear. The second moment technique is 

per se an approximate method in as far as the underlying assumption that the 

basic random variables are normally distributed is a correct one. A further 

problem arises in expressing the failure probability by the safety index. The 

probability of failure is defined as the integral over the transformed region 

assuming a linear limit state function. At a particular checking point P*, the 

actual failure probability will be greater if the function is concave CC to the 

origin and smaller if convex AA to the origin Fig. 7.1 

B5-

Figure 7.1: Inconsistency in safety index due to variation in volume of failure region. 

3 Advanced Second Moment Method 

Often information about the distribution functions describing the constituent 

random variables is available. This additional information can be incorporated 

in the reliability analysis by transforming non-normal distributions into 

equivalent normal distributions. An iterative procedure has been proposed 
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[Leicester, 1985]. In this computational algorithm an initial set of basic 

random variables corresponding to the coordinates of a hypothetical checking 

point are assumed. 

The method is relatively simple to apply and converges quickly to a final 

solution. It permits the use of statistical parameters which fully describe the 

random variable (in as much as the statistical parameters reflects reality). The 

algorithm is an advance on the iterative method [Rackwitz and Fiessler, 1978] 

in which information on the distribution function is limited to the simple R - S 

reliability problem. 

Simulation Method 

The Monte Carlo method is a mathematical technique whereby 

experimentation on real physical system can be simulated numerically. The 

method proceeds by sampling, at random, a set of values, X , for those system 

descriptors (variables Xi) with known probabilistic properties. The random 

sampling of the constituent variables occurs subject to the probability density 

function used to describe each variable. The method is essentially the repeated 

evaluation of a deterministic model in which the value of one or more of the 

system descriptors are randomly changed to reflect uncertainty in the 

magnitude of the variable or in the process itself. If the limit state function 



G(jtl<0is violated the structural element has "failed". If N trials 

(experiments) are conducted, the probability of failure is given by: 

n{G < 0) 
Pf= N (7-12) 

where n(G < 0) is the number of trials for which G < 0. 

The error £ between the actual number of failures and the observed number 

of failures [Melchers 1987] is approximated by: 

iK e = k[(l-p)/NPY
2 (7.13) 

where k corresponds to the equivalent confidence limit under the standard 

normal curve. 

The method requires the calculation of 

When Rt<S, Ft increases by 1 

i — iUur 

Total number of failures = 2^ Ft 
t=Tow 
r, 

(=1 

where 

5>/ 
Pf= /NTr 

^Ft = sum of recorded failures at time 't' 

NTr = number of simulations. 

172 



Tour - duration of simulation. 

Commentary 

The two parameter reliability calculation can be reformulated to handle 

constituent random variables by employing the limit state function. The 

resulting joint probability function however can only be solved by numerical 

integration in which the probability function is evaluated at each integration. 

Alternatively the second moment method in which the limit state function is 

linear, as is the case in this study, is easily evaluated. Calculation of the safety 

index however assumes that constituent random variables are Gausian and by 

the central limit theorem the product of normal distribution functions is 

lognormal [Nowak, 1994]. Mean value second moment (MVSM) method in 

which the original distribution is approximated at the mean can be used for 

non-normal distributions however this method is inaccurate if the tails of the 

cumulative frequency distribution, plotted on normal probability paper, are not 

a straight lines [Nowak, 1994]. There are two techniques which accommodate 

non-normal distributions The first by Rackwitz and Fiessler [1978], transforms 

non-normal resistance and load effect distributions into approximate normal 

distributions. The original distributions however must be able to be accurately 

described by a distribution function. In the second method the basic random 

variables of the limit state function are transformed into unit normal variates in 

transform space before the function is evaluated. The safety index is evaluated 

at the design point. This method is very powerful and can be solved using a 
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simple computational algorithm. The method is currently limited to 

consideration of time independent random variables. 

To apply classical reliability analysis to estimate the probability of failure of a 

steel beam it is necessary to know the distribution function of the resistance (R) 

and load (S) affect, and that R and S are independent random variables. If both 

R and S have either a Gaussian , Lognormal or Weibull distributions an exact 

value can be calculated for the probability of failure. Calculation of safety 

index, using classical reliability, based on any other distribution or combination 

of distributions is an approximation. In this analysis the R and S effect are the 

result of the interaction of twelve constituent random variables, refer Chapter 

8. The central limit theorem states that the sum of random variables, regardless 

of type of distribution, will approach a normal distribution and that the product 

of the same will approach a lognormal distribution. Investigation by the 

Author in which the resultant distributions for R and S were generated by 

means of simulation and using the distribution functions of the constituent 

random variables has shown that the shape of the resultant R and S 

distributions in this analysis do not correspond with standard distribution 

functions. The load affect is determined using a lognormal dead load 

distribution combined with either a gumbel or wiebull (Extreme Value Type 1 

and 3) live load distribution. From examination of the load moment 

distribution, generated using Monte Carlo simulation it is clear the 

distributions conform to neither a normal or lognormal distribution due to the 

biased nature of the random sampling. The beam resistance is the product of a 

random variable (Section modulus) with a normal distribution and a random 
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variable (Fsy) which is the result of a complicated non linear function involving 

six constituent random variables. The mean value and distribution of yield 

strength, due to its dependence on the temperature of the steel, varies with time 

refer Figure 7.2. 

' TIME = 0 

25 45 65 85 105 125 145 165 185 

MOMENT (kNm) 

Figure 7.2: Simulated load distribution and variation in mean value and shape of 

distribution of resisting moment of steel beam exposed to fire for 0 -150 minutes -

Author. 

Results from FOSM methods are considered acceptable at high levels of 

probability (10~3) even although the distribution functions are non-normal. At 

low levels of probability ( 10 ~5) the error due to tail sensitivity becomes 

manifest [Ang, 1973]. The potential error due to poor modelling of the tails of 

the distributions is evident, refer to the insert in Figure 7.3. It can be seen that 

the area under the tail (a measure of the probability of failure) of the simulated 

load and the assumed distribution for resistance is significantly larger that the 

area under the tails of the simulated distributions. That is a larger probability of 

failure is predicted. 
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160 180 200 

GENERATED LOAD 

Figure 7.3: Comparison between the shape of the resisting moment distribution 

obtained by simulation and that obtained using second moment methods in which the 

resisting moment is assumed to be lognormally distributed - Author. 

In order to calculate the time dependent probability of failure it is necessary to 

calculate the failure rate at each time step. The use of S M or M V S M methods 

to calculate the overall probability of failure may be appropriate but not so the 

time incremented failure rate where the probability of failure in any one time 

interval may be very small. The increasingly skewed distribution of Fsy as a 

function of fire duration will increase the error. 

Reliability Sub-Model 

The Monte Carlo simulation method has been adopted to estimate the 

probability of failure of the steel beam. The Monte Carlo simulation technique 
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involves "sampling at random to simulate artificially a large number of 

experiments". If N trials are conducted, the probability of failure is given by 

Equation (7.12) as follows: 

where n(G < 0) is the number of trials for which G < 0. 

lustification for the use of this technique in preference to using the 

computationally simpler classical reliability, second moment method or 

"advanced" second moment methods is based on the following: 

The method is more accurate than second moment approach and the 

computational technique simple to implement. An appropriate level of 

accuracy of probability of failure is achieved by varying the value of N hence 

satisfying the requirements of Subsection (1.1.2). None of the reliability 

techniques considered above can be used to determine variation in probability 

of failure with time. The simulation technique can be adapted quite simply to 

generate a data base of times and modes of failure. The details of how the data 

base is generated is explained in Chapter 8. 

177 



CHAPTER EIGHT 

MODEL FOR PREDICTING THE 

PROBABILITY OF FAILURE OF STEEL FLOOR BEAMS IN FIRE 



0 Reliability Model 

A model to calculate the time varying probability of failure of steel beams (PFSB) ii 

real fire has been developed by combining the following submodels described in 

previous subsections of this thesis: 

a) Fire severity submodel. 

b) Heat transfer submodel. 

c) Mechanical properties submodel. 

d) Structural response submodel. 

e) Load submodel. 

f) Reliability submodel. 

This chapter briefly summarises each submodel, shows how they are linked together 

and explains input and output data. The program code is given in Appendix A 

Model Description 

Each submodel is used sequentially in the reliability model. The operation of each 

submodel is briefly described: 
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8.1.1 Fire Severity Submodel 

The fire severity submodel described in subsection (2.6.5) is adopted from Lie 

[1974]. The model calculates the variation with time of the gas temperature within an 

enclosure during a fire. The temperature of the gas within the compartment is 

assumed to be uniform at any given time during the fire. The fire severity is specified 

in terms of fire load density and opening factor. Both these parameters are considered 

random variables and described by a mean, standard deviation and distribution 

function. The temperature of the gas in the enclosure is calculated at one minute 

intervals using Equation (2.17) until the fuel is exhausted as determined by Equations 

(2.1.8). Thereafter the temperature course of the fire in the decay period is calculated 

using Equation (2.19). 

8.1.2 Heat Transfer Submodel 

The heat transfer submodel described in Subsection (3.4), calculates temperature of 

steel located within the fire enclosure as a function of the gas temperature versus time 

curve. The steel temperature is calculated using one-dimensional heat transfer at one 

minute intervals. For uninsulated steel beams Equations (3.8, 3.9A and 3.10) are 

used. For steel beams protected by Harditherm 700 insulating board the general 

Equation (3.16) is used in conjunction with the derived equations for thermal 

conductivity, Equations (3.25 to 3.27) for beams exposed to fire on four sides and 
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liquations (3.28 to 3.30) for beams exposed to fire on three sides. The modelling 

error associated with the derived equations for thermal conductivity is given by the 

standard error of the fit of the data to the function and is calculated to be 0.0577. 

The error term is assumed to be normally distributed. Two other parameters are 

treated as random variables in the heat transfer submodel: insulation thickness; 

internal dimension insulation configuration. Both are assumed to have normal 

distributions and have been attributed the following statistical properties: 

Insulation Thickness 

Internal Dimension 

Mean 

1.0 

1.0 

COV 

0.1 

0.1 

Table 8.1: Statistical properties used in heat transfer submodel. 

8.1.3 Mechanical Properties Submodel 

The mechanical properties submodel calculates the change in the yield strength of 

steel due to variation in the steel temperature. For a beam exposed to fire on four 

sides Equation (4.4) is used, refer Subsection (4.5.2). In the case of a beam exposed 

to fire on three sides and therefore exhibiting a temperature gradient Equation (4.5) is 

used. Depending on the ratio of top flange temperature to bottom flange temperature 

the coefficients will vary. The yield strength of steel is calculated at one minute 

intervals for the duration of the fire. Two parameters are treated as random variables: 
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yield strength of steel at ambient temperature; strength reduction model of steel. The 

yield strength of Australian structural steel was given as 295 Mpa with a COV of 0.1 

[Birch, 1991]. The modelling error in predicting the change in yield strength with 

increase in temperature, the standard error of fit was calculated to be 0.073. Both 

variables were assumed to be normally distributed. 

8.1.4 Structural Response Submodel 

This submodel calculates the resisting moment of a simply supported steel beam at 

elevated temperature using Equation (5.4). The applied moment due to gravity loads 

is also determined. In the case of a steel beam supporting a concrete slab composite 

action is not considered. The section modulus (S) is considered to have the same 

properties at ambient and elevated temperature and is taken to be a normally 

distributed random variable with a mean and COV of 0.97 and 0.03 [Beck, 1983] 

8.15 Load Submodel 

Loading configurations considered are uniformly distributed load and a centrally 

located point load. Both dead and live load are treated as random variables. Models 

of dead and live load are given in Table(6.1). 
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8.1.6 Reliability Submodel 

The reliability submodel uses Monte Carlo simulation. For each simulation or trial a 

set of values are generated for each of the random variables noted above. The 

resisting moment of the beam is calculated at one minute intervals and compared with 

the moment due to load effect which is time independent. The simulation continues as 

long as the resisting moment is greater than the moment due to load effect or until the 

fire is exhausted. If, at any time during the simulation, the moment due to load effect 

is equal to or greater than the resisting moment the beam is considered to have failed. 

The time of failure is recorded and the next simulation is initiated with a new set of 

random variables. The process continues until the preset number of trials is 

completed. A plot of the time varying probability of failure is produced from the 

record of times at failure and the record of the total number of failures. 

Operation of the simulation program requires the generation of random variates to 

represent the natural variation inherent in the dominant parameters used in the sub

models and the uncertainty in the assumptions used in the models. The generation of 

true random numbers on a computer is not possible without special hardware, instead 

sequences of independent pseudo-random numbers are generated with statistical 

properties as close to those of the true random numbers as possible. A library of 

numerical algorithms (NAG) is available which can be called as sub-routines during 

program operation. The programs are written using Fortran 77. 
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Numbers are generated from specified distributions by obtaining one or more real 

numbers, uniformly distributed between 0 and 1, and applying a suitable 

transformation. 

A consequence of the pseudo-random generation is that it is possible to generate the 

same sequence of numbers in different jobs. This is an important consideration when 

conducting sensitivity trials thereby ensuring change in output is due solely to change 

in the parameter being investigated. 

Program Operation 

Monte Carlo simulation is not computationally efficient, particularly for estimates of 

small probabilities of failure. While this can be a problem in estimating the total (time 

independent) probability of failure, the problem is exacerbated when calculating the 

time varying probability of failure. The safety index (P) of steel beams under normal 

loading and service conditions is given as 3.5 ( 0.00024) [Pham and Bridge, 1983]. 

The number of simulations required to ensure a probability of failure with an error less 

than 20% with 95% confidence is ~ 400,000 and 1.6 million for an error of 10% with 

95% confidence, refer Equation (7.13). A simulation in which many millions of trials 

are computed requires many hours of CPU time on a modern computer. The model 

PFSB run on a SUN mainframe computer requires 2.8 hours of CPU time to compute 

one million trials. 

184 



There are two reasons w h y greater numbers of trials are required to estimate the 

time varying probability of failure: 

a) Only those failures that have occurred up to a designated point in time are 

considered. The conditions that are likely to cause rapid failure such as the 

simultaneous occurrence of a very high fire load, high gravity load and low yield 

strength occur with a frequency of approximately one in a hundred thousand 

(0.00001). For a particular fire condition there may be two or three orders of 

magnitude difference between the total probability of failure and the probability of 

failure at a specified time. To achieve statistically significant rehability estimates 

sufficient failures have to be generated early in the fires history. 

b) The load model used for the fire limit state is less than that used for strength limit 

state. As a consequence the lower bound for failure probabilities for steel beams 

in fire is smaller. The safety factor for a fire exposed beam due to failure from 

load effects is approximately 4.3 ( 0.00001) which requires 9.5 million trials to 

predict the probability of failure at time zero with 20% accuracy and 95% 

confidence. This is equivalent to approximately 26 hours of CPU time. 
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8.2.1 Variance Reduction 

The "crude" Monte Carlo method can be improved by using variance reduction 

techniques. It is evident that the majority of the simulated fires do not result in failure 

and are therefore effectively redundant. The simple approach adopted in this thesis is 

to identify the dominant random variables involved in failure. To estimate the 

magnitude, range and combinations of those dominant random variables that are likely 

to result in failure. Use of such 'a priori' information significantly reduces the number 

of simulations required an hence the CPU time. 

The influence of any random variable used in the program PFSB on the probability 

of failure is assessed by obtaining histograms of selected random variables at failure. 

It is apparent from conducting this exercise that likelihood of failure is dependent on 

the steel temperature which in turn is a function of the thickness of insulation and fire 

load density. Figures 8.1 A), B) and C) show the range of fire load and frequency 

distributions for three fire loads, 60, 40 and 20 kg/m of floor area (18, 12 and 6 kg/m2 

referenced to total internal surface area, lognormal distribution, COV 0.35). The 

inserts in each figure show plots of fire load at failure. The number of simulations was 

the same in all three cases. 

It is clear from Figure 8.1. that for the test beam, protected by 20mm insulation 

board, that as the mean value of the fire load is reduced the probability of failure 
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Figures 8.1 A-Top), B-Mid) and C-Btm.) - Frequency distribution of fire load density ( main 

chart) and fire load at failure (insert) [ fire load: A) = 18 kg/m2 floor area; B) = 12 kg/m2; 

C) = 6 kg/m2; opening factor = 0.08 ml/2; Ins = 20 m m ] - Author. 
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This is demonstrated by the size of the area under the frequency distribution of the 

fire loads that caused failure. It can be seen that as the mean fire load is reduced only 

those fire load densities one, two and three standard deviations from the mean fire 

load are likely to cause failure. Further analysis shows that the occurrence of extreme 

values of parameters other than fire load have a second order effect refer Figure 8.2, 

in which the affect of variation in thickness of insulation is plotted.. Histograms at 

failure of gravity load, ventilation parameter and yield strength show that the mean 

value at failure of each parameter is within one standard deviation of the mean of the 

original distribution. 

A table such as Table 8.2 could be established in the first instance as a guide to assist 

in future simulations using the program PFSB can be used to efficiently estimate small 

probabilities of failure. For example a simulation is to be conducted in which an 

insulated steel beam protected by 20 mm Harditherm 700 insulating board is exposed 

to a fire severity characterised by a fire load of 18 kg/m2 and opening factor of 0.08 

mV_. The rninimum fire load that is likely to cause failure is 24 kg/m2 (approximately 

one standard deviation past the mean). The number of trials required for statistical 

significance is 500,000. The program randomly generates this number of fire loads 

but will only simulate the fire and check for failure if the fire load is greater than or 

equal to 24 kg/m2. Assuming a lognormally distributed fire load and COV of 0.35, 

84.5% of the fires are ignored with a comparable percentage saving in computer time. 

By setting the limits given in Table 8.2, 90% of all failures are detected. 

188 



VENT 

0.04 
0.08 
0.12 

FIRE LOAD DENSITY 
(kg/m2) 

24 

20 

28 

18 

20 

24.3 

12 
INSULATION THICKNESS 

(mm) 
20 

20.4 

30 40 

6 

20 

12.3 

Table 8.2: Table of minimum fire load to be used in simulation for given design fire load, 

Author. 

0.014 

0.012 

o.oi •• 

TAILCFHRELOAD 
OSTRIBUnON 

15 20 45 50 25 30 35 40 

mEWADEEmTY(kg/nr) 

Figure8.2: Distribution of fire load at failure as a function of insulation thickness [Fire load 

40 kg/m2; Ventilation parameter = 0.04 mV_] - Author. 

Validation of Model 

Inherent difficulties exist in the validation of reliability models. Reliability models are 

developed as an alternative to experimental testing, the results from which are needed 
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to validate the model being developed. D u e to the expense and difficulty involved ii 

the testing of floor beams subject to real fire there is very little experimental data 

available which can be used to confirm the results of the model. Validation of PFSB 

model relies on an indirect comparative approach. 

8.3.1 General Comparison - Ambient Temperature 

A comparison is made in Table 8.3 between estimates of probability of failure 

calculated using the program PFSB and the expected reliability of structural systems 

under normal service conditions - as expressed by the safety index. The reliability of a 

structure is given by the safety index, (p), refer Equation (7.9). Good agreement -

average difference 1.36% - exists between the accepted codified safety index and 

those values of safety index estimated using PFSB. The maximum difference as 

expressed as a percentage of the accepted code value is 3.5%. 

DN 

DN+LN 

0 
0.25 
0.50 
0.75 
1.00 

PFSB 
Simulated 

3.4 
3.73 
4.32 
4.53 
4.05 

AS 1250 
Code 
Format 

3.4 
3.8 
4.30 
4.67 
4.13 

PFSB 
Simulated 

3.72 
4.01 
4.35 
4.24 
3.5 

AS 4100 
Code 
Format 

3.75 
4.0 
4.4 
4.4 
3.6 

Table 8.3: Comparison between code and simulated safety index for a range of load ratios -
Author. 
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While the program P F S B is primarily developed to estimate failure of steel beams at 

elevated temperature it is expected that predictions of failure at ambient temperature 

be consistent with that for structural systems under normal service conditions. In the 

model, beams exposed to fires of low fire severity suffer little loss of load carrying 

capacity due to fire. Collapse, if it occurs, is a consequence of the inherent variability 

in the yield stress of the steel, sectional properties of the beam, the magnitude, type 

and distribution of the load. 

The safety indices used for comparison in Table 8.1 refer to the Australian Standard 

Steel Code AS 1250, based on working stress format and to AS4100, based on limit 

state format. The statistical models for load and resistance effect used in the 

development and calibration of the code safety indicies are given Table 8.4. Much of 

this same data has been incorporated into PFSB however the safety index for code 

calibration was computed using advanced second moment methods [Leicester, 1986] 

rather than by simulation. It is evident that the use of advanced second moment 

methods is sufficiently accurate at such probability levels however as noted in 

Subsection (6.2) second moment methods are not appropriate for determining the 

incremental change in probability of failure with time. 

Parameter 

Resistance 
Dead load 
Live load 

Mean 

l.ORNom 

l.05DNom 

0.74 LNom 

Coefficient of 
variation 

0.12 
0.10 
0.25 

Type of distribution 

Lognormal 
Lognormal 
Weibull 

Table 8.4: Statistical models for load and resistance effect used in the code development. 
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CHAPTER NINE 

SENSITIVITY ANALYSIS 



Sensitivity Analysis 

In the following chapter the influence of the random variables, used in the model 

PFSB, to model the rehability of an insulated steel roof beam in real fire is 

assessed. Only those variables expected to have a significant effect (changes 

greater than 10% ) on the estimate of probability of failure are considered. The 

influence of selected variables on both the estimated time independent probability 

of failure and time varying probability of failure are considered. These are: 

a) Fire load density 

b) Ventilation 

c) Insulation thickness 

d) Load ratio 

e) Exposure condition 

f) Strength reduction model 

The beam configuration used as the basis of the sensitivity analysis is a 250 UB 

37 exposed to fire on three sides. The beam is protected by 20 mm of Harditherm 

insulating board. The beam is loaded to its design capacity and comprises equal 

proportions of nominal design dead load and live load. The live load component is 

modelled as arbitrary point in time live load. 
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9.1 Fire Load Density 

Fire load density in this analysis refers to the mass of combustible material per 

square metre of floor area of the fire enclosure. The fuel, which may comprise a 

number of natural and synthetic materials, is expressed as an equivalent weight of 

timber, refer Sub-section (2.5.2). 

Fire load density is assumed to be a random variable and described by a mean 

value, coefficient of variation and a probability density function. The influence of 

each of these descriptors on the time independent probability of failure and time 

varying probability of failure is demonstrated. 

Based on data from surveys of fire load in office buildings the following mean 

values of fire load density have been used in the sensitivity analysis; refer 

(Subsection, 2.5) and characterised for convenience in this analysis as follows: 

a) 

b) 

c) 

d) 

e) 

20 kg/m2 

30 kg/m2 

40 kg/m2 

60 kg/m2 

80 kg/m2 

low fire load 

medium-low fire load 

medium-high fire load 

high fire load 

very high fire load 
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2 Probability of Failure - Time Independent 

2.1 M e a n Value of Fire Load Density 

Variation in the estimate of the time independent probability of failure of an 

insulated steel beam as a function of mean value of fire load density and insulation 

thickness is given in Figures 9.1 and 9.2. The probability of failure of a steel beam 

exposed to real fire increases as the fire load density increases. The relationship 

between the negative logarithm of probability of failure and fire load density is 

approximately linear as shown in Figure 9.1 and tabulated in Table 9.1. A n 

increase in the mean fire load density of 10 kg/m2 at low fire load increases the 

probability of failure by an order of magnitude while a 

5 T 

£• 4 

u. 3 
o 

9 2 

S 
l -• 

to 20 

- 6 

- 5 

e 

"' I 
-2 3 

0.1 0.01 0.001 0.0001 0.00001 0.000001 

PROBABILITY OP FAILURE 

-H -h +• -h 

30 40 50 60 

FIRE LOAD DENSITY (kg/m2) 

70 80 

Figure 9.1: Time independent probability of failure as a function of fire load density (FL) 

kg/m2 floor area (opening factor ( OF) = 0.08 m,/2, C O V = 0.35), [Insert shows 

relationship between -Log Probability of failure and probability of failure] - Author. 
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CURVE 
(Refer Fig. 8.7) 

A 
B 
C 
D 
E 

FIRE LOAD 

kg/m2 Floor Area 

20 
30 
40 
60 
80 

PROB of FAILURE 
TIME INDEPENDENT 

0.000028 
0.000259 
0.00128 
0.0172 
0.0763 

Table 9.1: Time independent probability of failure as a function of fire load density (FL) 

kg/m2 floor area (opening factor ( OF) = 0.08 m1/2, COV = 0.35). 

corresponding increase in the mean fire load at high fire load, and therefore high 

probability of failure, increases the probability of failure by a factor of 

approximately 4.5. Thus the rate of change in the probability of failure due to 

variation in fire load density decreases as the probability of failure increases. 

Figure 9.2 shows that irrespective of the rate at which a beam will increase in 

temperature (as influenced by the insulation thickness), the relative change in 

probability of failure remains approximately constant. 
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INSULATION THICKNESS (mm) 
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~* FL=20 

-1 FL = 30 

""• FL-40 

~x FL-60 

-° FL = 80 

45 50 

Figure 9.2: Time independent probability of failure as a function of fire load density FL 

(kg/m2) and thickness of insulation (mm) - Author.. 



9.1.2.2 Coefficient of Variation of Fire Load Density 

The coefficient of variation ( C O V ) is a measure of the distribution of a variable 

about the mean value. Alternatively the C O V can be considered a measure of the 

uncertainty associated with a variable. A default value of C O V of 0.35 has been 

adopted for fire load density in the program R S B . This corresponds with the value 

adopted in the Swedish Fire Engineering Design of Steel Structures [Magnusson, 

1976] for offices although higher values have been reported, refer Table 2.2.. 

Table 9.2 and Figure 9.3 show the variation in probability of failure as a function 

of C O V of fire load density for two mean values of fire load, 40 and 80 kg/m2. At 

a medium-high value of fire load, 40 kg/m2, a 1 0 0 % increase in C O V of fire load 

increases the probability of failure by a factor of fourteen, while at very high fire 

load, 80 kg/m2, the same increase in C O V increases the time independent 

probability of failure by a factor of two. 

CURVE 
Refer 

Figure 9.9 
A 
B 
C 
D 
E 
F 
G 
H 

FERE L O A D 
kg/m2 Floor Area 

80 

40 

COEFFICIENT 
OF 

VARIATION 
0.35 
0.52 
0.70 
1.00 
0.35 
0.52 
0.70 
1.00 

PROBABILITY of FAILURE 
TIME INDEPENDENT 

0.0728 
0.1143 
0.1379 
0.1515 
0.00128 
0.00677 
0.01744 
0.03443 

Table 9.2: - Probability of failure as a function of fire load density and coefficient of 

variation of fire load density (OF = 0.08 m1/2). 

197 



3 -" 

i 
i 1.5 •• 
3 

I 
O 
3 0.5 -
0-1— —I 1— 1— —I— 1— - I —I— - —I 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

COV FIRE LOAD DENSITY (kg/m2) 

Figure 9.3: Probability of failure as a function of fire load density and coefficient of 

variation of fire load density (OF = 0.08 m1/2) - Author. 

Figure 9.3 shows that for medium and high fire load density the use of COV 

greater than 0.7 has little effect on the probability of failure. 

Figure 9.4 shows that for highly insulated beams (insulation thickness > 40 mm) 

exposed to fires fuelled by very high fire loads there is an nine fold increase in the 

probability of failure as the coefficient of variation of fire load density is increased 

by 50%, from 0.35 to 0.52 and an increase by a factor of 22 when the COV is 

doubled. At small values of insulation thickness (10 mm) any increase in the 

coefficient of variation has virtually no effect. For highly insulated beams in fires 

fuelled by medium-high fire loads there is an increase in probability of failure by a 

factor of ten when the COV is increased by 50% and a forty fold increase when the 
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C O V is doubled. At small values of insulation thickness there is an increase in the 

probability of failure by a factor of three as the COV is doubled. 
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" COV = 032 

COV = 0.70 

COV= 1.0 

-I- + — I 

40 0 10 15 20 25 

INSULATION THICKNESS (mm2) 

30 35 

Figure 9.4: Time independent probability of failure as a function of coefficient of 

variation of fire load density and insulation thickness (based on fire load density of 40 - • 

and 60 - x kg/m2; O F = 0.08m1/2) - Author. 

The reduction in the sensitivity of probability of failure to increases in C O V , as 

demonstrated by the flattening of the slope of the curves in Figure 9.4, is 

explained in Figure 9.5 in which four theoretical distributions of fire load 

corresponding to COVs of 0.35, 0.52, 0.7 and 1.0 are given. As the COV 

increases there is a shift to the left of the mode of the distribution and an increase 

in the probability of extreme fire loads being generated. Table 9.3 shows that as 

the COV is increased to one, the rate at which the area under the tail of the 
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distribution increases, is steadily less. Consequently the likelihood of generating 

additional high fire loads, that may contribute to failure, decreases. At the same 

time the skewing of the distribution to the left also reduces the likelihood of 

generating fire loads that will contribute to failure. 

— — 

.... 

— - -

C.O.V. 

C.O.V. 

C.O.V. 

C.O.V. 

-0.35 

-0.52 

-0.7 

- 1.0 

0 10 20 30 70 80 90 40 50 60 

FIRE L O A D ( kg/m2) 

Figure 9.5: Frequency distribution of fire load for a range of values of coefficients of 

variation - Author. 

100 

COV 
% AREA > 60 kg/m2 

0.35 
8.6 

0.52 
14.0 

0.70 
17.0 

1.00 
18.3 

Table 9.3 - Area under tail of distribution with increase in C O V (based on Lognormal 

distribution). 
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9.1.2.3 Probability Density Function 

Different probability density functions may be fitted to fire load survey data with 

similar levels of confidence. Depending on the function chosen there may be a 

good match between theoretical and measures values at or about the mean value or 

about the extreme value statistics or both, refer Figure 9.6. The distribution of fire 

load density is assumed to be described by a lognormal probability density 

function, refer Subsection (2.5.1). The effect on the probability of failure of a 

steel beam in real fire in which the fire load density is assumed to be described by 

two alternative distribution functions namely, Gamma and Weibull, is given in 

Table 9.4. 

FIRE LOAD 

DISTRIBUTION 

LOGNORMAL 

GAMMA 

WEIBULL 

FIRE LOAD = 40 kg/m2 

PofF 

0.00139 

0.00103 

0.00087 

FL @ FAIL 

24.5 

21.0 

17.6 

FIRE LOAD = 80 kg/m2 

PofF 

0.07069 

0.07228 

0.07023 

FL @ FAIL 

39.9 

38.5 

36.2 

Table 9.4 Time independent probability of failure as a function of probability density 

function (FL @ FAIL denotes average fire load density at failure) - Author. 

At high fire loads the magnitude of the probability of failure is not influenced by 

the choice of distribution function. Figure 9.6 shows that despite an obvious 

difference in the shape of the theoretical distribution of fire load represented by a 
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lognormal and weibull density function, due to compensating factors, the 

calculated probability of failure is the same. At medium-high fire load (40 kg/m2), 

in comparison to the lognormal distribution, the probability of failure calculated 

using a g a m m a and weibull distribution is 2 5 % and 4 0 % smaller. The smaller 

probability of failure at low fire load is due to the difference in shape of the tail of 

the distributions, refer to the insert in Figure 9.6 The number of standard 

deviations past the mean value of fire load density, at which the average value of 

fire load density that results in failure occurs, is approximately three in the case of 

medium-high fire loads and one-and-a-half in the case of very high fire loads. It is 

apparent therefore consideration needs to be given to the choice of 

• GAMMA D1ST 

LOGNORMAL D1ST 

WEIBULL DIST 

10 15 20 25 30 

FIRE L O A D DENSITY (kg/m2) 

35 40 

Figure 9.6 - Theoretical distributions of fire load density (based on mean fire load density 

=40 kg/m2 and C O V = 0.35). 
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distribution function used to describe fire load when the number of standard 

deviations between the mean fire load and mean fire load at failure is greater than 

three. This is likely to occur when low and medium-low fire loads are used and in 

the case of heavily insulated members where the probability of failure is also likely 

to be small (less than 0.001). 

It can be concluded that at high fire load densities the choice of distribution 

function is not critical and that at medium and low fire load densities the use of a 

lognormal distribution function is, compared to the alternative distributions above 

and, in as far as the distribution represents the data, conservative. 

Probability of Failure - Time Varying 

Due to inherent variability in fire severity, insulation conditions and loading 

conditions the length of fire exposure, that a beam likely to fail, can sustain, will 

vary. Because the design of steel beams for exposure to fire requires that the beam 

be structurally adequate for a specified fire duration, variation in the probability of 

failure as a function of time is a more useful estimate of failure than the time 

independent probability of failure. 
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9.1.3.1 M e a n Value of Fire Load Density 

Curves representing the time varying probability of failure of the test beam as a 

consequence of exposure to fires characterised by a range of mean fire load 

densities is given in Figure 9.7. The time varying probability of failure curve is 

obtained from the cumulative sum of failures. Typical failure curves comprise five 

sections and can be idealised as given in Figure 9.8. At time zero, point A on 

figure 9.8, the probability of failure corresponds with that due to variation in 

material properties and arbitrary point in time load affects. For the first 10 minutes 

the failure curve remains almost horizontal, indicating a miriimurn lag time during 

which the insulated steel is effectively protected and no temperature effects are 

possible, region A-B. From 10 to 20 minutes, region B - C, represents failure at 

temperatures below 100 °C. These failures are due to the simultaneous occurrence 

of very high values of fire load density, high gravity load and low yield strength, 

each of which occurs with a low probability, the effect of temperature on the steel 

contributing little to the occurrence of failure. Region C-D represents the period 

during which the steel temperature remains constant as moisture in the insulating 

material is boiled off. As a consequence the probability of failure remains constant 

during this period. 
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Figure 9.7: Time varying probability of failure as a function of fire load density (OF = 

0.08 mV_ A = 20, = 30, C = 40, D = 60, E = 80 kg/m2) - Author. 
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140 160 180 

Figure 9.8: Idealised probability of failure curve 

As the temperature of the steel continues to rise the frequency of failures 

increases., region D-E. Eventually all the fires are exhausted and no additional 

failures can occur, this corresponds with the time independent probability of 
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failure, region E-F. Depending on the magnitude of the mean fire load density and 

the degree to which a member is protected by insulating material the time scale in 

Figure 9.8 will vary. 

Figure 9.7 shows that, irrespective of the magnitude of the fire load density, the 

probability of failure for the first thirty minutes does not vary significantly. 

Thereafter there is a rapid divergence between the curves representing various fire 

load densities. At 60 minutes the test beam is 41 times less likely to fail if it is 

exposed to a fire fuelled by a low rather than a very-high fire load density. At 120 

minutes the beam is 1520 times less likely to fail. At 180 minutes the difference is 

obtained from the time independent values and corresponds to a factor of 2300. 

Conversely for a specified target probability of failure the fire resistance period, 

defined for this analysis as the period of fire exposure sustained before the target 

probability of failure is exceeded, is reduced as the fire load density is increased. 

For a target probability of failure of 0.00022 (3.65), corresponding with the 

probability of structural failure at ambient temperature due to material and load 

effect, the fire resistance period, for fire load densities of 80, 60, 40 and 30 kg/m2 

reduces from 80 minutes to 53, 44 and 40 minutes respectively. The probability of 

failure of the test beam, exposed to fires fuelled by small fire load densities, curve 

A in Figure 9.7, is, at all times, less than that due to structural failure under 

normal (peak) loading conditions. 
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8.1.3.2 Coefficient of Variation of Fire Load Density 

The effect of variation in the COV of fire load density on the time dependent 

probability of failure of an insulated steel beam is shown in Figure 9.9 for fire load 

densities of 40 and 80 kg/m2. For the particular arrangement investigated variation 

in the COV of the fire load density has virtually no effect on the time to failure for 

the first 60 and 90 minutes of fire duration , for the two fire loads investigated. 

For fires of long duration, variation in the COV has a significant effect on the 

period of fire resistance achieved for a specified probability of failure. Figure 9.9 

shows that for a target probability of failure of 0.0012 (2.9) the period of fire 

resistance of an insulated steel beam exposed to a fire characterised by a fire load 

density of 40 kg/m2 and COV of 0.35 is 150 minutes. For the same probability of 

failure, a 50 % increase in the COV reduces the time period of fire resistance to 81 

minutes. Further increases in the COV to 0.7 and 1.0 however only reduce the 

period of fire resistance by an additional 4 and 5 minutes respectively. 
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Figure 9.9: Time varying probability of failure as a function of C O V of fire load density 

for two mean values fire load density (refer Table 9.2 for details) - Author. 

At very high (80 kg/m2) fire loads, for the same target probability of failure and 

variation in COV the change in the period of fire resistance is only a few minutes. 

For a target probability of failure of 0.07 (1.14) and high fire load density a similar 

trend occurs, as noted previously, in which the period of fire resistance is reduced 

from 150 minutes to 123, 119 and 118 minutes as the COV is increased from 0.35 

to 1.0. 

The significance of variation in the C O V of fire load density is not readily 

assessed by inspection of the time independent value of probability of failure. 

Figure 9.9 shows that consideration of the target probability of failure and period 

of fire resistance is necessary. It is apparent that, for the arrangement investigated, 
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for very high fire load densities variation in C O V is not important for fire 

resistance periods less than 90 minutes and in the case of medium fire load 

densities, 60 minutes. 

9.1.4 Conclusion 

The magnitude of the fire load density and the uncertainty associated with it, has 

a significant effect on the probability of failure of an insulated steel roof beam and 

its period of fire resistance. For the test beam investigated, the probability of 

failure due to the effect of fires fuelled by low and medium-low fire load densities 

in combination with arbitrary point in time live load, is no greater than that due to 

extreme live loads at ambient temperature. It has been shown that the probability 

of failure of a steel beam, protected by an average thickness of insulation board, 

increases approximately one order of magnitude per 10 kg/m2 of fire load at low 

fire load density and by a factor of five at very high fire load densities. Depending 

on the target probability of failure, an increase in the mean fire load density of 10 

kg/m2, reduces the period of fire resistance by 40%. For a given fire load density 

and target probability of failure doubling the COV increases the probability of 

failure by more than an order of magnitude and decreases the period of fire 

resistance by as much as 50%. 
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It has also been demonstrated that the use of a lognormal distribution to represem 

fire load density, in as much as it represents the data, is conservative at low fire 

load densities, in comparison with alternative distribution functions. 

2 Probability of Failure as a Function of Ventilation 

2.1 Opening Factor 

In Subsection (2.4.2) it was shown that ventilation conditions in the fire enclosure 

are specified by "opening factor" which is the ratio of the area of ventilation 

openings in the walls bounding an enclosure to the total internal surface area of the 

enclosure. Three mean values of opening factor have been used in the sensitivity 

analysis, 0.04, 0.08 and 0.12 m1/2. These sizes were selected for the flowing 

reasons; 

a) The model used to generate the temperature time curve is only valid for 

opening factors between 0.01 and 0.15 m1/2. 

b) Opening factors greater than 0.015 m1/2 are required for flashover (Jannson 

and Onnermark, 1975). 

c) An opening factor of 0.08 ml/z is identified as an overall average (Culver, 

1976). 
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d) The coefficient of variation of the opening factor is given as 0.1 

(Culver, 1976). 

e) Based on a COV of 0.1 variability about the selected mean values is 

achieved without encroaching on the limits of the model. 

9.2.2 Probability of Failure - Time Independent 

9.2.2.1 Variation in Mean Value of Opening Factor 

Figure 9.10 shows the variation in the estimate of total probability of failure as a 

function of opening factor. 
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Figure 9.10: Time independent probability of failure as a function of opening factor (m*4) 

and insulation thickness (mm). COV of opening factor = 0.1 factor (m\ FL = 40 kg/m2 -

Author. 
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Similarly for a beam protected by 10 m m of insulation material, (lightly insulated) 

and a high probability of failure, the same change in opening factor increases the 

probability of failure by a factor of 20. It is apparent that, as with fire load density 

that, at high probability of failure the sensitivity of failure rate to a large change in 

a basic parameter is greatly reduced. 

9.2.2.2 Variation in Coefficient of Variation of Opening Factor 

An increase in coefficient of variation of the opening factor, from 0.1 to 0.3, 

increases the probability of failure of a lightly insulated steel beam by a factor of 
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Figure 9.11: Time independent probability of failure as a function of coefficient of 

variation (COV) of opening factor and insulation parameter (OF = 0.08 mI/2 and FL = 40 

kg/m2) - Author. 
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1.5, while a five fold increase in the C O V increases the probability of failure by a 

factor of 2.4. For a heavily insulated beam, the corresponding increase in 

probability of failure is 1.4 and 1.6 respectively, refer Figure 9.11. 

It is apparent that the failure rate is relatively insensitive to variation about the 

mean value of the opening factor and that increasing the COV beyond a value of 

0.5 is ineffective. The reason is that there is little skewness in the probability of 

failure for large opening factor. 

9.2.3 Probability of Failure - Time Varying 

9.2.3.1 Variation in Mean Value of Opening Factor. 

Curves showing the time varying probability of failure of the test beam for three 

values of opening factor and two values of fire load density are given in Table 9.5 

and Figure 9.12. For the medium-high and very high fire load density variation in 

the size of the opening factor has little affect on the probability of failure for the 

first 50 and 100 minutes of fire duration. Thereafter it can be seen that the smaller 

the opening factor the more rapid the increase in the probability of failure. This 

phenomenon is due to the influence of the opening factor on the duration of the 

fire. The size of the opening factor dictates the quantity of oxygen available to the 
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fire and the rate of heat loss from the fire compartment to the walls and the 

outside. 

CURVE 

B 

D 

FIRE LOAD 
kg/m2 Floor Area 

40 

80 

VENTILATION 
PARAMETER 

(m'/2) 
0.12 
0.08 
0.04 
0.12 
0.08 

PROB ABILITY of FAILURE 
TIME INDEPENDENT 

0.000275 
0.00128 
0.0146 
0.0182 
0.0763 

0.04 0.299 

6 T 
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FERE DURATION (Minutes) 

160 180 200 

Figure: 9.12 & Table 9.5 - Probability of failure as a function opening factor and two 

values of mean fire load density - Author. 

A fire characterised by a small opening factor will burn longer, but at a slightly 

lower temperature, than a fire with a large opening factor. As a consequence an 

insulated steel beam is likely to attain higher temperature since it has longer to heat 

up and ultimately a greater chance of failure. 
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9.2.3.2 Variation in the Coefficient of Variation of Opening Factor 

Based on curves B and E in Table 9.4 the influence of an increase in the 

coefficient of variation of the opening factor from 0.1 to 0.3, curve Bl and El, and 

to 0.5, curves B2 and E2, is demonstrated in Figure 9.13. In the case of a 

medium-high fire load density, tripling the COV of opening factor has no affect on 

the probability of failure for the first 100 minutes of fire duration. Thereafter there 

is a small increase in the probability of failure. For very high fire loads variation in 

the value of COV is not significant. The explanation given in Subsection (9.2.2.2) 

seems applicable. 
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Figure 9.13 - Time varying probability of failure as a function of coefficient of variation 

of opening factor (refer Table 9.5 for details) - Author. 
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Discussion 

It is convenient in terms of fire modelling that the magnitude of the C O V of 

opening factor is not particularly important. This is because, in reality, variation in 

the opening factor is likely to be large and to vary during the course of the fire. 

The random variability associated with the opening factor can be considered to be 

composed of two components: 

a) variability due to sampling 

b) induced variability due to the action of fire 

a) The opening factor is a measure of the vertical openings in the compartment 

boundary to the total internal surface area. Statistics based on a survey of all types 

of offices may well reveal a large spread about the mean value for this parameter. 

Rather than try to accommodate the effect of the area of window and door space 

on the severity of a fire in the general case, it makes more sense to assume that a 

risk assessment, for which this model has been developed, relates to a specific 

building. The size of the window and door space for specific offices becomes 

almost deterministic. A small value of coefficient of variation (0.05 - 0.1) is 

therefore appropriate. 

216 



b) It is generally assumed when calculating the opening factor that compartment 

openings are windows and that all the windows will break after flashover 

occurs and that doors to the compartment are ajar. The calculated opening 

factor is therefore taken to be its maximum possible value. Based on 

observations made during two fire tests conducted by BHP [Almand et al., 

1989] in which fire in an office environment was simulated, two scenarios are 

possible: 

a) the design or maximum opening factor is realised for the full duration of the 

fire. 

b) the design or maximum opening factor is not realised and that the magnitude of 

the opening factor varies during the fire. 

The two fire tests nominated as 01 and 02, represented a personal office space 4 

m square in plan, fitted with contents typical of modern office buildings. A 

medium-high fire load density (42 and 45 kg/m2) was used in the tests. In Tests 

01 and 02 one wall of the office consisted of a glass window, the opposite wall 

incorporated a standard timber door. The opening factor was very large and 

calculated to be approximately 0.28 n/2. At the start of the tests, in which case 

the ventilation was effectively zero (other than leakage) difficulty was encountered 

in initiating the fire in both cases. In test 01 the fire continued to smoulder for 50 



minutes without significant development. Similarly in test 0 2 , the fire had almost 

extinguished itself after 15 minutes. Fire development was achieved only by 

breaking the glass in two places (Test 01) and by opening the office door to 

provide ventilation (Test 02). The latter situation corresponding to a ventilation 

factor of ~ 0.03 m/2. This supports the contention of Janson and Onnermark that 

a minimum value of opening factor is necessary for flashover to occur. In both 

tests there was a rapid increase in the air temperature in response to the increase in 

ventilation. In Test 01 the increase in air temperature was accompanied by 

cracking and dislodgment of some of portions of the plate glass windows. The 

degree to which the "design opening factor " is realised depends on how much of 

the glass is displaced during the course of the fire. This in turn can depend on the 

distribution of the flammable materials in the compartment, the height of the room 

and wind conditions. 

The forgoing highlights the fact that the magnitude of the opening factor can vary 

during the course of a fire and that the calculated maximum value may not be 

realised in a fire situation. Given that the probability of failure of a protected steel 

beam in fires fuelled by medium to low fire load densities can increase by over two 

hundred times as the opening factor is reduced, it is not conservative in such 

situations to adopt the maximum possible opening factor. Similarly in a small 

compartment with small windows the area of the door opening may well equal a 
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quarter to a half of the window area. Doors are very much more resistant to fire 

and may remain intact for the duration of a fire. The opening factor excluding the 

door area could be 25 to 50% smaller than the nominal value. 

A means of accommodating possible variation in the opening factor during the 

course of the fire, is to increase the variability about the mean, that is use a large 

value of COV. It has been demonstrated that, in as far as the fire model used in 

this analysis represents real fire behaviour, an increase in the COV of the opening 

factor does not result in a corresponding increase in probability of failure as would 

be expected for the ventilation conditions prevalent during the fire. It is proposed 

that a modified mean value or a range of opening factors are used during the fire. 

9.2.5 Conclusion 

It has been shown that the estimate of the probability of failure is significantly 

influenced by the ventilation conditions in the fire compartment, as represented by 

the opening factor. A reduction in the opening factor from 0.12 to 0.04 m1/2 

increases the probability of failure by 200 times. It has also been shown that 

probability of failure is not sensitive to the magnitude of the coefficient of variation 

of the opening factor. 
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It has been noted that, m the case if insulated steel beams, the use of the 

maximum design opening factor may result in an under estimation of the 

probability of failure and period of fire resistance, should that value not be realised 

in reality. In the case of uninsulated steel beams the opposite is true and that the 

largest possible value of opening factor should be employed to estimate the 

probability of failure. 

Insulation Thickness 

The model RSB is calibrated for one insulation material only at this stage in time, 

namely Harditherm 700 insulating board. This material is considered 

representative of the insulating materials presently available and that the 

performance of this material will in general reflect that of other propriety brands of 

insulation material. 
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Probability of failure - Time independent 

The time independent probability of failure of the test beam as a function of 

thickness of insulation material for a range of fire load densities is shown in Figure 

9.14. At very high to medium-high fire load density for thicknesses of insulation 

material greater than 10 m m , the relationship between thickness of insulation and 

probability of failure is approximately logarithmic. The probability of failure is 

reduced by a factor of approximately 25 for each additional one millimetre of 

insulation material. 

10 15 20 25 30 35 

INSULATION THICKNESS (mm) 

40 45 50 

Figure 9.14: Time independent probability of failure as a function of thickness of 

insulation (OF = 0.08 m,/2, C O V Insulation = 0.1) - Author. 
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For thicknesses less than 10 m m the insulation material is not capable of reducing 

the steel temperature as effectively due to the high gas temperature associated with 

the large values of fire load density (in the fire model adopted for a given opening 

factor, the magnitude of the fire load density defines the maximum gas 

temperature). For medium-low to low fire load densities, and therefore lower gas 

temperatures, the insulation material proves to be very effective for this range of 

fire load, the first 5 mm thickness of insulating material reducing the probability of 

failure by a factor of 15 to 80 times respectively. 

Probability of failure - Time dependent 

Curves showing the time varying probability of failure for the test beam for a 

range of insulation thicknesses is given in Figure 9.15. The corresponding time 

independent probabilities of failure are given in Table 9.6. It is apparent that with 

increase in thickness of insulation the fire resistance period, for a specified target 

probability of failure, increases. For a target probability of failure of 0.00022 (-

Log. 3.65) the period of resistance varies from 5 minutes for uninsulated steel to 

22, 44, 85 and 152 minutes for insulation thicknesses of 10, 20, 30 and 40 mm 

respectively. 
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The probability of failure of steel beams in real fire is modified by the provision of 

protection. In contrast, an insulated steel beam exposed to the standard fire, the 

probability of failure is always one. With the use of charts, such as Figures 8.14 

and 8.15, the required thickness of insulating material to achieve a target 

probability of failure and/or period of fire resistance, can be obtained for fires of 

varying severity 
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CURVE 
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B 
C 
D 
E 
F 

THICKNESS OF 
INSULATION (mm) 

50 
40 
30 
20 
10 
0 

PROB of FAILURE 
TIME INDEPENDENT 

0.000093 
0.00044 

0.00255 
0.0172 
0.1686 
0.9998 

Figure 9.15 & Table 9.6: Probability of Failure as a function of Insulation Thickness 

(Fire Load = 1 8 kg/m; ventilation parameter = 0.08). Insulating material Harditherm 700 

-Author. 
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Load Ratio and Load Type Ratio 

The load ratio being considered is the ratio of the moment due to applied load to 

the flexural capacity of the beam. The applied load depends on the ratio of dead 

and live load acting on the beam. The ratio of these two load type varies with 

time. In this analysis the ratio of load type is considered time invariant. The model 

of dead and live load used in RSB has been described in Subsections (6.21 and 

6.22). The ratios of nominal design dead load to nominal design live load used in 

the sensitivity analysis are as follows: 

DL : LL 

1 : 3 

1 : 1 

3 : 1 

The dead and live loads for the sensitivity analysis are obtained from the moment 

capacity of the member using the appropriate capacity reduction factor and load 

factors. The load type ratio refers to the ratio of dead load and live load before 

load factors are applied. Figure 9.16 shows the influence of the ratio of load type 

on the distribution of moment from applied loads, obtained by simulation. Because 

arbitrary point in time live load is appropriate for strength design in fire situations, 
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the larger the proportion of the nominal design load effect attributable to live load, 

the smaller the ratio of applied load to design load. 

30 40 50 60 70 

BENDING M O M E N T (kN/m) 

Figure 9.16: Probability density of load moment generated by PFSB for different ratios of 

dead load to live load (simply supported beam, point load mid-span) - Author. 

RATIO 
DL/LL 
3 : 1 
1 : 1 
1 : 3 

LOAD 
MEAN 
73.88 

54.43 

36.82 

MOMENT 
ST' DEV 
7.99 

8.91 

11.63 

% 

DESIGN CAPACITY 

65 
48 
32 

Table 9.7 - Mean and standard deviation of load moment derived from load models and 

load ratio expressed as a percentage of design capacity. 

The average moment from applied loads and associated standard deviation for the 

specified load type ratios are given in Table 9. 7. Each is expressed as a 

percentage of the beam design capacity. It can be seen that there is a 50% increase 

in the design load ratio when the applied load is dominated by dead load compared 
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with a load effect in which live load is dominant. The C O V of the live load 

dominated load combination is three times larger than that of the dead load 

dominated load combination. The distribution of the live load dominated load 

combination is highly skewed towards the right and overlaps the distribution of 

dead load dominated load combination. 

Under normal loading conditions, assuming a DL : LL ratio of 1 : 1, the load 

ratio is approximately 65% (strength design) and for fire conditions 54%. 

9.4.1 Probability of Failure - Time independent 

9.4.1.1 Variation in Load Type Ratio 

The influence of variation in load ratio, due to variation in load type ratio, on the 

time independent probability of failure is given in Table 9.8 . 

RATIO 
DL:LL 
3 : 1 
1 : 1 
1 : 3 

PROB' OF FAILURE 
FL = 40 kg/m2 

0.0113 
0.0016 
0.00042 

FL = 80 kg/m2 

0.1864 
0.0763 
0.0364 

Table 9.8 - Time independent probability of failure as a function of load ratio. 
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At medium-high fire load density, in comparison with a D L : L L ratio of 1 : 1, 

the probability of failure is increased by an order of magnitude when the load effect 

is dominated by dead load and reduced by a factor of three when live load 

dominates. At high fire load density the influence of load ratio is much reduced 

due to the dominating influence of the fire characteristics. It follows that in 

comparison with the load model used in RSB, the design of steel beams in fire 

using the current recommendations [AS4100, 1990], in which a load ratio of 54% 

is used, will result in a higher probability of failure and is therefore conservative. 

9.4.1.2 Variation in Load Ratio 

The values given in Table 9.8 are based on full design load adjusted for fire 

conditions. Under normal service conditions a structural member will rarely be 

subject to its full design load. In Table 9.9 the probability of failure of the test 

beam for a range of load ratios is given. Compared with probability of failure for 

full design load and medium-high fire load the probability of failure is reduced by a 

factor of 2.7 for 90% load ratio and by a factor of ten if it is only loaded to 70% of 

its design capacity. At very high fire load densities the reduction is not significant. 
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DESIGN 
LOAD RATIO % 
DL:LL= 1:1 

100 
90 
80 
70 

PROB' OF FAILURE 

FL = 40 kg/m2 

0.0016 

0.00062 

0.00029 

0.00015 

FL = 80 kg/m2 

0.0772 

0.0592 

0.0446 

0.0343 

Table 9.9: Time independent probability of failure as a function of a reduced maximum 

nominal design load ratio (FL = fire load density). 

9.4.2 Probability of Failure - Time varying 

9.4.2.1 Variation in Load Type Ratio 

The time varying probability of failure of a steel beam in real fire as a function of 

ratio of load type is given in Figures 9.17 and 9.18 for two fire load densities. 

The probability of failure at time zero varies due to variation in the value of the 

load ratio, refer Table 9.7. In general the smaller the load type ratio the smaller 

the probability of failure. The probability of failure for load type ratio D L : L L 

equal to 1 : 1 and 1 : 3 however are almost the same, despite a difference of 1 6 % 

in moment ratio. This apparent anomaly is explained however by considering the 

difference in the shape of the distribution of moment due to applied loads. The 

average value of the moment due to applied load at failure at time zero, determined 

by simulation for load type ratios 1 : 1 and 1 : 3 is 100.3 and 113.7 kN/m 

respectively. Due to the highly skewed distribution of the live load dominated load 
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combination, the area under the tail of the two probability density curves in this 

region is similar, and as a consequence, the probability of failure is similar. 

The shape of the failure curves is as described previously, refer Sub-section 

8.1.3.1. The difference in probability of failure at time zero between load type 

ratios DL : LL of 1:3 and 3:1, is maintained for the duration of the fire. In 

comparison with a beam in which the nominal dead and live load is equal, a beam 

in which the applied load is predominantly dead load, has a significantly reduced 

period of fire resistance. 

6 T 

LOAD RATIO 
DL:LL 
A = 1:3 
B = 1:1 
C = 3: 1 

50 100 150 

FIRE DURATION (Minutes ) 

200 

Figure 9.17: Time varying probability of failure as a function of load type ratio of 

arbitrary point in time live load and dead load (FL =80 kg/m2; O F = 0.08 m1/2) -Author. 
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For a target probability of failure of 0.00022, (-Log. probability of failure 3.7) the 

period of fire resistance for the test beam investigated is given in Table 9.10 for 

fire load densities of 80 and 40 kg/m2. 

LOAD RATIO 
DL:LL 
A = 1 :3 
B = 1:1 
C = 3:1 

50 100 150 

FIRE DURATION (Minutes) 

200 250 

Figure 9.18: Time varying probability of failure as a function of load type ratio of 

arbitrary point in time live load and dead load (FL =40 kg/m2; O F = 0.08 mI/2) - Author. 

RATIO 
DL:LL 
3 : 1 
1 : 1 
1 : 3 

TIME TO FAILURE (Minutes) 
FL = 40 kg/m2 

12 
52 
77 

FL = 80 kg/m2 

13.5 

40 
46.5 

Table 9.10: Period of fire resistance at probability of failure of 0.00022. 

9.4.2.2 Variation in Load Ratio 

Curves of variation in the probability of failure as a function of time for a range of 

load ratios and two fire load densities are given in Figures 9.19 and 9.20. The 
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probability in failure at time zero decreases as the load ratio decreases. The 

probability of failure at time zero for a load ratio equal to 33.6% is too small to 

estimate by simulation (but is estimated by extrapolation to be of the order 10~8. 

A 1 0 % reduction in the design load ratio for fire conditions, and each subsequent 

reduction of 1 0 % , each reduces the probability of failure by an order of magnitude 

at time zero. For the two fire load densities investigated this effect on the 

probability of failure is maintained for approximately the first hour of fire duration, 

thereafter the influence due to load ratio diminishes by 7 0 % in the case if medium-

high fire load and 9 0 % for very high fire load , as the magnitude of applied load 

becomes a less critical. 

20 40 60 80 100 

FIRE DURATION (Minutes) 

120 140 160 

Figure 9.19: Time varying probability of failure as a function of variation in load ratio 

(FL = 40 kg/m2; O F = 0.08 m1/2) -Author. 
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LR = 4*8.0% 

LR = 43.1% 

LR = 38.4% 

20 40 60 80 100 

FIRE DURATION (Minutes) 

120 140 160 

Figure 9.20: Time varying probability of failure as a function of variation in load ratio 

(FL = 80 kg/m2; O F = 0.08 m,/z) - Author. 

Conclusion 

Ratio of load type and load ratio both have a significant influence on both the 

probability of failure and the time variation of probability of failure. It follows that 

care should be exercised in correctly identifying that proportion of total load effect 

attributable to dead load. Failure to do so will result in over-estimating the period 

of fire resistance and underestimating the probability of failure. Conversely 

significant gains can be obtained in terms of additional safety for a beam designed 

for full design load under fire conditions but in reality supporting a reduced load. 
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9.5 Exposure Condition 

The test case used in the sensitivity analyse so far has been a steel beam 

supporting a concrete slab, in which case the beam is exposed to fire on three 

sides. Alternative arrangements are possible however such as a primary steel 

beam supporting one or more secondary beams, in which case the loading on the 

structure corresponds to a series of point loads. In this situation flame can 

envelope the beam, effectively heating it on four sides simultaneously. It has been 

demonstrated, refer Subsection (3.4.1.3), that due to the smaller exposed surface 

area and the action of the concrete slab as a heat sink, beams exposed to fire on 

three sides heat more slowly, and in real fire situations, generally do not attain as 

high an average steel temperature as those beams exposed to flame on four sides. 

9.5.1 Probability of Failure - Time Dependent 

The variation in probability of failure of a steel beam exposed to fire on three and 

four sides is given in Figure 9.21, for two fire load densities and a range of 

insulation thickness. It is apparent that a beam exposed to fire on four sides has a 

higher probability of failure than a corresponding beam exposed to fire on three 

sides. For both medium-high and very-high fires loads, a heavily insulated steel 
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beam heated on four sides is twenty times more likely to fail than if the beam were 

heated on three sides. A lightly insulated beam, exposed to a fire fuelled by a 

medium-high fire load density, is ten times more likely to fail in four-sided 

exposure compared with three-sided exposure. 

10 15 20 25 30 

INSULATION THICKNESS (mm) 

35 40 

Figure 9.21: Time independent probability of failure as a function of exposure condition 

for medium-high and very-high fire load density ( O F = 0.08 m1/2) - Author. 

Probability of Failure - Time Varying 

The time varying probability of failure of a beam exposed to fire on three and four 

sides is given, refer Figure 9.22, for two fire load densities. A beam exposed to 

fire on four sides has a smaller fire resistance period, for a given target probability 

of failure, than the corresponding beam exposed to fire on three sides. For both 
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fire load densities investigated the fire exposure has little influence on the 

probability of failure during the first forty minutes of fire exposure. Thereafter 

however, the affect of the more rapid heating rate and higher average temperature 

of beams exposed to fire on four sides, result in a greater number of failures and 

an increase in the probability of failure as shown. 
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Figure 9.22: Time varying probability of failure as a function of exposure condition for 

medium-low and high fire load density (OF = 0.8 ml/2) - Author. 

Strength Reduction Model 

It was noted previously in Subsection (5.4.2), that a number of strength reduction 

models are available depending on the value of the proof strain used as a basis for 

the model. It was suggested that an alternative model for Australian steel, based 
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on the results of transient test data, would be similar to that used in the British 

Standard B S 5950. The two British models, one based on a proof strain of 0.02% 

and the other based on 1.0% proof strain is shown in Figure 9.23. 
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Figure 9.23: Strength reduction model for British steel based on 0.2 and 1.0% proof 

strain. 

9.6.1 Probability of Failure 

The time varying probability of failure of a steel beam, estimated using the two 

models, is given in Figure 9.24. Neither model permits loss of strength due to 

temperature effects until the steel temperature exceeds 100 °C, and in the case of 

the 1.0% proof strain model there is virtually no loss of strength until the steel 

temperature exceeds 400 °C. As a consequence the time varying probability of 

failure remains at the value equivalent to structural failure at ambient temperature 
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until the beam has been exposed to fire for 47 minutes in the case of the 0.2 % 

model and 65 minutes for the 1.0% model After the occurrence of the first failures 

the probability of failure increases at the same rate for both models. The time 

independent probability of failure for the 1.0% proof strain model is approximately 

three times smaller than that predicted using the 0.2% model. 
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Figure 9.24: Time varying probability of failure for alternative strength reduction models 

(FL = 60 kg/m2; OF = 0.08 mV_; INS = 30 mm; 4-sided exposure) - Author. 

Conclusion 

It is evident that the form of the strength reduction model adopted has a 

significant influence on the shape of the probability of failure curve and the 

magnitude of the probability of failure. It also shows that a strength reduction 
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model based on a small proof strain will result in a conservative estimates of failure 

and that a model of the same form as the 1.0 % proof strain will increase the 

period of fire resistance dramatically. 

Conclusion 

A model has been developed that estimates the time independent and time varying 

probability of failure of steel beams in real fire. For a specific fire severity, as 

characterised by fire load density and opening factor, the ratio of beam mass to 

surface area in the case of a non-insulated beam or the thickness of insulation in 

the case of a protected beam required to attain a target probability of failure for a 

specified period of structural adequacy can be determined. The model is a 

significant advance on the use of the standard temperature versus time curve which 

does not reflect the true nature of fire nor accommodate the probabilistic approach 

to the design of steel members for fire. 

Based on the results of a sensitivity analysis the following conclusions are made: 

The dominant variable influencing the magnitude of the time independent 

probability of failure is the mean value of the fire load density. An increase in the 

fire load density of 10 kg/m2 at low fire loads, as define in Subsection 9.1, 

Increases the probability of failure by an order of magnitude while a corresponding 



increase in the mean fire load at high fire load increases the probability of failure by 

a factor of 2. Depending on the target probability of failure, an increase in the 

mean fire load density of 10 kg/m2, reduces the period of fire resistance by 40%. 

The magnitude of the COV of fire load density is significant at low fire load. 

Doubling of the COV from 0.35 to 0.7 is equivalent to an increase in the mean fire 

load density of 10 kg/m2. In terms of fire resistance period at low to medium fire 

load densities for a given target probability of failure doubling the COV decreases 

the period of fire resistance by as much as 50%. In general the lower the 

probability of failure whether due low fire severity or thickness of insulation the 

greater the effect of an increase in the magnitude of COV. 

The choice of distribution function used to describe the distribution of fire load 

density is significant for fire load densities less than 40 kg/m2. At higher fire load 

densities the probability of failure is of such a magnitude that the shape of the tail 

of the distribution is less important. For heavily insulated beams where the 

probability of failure is also likely to be small (less than 0.001) the choice of 

distribution function becomes significant for fire load densities greater than 40 

kg/m2. At medium and low fire load densities the use of a lognormal distribution 

function is, compared to the alternative distributions above and, in as far as the 

distribution represents the data, conservative. 
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For insulated steel beams the probability of failure increases by more than two 

orders of magnitude as the opening factor decreases. For lightly insulated or 

unprotected steel variation in the magnitude of the opening factor has little effect 

on probability of failure. It has also been shown that the probability of failure is 

relatively insensitive to change in the magnitude of the COV. As a consequence of 

the forgoing and because the magnitude of the opening factor can vary during the 

course of a fire it is not conservative to automatically adopt the maximum possible 

opening factor for use in the design for fire. It is proposed that a weighted mean 

value or a range of opening factors with a small COV is used in the fire 

engineering design of steel members rather than a theoretical maximum value of 

opening factor or mean value and large value of COV. 

The insulating material Harditherm 700 had a significant effect on the magnitude 

of the time independent probability of failure of a fire exposed steel beam. It was 

found that 10mm thickness of Harditherm 700 decreased the probability of failure 

by an order of magnitude. Additional 10mm layers of Harditherm 700 decreases 

the time independent probability of failure logaritrimically. It was also found that 

for a specified target probability of failure the first 10mm of Harditherm 700 

increased the time to failure approximately five times compared to that of 

uninsulated steel. Each additional 10mm layers of Harditherm 700 doubled the 

time to failure. 
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Compared to insulated steel beams exposed to fire on four sides, steel floor 

beams supporting a concrete slab on its top flange have a smaller time independent 

probability of failure by an order of magnitude. 

At medium-low fire load density, in comparison with a dead load : live load ratio 

of 1 : 1, the probability of failure is increased by an order, of magnitude when the 

load effect is dominated by dead load and reduced by a factor of three when live 

load dominates. At high fire load density the influence of load type ratio is much 

reduced. 

An insulated steel beam can survive exposed to real fire without increasing the 

probability of failure past that for normal structural failure at ambient conditions 

due to the smaller load ratio for fire conditions. Using the probability of structural 

failure at ambient temperatures as a benchmark a 250 UB beam protected by 

20mm of insulation material and designed for gravity loads appropriate for fire 

conditions will survive a fire fuelled by a medium-low fire load for 70 minutes and 

a fire fuelled by a very high fuel load for 38 minutes. 
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REAL SFSY,SSQRES,RAVE,RSTDEV,GAMA,sumf1,avf1,fy(420) 
REAL G,H,A,B,ETV,MOIST,ESM,DELAY,flc(420),vnt(420),lm<420) 
REAL SPAN,FV,MAXTEMP,TAU,DELTAt,GTEMP(420),L,LSTDEV 
REAL Er,MGAST,STEMP(42 0),ALPHAR,ALPHAC,LAMDA,COHT,SPHT,ETV2 
REAL RHOs,HCONST,RES(420),PFAIL,FSY1,SMOM,LAVE,SSQMOM 
REAL HIGHT, SMAX,SSQMAX,AVMAX,STDMAX,ETV1,RAN,Z0 
REAL MAXKT,KT(420) ,AVMAXKT,HIGHKT,HGAS,AVGAS,SSQGAS,STDGAS,SHGAS 
REAL SHRES,SHOT,SSQHOT,AVHRES,AVSTH,STDTH,HRES(420),TOT 
REAL MAXTEMPS(1 ) ,sstemp (420) ,ASSGTEMP(420) ,ssgtemp (420) 
REAL SRES(1 ),LMOM,FSY2,Al,Bl,Cl,DI,El,J,ASSTEMP(420) 
REAL A4,B4,C4,D4,TERM1,TERM2 DELAY,HEATFLUX,HEATFLUXS 
REAL LAMDAS,L1S,FY6(420),LAMDA3,SFAIL(420),STEMPA 
REAL DUR,DUR1 
REAL LF,LFAVE,SSQLF,LFSTDEV,IN(40),SIZE,START,STEP 
INTEGER Z(4 0) ,I,FPLOT 

INTEGER TIMEP,SIDES,X 
INTEGER T,N,C,IFAIL,NUMB,CC(420),FLAG,D,TIME,FLAG2 
DATA A4,B4,C4,D4/-3.98691,723.163,130.98859,36.72 62/ 
DATA A5,B5,C5,D5/-19.9 9 06,7 57.516,134.2853,41.0875/ 
DATA A6,B6,C6,D6/-25.8946,729.46,98.7086,31.83 08/ 
DATA A7,B7,C7,D7/20.2186,937.1582,77.1994,-2.2195/ 
DATA A8,B8,C8,D8/-38.4666,812.9 669,53.5437,18.667/ 
DATA A9,B9,C9,D9/-15.3263,7 88.4 9 67,118.23 98,33.3218/ 
DATA A10,B10,C10,D10/-7.0097,67 9.6237,82.2179,21.2223 6/ 
DATA SFSY,SSQFSY,AVE,STDEV,Er/0,0,0,0,.5/ 
DATA A,B,SPAN,DELTAt/3.8620,0.099750,3.0000,0.01667/ 
DATA G,H,CC(300)/2.0,1.929,0/ 
DATA FLAG,D,RHOs,NUMB/0,0,7850,0/ 
DATA A1,B1,C1/-0.15266728,-0.26755251,0.027977605/ 
DATA Dl,El/-0.00103877,0.73690988/ 
DATA All,Bll,Cll,Dll/-31.2 94 6,810.87 9,111.154,3 6.3 925/ 
DATA A12,B12,C12,D12/12.59 9,1121.81,117.26,-1.8433/ 
DATA A13,B13,C13,D13/-141.3 27 6,884.43 6,77.177,44.319/ 
DATA A14,B14,C14,D14/23.04152,925.5311,167.2161,-1.973 986/ 
DATA A15,B15,C15,D15/3 9.63 68,828.0219,13 9.59 9,-2.19859/ 
DATA Al6,B16,C16,D16/34.6659,83 9.7 62,89.8403,-2.0085/ 
DATA A17,Bl7,C17,D17/30.6379,842.4778,78.4072,-1.87303/ 
DATA A18,B18,C18,D18/3 3.978,8T9 3.033,1304.439,-1.6396/ 
DATA A19,B19,C19,D19/19. 859,1341.42,303.214,-1.46224/ 
DATA A20,B2 0,C2 0,D20/-60.4856,113 6.8317,321.1538,12 6.03 56/ 
DATA A21,B21,C21/1.0371021,-.0016071906,6.2331477E-6/ 
DATA D21/-2.0394809E-7/ 
DATA A31,B31,C31/-4.4231E-10,-7.273E-8,-9.091E-6/ 
DATA D31,E31/3.0684E-8,-3.222E-ll/ 
DATA A22,B22,C22,D22/-21.079,22.11085,1832.594,-338.54787/ 
DATA A23,B23,C23,D23/34. 699,2908. 449,598.32175,-1.58798/ 
DATA A24,B24,C24,D24/39.1465,865.0871,164.35177,-1.8095/ 
DATA A25,B25,C25,D25/-66.28,1550.252,3 61.44,134.44/ 
DATA HEATFLUXS,DELAY,DTIME /0,0,0/ 
DATA A32,B32,C32/-5.72937E-10,-9.2940447E-8,-1.146027E-5/ 
DATA D32,E32/3.93783 9E-8,-4.08108 5E-ll/ 
DATA A40,B40,C40/-6.9855747E-10,-9.696143E-8,-1.022577E-5/ 
DATA D40,E40/4.0689259E-8,-5.19 9 66178E-ll/ 
DATA A41,B41,C41/-9.7155698E-10,-1.2 089863E-7,-1.15293 079E-5/ 
DATA D41,E41/5.13115668E-8,-7.3050438E-11/ 



DATA A42,B42,C42/1.0412109,-.00163433 59,6.8647299E-6/ 
DATA D42/-2.2453881E-7/ 
DATA A43,B43,C43/1.02 99269,-.0 013 48,5.63 6498E-6/ 
DATA D43/-1.884478E-7/ 
DOUBLE PRECISION FSY 
DOUBLE PRECISION G05DDF,G05DGF,G05DEF,G05CAF,G05DPF 
DOUBLE PRECISION S,GVAR,LIM,FYO 
DOUBLE PRECISION LLOAD,RLOG,FL,VENT,INS,K,AREA,VOL 

EXTERNAL G05DDF,G05DGF,G05DEF,G05CAF,G05DPF,G05CBF 
CALL G05CBF(0) 
IFAIL = 0 

C DESIGNATE NAME OF OUTPUT FILE 
OPEN (06,FILE= 'H4') 

C DESIGNATE THE NUMBER OF SIMULATIONS "N" REQUIRED 
N = 100000 

C TO OBTAIN A PLOT OF THE VALUES OF PARTICULAR VARIABLES 
C AT FAILURE FPLOT = 1; NORMAL FPLOT = 2 
C ( AND FOR EXAMPLE SET "SIZE" = FSY 
C SET VALUES FOR START AND STEP TO DIMENSION HISTOGRAM) 

FPLOT = 1 

IF ( FPLOT .EQ. 1 .OR. FPLOT .EQ. 2) THEN 
START = 0 
STEP =2.0 
IN(0) = START 
DO 480 I = 1,36 
IN(I) = STEP + IN(I-l) 

480 CONTINUE 
END IF 

DO 21 T = 1,N 

LLOAD = G05DPF(1.4079D0,16.21180D0,IFAIL) 
RLOG = (G05DEF(4.05150D0,0.0997D0)) 
LMOM = ((LLOAD + RLOG)*(SPAN ))/4 

c LMOM = G05DEF(3.29490D0,0.10040D0) 
SMOM = LMOM+ SMOM 
SSQMOM = (LMOM**2) + SSQMOM 

C IF ( LMOM .LT. 45) THEN 
c GO TO 21 
c END IF 

FL = G05DEF(2.8320D0,.34D0) 
C IF ( FL .LT. 25) THEN 
c GO TO 21 
C END IF 

FSY = G05DDF(295.0D0,29.5001D0) 
C IF ( FSY .GT. 280 ) THEN 
c GO TO 21 
c END IF 



IF (FPLOT .EQ. 2 ) THEN 
SIZE = FL 
LF = LF + SIZE 
SSQLF = (SIZE**2) + SSQLF 

IF ( SIZE .GE.IN(O) .AND. SIZE 
Z(l) = Z(l) + 1 
END IF 
IF ( SIZE .GE.IN(l) .AND. SIZE 
Z(2) = Z(2) + 1 
END IF 
IF ( SIZE .GE.IN(2) .AND. SIZE 
Z(3) = Z(3) + 1 
END IF 
IF ( SIZE .GE.IN(3) .AND. SIZE 
Z(4) = Z(4) + 1 
END IF 
IF ( SIZE .GE.IN(4) .AND. SIZE 
Z(5) = Z(5) + 1 
END IF 
IF ( SIZE .GE.IN(5) .AND. SIZE 
Z(6) = Z(6) + 1 
END IF 
IF ( SIZE .GE.IN(6) .AND. SIZE 
Z(7) = Z(7) + 1 
END IF 
IF ( SIZE .GE.IN(7) .AND. SIZE 
Z(8) = Z(8) + 1 
END IF 
IF ( SIZE .GE.IN(8) .AND. SIZE 
Z(9) = Z(9) + 1 
END IF 
IF ( SIZE .GE.IN(9) .AND. SIZE 
Z(10) =Z(10) + 1 
END IF 
IF ( SIZE .GE.IN(IO) .AND. SIZE 
Z(ll) =Z(11) + 1 
END IF 
IF ( SIZE .GE.IN(ll) .AND. SIZE 
Z(12) =Z(12) + 1 
END IF 
IF ( SIZE .GE.IN(12) .AND. SIZE 
Z(13) = Z(13) + 1 
END IF 
IF ( SIZE .GE.IN(13) .AND. SIZE 
Z(14) = Z(14) + 1 
END IF 
IF ( SIZE .GE.IN(14) .AND. SIZE 
Z(15) = Z(15) + 1 
END IF 
IF ( SIZE .GE.IN(15) .AND. SIZE 
Z(16) = Z(16) + 1 
END IF 
IF ( SIZE .GE.IN(16) .AND. SIZE 
Z(17) = Z(17) + 1 
END IF 

.LT. IN(1) 

.LT. IN(2) 

.LT. IN(3) 

.LT. IN(4) 

.LT. IN(5) 

.LT. IN(6) 

.LT. IN(7) 

.LT. IN(8) 

.LT. IN(9) 

THEN 

THEN 

THEN 

THEN 

THEN 

THEN 

THEN 

THEN 

THEN 

.LT. IN(10)) THEN 

.LT. IN(ll)) THEN 

.LT. IN(12)) THEN 

.LT. IN(13)) THEN 

.LT. IN(14)) THEN 

.LT. IN(15)) THEN 

.LT. IN(16)) THEN 

.LT. IN(17)) THEN 



IF ( SIZE .GE.IN(17) .AND. SIZE .LT. IN(18)) THEN 
Z(18) = Z(18) + 1 
END IF 
IF ( SIZE .GE.IN(18) .AND. SIZE .LT. IN(19)) THEN 
Z(19) = Z(19) + 1 
END IF 
IF ( SIZE .GE.IN(19) .AND. SIZE .LT. IN(20)) THEN 
Z(20) = Z(20) + 1 
END IF 
IF ( SIZE .GE.IN(20) .AND. SIZE .LT. IN(21)) THEN 
Z(21) = Z(21) + 1 
END IF 
IF ( SIZE .GE.IN(21) .AND. SIZE .LT. IN(22)) THEN 
Z(22) = Z(22) + 1 
END IF 
IF ( SIZE .GE.IN(22) .AND. SIZE .LT. IN(23)) THEN 
Z(23) = Z(23) + 1 
END IF 
IF ( SIZE .GE.IN(23) .AND. SIZE .LT. IN(24)) THEN 
Z(24) = Z(24) + 1 
END IF 
IF ( SIZE .GE.IN(24) .AND. SIZE .LT. IN(25)) THEN 
Z(25) = Z(25) + 1 
END IF 
IF ( SIZE .GE.IN(25) .AND. SIZE .LT. IN(26)) THEN 
Z(26) = Z(26) + 1 
END IF 
IF ( SIZE .GE.IN(26) .AND. SIZE .LT. IN(27)) THEN 
Z(27) = Z(27) + 1 
END IF 
IF ( SIZE .GE.IN(27) .AND. SIZE .LT. IN(28)) THEN 
Z(28) = Z(28) + 1 
END IF 
IF ( SIZE .GE.IN(28) .AND. SIZE .LT. IN(29)) THEN 
Z(29) = Z(29) + 1 
END IF 
IF ( SIZE .GE.IN(29) .AND. SIZE .LT. IN(30)) THEN 
Z(30) = Z(30) + 1 
END IF 
IF ( SIZE .GE.IN(30) .AND. SIZE .LT. IN(31)) THEN 
Z(31) = Z(31) + 1 
END IF 
IF ( SIZE .GE.IN(31) .AND. SIZE .LT. IN(32)) THEN 
Z(32) = Z(32) + 1 
END IF 
IF ( SIZE .GE.IN(32) .AND. SIZE .LT. IN(33)) THEN 
Z(33) = Z(33) + 1 
END IF 
IF ( SIZE .GE.IN(33) .AND. SIZE .LT. IN(34)) THEN 
Z(34) = Z(34) + 1 
END IF 
IF ( SIZE .GE.IN(34) .AND. SIZE .LT. IN(35)) THEN 
Z(35) = Z(35) + 1 
END IF 
IF ( SIZE .GE.IN(35) .AND. SIZE .LT. IN(36)) THEN 
Z(36) = Z(36) + 1 
END IF 



END IF 
X = X + 1 

FIRE = 0 FOR REAL FIRE: FIRE = 1 FOR STANDARD FIRE 
FIRE = 0 
TO USE EXPERIMENTAL STEEL TEMP CURVE TC = 1 
TC = 0 
BHP MODEL = 1: JRL MODEL = 2 
MODEL = 2 
SIDES = 3 
RATIO = .8 
CONCRETE SLAB SUPPORTED BY A 100UC: UC100 = 1 
UC100 = 0 
CONCRETE SLAB SUPPORTED BY A 2 0 0UB: UB2 00 = 1 
UB200 = 0 

K = G05DDF(1.0148D0,.047800D0) 
K = 1 

VENT = G05DDF(0.040D0,0.004D0) 
VENT = G05DEF(-2.5310 ,0.09971) 
IF( VENT .LT. .01) THEN 

VENT = .01 
END IF 
IF (VENT .GT. 0.15) THEN 

VENT = 0.15 
END IF 

INS = G05DDF(0.02000D0 ,0.0020000D0) 
c INS = 0.019 

S = G05DDF(470.450D0, 14.550D0) 
C S = 470.45 

GVAR = G05DDF(1.0D0,0.00001D0) 
VOL = G05DDF(0.004750D0,.0000001D0) 
VOL = 0.00475 
MOIST = 0.037 6 
AREA = G05DDF(0.757D0,0.07570D0) 
AREA = 0.757 
FV = AREA/VOL 

ESM = FV/7.85 
IF ( ESM .GT. 40) THEN 
ESM = 40 
ELSE IF( ESM .LT. 5) THEN 
ESM = 5 
END IF 

GAMA = G05DGF(G,H,IFAIL) 
ETV1 = G05DBF(1.0) 
ETV = -(LOG(ETVl)*2.648)+12.061000 
DLOAD = G05DDF(13.33,0.533) 
EO = G05DDF(1.0,0.1) 
LMOM = ((GAMA + RLOG)*(SPAN**2))/8 



c LMOM = 40 

C LMOM = ((EO * (DLOAD + LLOAD))*(SPAN**2))/8 

12 IF (FSY .GT. 500.0) THEN 
NUMB = NUMB +1 
END IF 
C = 1 

C !!1 NOTE - MINIMUM STEEL TEMPERATURE =20 DEGREES !!J 
GTEMP(1) = 20 
STEMP(l) = 22 
LAMDA = 0 
FLAG = 0 
FLAG2 = 0 
HEATFLUXS = 0 

TEMPH = 0 
c SRES(T) = 0 

HIGHT = 0 
C THERMAL CONDUCTIVITY MEAN AND STD'DEV BASED ON CURVE FIT 
cc LIM = G05DDF(0.0D0, 1.0 0D0) 

C STRENGTH MODEL COEFFICIENTS 
cc FY0 = G05DDF(0.0D0,1.00D0) 

C REMEMBER TIME SET TO 1.0 MIN 
C SET DURATION OF THE FIRE 

DUR = 5 
DO 19 L = DELTAt,DUR,DELTAt 

C DO 19 L = 1.0,150.0,0.5 
C = C + 1 
TIME = C 
IF ( FIRE .EQ. 0) THEN 

GO TO 889 
END IF 

C STANDARD TEMP/TIME CURVE 
GTEMP(C)= (345*LOG10(((8*L*60)+1))*GVAR)+GTEMP(1) 
GO TO 888 

C GAS TEMP BASED ON BHP 02 TEST -CEILING 
C IF ( L .LE. 2 6 )THEN 
C GTEMP(C) = 1/(0. 029455438+(-1.2472793E-6*l**3) + (-0.0012928895 
C + *1**.5)) 
C ELSE 
C GTEMP(C) =(-34602440+(90847.785*L)+(3.5680628E8/L**.5) 
C + +<-2.1465183el0/L**1.5)+((2.576449E10*LOG(L))/L**2)) 
C END IF 
C GAS TEMP BASED ON BHP 02 TEST AVERAGE 
CB GTEMP(C) = l/(0.023540254+(-.009666658*L)+(.001421961*L**2) 
CB + +(-8.3048099E-5*L**3)+(1.684907E-6*L**4)) 
889 TAU = FL/(330*VENT) 

MAXTEMP = 250*((10*VENT)**(.1/(VENT**.3)))*EXP(-TAU*VENT**2)* 
+ (((3*(1-EXP(-.6*TAU)))-(l-EXP(-3*TAU))+(4*(l-EXP(-12*TAU))))) 

C + + (600/VENT)**0.5 
C PRINT*, TAU,MAXTEMP 

IF ( L .LE. TAU ) THEN 
GTEMP(C)= 250*((10*VENT)**(.1/(VENT**.3)))*EXP(- L *VENT**2)* 

+ (((3*(l-EXP(-.6* L )))-(l-EXP(-3* L ))+(4*(1-EXP(-12* L ))))) 



C + +(600/VENT)**0.5 
ELSE 

GTEMP(C) = (-600*(L/TAU-1))+MAXTEMP 
END IF 

888 IF (GTEMP(C) .LE. 19) THEN 
GOTO 20 
END IF 

MGAST = (GTEMP(C)+GTEMP(C-1))/2.0 

C HEAT TRANSFER TERMS IN KJOULES/M DEGREES HOURS 
ALPHAC =83.6 

C THERMAL CONDUCTIVITY after BENNETTS 
C LAMDA = G05DDF(0.33910,0.000001) 

IF ( SIDES .EQ. 3) THEN 
GO TO 997 
END IF 

C DERIVED EXPRESSIONS FOR THERMAL CONDUCTIVITY - 4 SIDED 
IF ( STEMP(C-l) .GT.100) THEN 
LAMDA =(0.8504+(11.03/ESM**2) + ((-6.904-0.023*ESM) / 

+ STEMP(C-l)**0.5))+(LlM*0.0577) 
ELSE 
LAMDA = (0.099+(6.84/ESM**2) + ((-4.31-(382.52/ESM**2) ) / 

+ STEMP(C-l)**1.5)) 
END IF 
DELAY = 0.55 + (0.000135 * ((1000*INS)**3)) 
GO TO 996 

C DERIVED EXPRESSIONS FOR THERMAL CONDUCTIVITY - 3 SIDED 
997 IF (STEMP(C-l) .LT. 100) THEN 

LAMDA = 0.2977-(0.00768*ESM)+((36.426-(331.66/ESM**0 . 5) )/ 
+ STEMP(C-l)**2) 

ELSE 
LAMDA = ( (0.592-(0.015*ESM) + ( (2093 . 7-( 0.036*ESM**3))/ 

+ STEMP(C-l)**1.5)+(((-53 32.7+(0.103*ESM**3))* 
+ LOG(STEMP(C-l)))/STEMP(C-l)**2)))+(L1M*0.0577) 

END IF 
DELAY = 0.497 +(0.0087*( (1000*INS)**2) ) 

C ECCS COEFFICIENT OF HEAT TRANSFER - UNINSULATED STEEL 
C ALPHAR = 2.04E-7*Er*((MGAST+273)**2 + (STEMP(C-l)+273)**2) 
C + *(STEMP(C-1) + MGAST +546) 

C CTICM COEFFICIENT OF HEAT TRANSFER - UNINSULATED STEEL 
C ALPHAR = 1.25E-7((MGAST+273)**2 + (STEMP(C-l)+273)**2) 
C + *(STEMP(C-1) + MGAST + 546) 

C CTICM COEFFICIENT OF HEAT TRANSFER - INSULATED STEEL 
996 ALPHAR = 5E-7 *(GTEMP(C)+273)**3 

COHT = l/((1/(ALPHAR+ALPHAC))+(INS/LAMDA)) 
TERM1 = ((1/(ALPHAR+ALPHAC) ) +(INS/(2.0*LAMDA) )) 

SPHT = ((3.8E-7*STEMP(C-1)**2)+(2E-4*STEMP(C-l)) +0.472) 
C IF (INS .EQ. 0) THEN 
c GO TO 3 9 
c END IF 

TERM2 = (((SPHT*RHOs)/FV)+4180*MOIST*INS) 



IF (STEMP(C-l) -LT. 100) THEN 
STEMP(C) =((1/TERM1)*(1/TERM2)*(MGAST-STEMP(C-l))*DELTAt 

+ ) + STEMP(C-l) 
GOTO 998 
END IF 
IF (FLAG2 .GT. 1) THEN 
GOTO 13 
END IF 
STEMP(C) = 100 
FLAG = FLAG + 1 
IF (FLAG .GT. DELAY) THEN 
FLAG2 = 1 
GO TO 13 
ELSE 
GOTO 9 98 
END IF 

13 HCONST = (COHT*DELTAt *FV)/(SPHT*RHOs) 
STEMP(C) = ((GTEMP(C)-STEMP(C-l))*HCONST )+STEMP(C-l) 

C WRITE(06,40) GTEMP(C),MGAST,STEMP(C) 

C UNINSULATED STEEL 
C 39 HCONST = ((ALPHAR+ALPHAC)*0.01667*FV)/(SPHT*RHOs) 

C STEMP(C) = ((GTEMP(C)-STEMP(C-l))*HCONST )+STEMP(C-l) 

998 HIGHT = STEMP(C) 
c print*, c,stemp(c),fsy,lamdas,lamda 

RES (C) = 0 
c ssgtemp(c) = ssgtemp(c) + gtemp(c) 
C SSTEMP(C) = SSTEMP(C) + STEMP(C) 
c CC(C) = CC(C) +1 
c KT(C) = (AREA/VOL)*(LAMDA/INS) 
c IF ( KT(C) .GT. KT(C-l) ) THEN 
c HIGHKT = KT(C) 
c END IF 

IF ( TC .EQ. 1 ) THEN 
c STEMP(C) = A20+(B20/(1+((L*60)/C20)**D20)) 
C STEMP(C) = A20+(B20/(1+EXP(-((L*60)-C20)/D20))) 

STEMP(C) = A15+(B15/(1+((L*60)/C15)**D15)) 

IF (STEMP(C) .LE. 22 ) THEN 
STEMP(C) = 22 

END IF 
END IF 

IF ( MODEL .EQ. 1) THEN 
GO TO 991 
ELSE IF (MODEL .EQ. 2) THEN 
GO TO 884 

END IF 
884 IF (SIDES -EQ. 3) THEN 

GO TO 995 
pvrn TT? 

C STRENGTH REDUCTION MODEL *** 4 SIDED EXPOSURE**' 



+ 
+ 

IF (STEMP(C) .LT. 200) THEN 
FSY2 = FSY*(1-(STEMP(C)/1482.6)) 
GOTO 100 
END IF 
IF (STEMP(C) .LT. 7 00) THEN 
FYM = ((2.9907+(-.0238*STEMP(C))+, 
*LOG(STEMP(C)))+(-!.5891E-5*STEMP(C) 

4.7523E-5*STEMP(C)*' 
**2*STEMP(C)**.5) 

+(1.964E-7*STEMP(C)**3))+(FY0 * 0.07316) ) 
IF (FYM .GT. 1 ) THEN 

FYM = 1 
END IF 

FSY2 = FSY * FYM 
GOTO 100 
END IF 
IF (STEMP(C) .GT. 
STEMP(C) = 800 
END IF 
IF (STEMP(C) .LE. 
FSY2 = FSY*(0.2219-((STEMP(C) 600)/472.95)) 
END IF 
GO TO 100 

800 ) THEN 

800) THEN 

STRENGTH REDUCTION MODEL BHP MODEL 

IF (STEMP(C).LE. 215 ) THEN 
PRINT *, 'BHP' 

FSY2 = FSY 
GOTO 100 
END IF 

IF (STEMP(C) .GT. 905) THEN 
STEMP(C) =905 

END IF 
FSY2 = FSY*((905 - STEMP(C))/690) 
GO TO 100 
IF ( UC100 .EQ. 1) THEN 
GO TO 883 
END IF 
IF ( UB200 .EQ. 1) THEN 
GO TO 882 
END IF 
IF (RATIO .EQ. .6) THEN 
GO TO 880 
ELSE IF ( RATIO .EQ. .8) THEN 
GO TO 881 
END IF 

STRENGTH REDUCTION MODEL **** 3 
RATIO =0.6 WEB EQ 2 03 9 
STEMPA = STEMP(C)*1.1977 
IF (STEMPA .LT. 2 00) THEN 
FSY2 = FSY*(A42+ B42*STEMPA+ C42*STEMPA**2 

+D42*STEMPA**2.5) 
GOTO 100 
END IF 

SIDED EXPOSURE 

IF ( STEMPA .GT. 
STEMP(C) = 800 
END IF 

800) THEN 
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FYM = ((A42+ B42*STEMPA+ C42*STEMPA**2 
+D42*STEMPA**2.5))+(FYO*0.07316) 

IF ( FYM .GT. 1 ) THEN 
FYM = 1 

END IF 
FSY2 = FYM * FSY 
print*,' 360UB 0.6' 

GO TO 100 

C THE 1.15 AND 0.908 TERMS BELOW ARE TO CHECK 0.2% & 
C FSY2 = FSY 
C ELSE 
c FSY2 = FSY*(1.1517143+(stemp(c)*-0.001394643) ) 
C FSY2 = FSY*(0.9180147+(-1.86728e-6*STEMP(C)**2)+ 
C + (0.0106656*(STEMP(C)**0.5))) 

C FSY2 = FSY*(-0.851286+(0.0136607*STEMP(C))+ 
c + (-2.957142E-5*stemp(c)**2)+(1.75E-8*stemp(c)**3)) 

C STRENGTH REDUCTION MODEL *** 3 SIDED EXPOSURE *** 
C RATIO =0.82 BASED ON 3 60 UB WEB EQ 2 03 9 
881 STEMPA = STEMP(C)*1.0 

IF (STEMP(C) .LT. 200) THEN 
FSY2 = FSY*(A21+ B21*STEMPA+ C21*STEMPA**2 

+ +D21*STEMPA**2.5) 
GOTO 100 
END IF 

IF ( STEMPA .GT. 80 0) THEN 
STEMP(C) = 800 
END IF 

FYM = (A21+ B21*STEMPA+ C21*STEMPA**2 
+ +D21*STEMPA**2.5 )+(FY0*0.07316) 

IF ( FYM .GT. 1 ) THEN 
FYM = 1 

END IF 
FSY2 = FYM * FSY 

c print*,' 360UB.81 

GO TO 100 

C STRENGTH REDUCTION MODEL **** 3 - SIDED EXPOSURE 
C RATIO = 0.82 BASED ON 200 UBP WEB EQU 6102 
882 IF (STEMP(C) .LT. 200) THEN 

FSY2 = FSY*(EXP(A31+ B31*STEMP(C)+ C31*STEMP(C)**2 
+ +D31*STEMP(C)**3 +E31*STEMP(C)**4) ) 

GOTO 100 
END IF 
IF ( STEMP(C) .GT. 83 0) THEN 
STEMP(C) =83 0 
END IF 
FSY2 = FSY*(EXP(A31+ B31*STEMP(C)+ C31*STEMP(C)**2 

+ +D31*STEMP(C)**3 +E31*STEMP(C)**4)) 
c print*, '200UB' 



GO TO 100 

STRENGTH REDUCTION MODEL **** 3 - SIDED EXPOSURE ** 
RATIO =0.82 BASED ON 110 UC WEB EQ6102 
IF (STEMP(C) .LT. 200) THEN 
FSY2 = FSY*(EXP(A32+ B32*STEMP(C)+ C32*STEMP(C)**2 

+D32*STEMP(C)**3 +E32*STEMP(C)**4)) 
GOTO 100 
END IF 
IF ( STEMP(C) .GT. 830) THEN 
STEMP(C) =83 0 
END IF 
FSY2 = FSY*(EXP(A32+ B32*STEMP(C)+ C32*STEMP(C)**2 

+D32*STEMP(C)**3 +E32*STEMP(C)**4)) 
print*, ' 100UC 
GO TO 100 

100 RES(C) = (FSY2 *S *K )/1000 

IF (RES(C) .GE. LMOM) THEN 
GOTO 19 

END IF 
SFAIL(C) =SFAIL(C) +1.0 

IF( FPLOT .EQ. 1) THEN 
SIZE = FL 
LF = LF + SIZE 
SSQLF = (SIZE**2) + SSQLF 

IF 
Z(l 
END 
IF 
Z(2 
END 
IF 
Z(3, 
END 
IF 
Z(4) 
END 
IF 
Z(5] 
END 
IF 
Z(6) 
END 
IF 
Z(7) 
END 
IF 
Z(8) 
END 
IF 
Z(9) 
END 

( SIZE .GE 
= Z(l) + 
IF 
( SIZE .GE 
= Z(2) + 
IF 
( SIZE .GE 
= Z(3) + 
IF 
( SIZE .GE 
= Z(4) + 
IF 
( SIZE .GE 
= Z(5) + 
IF 
( SIZE .GE 
= Z(6) + 
IF 
( SIZE .GE 
- Z(7) + 
IF 
( SIZE .GE 
= Z(8) + 
IF 
( SIZE .GE 
= Z(9) + 
IF 

IN(0) 
1 

IN(1) 
1 

IN(2) 
1 

IN(3) 
1 

IN(4) 
1 

IN (5) 
1 

IN(6) 
1 

IN(7) 
1 

IN (8) 
1 

.AND. 

.AND. 

.AND. 

.AND. 

.AND. 

.AND. 

.AND. 

.AND. 

.AND. 

SIZE 

SIZE 

SIZE 

SIZE 

SIZE 

SIZE 

SIZE 

SIZE 

SIZE 

.LT. 

.LT. 

.LT. 

.LT. 

.LT. 

.LT. 

.LT. 

.LT. 

.LT. 

IN(1)) THEN 

IN(2)) THEN 

IN(3)) THEN 

IN(4)) THEN 

IN(5)) THEN 

IN(6)) THEN 

IN(7)) THEN 

IN (8)) THEN 

IN ( 9)) THEN 
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IF ( SIZE .GE.IN(9) 
Z(10) =Z(10) + 1 
END IF 
IF ( SIZE .GE.IN(10 
Z(ll) =Z(11) + 1 
END IF 
IF ( SIZE .GE.IN(11 
Z(12) =Z(12) + 1 
END IF 
IF ( SIZE .GE.IN(12 
Z(13) = Z(13) + 1 
END IF 
IF ( SIZE .GE.IN(13 
Z(14) = Z(14) + 1 
END IF 
IF ( SIZE .GE.IN(14 
Z(15) = Z(15) + 1 
END IF 
IF ( SIZE .GE.IN(15 
Z(16) = Z(16) + 1 
END IF 
IF ( SIZE .GE.IN(16 
Z(17) = Z(17) + 1 
END IF 
IF ( SIZE .GE.IN(17 
Z(18) = Z(18) + 1 
END IF 
IF ( SIZE .GE.IN(18 
Z(19) = Z(19) + 1 
END IF 
IF ( SIZE .GE.IN(19 
Z(20) = Z(20) + 1' 
END IF 
IF ( SIZE .GE.IN(20 
Z(21) = Z(21) + 1 
END IF 
IF ( SIZE .GE.IN(21 
Z(22) = Z(22) + 1 
END IF 
IF ( SIZE .GE.IN(22 
Z(23) = Z(23) + 1 
END IF 
IF ( SIZE .GE.IN(23 
Z(24) = Z(24) + 1 
END IF 
IF ( SIZE .GE.IN(24 
Z(25) = Z(25) + 1 
END IF 
IF ( SIZE .GE.IN(25 
Z(26) = Z(26) + 1 
END IF 
IF ( SIZE .GE.IN(26 
Z(27) = Z(27) + 1 
END IF 
IF ( SIZE .GE.IN(27 
Z(28) = Z(28) + 1 
END IF 

.AND. SIZE .LT. IN(IO)) THEN 

.AND. SIZE .LT. IN(ll)) THEN 

.AND. SIZE .LT. IN(12)) THEN 

.AND. SIZE .LT. IN(13)) THEN 

.AND. SIZE .LT. IN(14)) THEN 

.AND. SIZE .LT. IN(15)) THEN 

.AND. SIZE .LT. IN(16)) THEN 

.AND. SIZE .LT. IN(17)) THEN 

.AND. SIZE .LT. IN(18)) THEN 

.AND. SIZE .LT. IN(19)) THEN 

.AND. SIZE .LT. IN(20)) THEN 

.AND. SIZE .LT. IN(21)) THEN 

.AND. SIZE .LT. IN(22)) THEN 

.AND, SIZE .LT. IN(23)) THEN 

.AND. SIZE .LT. IN(24)) THEN 

.AND. SIZE .LT. IN(25)) THEN 

.AND. SIZE .LT. IN(26)) THEN 

.AND. SIZE .LT. IN(27)) THEN 

.AND. SIZE .LT. IN(28)) THEN 



IF ( SIZE .GE.IN(28) .AND. SIZE .LT. IN(29)) THEN 
Z(29) = Z(29) + 1 
END IF 
IF ( SIZE .GE.IN(29) .AND. SIZE .LT. IN(30)) THEN 
Z(30) = Z(30) + 1 
END IF 
IF ( SIZE .GE.IN(30) .AND. SIZE .LT. IN(31)) THEN 
Z(31) = Z(31) + 1 
END IF 
IF ( SIZE .GE.IN(31) .AND. SIZE .LT. IN(32)) THEN 
Z(32) = Z(32) + 1 
END IF 
IF ( SIZE .GE.IN(32) .AND. SIZE .LT. IN(33)) THEN 
Z(33) = Z(33) + 1 
END IF 
IF ( SIZE .GE.IN(33) .AND. SIZE .LT. IN(34)) THEN 
Z(34) = Z(34) + 1 
END IF 
IF ( SIZE .GE.IN(34) .AND. SIZE .LT. IN(35)) THEN 
Z(35) = Z(35) + 1 
END IF 
IF ( SIZE .GE.IN(35) .AND. SIZE .LT. IN(36)) THEN 
Z(36) = Z(36) + 1 
END IF 
END IF 

GOTO 2 0 
CONTINUE 
SMAX = HIGHT + SMAX 
MAXTEMPS(T) = HIGHT 
IF ( HIGHT .GT. 500 ) THEN 
END IF 

TRES = TRES + SRES(T) 
TSQRES = (SRES(T)**2) + TSQRES 

SSQMAX = (HIGHT**2) +SSQMAX 
SHRES = HRES + SHRES 

MAXKT = HIGHKT + MAXKT 
SSKT = (HIGHKT**2) + SSKT 
STEMPH = TEMPH + STEMPH 
SSQTH = (TEMPH**2) + SSQTH 
SHGAS = SHGAS + HGAS 
SSQGAS = (HGAS**2) + SSQGAS 

CONTINUE 
AVHRES = SHRES/REAL(N) 
AVSMAX = SMAX/REAL(N) 
STDMAX = SQRT(((REAL(N)*SSQMAX)-(SMAX**2))/(REAL(N)* 

h (REAL(N)-l))) 
AVGAS = SHGAS/REAL(N) 
STDGAS = SQRT(((REAL(N)*SSQGAS)-(SHGAS**2))/(REAL(N)* 

H (REAL(N)-l))) 
AVMAXKT = MAXKT/REAL(N) 
STDKT = SQRT(((REAL(N)*SSKT )-(MAXKT**2))/(REAL(N)* 

i- (REAL(N)-l) ) ) 
WRITE(06,400) AVMAXKT,STDKT 
FORMAT(IX,'AVMAXKT = ',F8.2,3X,'STDEV = ',F8.2) 



C WRITE(06,22) AVSMAX,STDMAX 
22 FORMAT(IX,'AV MAX STEEL TEMP = ',F6.2,3X,'STDEV = ',F6.2) 
C WRITE(06,27) AVGAS,STDGAS 
C27 FORMAT(IX,'AV MAX GAS TEMP = ',F6.2,3X,'STDEV = ',F6.2) 

DO 140 C = 2,300 
TFAIL = TFAIL + SFAIL(C) 
sumfl = sumfl + flc(C) 

140 CONTINUE 
PFAIL = TFAIL/REAL(N) 

WRITE(06,45) PFAIL,NUMB,SFAIL(2),N 
C PRINT*, TFAIL 
c AZRES = ZRES/TFAIL 
C AVSTH = SHOT/REAL(TFAIL) 
C STDTH = SQRT(((TFAIL *SSQHOT)-(SHOT**2))/(TFAIL * 
C + (TFAIL -1))) 
c WRITE(06,23) AVSTH,STDTH 
23 FORMAT(IX,'AV FAIL TEMP = ',F6.2,3X,'STDEV = ',F6.2) 
C RAVE = SRES/REAL(TFAIL) 
C RSTDEV = SQRT(((SSQRES*TFAIL )-(SRES**2))/(TFAIL * 
C + (TFAIL -1))) 

LAVE = SMOM/REAL(N) 
LSTDEV = SQRT(((SSQMOM*REAL(N))-(SMOM**2))/(REAL(N)* 
+ (REAL(N)-l))) 

IF ( FPLOT .EQ. 1) THEN 
LFAVE = LF/REAL(TFAIL) 
LFSTDEV = SQRT(((SSQLF*REAL(TFAIL))-(LF**2))/(REAL(TFAIL)* 
+ (REAL(TFAIL)-1))) 
END IF 

IF ( FPLOT .EQ. 2 ) THEN 
LFAVE = LF/REAL(N) 
LFSTDEV = SQRT(((SSQLF*REAL(N))-(LF**2))/(REAL(N)* 
+ (REAL(N)-l))) 
END IF 

C AVETV = SETV/REAL(N) 
C WRITE(06,30) AZRES 

WRITE(06,35) LAVE,LSTDEV 
30 FORMAT(IX,'AVE FAIL RES =',F6.2) 
35 FORMAT(IX,'AVE LMOM = ',F8.2,IX,'STDEV =',F6.2) 

C 40 FORMAT(lX,3X,F8.2,3X,F8.2,3X,F8.2) 
c AARES = TRES/REAL(N) 
c STDRES = SQRT(((REAL(N)*TSQRES)-(TRES **2))/(REAL(N)* 
c + (REAL(N)-l))) 
C WRITE(06,49) AARES,STDRES 
151 FORMAT(IX,F8.2) 
49 F0RMAT(1X,F8.2,1X,F8.2) 
994 FORMAT(IX,'NUMBER OF SIDES EXPOSED ='12,lOx,F8.2,lOx,15) 
45 FORMAT(IX,'THE PROBABILITY OF FAILURE =',F9.7,4X,13,4x,F8.2,4X,18) 

C DO 141 C = 2,300 
C IF (HRES(C) .GT. 00 ) THEN 
C TOT = TOT + 1 
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C END IF 
C141 CONTINUE 
C DO 145 C = 2,300 
C SHRES = HRES(C) + SHRES 
C145 CONTINUE 
C DO 1551 T = 1,N 
C IF (SRES(T) .GT. .1 )THEN 
C WRITE(06,151) SRES(T) 
C END IF 
C1551 CONTINUE 
C TIMEP =0 

durl = dur*60 
DO 150 C = 2,durl 

c IF ( CC(C) .GT. 1 ) THEN 
C ASSTEMP(C) = SSTEMP(C)/(CC(C)) 
c assgtemp(c) = ssgtemp(c)/(CC(c)) 
c END IF 

TIMEP = 1 + TIMEP 
WRITE(06,50) TIMEP,SFAIL(C) 

c WRITE(06,50) C,TIMEP,SFAIL(C),flc(c),vnt(c),fy(c),lm(c) 
C WRITE(06,50) C,TIMEP,ASSGTEMP(C),ASSTEMP(C),CC(C),RES(C),LMOM 
50 F0RMAT(1X,I5,3X,F8.2) 

c 50 FORMAT(IX,15,3X,15,3X,F8.2,3x,F8.2,3x,F8.4,3x,F8.2,3x,F8.2) 
c 50 FORMAT(IX,15,3X,15,3X,F8.2,3X,F8.2,3X,16,3X,F8.2,3X,F8.2) 
C WRITE(06,51) TIMEP, ASSTEMP(C) 
C 51 F0RMAT(1X,I5,3X,F8.2) 
150 CONTINUE 
c DO 160 T = 1,N 
c IF ( FTEMP(T) .GT. 1 ) THEN 
c WRITE(06,165) MAXTEMPS(T) 
cl65 FORMAT ( F8.2) 
C END IF 
cl60 CONTINUE 

IF (FPLOT -EQ. 1 .OR. FPLOT .EQ. 2 ) THEN 
WRITE(06,63 5) LFAVE,LFSTDEV 

635 FORMAT(IX,'AVE VALUE = ',F8.2,IX,'STDEV =',F6.2) 
DO 481 I = 1,36 
WRITE(06,634) IN(I-l),IN(I),Z(I) 

481 CONTINUE 
END IF 

634 FORMAT (IX,F5.2,3X,F5.2,3X,16) 

END 


