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ABSTRACT

A mathematical model of natural convection in three-dimensional enclosures containing
respiring fruits or vegetables is presented. The agricultural produce 1s treated as a porous
media exhibiting transversely orthotropic permeability in which local temperature-

dependent respiration heat generation occurs.

In the numerical investigations conducted, both adiabatic and isothermal boundary
conditions are considered for the cooling and storage process. The influence of container
size, respiration rate and permeability on natural convection is discussed. Numerical
experimental results for temperature distribution, velocity distribution, true transient cooling

and storage process are presented.

It was found that the style of packaging of the agricultural produce and the size of

container were likely to have significant effects on the storage characteristics.
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NOMENCLATURE

Notation

A = surface area of representative elementary volume (r.e.v.), m*

C = specific heat of solid, I/kg'K

C, = specific heat of fluid at constant pressure, J/kg'K

D, = Darcy Number

D, = effective diameter of fruit and vegetables

g = gravitational acceleration, m/s*

G = gravity force, N

G, Gy, G, = X, y and z, components of gravity force

h = grid distance

H,,. = minimum grid distance

k.. = effective thermal conductivity of porous medium, kW/m-K

L = length of the (channels), pipes, m

n = number of channels per unit cross-sectional area, 1/m?*

N = number of channels in a cross-sectional area

Nu = Nusselt number

Nu gy erape = Average Nusselt number on side walls or top or bottom of the
container

n = normal unit vector

P = pressure, N/m*

Vil



Qs
Q
QI 0

"~

u, v, w

NN N

o

VP
X, Y, 2

Xos Yos Zo

= volume flow rate, m*/s

= internal heat source in energy equation, kW/m’
= flow rate in a single pipe, m’/s

= temperature quotient of respiration of fruit and vegetables
= effective radius, m

= Rayleigh number

= defined in equation (3.97a)

= respiration rates, mg Co,y/kgh

= cross-sectional area, m?

= specific surface 1/m

= time, §

= temperatures, °C

iterative time step for solving vector potential

iterative time step for main loop

Temperature, K

= x, y and z components of velocity

= intrinsic velocity, m/s

= volume of fluid inside a r.e.v., m®

= seepage velocity, m/s

= volume of r.e.v., m*

= coordinate

= rectangular enclosure dimensions, m
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Greek Symbols

£ = porosity

P = density, kg/m’

y7i = dynamic viscosity, kg/ms

m = effective viscosity, kg/m-s

K = permeability tensor

o, = convective heat transfer at boundaries, kW/m?-°C

a, B, vy = angles between gravity direction and X, y and z coordinate axis

) = vector potential, m¥/s

) = scalar potential, m%/s

O ater = water content in fruits or vegetable, per cent %

Po = reference air density at 273K, kg/m’

B, = thermal coefficient of volume expansion, 1/K

K = permeability, m?

0 = dimensionless temperature

vy = false transient coefficient of vector potential

) = intermediate variable for Samarskii-Andreyev Implicit Alternating

L )

Direction Method

) = constant, 0-1

JaY4 = iteration time step length

Subscripts
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p =porous media

f = fluid

air = air

s = solid

x, I = X direction or x component
»J =y direction or y component
z, k = z direction or z component
h = hot temperature

c = cold temperature

start = Initial temperature
Superscript

s

= non-dimensional mark



CHAPTER 1

INTRODUCTION

1.1 Background

In modern society the distribution and marketing of fresh agricultural and horticultural
produce is a vitally important activity and the endeavour put into it is reflected in the
general standard of living of the community. Distributing and marketing of fresh fruits and
vegetables encompasses storage, packaging, handling and transportation. The distribution
chain for fresh produce is greatly dependent on good storage and preservation methods,
which in turn, are based upon reliable knowledge of the physical and physiological
processes of individual commodities. Storage conditions are not only important in long-
term cold storage, but also in transport vehicles, interim storage before packaging or retail
outlet storage. Regardless of the manner in which produce is stored, the principal aim of
any storage operation is to extend the useful life of a commodity by preventing significant

deterioration in its quality.

Unless suitable storage and preservation techniques are available to prolong shelf life, most
fruits and vegetables would have to be consumed within a relatively short period of time.
Advances in agriculture have generally resulted in higher yields of fruit and vegetable
crops, however if seasonally harvested crops are not able to be utilised over a period
considerably longer than their growing season, higher yields do not necessarily lead to
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increased benefits - storage is indispensable for prolonging the availability of fresh produce
to consumers, extending the food processing season, damping fluctuations in supply and

minimising market prices.

Fresh commodities are often highly perishable; Salunkhe (1974) estimates that 25% to 50%
of all produce harvested is not consumed because of spoilage during storage or distribution.
Billions of dollars are lost annually by growers, shippers, warehouse owners, processors
and retailers around the world. Essentially, this is because fruits and vegetables are living
organisms even after they are detached from the plant. The life processes require energy
and the produce has to supply this from its own reserves and their continued respiration
uses up oxygen and gives off carbon dioxide and heat. Produce sustains a continuous
weight loss and constantly undergoes changes in chemical composition which may
adversely affect its quality. Also this process of deterioration renders the produce more
susceptible to microbial attack. The other important process common to produce in storage
is water vapour loss or transpiration. Most fruits and vegetables have a water content of
75%-90%. Every percentage point of produce weigh loss may add up to millions of dollars

worth of produce over a season in a large-scale distribution system.

The environmental factors affecting transpiration rates are temperature, relative humidity,
air velocity and barometric pressure in the storage room or inside the storage container.
High relative humidity can reduce the water loss rate but may enhance accelerated decay.
To slow the deterioration, a low temperature is necessary to reduce the respiration rate.
The quality of storage produce is often critically influenced by storage conditions. Table

1.1, after Hardenburg (1986), shows the recommended temperature and the suggested



storage time for a variety of fruits and vegetables.

Table 1.1 Recommended temperature and approximate storage life of fresh fruits and

vegetables in commercial storage (Hardenburg 1986)

Approximate
Commodity Temperature °C storage life
Apple -1-4 1-12 months
Apricots -0.5-0 1-3 weeks
Kiwifruit -0.5-0 3-5 months
Oranges (Fla. & Texas) 0-1 8-12 weeks
Pears -1.5to -0.5 2-7 months
Asparagus 0-2 2-3 weeks
Beans (green) 4-7 7-10 days
Broccoli 0 10-14 days
Brussels sprouts 0 3-5 weeks
Cabbage (Chinese) 0 2-3 months
Carrots (mature) 0 7-9 months
Celery 0 2-3 months
Corn (sweet) 0 5-8 days




Local differences in temperature within the storage rooms or in storage containers will
cause different local rates of deterioration in different places. Thus non-uniform conditions
will affect the overall quality of the stored produce. Sometimes unacceptable deterioration
in certain areas leads to the storage having to be suspended immediately to prevent further
loss or disease spread. Therefore a uniform temperature distribution in storage rooms and
confainers is considered highly desirable. Uniform temperature distribution is also
important for fruit ripening, for example, bananas ripening prior to selling and potatoes
prior to certain food processing operations. Certain commodities, notably onions and
potatoes, are stored at ambient temperature rather than in cool or refrigerated storage.
Optimal uniform temperature is maintained to avoid decay or chill injury. With respiration
heat generated inside a closed container, there is clearly a temperature difference between
the inside of the container and the environment. The density differences in air due to
temperature differences will produce a buoyancy force and natural convection will occur
in the container. The warm air will rise in the central area toward the top; it will then be

cooled by the walls and move down near the walls to the bottom.

Natural convection occurs in some pre-cooling processes also. Normally the field heat in
the produce when harvested is removed by some kind of pre-cooling operation as quickly
as possible. Hydro-cooling, vacuum cooling and cold room cooling are examples of
different pre-cooling processes. For some commodities which do not require, or tolerate
rapid cooling to a low temperature, or those with a package not suitable for hydro-cooling,
cold storage room cooling is usually the method chosen. In this case, the container or box
can be considered as a relatively impervious to air flow around it and the heat transfer is

mainly the result of natural convection inside the box. Forced or mixed convection may



take place in some fast efficient pre-cooling situations. Some commodities which do not

tolerate rapid air velocity, which causes excessive water loss, can benefit from natural

convective pre-cooling.

How natural convection affects the temperature distribution inside stored packaged produce,
and how the respiration heat contributes to the temperature accumulation are processes
about which a deeper understanding is sought in this study. In order to improve storage
techniques we have to recognise how stored commodities respond to the external

environment and gain insight into the processes that govern the rate of heat and mass

transfer inside storage facilities.

1.2 Literature Review

Considerable research has been carried out in the area of cold storage of agricultural and
horticultural produce, but until recently, little attention has been directed toward to the
influence of natural convection on the heat and mass transfer processes taking place during
the cooling of produce. Moon (1987) performed a study on mixed convective hear transfer
from horizontal cylinders in order to predict post harvest cooling of cylindrically shaped
agricultural produce. Woods (1990) discussed at some length the physical phenomena

responsible for moisture loss from commodities with high moisture contents.

Computer modelling of the thermal balance within a bin of apples was carried out to

predict temperature distributions and air pattern movements by Robinson (1988). Numerical



and experimental analysis of mixed convection around a sphere which was aimed at
understanding the heat transfer from a single fruit was carried out by Johnson (1988) and

Tang and Johnson (1992).

Interest in natural convective fluid flow and heat transfer in porous media has been
influenced by a broad range of applications which include solidification of castings,
acquifiers, geothermal systems, insulating materials and oil field production. Another
application which has attracted a good deal of attention is the storage of nuclear waste
materials, this differs from the previously mentioned examples in that it has been modelled
as a natural convective process in a porous media with internal heat generation. It is
proposed in this study, that an essentially analogous process takes place within impervious
containers used to store agricultural produce, where convective heating or cooling of the

contents occurs in conjunction with internal heat generated by the respiring produce.

In the design of cool storage facilities it has been the custom to neglect the affects of
natural convection in favour of conductive heat transport when determining temperature
distributions and cooling rates in closed containers. However, during cooling (or heating)
natural convection must occur within closed containers if temperature gradients exist
between the container walls and the produce. During the transient cooling of stored
commodities that do not generate respiratory heat, natural convection processes will cease
completely when steady state conditions are reached. On the other hand, for those

commodities that do generate internal heat, natural convection continues, even after steady

state has been achieved.



Repeated transient heating and cooling is the kind of process that might still carelessly be
ignored by present day design engineers, but the lesson we learn from history is that
transient heat transfer can be of overwhelming importance. Designers of food or produce
storage enclosures should be well aware that such systems require comparatively little
energy to keep products cool at steady state conditions. The consumption of energy to
bring stored products to a low temperature constitutes the principal cost of operating such
systems. Transient heat and mass transfer processes are a dominant concern in the design
of storage units. Although there has been a longstanding interest in the storage of
agricultural and horticultural produce, few researchers have investigated the influence in
transient heat and mass transfer phenomena of natural convection in combination with

respiration.

A number of studies concerned with natural convection in porous media with internal heat
generation have been carried out. Gasser and Kazimi (1976) applied the method of linear
stability of small disturbances to calculate the critical internal and external Rayleigh
numbers that identify the onset of natural convection in porous media with internal heat
generation. Buretta and Berman (1976) conducted experiments on a liquid saturated porous
layer heated from below or heated from distributed sources. An experimentally obtained
slope of the Nusselt versus Rayleigh number relationship was presented but details of
temperature and velocity fields were not given. Experimental results have been presented
by Hardee and Nilson (1977); Rhee, Dhir and Catton (1978) and Kulacki and Freeman
(1979). Analytical extensions to the problem were made by Tveitereid (1977) who obtained

a steady state solution in the form of hexagonal cells and two-dimensional rolis for natural

convection in a horizontal porous layer heated from within.



Beukema et al (1980, 1983) reported a three-dimensional study of natural convection in a
confined porous medium with internal heat generation to model the process of storing fruit
and vegetables. Both numerical and experimental results were presented and discussed. In
their study, they assumed that heat generation was uniformly distributed in the porous
medium. The heating rate was assumed constant for each numerical experiment and results
for a number of different values of constant heating rate were given. Darcy’s law was
applied with the permeability of the porous medium so constructed as to ensure iSotropy.
To solve the governing equations the Alternative Direction Implicit Procedure, Douglas and

Rachford (1956), was used.

Some questions have been raised concerning the validity of the assumption that packed
fruit and vegetables posses homogeneous permeability. For produce such as oranges, apples
and Brussels sprouts, which are close to spherical, resistance to air flow through them may
well be considered isotropic, but other produce, such as beans, cucumber, carrots or celery
may better be described as having air flow resistance tensors that are transversely
orthotropic. Also, the assumption that agricultural produce respires at a constant rate is not
accurate. For example, Hardenburg et al (1986) pointed out that respiration rates are highly
variable between species, and they are very responsive to the conditions under which

produce is stored.

1.3 Objectives

In this study we wish to examine the theory, analysis and practical application of transient,

multi-dimensional natural convection in a porous medium, having isotropic or orthotropic



permeability, to heating or cooling of stored agricultural produce packed in closed

containers of different size; with different temperature dependent respiration functions.

The key to improving the non-uniform temperature distribution and controlling loss of
moisture in packed produce lies in developing an effective method of predicting the
velocity and temperature fields for given boundary conditions. To date it appears that few
such studies have been attempted and a successful outcome will have considerable direct

application to a host of storage problems.

The specific aims of the research program are:

1. To formulate the equations governing natural convection in packed agricultural
produce, including the mathematical treatment of respiratory heating sources and

boundary conditions.

2. To apply a numerical analysis process appropriate to solve the form of the

governing equations and to evaluate the accuracy and efficiency of the methods

used.

3. To present numerical results for the heating or cooling of selected packed
produce stored in differently sized closed containers under varying boundary and

permeability conditions.



- CHAPTER 2

RESPIRATION OF AGRICULTURAL PRODUCE AND ITS MATHEMATICAL

MODELLING

Fruits and vegetables are living structures even after they are harvested from the field or
removed from their stems. They keep respiring and transpiring. These metabolic activities

are dependent entirely on food reserves and moisture content.

The main metabolic process taking place in harvested produce is respiration. Respiration
can be described as the oxidation breakdown of the more complex materials normally
present in cells such as starch, sugars and organic acids, to simpler molecules such as CO,
and H,O, with the concurrent production of energy, and other molecules. In most cases
respiration involves taking up Oxygen (O,) and giving off carbon dioxide (CO,) and heat.
Respiration heat directly affects the temperature of the fruits and vegetables. Respiration
in fruits and vegetables 1s mostly under enzymic control. Usually enzymes lose their
activity at temperatures above 30 °C but the temperature at which specific enzymes become

inactive varies. Many are still active at 35 °C but most are inactive at 40 °C (Wills, 1977).

When fruits and vegetables are held above the temperature at which respiration ceases or
becomes abnormal, the structure of the produce may be damaged. The low temperature

limit for normal metabolic activity is near the freezing point of the tissue and is usually

between 0 °C and -2 °C.
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The rate of respiration is principally governed by temperature. The higher the temperature,
the faster is the metabolic reaction rate in living produce and the greater the heat generated.
Typically, for each 10 °C rise in temperature, the rate of respiration is roughly doubled or
tripled. The effect of temperature on agricultural produce is usually expressed in terms of

the temperature quotient, Q,,, which is defined as follows

10

Q= [ﬂ] (-4 - constant (2.1)
R1

where t, and t, are respiration temperatures (°C) and R, and R, are the corresponding
respiration rates (mg Co,/kg h). According to Ryall (1979), Q,, is not actually a constant
and may take any value between 1 and 5. Values of Q,, are highest between 0 °C and 10

°C, commonly ranging between 2 and 3. In the temperature range 10 - 32 °C values of Q,,

tend toward 1.

Table 2.1, from Ryall (1979), contains temperature quotient information derived from the
respiration rates of various vegetables. Generally the rate of respiration increases as the
temperature of the produce rises from just above its freezing point. At a certain temperature
the respiration rate reaches a maximum value; beyond this temperature the respiration rate

decreases sharply with temperature, until finally respiration ceases at the thermal death

point - see Ryall (1979).

11



Table 2.1 Temperature quotients (Q,,) for rates of respiration of various vegetables
(Ryall, 1979)
Temperature Range (°C)
Vegetable 0-5 5-10 10-15 15-20 20-25 25-30
Asparagus 3.3 4.2 1.2 2.3 1.5 2.0
Beans, snap 27 2.6 1.9 2.2
Broccoli 52 46 39 2.7
Brussels sprouts 49 2.7 1.5
Cabbage 2.5 1.5 3.2 1.6
Carrot, roots 20 23 1.5 2.8
Celery 3.5 4.0 1.7
Potatoes 2.2 34 25 2.1
Tomatoes 2.6 1.5 1.2

Respiration rates of various fruits and vegetables, from Hardenburg (1986), are shown in

Table 2.2. The respiration rates have been expressed as rates of carbon dioxide production

(mg CO,/kgh) at different temperatures. Data from Tables 2.1 and 2.2 were used in

equation (2.1) to calculate respiration rates for asparagus and for Brussels sprouts. The

results are presented in Table 2.3 and have been compared with the measured values given

in Table 2.2.

Although use of the temperature quotient allows moderately good prediction of respiration

12



rales, it was considered that better results could be obtained by using the method of least
squares to obtain a relationship between the measured respiration rates and temperatures.
Thus the locally distributed heat source within the packed bed could be readily calculated
from the local temperature distribution when used in the numerical model. In developing
the least squarcs model for respiration, it was assumed that at temperatures above 35°C and
below freezing point, the heat generation rates were zero. Using the respiration heat

generaton rates, Q,(T,) and corresponding temperatures, T, known from measurement, a

n
function Q(i) = )  a,T* can be found by determining the parameters a,. The subroutine
10

QSOURCE in Appendix D was used in the modelling program. A schematic diagram of
a typical respiration rate versus temperature function is shown in Figure 2.1, Ryall and

Lipton (1979).

S
B
o
3
o
B
@
(]
o
Freezing point Thermal death point
Figure 2.1 Typical respiration rate versus temperature changing.
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Table 2.2 Respiration rates of fruits and vegetables, expressed as rates of carbon
dioxide production (mg Co,/kgh), at various temperatures, from
Hardenburg (1986)
Temperature
Commodity 0°C 4-5°C 10°C 15-16°C  20-21°C  25-27°C
Apples, summer 3-6 5-11 14-20 18-31 20-41 -
Apples, fall 2.4 5-7 7-10 9-20 15-25 -
Apricots 5-6  6-9 11-19  21-34 29-52 -
Asparagus 27-80 55-136 90-304 160-327  275-500  500-600
Beans, snap 20 35 58 93 130 193
Broccoli 19-21 32-37  75-87 161-186  278-320 -
Brussels sprouts 10-30 22-48 63-84  64-136 86-190 -
Carrots, topped 10-20 13-26 2042  26-54 46-95 -
Carrots, bunched 18-35 25-51 32-62  55-106 87-121 -
Cauliflower 16-19 19-22  32-36  43-49 75-86 84-140
Celery 5-7  9-11 24 30-37 64 -
Kiwifruit 3 6 12 - 16-22 -
Pears, Bartlett 3-7  5-10 8-21 15-60 30-70 -
Pears, Kieffer 2 - - 11-24 15-28 20-29
Potatoes, immature - 12 14-21 14-31 18-45 -
Potatoes, mature - 3-9 7-10 6-12 8-16 -
Tomatoes, mature-green - 5-8 12-18 16-28 28-41 35-51
Tomatoes, ripening - - 13-16  24-29 24-44 30-52

14



Table 2.3 Average respiration rate(mg Co,/kgh): by measured, calculation of Q,, and

least squares modelling

Temperature 0°C 5°C 10°C 15°C
Asparagus Measurement 535 95.5 197.0 243.5
Q,, method 535 97.2 199.2 218.2
Least squares method 53.5 95.5 196.9 243.5
Brussels sprouts Measurement 20.0 35.0 73.5 100
Q,, method 20.0 443 72.8 89.2
Least squares method 20.0 35.0 73.5 100
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CHAPTER 3

THEORY OF NATURAL CONVECTION IN BULK PACKED

AGRICULTURAL PRODUCE

3.1 Physical Model and Some Concepts of Porous Medium

Most of the containers for fruits and vegetables storage are rectangular boxes. In this study
we consider a physical system with the following characteristics: A rectangular cartesian
reference system is used to define a container filled with fruits or vegetables, which are
considered as the solid matrix of a porous medium saturated with air, such as shown in
Figure 3.1. The respiration heats of fruit and vegetables are treated as internal heat sources
which are functions of temperature. The coordinate system is also shown in Figure 3.1; the

x axis is along one edge of the rectangular enclosure and G is the gravity force.

In order to describe natural convec;:ion in bulk-packed fruit or vegetables, the theories on
natural convection in porous medium are introduced. The produce inside the container are
considered as a porous medium. Beukema(1980,1983) showed that these theories may be
applied to quantify the natural convection phenomena that occur in packed beds of
agricultural produce. A porous medium is a material consisting of a solid matrix with
interconnecting voids. As Dullien (1979) pointed out, a material or a structure must pass

at lease one of the following two tests in order to qualify as a porous medium:
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G

Figure 3.1 Coordinate system used in this study

(1) It must contain spaces, so-called pores or voids, free of solids, imbedded in the solid
or semisolid matrix. The pores usually contain some fluid, such as air, or a mixture of
different fluids.

(2) It must be permeable to a variety of fluids, ie, fluids should be able to penetrate
through one face of a spectrum made of the material and emerge on the other side.

From these points of view, packed fruits and vegetables can be classed as porous medium.

Porosity € plays an important role in a porous medium and is defined as the fraction of the
total volume of the medium that is occupied by void space. Then 1-¢ is the fraction that
is occupied by solid, Nield and Bejan (1992). In order to carefully analyze systems in
which natural convection is taking place, we must construct a continuum model for the
porous medium based on the representative elementary volume (r.e.v.) concept. We

introduce a cartesian reference system, as shown in Figure 3.2, the r.e.v. is such a control
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volume which is very large compared with the pore volumes but very small compared with

the macroscopic (whole) flow domain.

Reprasentative
elementary

volume (r.e.v.) \ =

Solid

Flow domain

Enlerged view of r.e.v.

Figure 3.2  The representative elementary volume (r.e.v.): the figure illustrates.

A distinction is made between an average taken with respect to the volume 17p of re.v.

(incorporating both solid and air) and one taken with respect to a volume element Vf

consisting of fluid only. So we have two velocities according to these two different

averages. One is the seepage velocity 17p and another is the intrinsic velocity I7f. The

Dupuit-Forchheimer relationship is

V=€V, (3.1)

In this thesis, unless specifically indicated, the velocity refers to seepage velocity, which

is the average of fluid velocity over the porous medium control volume f/p.
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3.2 Continuity Equation

The principle of conservation of mass can be stated as:

(Time rate of change of the mass of the r.e.v.)=0 (3.2)

considering the mass inside the control volume, we have

d A
ad = 3.3
(-[l",, ppdV) 0 (3.3)
P, is a function of x,y,z and ¢, viz

P,=P, (%, ¥,2,1) (3.4)

From the concept of porous medium, we have
f ppppdV = (1-¢) f f’:pst v e f lede (3.5)
where p; is the density of solid matrix, p, is the density of fluid.

Because € and p_ are independent of time,
d 5 d 5
—_— = —_— = 3.6
dt(ff'pp”dV edtf"’,pde 0 (3.6)
Application of the Reynolds transport theorem equation 3.6 leads to

d > apf I —>-_, _ 37
GE.[;‘/pdeV—ef‘ _<9t—dV+€fA/prf iidA =0 (3.7)

Vs
Using the divergence theorem, equation 3.7 changes to
i 7)1 dv 3.8
.[€§+€V’(prf)]dV=0 (3.8)

Vs

Since the control volume is arbitrary and p, V are assumed to be continuous functions with

continuous derivatives, the integrand in the integral must be zero and we obtain the
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continuity equation:

op -
f : - 3.9
eat+V(prp)-0 (3.9)
op, . .. . i —
where ¢ _a_f indicates the rate of mass increase within the control volume, and -V+(p )
t

denotes the net mass flux into the volume. Since mass cannot be generated or destroyed,

these two terms must be equal.

To simplify this equation, it is assumed that the environment pressure, ie, atmospheric
pressure remains constant and the fluid, air, is incompressible, ie, its properties remain
constant except for the density variation in producing the buoyancy force. Finally equation

3.9 becomes

V-V =0 (3.10)

33 Momentum Equation: Darcy’s Law

The principle of momentum conservation may be stated as

(the time rate of changing of linear momentum of the r.e.v.) (3.11)
=(the force acting on the r.e.v.)

Before we discuss the momentum equation, some assumptions are introduced. The
properties of the fluid are isotropic except the density which will satisfy the Boussiniq

approximation.
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In 1856, from his experiments on the flow through horizontally stratified beds of sand,
Henri Darcy concluded the relationship between flow rate and the pressure drop. Now

termed Darcy’s law, it has the form in modern notation:

X

Vp=-_vp (3.12)
H

where the VP is the pressure gradient. p is the dynamic viscosity of the fluid. x is the

permeability. It depends on the geometry of the porous medium and in here it represents

1sotropic permeability.

An alternative to Darcy’s law is Brinkman’s equation with the Boussinesq approximation,
ie, the buoyancy force is due to the density variation and the gravity acceleration, and the

buoyancy force is the main factor in producing natural convection. So we have

—

ov, . _ . L .
ol L+ VYOV 1= - VP -2V, +i V2V, +G (3.13)
where {1 is a effective viscosity and may have a different value than the viscosity of the

fluid. Neale and Nader (1974) pointed out that they can take the same value. (5 is the body

force.

Many authors (e.g. Rudraiah and Prabhamani, 1974; Neale and Nader 1974; Gasser and
Kazimi, 1976; Walker and Homsy, 1977; Tong and Subramanian, 1985; Beckermann. et
al 1987; Singh, et al 1993 ) used Brinkman’s equation to describe natural convection in

porous medium. However, Chan, Ivey and Barry (1970), found that the contribution of the

viscous term pV? Vp is very small even in Jow Rayleigh number. Furthermore Whitaker

(1966,1969) has shown that the Darcy term i I7p replaces the viscous force and therefore
K
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it is incorrect to use both terms in the momentum equation. In this study we also neglected

these terms based on the following analysis:

po= 0-(2)(10_5) (3.14)

K = 0(2x107% (3.15)

i = O(2x107) (3.16)

p _ -

EVP = O(10)V, (3.17)
szVp = 0(2x107°) I7p (3.18)

Thus we have:
o 2}
EVP > pV2p, (3.19)

Compared to the resistance of solid matrix, the viscous resistance term is much smaller.

Beck(1972) pointed out that inclusion of the (V,-V)V term was inappropriate and

furthermore Nield(1992) suggested to drop this term in the equation. He showed that in the
case of a viscous fluid a material particle retains its momentum in the absence of applied
forces when it is displaced from a point A to a neighbouring arbitrary point B. But in a
porous medium with a fixed solid matrix this is not so, in general, because some solid

material impedes the motion and causes a change in momentum. Thus it is not rational to
include the convective term () in the momentum equation unless the porosity is very
large, and in that case it can be queried whether one really has a porous medium, in the
usual sense of that term, as distinct from a fluid in which there are some solid obstructions.

For the same reason it does not make sense to talk about turbulence on a macroscopic scale

in a natural porous medium because one can not have unimpeded eddies of arbitrary size.
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We can also drop the time derivative term P a_Vf because in general the transients decay
ot
rapidly. With these terms dropped we finally have the momentum equation in isotropic

permeability porous medium.

VP-*V iG =0 (3.20)

This is actually Darcy’s law.

Many of the fruits and vegetable have spherical shapes and can be treated as isotropic
porous medium. But many others have cylindrical shapes and can be considered as an
orthotropic permeability porous medium. As shown in Figure 3.3, orthotropic permeability
is a second order symmetric diagonal tensor having different permeability in component

x, y, z directions.

xk, 0 0
K=|0 X, 0 (3.21)
00 K,

Permeability is related to the pore size distribution, since the distribution of the pore sizes
and directions entrances and exits, and lengths of the pore walls constitutes the primary

resistance.

Permeability is a function of porosity, tortuosity and connectivity. Tortuosity is defined as
the relative average length of a flow path, ie, the avenge length of the flow paths to the
length of the medium. Connectivity defines the arrangement and number of pore
connections. Although permeability is related to these parameters, none of them can be

used alone to predict the permeability. Normally the structure of a real porous medium is
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Figure 3.3 Orthotropic permeability arising as a result of alignment of the
commodities in the gravitational field

complicated and it is rarely possible to predict the permeability theoretically. Experimental

data are the main source of quantifying permeability.

A well-known expression of permeability for packed spherical particles is the Carman-

Kozeny formula:
2 3
oD (3.22)

180 (1-¢)?
where D, is the effective diameter of the particles or 1s called volume-surface mean

diameter

6
D"ﬁzfs'_ (3.23)

Here S, is the specific surface, ie, surface of solids per unit volume of solids.
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Many authors have used the Carman-Kozeny formula to determine the permeability, for
example, Nield (1991). However, Ergun (1952) pointed out that the permeability should
have the form
2 3
c=_ D€ (3.24)
150(1-€)?
Plumb and Huenefeld (1981) and Beckermann al et (1987) quoted Ergun’s finding but
actually Beckermann al et (1987) modified the constant from 150 to 175 and used
2 3
o D€ (3.25)

175 (1- € )?
in their work.

In order to predict the permeability of packed apples, oranges etc. having spherical shapes
the Carman-Kozeny formula was employed in this study. Because of their non-spherical
shape, packaged beans, carrots, celery etc, possess permeabilities which vary in different
directions. No study related to predicting orthotropic permeability was found in the

literature. Nevertheless, one common pattern is discussed below.

As shown in Figure 3.3, if the commodities are placed parallel to each other and the x axis

is along their axis line, we may assume that

(3.26)
K, =K, -aK,

Where a is a proportional constant.

For simplicity, assume that the spaces between commodities are channels and the channels

are connected from head to head and can be thought of as a pipe having an effective radius
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r

...

Figure 3.4 Flow model based on parallel, uniform channels

r, as shown in Figure 3.4, Applying theory of fluid flow in pipes, we have the equation for

laminar flow rate in a single pipe,
Q=T AP (3.27)

where AP is the pressure drop.
For N pipes the total flow rate is given by

Nnr® AP (3.28)

Q=NQ= 8pu L

applying Darcy’s law in the x direction, we obtain

_qy -g. 2 AP 3.29
Q"SVP'SIT (3.29)

where S is the cross-sectional area.

Combining the above equations and eliminating Q. We have
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Nmr? (3.30)

Thus

Nnr* nnr (3.31)

where, n = number of channels per unit cross-sectional area.

The lack of a rigorously valid method for determining the radius and the number of
channels in a randomly packed porous medium is a difficulty that has often been raised.
In practice however, a number of well-grounded approximations have been developed and

may be used in the Darcy equation.

For orthotropic permeability porous media, the momentum equation reduces to

i P_I_l‘;f/'p+(_;' =0 (3.32)

3.4  Energy Equation

In order to derive the thermal energy transport equation that governs heat transfer in
packed beds certain assumptions must be made. Suppose the viscous dissipation were
neglected. The atmospheric pressure is constant and the work done by pressure change is
also negligible. The radiative heat transfer may be ignored due to the temperature

difference being small. The properties of fluid and solid are constant and isotropically

homogenous.

The conservation of energy can be stated as



(the amount of heat for temperature change incontrol volume)
=(the amount of hear transfer due toconvection) (3.33)
+(the amount of heat due to conduction)
+(the amount of heat due to internal heat generation)
Expressed mathematically, we have

oT .
(PC), 5 = (PG T, YT+, V2T +Q,, (3:34)
where

(PC),=(1-9)(pC),+0(pC,), (3.35)

C is specific heat of the solid,

C, is specific heat of the fluid at constant pressure,

QOhear is the heat production, W/m?

k. is the effective thermal conductivity of porous medium.

The basic conservation equations of mass, momentum, and energy are

v¥,=0 (3.10)
-vP-2V +G =0 (3.32)
K p
(pO) 9T ~(pC Y VI+k NPT+Q (3.34)
L fp eff heat

35 General Boundary Conditions

We consider that the walls of the enclosure are not permeable, ie, V,=0, where the

subscript n indicate a normal component to the walls.

The boundary conditions of momentum equation in detail are as shown below:
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x=0: V.=0 (3.36)

x=X, V=0 (3.37)
y=0: V,=0 (3.38)
y=Y, V,=0 (3.39)
2=0: V,=0 (3.40)
z2=Z, V,=0 (3.41)

The boundary conditions for the energy equation (3.34) can reflect any of the heat transfer

mechanisms listed below:

Heatflux Z—T =Constant#0 (3.42)
n
Adiabatic T (3.43)
on
Isothermal T=Constant (3.44)
Convective kg L e (T-T) (3.45)
on

Here n represents the x or y or z axis.

3.6  Vector-Potential Formulation: A Transform of Momentum Equation

The momentum equation (3.32) is written in the terms of the primitive variables, pressure
and velocity. We may solve the set of equations in this form, as for example has Williams
(1969) and Chorin(1968). Alternatively, we may solve them in terms of the vector
potential, as has Mallinson(1973). Some benefits are obtained by using this approach. It
reduces the number of equations to be solved by one and it ensures the continuity equation
is automatically satisfied. The pressure term is eliminated and thus the difficulties
associated with pressure boundary conditions are avoided. Aziz and Hellums(1967) found
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that the iterative procedure based on the primitive variable equations was less satisfactory

in its convergence behaviour.

According to the continuity equation, V-VP=O, thus, V, is a solenoidal; it can be shown,

Hirasaki and Hellums (1970), that it is always possible to define a vector potential y and

a scalar potential ¢ as

V,=Vx§ -V (3.46)
V-y=0 (3.47)
Vi$=0 (3.48)
hence W is also solenoidal and ¢ satisfies the Laplace equation.
So we have the following relation
Vxl7p=Vx(VX!J}—V¢)
=VxVx{i -Vx Vi
=VxVx (3.49)
=V(V-§)-V*§
=_V2qj
By taking the curl of equation (3.32), we have
“VxVP-Vx(£7)+VxG = 0 (3.50)
K
Using (3.46) and treating p as constant, we have
Vx(2 Vx§) -Vx(L V)=~ VxG (3.51)
K K P

To obtain the component equations of 3.51, firstly we expand each term. So we find:

190 o
KX
1 g0 R (3.52)
K Ky 1
0 0 —
KZ
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Vx (K 'Vi) =Vx

_Fo 1.
dyoz

Vx(KVx{)=

L Tl 1), 001 1y

K, K 0x0z X, K, 9x3y X, K,

y

'1(y¢ Py,

K ava ax

Because vy is solenoidal, we may

V(VE)= (

thus it follows that

write

Py,

¥, Oxdy 8y2

1 P P,
K O3z &2

1(¥w Fy,

(i +] +k)

1(82111 &y, -
, 9xdz 372

1Py, Py
axay ox? JJ

+i(82¢y_ azwz)-
K, 0y0z Qgy?

&

J

*y, 82¢

o

ox? aay 0x0z
yw yw Fy,

axay dy?

"5

Fy, Py, Py,
A TA A Y

ox0z ayaz oz 2

azq:yz_

Py,

- yq"z

0xJy ox?

X

azq:_

azq:y i Py

oxoz

Z

xdy  oy?

dydz

(3.53)

(3.54)

(3.55)

(3.56)

(3.57)
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Fy

x-—

alwz_alq;y

ox0z

dz? dydz

Using the relationships of (3.56) to (3.58), equation (3.54) may deform to

Ux(KIUx§)= -

iazﬂlx+i62¢x+iazﬂ!x+ _l_—i aquz
R S L N K, Ox0Z |
iazllJy+iazwy+iazll’[y+ i—i aquz
K ox? Kk 3y’ K 92 K, K, Oyoz
1%, 1% 18 11

X, ox? K, gy? K, zZ? x, XK azj

(3.58)

j (3.59)

|

Using equation (3.53) and (3.59) in equation (3.51), we find the X, y, z component

equations:

_[_
_,_

where G,G,G, are x, y, z components of the buoyancy force.

1o, 18 1% 1 1, P Fe, _1(86
K, axr ok, 9y x, 8?2 k, k' Oxdz dydz dy
1Py, 18, 18y, 1 1 )(fw_ Fo, | 1,9,
X, ax? ¥, 9y? Kk &% K, dyoz 0x0z | oz
130 1@ a3 11 P Fe ] 136,
X, ox?  x, gy’ X, &% K, X, oyoz aayj pooox

aGy) (3.60)
&

aG) (3.61)
ox

oG,

Py (3.62)
dy

The general expression for the body force acting in x,y,z directions is developed when the

container in such a position that none of the edges are along the gravity acceleration.

Referring to Figure 3.5 we may write
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Figure 3.5 x, y, z components of G

G, = Gceosa (3.63)

Gy = G cosf (3.64)

G, = Gcosy (3.65)

G, + G, + G, =G = gpyBy(T-Ty (cosai+cosPj+cos¥) (3.66)
cos’a + cos’p + cos’y =1 (3.67)

Equations (3.60) to (3.67) may be combined to yield the following equations

1% 1%, 1% 1 )(62¢ o,
x, x? ¥, dy? X, &* X dxdz ayaz

4

8P B0( cosy ﬂ“—cosB ﬂ“)
K oy 9z

(3.68)
i _1_82‘l’y lazwy i82¢y+(l 1, &y, az¢) gPOﬁ(osag—cosyg)
KZ ax2 KZ ayZ Kx 622 Kz Kx aZ p’f aZ ox
(3.69)
_ 1 azwz 1 azll’z +iazwz+(i_i)(azlpy 62¢ gp()l3 oT oT

(cosp — -cosa —)
. sBaxcsaay

+
k, ox? X, oyt K, &* K K dyoz axay
(3.70)
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When one of the container edges is along gravity direction, say, x axis, then =0 and

B=y=90°. So we have

) [ _l_azwx+i82¢x+i82lhx+ i_i)(azwuﬂﬂ _ 0o
x, &2 x, gy? K, &2 X, K, 0x0z ayaZJ
(3.71)
- .lazwy+lazwy+iazwy+(_l_—_l_)(ﬂ_ﬂ) =gp0[3 Qz
X, ox? ¥, 8y? x, 972 x, x  Oyoz 0x0z Ky oz
(3.72)
(1% 1% 1 0¥, 1 1, F¥ Fe | 8PP oT
X, &2 x, dy? X, e L X, dyoz 0Oxdy b Oy
(3.73)

3.7 Boundary Condition on y and ¢

For incompressible fluid flows bounded by a solid surface, the scalar potential ¢ is

specified to have the boundary condition set out below, Hirasaki and Hellums (1970)

ive =2 - a7 -0 (3.74)
on P
In more detail,
£=0 o _ g (3.75)
ox
x=x, 2 -0 (3.76)
ox
o
y=0 % .o (3.77)
dy
Y=Y, %‘;’ - 0 (3.78)
=0 2.9 (3.79)
oz
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22, %(ig -0 (3.80)

With equation 3.48 and the above conditions, it can be proved that ¢ is an arbitrary

¢ ’ > and o)
dydz  0x0z oxdy

constant (see Appendix A). It means that equal O in

equations (3.71), (3.72) and (3.73). Thus the equations are simplified as follows:

Fy >y >y &
— _l x+i "+_1_ e i_i wz =gp0B(COS-Y_a_T—COSB_aI)
K, 0x? K, 9y? K, &? K, K, ox0z by oy 0z
(3.81)
& & & &
L ¥y + 1L ¥y +_1- v +(i——1—) V. =gp0B(COS¢1g*COSYg)
X, x2 K, 9y? K. 9z? x, kx Oyoz iy 0z ox
(3.82)
& & & &
L wz+_1_ q’u_l_ lIJZ+ 1.1 ¥y =gp°p(cosﬁg—cosag)
K, ox2 K, 9y? X, r K, X, Oydz Ky ox oy
(3.83)
Also the definition of y may be simplified from that given in equation (3.46) to:
f}p =Vxy (3.46a)

Hirasaki and Hellums (1968) and Richardson and Cornish(1977) have shown the boundary
conditions for y should satisfy following conditions:

x=0 and x=x,

oy
X -0 =0 =0 (3.84)
ox ¥ v
x=0 and x=x,
Mo -0 v, =0 (3.85)
Oy
x=0 and x=x,
oy
20 _0 -0 (3.86)
oz Vs ¥

Considering equation (3.81) and the boundary condition (3.84), in the case of k,=K, the
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equation changes to

vy =0 (3.87)

and thus vy, is zero and the number of equation to be solved has been reduced by one.
When k#K, or the x axis is not along the gravity direction, W, is not zero and this equation

must be solved numerically.

3.8 Non-Dimensional Equations
The solution of equations (3.34), (3.81), (3.82) and (3.83) and their boundary conditions

is dependant on the following physical properties of the fluid and the solid matrix of the

porous medium - Prr Py (Cp)f, C,, ke/f, i, ]_1, T and T Each must be specified

start

before a numerical solution can be obtained and the solution must be repeated entirely if

any of them are varied.

The number of parameters can be reduced, and the range of applicability of a solution can
be extended if the equations and the boundary conditions are recast in terms of non-

dimensional variables and parameters.

Non-dimensionalisation can be performed by using the following non-dimensional variables

x/=% (3.88)
%o

y'=2 (3.89)
%o

/=% (3.90)
X0
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V'=x,V

2 2
V/ =x0 V2

T-T.
T,-T

c

a (rC,),
Koy

p k p
eff

k
. I/_ eff ¢

- 2
(p Cp )fxo

¥

Re-casting equation (3.34) leads to

B__RrP -V’B+RV’26+L—
o ¢ p c

where

° (p0),

equations (3.81), (3.82) and (3.83) change to
a2¢/
x” " Da, &' = Da/o'a’

3%y’ Da, 3%y’ Da, &y’
+ + +(1-—5) =

8%y’ 8%/, Da, 3%y’ Da, &y’
¢y+ l|1y+ z ll'er(l___l) lpZ+RaDazcoscz§=0
ax'? 8yt Da, g'? Da, ay'ez’ %’

0%y’ Da,d%y, 8%y Da, &y
¢z+ y ¢z+ lIJz+( -1 ll!y—RaDaycosczég=

ox'? Da, oy'* &'* Da, dy'e’ oy’

Where Da,, Da, Da, are Darcy numbers in the x, y, z direction

KX
Da = -—2
X0

(3.91)

(3.92)

(3.93)

(3.94)

(3.95)

(3.96)

(3.97)

(3.97a)

(3.98)

(3.99)

(3.100)

(3.101)
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Day =—; (3.102)
X0
K, ’

Da,=— (3.103)
X0

and Ra is the Rayleigh number defined below

8Bo% (T, -T,) po(poC,),
_ ~

(3.104)

eff

In general, a0, and the container is not on a horizontal plane, none of the edges is along

the gravity direction and we have a general non-dimensional format for the vector

potentials:
v’ 82w Da 3% Da, &y’
Vo TV 2TV 20 T e Raa (cosy 2 -cosp ) - 0
ax” ayﬂ Da, oz'2 Day ox 'z’ oy’ oz’
(3.105)
2¢’ 32w Da 8’ Da, &y’
ll])'+ ¢y+ aZ ¢y+(1_ az) ¢Z+RaDaz(COS“ E_COSY_@)=O
6x’2 ay’2 Dax 62/2 Dax ay’az’ az/ ax/
(3.106)
621|:’Z+Day 82¢’z+a2¢’z+ Da, @&y’

2-1) y/—RaDay(cosBﬂ/—cosaﬂ/)=0
x’? Da,gy? &'* Da, %k ox dy

(3.107)

3.9 Nusselt Number

As to the definition of Nusselt number, Nusselt number is equal to the dimensionless
temperature gradient at the surface of the container. It provides of measure of the

convection heat transfer occurring at the surface.
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The local Nu numbers were defined as follows on the six surfaces of the container:

d6
/' — 0: Nu = -— (3.108)
x'=0 oz le'=0
x' =1 Nu = 99 (3.109)
ox/'l’=1
I Nu = -99 (3.110)
y o ay/’/_o
. _ 00
yl =1 Nu = g]’L/- (3-111)
00
' 2 0: Nu = - — (3.112)
Z 0 az/z/=o
Z/ =1 Nu = 98 (3.113)
9z/''=1

The average Nusselt numbers on side-walls and top and bottom were defined as follows:

on top yx/ = @ and bottom x/ = xo/

Nt prorage = S f’°f‘°Nu(y’ 2% dy’d’z’ (3.114)
0

on side walls y/ = ¢ and y/ = y/

Nt prgrage = f‘° f‘° Nu(x’, 2% dx'd’z’ (3.115)
x'92
on side walls z/ = g and z/ = 2/
Nty = f‘o f’° Nu(x’, y') dx'd'y’ (3.116)

oyo
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- CHAPTER 4

NUMERICAL METHODS

4.1 Introduction

Equations (3.97), (3.105), (3.106) and (3.107) must be solved numerically. They are
coupled, second-order partial differential equations, and to date it has not proved possible
to obtain their exact mathematical solutions. In this chapter the numerical methods used

to solve them are described.

If y,, ¥, and y, are known then we can obtain velocity field via equation (3.46a). By using
the known velocity field and solving equation (3.97), temperature field can be found. This
is one complete iterative step in the main loop or called outer iteration. We can also revise
the solution procedure by solving temperature field first and them update velocity field, but
the result is the same. When one iterative step is completed, the new values of vector
potentials and temperature can then be used as the starting state for the next iteration step.

The iteration loop continue until the desire iteration number is reached or the solution is

convergent.

Inside the main loop, two important procedures are defined as solving the vector potential

field to obtain velocity field and solving temperature field. The former is more complicated

than the latter.
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The component equations of vector potential, equations (3.105), (3.106) and (3.107) are
elliptic and coupled. The iterative loop for solving the vector potential is called the inner
iterative loop. Inside the inner loop, firstly v, and v, are advanced by using the old v,
value, then the inner iteration advanced for solving y,. Updated values of y,, y, and v,
can be used in the next iteration. The iteration will continue until the solutions of vs,, v,
and , cease to change significantly. We term these results the false steady state of vector
potential within one outer iteration step. Because actually they are the real transient vector
potential field which represents the real transient velocity field, however from the
mathematical viewpoint we can imagine that we are solving a set of coupled elliptic partial
differential equations which have an initial state and a final steady state. The initial state
is known from the updated value of the outer iteration loop. Then the inner iteration is

carried out until the final state is reached. This is the so-called steady state.

A third-level iteration loop is used for solving a single component of vector potential. We
applied the false transient technique, after Mallinson and de Vahl Davis (1973), to improve
the rate of convergence. The above multi-iteration scheme was employed to determine the
solution of equations (3.105) to (3.107). The third-level iteration was used for solving the
single component equation of vector potential. The inner iteration was used for updating
the new vector potential field in which its three component equations are coupled, and the
outer loop was used to obtain transient velocity field and temperature fields. A non-uniform
central differential approximation was applied to obtain the differential equations, which

were solved by the Samarskii-Androyev alterative direction implicit scheme.
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4.2  The Approximation of Derivatives by Finite Differences

° . °
| i-1,3+1 1,j+1 1+1,3+1
h;
. . °
l'l,j l:J i"'l,j
hj‘l
R , ,
i-1,3-1 i,j-1 i+1,3-2
— b —— on

Figure 4.1 Arrangement of grid points

A non-uniform mesh was used and is shown in Figure 4.1, h; represents the distance
between (i-1)th point and ith point along the x axis, as were h;, h, respectively. x; was the
ith point position in x direction, so we have

h =x ~x, _ (4.1)

i i i-1

—y - 2
h;=;7%j (4.2)
he=2=2 (4.3)

A notation to indicate the value of 6 or y at the pth time step and the position in the

system was adopted as follows,

8= 62,; . (4.4)

where p, i, j, and k were default values and are not shown, hence



+1 ! +1 4.5
ef—x,j,m or ef—um @.3)

denotes the dimensionless temperature at the position in space x-h,, ¥;, z,+h; and at time
t+At. The indices i, j, and k as used here will always denote position in space and the

superscript p will denote time.

The space point (x;, y;, z;) , also called the grid-point (i, j, k) was surrounded by
neighbouring grid points shown in Figure 4.1. Assuming that the function 8, y possesses
a sufficient number of partial derivatives. The value of them, for example, 9, at the two

points, say, (X, ¥, z) and (x,,;, ¥, %) are related by Taylor’s expansion:

o0 1,2 &0 + O(K2) (4.6)

+ h == —
laclije 21 1 ae2lije

et+1,j,k = ei.j,k

Dropping the remainder term O(h?) and expanding in Taylor’s series for 6, ; and6,,;

about the central value GU p o WE obtain

8,, =0 - htjaﬂ lh‘??z_e 4.7)
oxlij,k 2 gx2lijk
0o 1,2 &0
= — —h, — (4.8)
8,, =6 +h, Belik * 5 1ach ik
From these two relations it is easy to show that
2 B2 _p2 B2
oo _ i 8 + is1 /Y 6 + { 6
e hh (k) 0 Rk (k) k(B )
4.9)

setting
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we have
i
axli,j,k
Similarly, we find
#o
ox2lij.k

where:

Applying the same procedure to the y and z directions we obtain

o6

oyli.j.k

CX4(0a) =

CX5@0) =

cxX6@) =

= CYI()8,,

CYI() =

2h

i+1

= CXI(M6,_, + CX2()6 + CX3()6,,,

= CX4(M)6, , + CX5()6 + CX6()HO,,

hih,, (h;+h))

2(h;+h,,)

l 1+1 (h

2h,

hl+1)

x Hl(h hl+1)

+ CY2()0 + CY3(O,,,

2

J J+1 (h

Ry1)

(4.10a)

(4.10b)

(4.10c)

(4.10)

(4.11)

(4.11a)

(4.11b)

(4.11¢)

(4.12)

(4.12a)



2 2
hy ~hy (4.12b)

Cr2@) =
hj hjq (hj +hj+1)
h2
CY3(j) = J (4.12¢)
by (B+ by, )
PO _ cragye, . + CYS(hHO + CY6 (4.13)
Oytli.ik ) 08, e + CY6(NG;,, ’
2h,,,
CY4() = ] (4.13a)
hihy,, (h+h,)
2(h+ 1)
CYS() = (4.13b)
I }+] (h h+1)
2h,
CY6() = (4.13¢c)
B cziwe, . + czzme K (4.14)
a ik - ( ) -1 T () + CZ3( )ek+1 :
h2
CZI(k) = - k1 , (4.14a)
hy ., (R + Ry )
2 _h2
CZ2(k) = kel Tk (4.14b)
hy by (hy+hy )
hz
CZ3(k) = * (4.14c)
hy by, (hy+hy, )
30 _
hels = CZ4(k)6, , + CZ5(k)6 + CZ6(K)6,,, (4.15)
dz2liik
2h
CZ4(k) = fad (4.152)
hyhyoy (h+hyy)
CZ5 ) = -t ) (4.15b)
B by (hy+hy)
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CZ6(k) = 2 (4.15¢)
Ry Chethy )

There are second-order partial differences in the equations (3.98), (3.99) and (3.100). To
derive their finite difference approximations, we applied Taylor’s expansion on the grid

points as shown in Figure 4.1, we obtain

oy b Py
_ Lo B #y (4.16)
wnl,jﬂ 1'llhl.j g ay is1, * 2 ayZ i*l, j
3y By By
) _ Yy B 'y 4.17)
wiq»],j—l q"*l,j hj_l ay i+, j ¥ 2 2 i+1,J
Ay b @y
_ , _, ey (4.18)
wi-l,ji'l q""l,] * ] ay i-1, ¥ 2 ay2 i-1,J
dy by &y
) _p OV 1 (4.19)
4’:-1,]-1 1'l’i—l,)' J-1 Oy li-1, ’ 2 2]4-1,j
Eq. (4.16) *hj2-1 - Eq.4.17) *hJZ, we have
d
ll‘1+1,j+1hj2—1 = Vi hjz - (hjz-l —hiz) Yiory + B hj2'1 ohy h"l)lhlj @20
Eq. (4.18)xh>, - Eg.(4.19) xh’, we have
R s 2 g 2 .2 d
L TENRE SR FRRY Rl SRl CPL PRWAS (T ISR S PR %L—l j @20
Using Taylor’s expansion, we obtain
2
v, Py M Py (4.22)
yhui &y 2 gy
2
_ oy B Py s by &y (4.23)

ay
—5)‘_'&-1.1 & T axdy 2 gyx?
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' . o
By using equations (4.20), (4.21), (4.22) and (4.23), and eliminating ayawz, we get
X

2 2 2 2 2
hjz_l (¢1+1,j+1 hj—l - wn].j_] hj ) _hi (‘h_uq hj—l B ‘h_u_l hj )

= (hjz-l —hjz) h,-2_1 Vi, ~ (hj2-1 —hjz) hiz Vi1,
3 (4.24)
+ (Bl -h}) (h, hjz-l +hj2 h;, )_W
Jy
+ (h hz_1 +h h2_1) (htz—lh +hi2h ) 7y
Yy T 1y i 17 ax gy

By using equation (4.12) to find the differential expression for % finally we obtain the

differential expression as:

F ) ) )
axgy = CXMIYMIG,)¥,, ., + CXYMIG,) ¥, + CXPIYMIG,)) ¥, .,
+ CXMIYG,) W, +CXY W, +CXPIYGDV,,,
+ CXMIYPIG, ) ¥, ;. + CXYPIG, DY, ;,, + CXPIYPIG, DY, ;i
(4.25)
where
hZh?
CXMIYMIG,)) = ——2 (4.253)
DENOM 1
2
CXYM1(,j) = DENOMZ ~ Iy (4.23b)
’ DENOMI1 = DENOM?3

hiz—l hjz (4.25¢)

CXPIYMI1G,j) = ———d _ '

@D = ~Denomi

Bl - R (4.25d)

1YG, /) = '

CXMIY(D) = —pevomn
2 2

CXYG.)) = - DENOM?2 x (hj "hj—l) (4.25¢e)

DENOM1 » DENOM3
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2 2 2
hi_; (hj—l - hj ) (4.25)

CXPIY(i,)) = -
&) DENOM 1
h*h?
CXMIYPI(i,j) = - ——J1_ (4.25g)
DENOM1
DENOM?2 * h*
CXYPI(i,j) = - /-1 (4.25h)

DENOM1 = DENOM?3

2 2

CXPIYP1(@i,)) = %1’ (4.251)
DENOM1 = (h?, hi+h_ b’ (B2 h +h b} (4.25j)
DENOM2 = (h\h +h_ h})(hl, - h}) (4.25k)
DENOM3 = h_ h,(h_ +h) (4.25m)

v Py

Similarly we can obtain differential expressions for

dx 0z  dydz

4.3  Finite Differences Approximations on Boundary

We can not use the above differences equations to determine the values on the boundary
because they are derived for a central point which relies on values on both sides of the

point. The values of the point outside the boundary are unknown so the central point can

not be determined by using this method.

4.3.1 Finite Difference Formulas for the First-Order Derivatives on Boundaries for

Energy Equation

There were only first-order derivatives in the boundary conditions, refer to the boundary
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conditions for energy equation.

Figure 4.2 Arrangement of boundary grid points

For the low limit, ie x=0, as shown in Figure 4.2, we have

d0

hle %0
2.4,k - 6 1,k F hx,15; + —

1.J,k 2 9x?

0

1,7.k

o0
+ (hx.l + hx,Z)a

+ (hx.l +hx,z)2 aze
1.k 2 ox?

6 =0

3.J.k 1J.k

1.4,k
by eliminating the second-order derivative, we obtain

X _cximLe,,, + CX21L8,,, + CX3TL6, ,

ox!1j.k

where

(B, + x,2)2 "hx2.1

CXITL = - >
hx,l(hx.l + hx.z)z - hx,l(hx,l + hx,2)

(4.26)

(4.27)

(4.28)

(4.28a)
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h 2
CX2TL = G 1)

hx,l(hx,l + hx,2)2 - hxz.l(hx.l +hx,2)

(4.28b)

h2
CX3TL = - %1 - (4.28¢)
hx,l(hx,l * x,2)2 —hx.l(hx,l +hx,2)

Similarly we can obtain derivatives for the high limit in the x direction and those for y, z

axis as follows:

30
o CXITHOpy,, + CX2TH Oy, , + CX3TH O, (429)
where
h h 2_p?
CXITH = By wxes x.NX-Zz he s (4.29a)
hx,NX—l(hx,NX-l +h;:,lvx-z)z _hx,NX-l(hx,NX-l +hx,NX—2)
h h 2
CX2TH = - P xer * "2”’"2) (4.29b)
By wx1 By wx- +hx,NX—2)2 ~he nx 1y g P 2
h2
CX3TH = "”’“2 (4.29¢)
hx,NX—l(hx,NX—l +hx,mr-z)z _hx,NX—l(hx,NX—l +hx,NX—2)
B _critLe, .. + CcYa1L® CY3TLO (4.30)
5 i1k i1,k 126 T i3,k .
where
(h, ,+h ) -k,
CYITL = - .l .2 2 (4.30a)
hy.l(hy,l +hy,2)2 _hy,l(hy_l +hy,2)
h 2
CY2TL = it ”f) (4.30b)
hy,l(hy,l + hy,2)2 _hy.l(hy,l +hy.2)
h2
CY3TL = - y.1 (4.30¢)

2
hy.l(hy,l M y.2)2 B hy.l(hy.l * hy.Z)
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where

where

where

% —
Syl = CTITHO s + CY2THB yyy + CYSTHO, 0y (431

2 2
CYITH = (hy'""" +h"""‘2) _h"w'l (4.31a)
2
hy,NY—l(hy.NY-l M hy.NY~2)2 B hy,NY—l(hy,NY—l + hy,NY—Z)

h h 2
CY2TH = - ra” "2”_2) (4.31b)
hy,NY—l(hy,NY—l M hy,mr-z)z - h)',NY-l(hy,NY-l M hy,NY—Z)

2
CY3TH = h’-”"‘2 (4.31c)
hy,NY—l(hy,NY-l +hy,N}’—Z)Z —hy.NY—l(hy,NY—l +hy,NY—2)
% = CZITL®O + CZ2TL O + CZ3TL 6 (4.32)
A ign - 1,1 1.2 1,3 ’
2 _ 2
CZITL = - thy +h D" R (4.32a)
2
hz,l(hz.l +hz.2)2 _hz.l(hz,l +hz,2)
(h,  +h )
CZ2TL = 2. “2 (4.32b)
hz,l(hz,l -’-hz,z)2 _hz,l(hz.l +hz,2)
h2
CZ3TL = - zl - (4.32¢)
hz.l(hz.l +hz.2)2 _hz.l(hz.l +hz.2)
oo
E - = CZITHG,J,sz + CZZTHOU'NZ_1 + CZ3THBU,NZ_2 (4.33)
2 _ 2
CZITH = (h, nz-1 * Py pz2) h; nz-1 (4.332)

2
hz,NZ-l(hz,NZ-l + hz,NZ-Z)2 - hZ,NZ-l(hz,NZ—l + hz,NZ-Z)
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h +h 2
CZ2TH = - sz "2”2‘2) (4.33b)
hz.NZ—l(hz.NZ-l * h;,Nz-z)2 - hz,NZ-l(hz,NZ—l *+ hz,NZ—Z)
hz‘NZ—l
CZ3TH = ' (4.33c)

2
honz (P gy * hz,NZ—2)2 ~hy vzt gzt h )

4.3.2 Finite Difference Formulas for the Second-Order Derivatives on Boundaries

for v

® e
1 2

— n,, —

Figure 4.3 Arrangement of grid points for boundary conditions of v

The finite difference formulas on boundaries for y are quite simple because at the
boundary the first derivatives vanish. Using Taylor’s series, we have the following relation

for the lower limit boundary as illustrated in Figure 4.3.

h21 8?'\1! ,
_ %, (4.34)
= +
“px,2 wx,l 2 axz I,J,k
We define
az_uz: = CXSPLy _, + CX6PLY (4.35)
Ox*l1.jk ' '
where
CXSPL - ——22— (4.352)
hx,l
CX6PL = —%— (4.35b)
hx,l



Similarly we can find the approximations for the higher limit side for the x direction and

those for y and z axes.

% = CX4PH Y _ | + CXSPHY _ s (4.36)
NX.Jj .k ’ ’
where
2
CX4PH = 5 (4.36a)
hx,NX-l
2
CX5PH = - . (4.36b)
hx,NX-l
Py - (4.37)
'é; . = CYSPLle'l + CY6PL¢ .2 :
where
2
CYS5PL = - (4.37a)
hy.l
CY6PL = iz (4.37b)
h)',l
&y - CY4PH P (4.38)
52_ iNYE ¥ynr- ¥ CYOPHY s .
where
CY4PH = 22 (4.382)
hy,NY-l
CYSPH = - 22 (4.38b)
hy,NY—l
SV _czspLy,, + cz6PLY (439
dz* i ' '
where
CZSPL = -—2- (4.392)
h2
zZ,1
CZ6PL = iz (4.39b)
hz,l
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Py '
oY = CZ4PH + CZSPH (4.40)
azz ijNZ w z,NZ-1 w z,NZ-2
where
CZ4PH = —2 (4.40a)
hz.NZ-l
CZSPH = -2 (4.40b)
hz.NZ-l

4.4  The False Transient Equations of Vector Potential

The method of false transient makes two simple changes to each vector potential
component equation: a fictitious transient term is inserted in the left side of the equations
and the time derivatives are given modified coefficients. Equations (3.105), (3.106) and

(3.107) become:

1 8. i} Py’ . Py , Da, Py » Da_ &y’

) 00

~ +RaDa (cos yﬂ ~-coshata—
ayl

aw atl ax/2 ay/2 Day aZ/Z _Day ax/azl aZ/,
(4.41)
/ / / / /
1 a'll}y _ az¢y+azl|!y+Dazazl|!y+(1_%) az"pz+RaDa(cosa§_cos-Y_§)
d\v at/ 6x’2 3}'/2 Dax 82/2 Dax 8_)1/82/ ’ azl ax/
(4.42)
/ / / / D Py’
_l_a‘l’z _ 82¢Z+Day azllJz*.azwh.( a’—l) vy +RaDay(cosB-@—cosa—§g)
a, o' ox’? Da, gy'* 5> Da, " dy'er’ ax’ oy’

(4.43)

If such a " steady state” solution exists, clearly the left hand side of equations (4.41), (4.42)
and (4.43) will be zero and the results for them are identified as being the same as solved

from equations (3.105), (3.106), (3.107).
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The introduction of false transient coefficients aenhance the rate of convergence by

setting different value of o, therefore the steady state y can be obtained more efficiently.

4.5 The Iteration Scheme for a Single Equation - Samarskii-Andreyev Implicit

Alternating Direction Method.

Equations (3.93), (4.41), (4.42) and (4.43) have four independent variables x,y,z and time
t. In this study an implicit alternating-direction methods - the Samarskii- Andreyev (1963)
Scheme was employed. It is also called the locally-one dimensional method because each
equation is split into three one-dimensional equations to be solved at each stage of the

solution.

4.5.1 Solution Procedure of Vector Potential

4.5.1.1 Solution of X Component vy,
! ' &Y/, Da, Yy Da, &y’
ia% - az"l"x+ ¢x+ az ll!x+ 1- z) ll"z +R0DGZ(COSY-8—6—‘COSB—8—@—)
a\h at/ ax/2 ay/Z Day 82/2 Day ax/az/ ay/ aZ/

(4.41)
We define intermediate variable ® as
/
oo L 9¥ (4.44)
®, ot/
and
¢i=a¢6At/w ry? (4.45)
. . direction:
implicit in x direction 2 e w/p . azllli + D, 8211!,/,
x _ _Y W+
N ax”(a‘" ” oy’ Da, &’
2y’ 3
+(1- Daz) V. + RaDaZ(cosyg.i/ - cosB—/)
Da, ox’' oz’ dy oz
(4.46)
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Using differential approximations, the above expression can be expanded to:

w-a,8AL/(CX4@D 0y, + CXS@ o + CX6() w;.)
= CX4@D¥, ;. + CXS@D ¥, + CX6() Y, ;.

+ CYH(D ¥, ;. + CYSGY, + CY6(Y, ;.1
Daz

( CZ4R) ¥, .y + CZ5(B) ¥, + CZ6R) Y. 4., )

+

a,

(1~

Da
2 ) (CXMIZMIG, B W, .y 4., + CXZMIG, BV, .,

+

y
CXPIZMI (i, DV, 1.y ¢1* CXMIZG, BV, .\ , + CXZG, OV, , ,
CXPIZ(, )W, i1 ¢ + CXMIZPIG, D)W, 4.,
CXZP1(, W, 4. + CXPIZPIGRY. .\ ..,
RaDa,[cosy (CYI()B,, + CY2()8 + CY3()8,,)
cosB(CZI (K8, , + CZ2(R)® + CZ3(K),.)]

+

+

+

+

(4.47)
Now we define:
A(I)=—aw6At’ CX4(0) (4.43)
B(I)=-a, 8At" CX5())+1 (4.49)
C(h)=-a,dAt’ CX6() (4.50)
D(I)=RHS of above equation (4.51)
Simplifying the expression yields:
A(Dow,;+B(Dw; +C)w,,,=D{) (4.52)
We may expand equation (4.52) as
B(Dw;+C(Dw, =D(1)
AQR)w{+B(2)w,+C(Qw, =D(2)
A3)w,+B(3)w; +C(3)w, =D(3)
ANX-1) 05y +BINX-1)0 gy +(NX- D 0 gy =D(NX - 1)
ANX)0 yx- + BINX)0 gy =D(NX)
(4.53)

This is a tri-diagonal equation set and can be easily solved using the Thomas solution. (see

Appendix B)
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The second step is to implicitly advance the iteration in y direction:

W, -8a, At/ (CY4() o + CY5()w; "+CY6()w)}) = o
let
AW) = -« 8 At CY4()

B(U) = -a,8At CY5(p) + 1
CW) = -a,8At CY6()

DY) = o*
Thus we have:

AD e + B, + CU)w = DY)

(4.54)

(4.595)
(4.56)
(4.57)

(4.58)

(4.59)

Again this is a set of tri-diagonal equations and can be solved by the Thomas method.

The third step is to implicitly advance in the z direction:

(4.61)

(4.62)

LR / Daz =5 x xx xxx - 460
Wy —bawAt (CZ4(k)wy_, +CZ5(k)w,  +CZ6(k)w;.,) = o™ (4.60)
y
Da
AK) = —a'GAt’ £ CZ4(k)
a
y
Da
B(K) = —a'GAt’ L CZ5k) + 1

Day

/Dal
CK) = -a,8A1'—* CZ6(K)

Day

D(K) = (‘).‘

(4.63)

(4.64)

By using the Thomas method, we obtain the final intermediate value of ® , the vector

potential can be updated by:

¢£¢1=¢£+G'At/(|)‘.‘

(4.65)
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4.5.1.2 Solutions of Y Component: v,

oy, &y, &y’ Da, Py’ Da_ &y’
1o oV, v, T4 lljy+(1— %) v +RaDaZ(cosoz9—e——cosyﬁ
ay &' ' gt Da, g7 Da, &y'a;’ 3’ ox
(4.42)
Similar to y,, we also define an intermediate variable ® as
/
_1 9% (4.66)
a, o’
and
/_ /p 4.67
ljly—awﬁAt/(o +y, (4.67)
implicit in x direction:
&y, Da, Py
w" = —az—(awﬁAt’w' +1p;p ) + vy Wt ¥y +
ax'? oy’ Da, &' (4.68)
Da._ 3%y,
1-22 Y | RaDa (cosa - cosy 2
Da_ 5y’o7’ oz’ ax’

Using differential approximations, the above expression can be expanded to:

0 -a, 8AL/(CX4@) 0], + CX5(Hw” + CX6()0,.,)

/

= CX4() ¥, 1 + CX5() ¥, + CX6() W, ..,
+ CY4() ¥, ;- + CYS()y, + CYS()Y, .,

Da, , / /
+ " ( CZ4(k) ll"y, k-1 T CZS(k) lj!y + CZ6(k) ll"y, il )
D
£ (1 - Daz ) ( CYMIZMIG, KW, ;.\ 4y + CYZMIG, K)y. ., (469
a

X

+ CYPIZMI (, KW, ;o g+ CYMIZG, ¥, 1 + CYZG, DY,
+ CYPIZ(j, k)ll!i,j,l,k + CYMIZPI{j, k)wij—l,k+l

+ CYZPI1(j, O, ., + CYPIZPI(j,k) Voot ke
+ RaDa [cosa(CZI(K)6, | + CZ2(k)6 + CZ3(K)6,,))
- cosy (CXI(H)O, | + CX2(i)0 + CX3(1)6,, )]

Now we define:

A(D=-a,dAt" CX4() (4.70)
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B(h=-a,8At" CX5(i)+1
Ch=-a,8At" CX6(3)

D(D)=RHS of above equation

simplifying the expression we obtain
ADo;+Bw; +CDw,,,=DU)

Again this is a tri-diagonal equation set easily solved by the Thomas method.

The second step is to implicitly advance the iteration in the y direction:
w; - da,At' (CY4() w; ) + CYS()w;" +CY6(j)w;) = »*

AW = -a, 841 CY4()

B(J) = -a,8A1 CY5() + 1
CW) = -a,bAt’ CYE()
D) = w*

Thus we have
AW e + B + CU e = DY)

(4.71)
(4.72)

(4.73)

(4.74)

(4.75)

(4.76)
4.77)
(4.78)

4.79)

(4.80)

Again this is a set of tri-diagonal equations and can be solved by the Thomas method.

The third step is to implicitly advance in z direction:

EXY / Daz

p 4

Da
—atb At/ —= CZ4(k)

AK) = oy

B(K) = —a‘,bAt’Da‘ CZ5k) + 1
Da,

CKK) = —a‘ybAt’Da‘ CZ6(k)
Da,

DK) = o™

(CZ4(k) o, +CZ5(k)w,  +CZ6(k)w;p) = 0™ (4.81)

(4.82)

(4.83)

(4.84)

(4.85)
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By using the Thomas method, we obtain the final intermediate value of ®™", the vector
potential can be updated by:

w‘:’1=w‘:+awAI/w"' (4.86)

4.5.1.3. Solution of Z Component v,

oy, &y Da &y Py Da Fy’
1 v = ll"l+ Y _‘l’z+ llJz+( X-1) vy +RaDay(cosB@—cosa@)
a/ ay/

aw at/ ax/Z Dax ay/Z aZ/Z Dax ay/az/ e
(4.43)
We define intermediate variable ® as
/
_1 9% (4.87)
a, St
and
w:':awéAt/(‘-) + Lp:p (488)
implicit in x direction:
Da, vy, vy’
W = ——az (awéAt/w'+q;:p )+ —2 b + v:
ax’? Da, 3y’ &’ (4.89)
Da vy’
+(—2 -1 Yy +Ra Da (cosB@ - cosa@)
Dax ay/az/ y ax/ ay/

Using differential approximations, the above expression can be expanded to:
0"-a, 8A(CX4D ., + CXSHw™ + CX6() w].))
= CX4() ¥, ., + CX50) ¥, + CX6D) ..,

Da
* S (CHD Y, 1 + CYS(¥, + CYS(Y, 5., )

* CZ4(k)1p:’ 1+ CZ5(R) Yy, + CZ6(k)Lp:, eor)
+ ( ?X -1 ) ( CYMIZMI (j, k) "p:,j—l, k-1 T CYZM]O, k)\p;j, . (490)

X

+ CYPIZMI (i, )W, oy ga* CYMIZG, D)W, 1y + CYZG, Y.
+ CYPIZ(, k)W, ;.\« + CYMIZP1(, ¥ .14,

/ /

+ CYZP1(j, W)Wy, + CYPIZPIG, ), .y 40
+ RaDa [cos B (CXIH8, , + CX2(DO + CX3(H)0,,)
- cosa(CYI()O,, + CY2(HO + CY3(DH,,))]
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Now we define:

A(D=-a 8At’ CX4(i) (4.91)
B(D=-a, 8At" CX5()+1 (4.92)
C(D=-a,3At" CX6(i) (4.93)
D(I)=RHS of above equation (4.94)

simplifying the expression gives
A(Dw; +B(Dw; +C()w,, =D (4.95)

This is a tri-diagonal equation set and can be solved as before.

The second step is to implicitly advance the iteration in the y direction:

s Da . e . L X . L 3 -
0] - Ba At 2 (CH)oi + CYS()e; " + CY6G)w) = o7 (4.96)

X

AU) = -a,8AL D4y cvagy (4.97)
Da,
Da

B() = —avbAt’ D—’CYS(]’) +1 (4.98)
Da

CW) = -a,3At' =2 CY6() (4.99)
Da,

D(J) =" (4100)

Thus we have
A(J)(.);_'l + B(J)(.)j" + C(J)(.)j':l = D) (4.101)

Again this is a set of tri-diagonal equations and can be solved by Thomas method.

The third step is to implicitly advance the iteration in the z direction:

0" - 8a, At/ (CZA(K) o)’y + CZ5(K) 0, + CZ6(k) wyy) = o™ (4102)

AKK) = -a, 8At' CZ4(K) (4.103)
B(K) = -a,8At' CZ5(k) + 1 | (4.104)
CK = -a,8At" CZ6(K) (4.105)
D) = o (4.106)
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By using the Thomas method, we obtain the final intermediate value of ™", the vector
potential can be updated by using:

W Ao (4.107)

4.5.2. Solution Procedure of Temperature

The solution procedure is simple and very similar to those of vector potential.
2

ae R V V/e va26 theale (397)
ot’ ( h'Tc)ke/f
because
7 7e=1 /1)
VpVG—Vp V-6+6V Vp (4.108)
=V’-(Vp9)
Equation (3.97) may deform to:
2
DR V-(7,6)+R V04 RCua®o (4.109)
( h_Tc)keﬁ'
We define
ado
w=— (4.110), and 8=8At’w+67 (4.111)
ot
we may have
w=@=—6At/Rc [a(wu) . Hwv) . d(w w)]
o’ ox oy 0z
R [a(eu) 9v a0 w)]
ox oy 0z
g (20,80, Fo, w1
axz ayz aZZ
[826” %67 azep]
c ax2 ay2 822
+ ngc Qheat
(Th_Tc)keﬁ‘

implicit in x direction:
w'-ROA t/(CX4()w;_+CX5()w” +CX6()w;.,)
+Rc<5At’[CXI(z)(u,._l w, ) +CX20) () +CX30)(y,,, W]
=R [CX4()H;_, +CX5()0+CX6(10,,,]
R [CY4()S;_, +CY5(])6+CY6(/)B o] (4.113)
+R [CZ4(k)6k 1+CZ5(k)6+CZ6(k)6M]
-R [CXI®(O,_,v;. O+CY2(/)(6V)+CY3(])( 6,.1v,.1)]
-R [CZ1(k)(O,. 1Wk 1)+CZZ(k)0w+CZ3(/)(6k+1wk 8]
+CCOQ



let

A() = Rc & At' CX1() u,_, - Rc 8 At’ CX4(3) (4.114)
B(I) = Rc & At' CX2(i)) u, - Rc & At/ CX5(i) + 1 (4.115)
C(I) = Rc & At' CX3() u,,, - Rc d At/ CX6(3) (4.116)
D(I) = RHS of above equation (4.117)

By solving these equations we obtain ' and then forward the iteration implicitly in the y

direction, we have

©"-R8At (CY4()w, +CY5()w ™" +CY6()w,.})

+R AL [CYIG) (., ©;))+CY2()(ue™")+CY3() (4., 0/]] (4.118)

="
AW) = R & At/ CYI() v, - R 3 At' CY4(j) (4.119)
B(J) = R 3 At/ CY2(j) v, - R & At/ CY5(j) + 1 (4.120)
CW) = R & At' CY3()v,, - R 3 At’ CY6() (4.121)
DY) = »” (4.122)

Similarly implicit in z,
©***-R8AL (CZ4(K)wi'T +CZ5(K)w " *+CZ6(K)wsny)

+sR8AL [CZIMW,., 0f ) +CZ2(R)(we**)+CZ3R)W,., opy]  (4129)

= wll
A(K) = R 8 At' CZI(kyw,_, - R.& At' CZ4(k) (4.124)

B(K) = R.8 At' CZ2() w, - R, 8 At/ CZ5(k) + 1  (4.129)

R 5 At/ CZ3(K)w,,, - R & At' CZ6(k) (4.126)
(4.127)

CK)
D(K) (‘)”

updating 6 using
ep+l=ep+Atlw——-t (4128)
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4.6  Stability and Consistency

Next we discuss the convergency of the numerical procedure. As described by Carnahan
et al (1969) the term convergency is understood to mean that the exact solution of the
finite-difference problem (in the absence of round-off error) tends to the solution of the
partial differential equation(PDE) as the grid spacings in time and distance tend to zero.
There are two important concepts closely associated with the convergence of a particular

finite-difference procedure, namely, those of consistency and stability.

The term stability denotes a property of the particular finite-difference equation(s) used as
the tume increment is made vanishingly small. It means that there is an upper limit (as
at”0) to the extent to which any piece of information, whether present in the initial
conditions, or brought in via the boundary conditions, or arising from any sort of error in
the calculations, can be amplified in the computations. The term consistency, applied to a
certain finite-difference procedure, means that the procedure may in fact approximate the

solution of the PDE under study, and not the solution of some other PDE. Consistency is

often taken for granted.

It can be shown that, for a single linear equation, the Samarskii-Andreyev (1963) method
is unconditionally stable. This scheme was stable when applied to a natural convection
problem, but unfortunately it is impossible to prove or disprove the stability of it when
applied to coupled, non-linear equations, Mallinson and de Vahl Davis (1973). Mallinson

and de Vahl Davis (1973) also demonstrated that instability can still be introduced by the
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coupling between equations of a system, but the time step at and false transient parameters
@, can be adjusted to control the instability and therefore a solution was still obtained. In
this study we observed that if Ra>10°, a fine mesh and smaller time step was needed to

make the program stable, although much more computing time was used.

4.7 Solution Procedure and Program Explanations

The arrangement of the solution procedure is discussed in this section. The numerical
solutions of the governing equations were found by embedding their problem-specific
discretized forms in FRECON3D, a computer program developed by Goh et al (1988).
Flow charts of program AGRI_3D.FOR for this study are illustrated in Figure 4.4 and 4.5.
To begin, the initial condition, boundary conditions and control variables are input by a
subroutine DATIN then all the fields of vector potential, velocity, temperature and work
space are initialised by subroutine INITA. Component equations of vector potential are
solved by P1SOL, P2SOL and P3SOL subroutines, temperatures are advanced by TSOL

and TBC, velocity fields are solved in VBC and VELOC.

ITERAT is the iteration control subroutine. It redirects the advance routine from the inner
iteration to the main iteration or from the main iteration to the inner iteration. The outer
iteration loop or main loop, is started from the advance routine for solving the vector
potential field. Initially the W, field is treated as constant in subroutines P1SOL and

P2SOL, the new ivy is then used in subroutine P3SOL to obtain y,. Every subroutine in
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P1SOL, P2SOL and P3SOL includes its own third-level iteration loop to approach steady
state. These processes continue until ,, W, and , do not change significantly, they consist

of the inner iteration loops and within the inner loops, temperature is held constant.

When updated values of v, y, and v, are obtained, the process will jump from the inner
loop and return to the main loop. Velocity field is then updated by subroutine TSOL and
TBC. Once the temperature field is updated, the main iteration loop turns to the next cycle
by applying the updated 9, v,, y, and v, fields as starting points. When the maximum
iteration number is reached or the solution is convergent or indicates divergence, the
program will jump from the iteration loops and writes the results by calling subroutines

OUTPUT and WRITER.

Program AGRI_3D.FOR is shown in Appendix D.
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Figure 4.4 Program flow chart: main iteration loop.

67



Main iteration loop

............... | e

: - 47
S SR P . Update velocity
¥ A/ : : field

5! P1 iteration : VELOC
b : ] VBC

h o, . \

L E] : s

i 7 P:SOL- v

. . Urdate
temperature field
! : TSOL

E E TBC |

| !

Output ransient
results

ITEROUT

Third level loop

Ihird level loop

bl

y @

vo

0y M . ' Mz2a r
) iterauon —
P numoe”

Figure 4.5

Program flow chart: inner loop.

68



CHAPTER 5

NUMERICAL EXPERIMENTS AND COMPARISONS WITH PRIOR WORK

5.1  Numerical Experiments

In obtaining a physically sensible solution to a set of differential equations by numerical
integration, not only does correct formulation of the governing equations and the initial and
boundary conditions affect the results, but, as is well known, the numerical solution
procedure itself may have a significant influence on the final results. In this chapter, the
effects on the solution of the mathematical model developed in this study for different time
steps, grid sizes and grid patterns are investigated. As well, convergence criteria for the
vector potential and temperature are examined along with the effect of varying the
Rayleigh and Darcy numbers. Many numerical experiments of packaged apples in a level
rectangular container had been performed to examine the effects of these factors on
solutions of a range of Ra and Da numbers. Finally, the output of the program is compared
with the results of Beukema’s (1983) numerical study in which he characterised three-
dimensional heat transfer in packed agricultural produce by assuming isotropic

permeability and a constant rate of respiratory heat generation.

5.1.1 Effect of Criterion for Convergence on Steady State Potential

As described in chapter 4, before the new temperature and velocity fields are obtained,
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updated vector potential should be iterated until it reaches its steady state. The criterion for

convergence of the vector potentials was called PHIERR and when the condition

2l
bl

<PHIERR (5.1)

was satisfied the vector potential field was iterated to a steady state. In the above
inequality, superscript ” represents the pth cycle of the third-level iteration loop. As shown
in Table 5.1, when the product of Da and Ra is large, and the iteration time step is not
small, PHIERR plays an important role in determining the final state of the vector

potential.

When a uniform mesh of 11x11x11 grid is used, the differences between P2min and P3max
at PHIERR = 10 and PHIERR = 0.001 were large (nearly 40%), thus PHIERR = 10
appears too large for the vector potential field to reach a steady state. Theoretically, the
smaller PHIERR is, the smaller difference there is between y? and y**!, but we can
observe that v, and v, do not change significantly when PHIERR is less than 0.001. The
difference between P2mins when PHIERR = 0.001 and PHIERR = 0.00001 is only 1%. So

PHIERR = 0.01 is small enough to obtain reasonably accurate results for vector potential.

The iteration number in the third level iterative loop increases significantly as PHIERR
decreases. When PHIERR changes from 0.001 to 0.00001, the accuracy of the vector

potential field can be improved by 1%, but the third level iteration number needed is 51

times greater. This causes the program to take many more hours to run.
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To balance the accuracy and economy of computation time, PHIERR should be chosen
carefully. In most circumstances, PHIERR = 0.001 insures that the vector potential field

converges to a satisfactory steady state while only a small number of inner iterations is

needed.

A small time step for the main iteration loop can reduce the influence of PHIERR as
shown in Table 5.2. It was found that when At was less than a critical value for a particular
mesh size, there was no significant difference evident when choosing large and small
values of PHIERR for the P2 and P3 iterations. Probably because the main loop time step
was small, the temperature difference between one step was also small and the difference
between vector potentials was also small, thus enabling the third level loop to readily reach

steady state.

A further interesting result is revealed on examining Table 5.2. When the advancement
time step is small, the decrease in PHIERR does not make the iteration number inside the
third level loop increase rapidly. It takes 38 cycles to reach steady state when PHIERR =

10 and only 43 cycles when PHIERR = 0.001 which is 10* times smaller.
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5.1.2. Effect of Iteration Time Step

Special attention must be paid to specifying iteration time steps, Af,,,, and Af,,,. In the
inner loop and third level iterative loop, Af,,,, is specified to be large enough to reduce
the running-time yet small enough to avoid instability. In the main loop, At,,,,, is specified
to be large enough to reduce the running-time yet small enough to obtain a satisfactorily

accurate true transient solution. The following relations were used:

At =Relx-hk, (52)
where At ., is the time step for the main iteration loop, Relx is the relaxation parameter

to improve the solution economy and accuracy, h,,, is the minimum grid distance. And

At = o, At (53)

where At is the iteration time step for iterative advancement in solving the vector

potential, o, is the false transient coefficient of the vector potential.

In this study it was observed that when Ra was small, a large iteration time step could be
used, but when Ra was large, a small time step improved the convergence and stability of
the program. We could always find Relx and ., to obtain a satisfied combination of Af,,,,,
and At,, for different commodities in different initial and boundary conditions. It is found
that the choosing of Relx and a, is not unique. When Az, is large, a small At,,,,, may
be used to balance the stability. When Af, is small, a large Af,,, can be used, thus
improving the convergence speed in the inner loop. Figure 5.1 shows an example of

choosing two sets of different Af,,,;,, and AZ,,,, 10 obtain the same results.
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Figure 5.1 Effect of Iteration Time Step on Solution
Table 5.3 Mesh size effect on solution, Da*Ra=10
Mesh size Time step PHIERR Temperature at central Cooling time
5 0.001 0.001 1.001165 1.184726834
11 0.001 0.001 1.003337 1.184726834
21 0.001 0.001 1.003337 1.184726834
31 0.001 0.001 1.003337 1.184726834
41 0.001 0.001 1.003337 1.184726834
51 0.001 0.001 1.003337 1.184726834

5.1.3 Effect of Grid Size on Uniform Mesh

When using a uniform mesh, the mesh size plays a very similar role in influencing the

stability to that of the time step. Also the mesh size has some influence in choosing the
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iteration time steps. As we can see In equations 5.2 and 5.3, mesh size is relative to time

steps.

Numerical results showed that different Ra and Da numbers required different mesh sizes
to obtain the best compromise between accuracy and economy. A fine mesh caused higher
time consumption but improved the convergence when Ra was very large. Table 5.3 shows
the comparison of different mesh size effects on predicting temperature at the central point
of a 0.28x0.52x0.32m container of apples, after cooling 1.184 hours at 30 °C initial
temperature. It shows that a mesh size df 11x11x11 can achieve very accurate results.In
this study it is found that the Samarskii-Androyev alterative direction implicit scheme has
a very good stability and convergence characteristics when applied to natural convection.
We can always find a satisfactory mesh size and time steps to obtain an economic and

accurate solution.

5.1.4 Non-Uniform Grid Size

A non-uniform mesh can sometimes improve both the accuracy and time economy of a
solution process. The design of a non-uniform mesh is usually based on a prior "guess’ or
prior results of a simple uniform mesh. A non-uniform mesh was designed to perform a
numerical investigation on the effect of different mesh types on the program. A narrow grid

size near the walls and a wide grid size in the central regions were used to form the non-

uniform mesh pattern defined below

20x20x28x36x36x36x36x28x20x20
720 x 52 x 52 x 52 x 68 x 68 x 68 x 68 x 52 x 52 x 52 x 20
20 x 20 x 32 x 44 x 44 x 44 x 44 x 32 x 20 x 20.

x direction(mm):
y direction(mm):
z direction(mm):
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A 11x13x11 uniform mesh was designed as

x direction(mm):
y direction(mm):
z direction(mm):

28 x 28 x 28 x 28 x 28 x 28 x 28 x 28 x 28 x 28
52 x 52 x52x52x52x52x%x52x%x52x%x52x52x%x52x%x52
32 x32x32x32x32x32x32x32x32x32.

While it may not always be apparent how to best select a mesh pattern for a particular

situation, the results shown in Table 5.4 demonstrate that a judiciously chosen non-uniform

mesh can improve the accuracy of the solution and lead to some economic benefit by way

of shorter CPU time. For every identical iteration step, the errors of potential and

temperature are smaller using the non-uniform mesh than using the uniform mesh. To reach

the same accuracy for vector potential or temperature, less iteration steps are needed, for

example, to obtain a steady state (when T_error is less or equal to 1.0x10%), about 6000

main iteration steps for non-uniform mesh and 6300 main iteration steps for the uniform

mesh, which is about 5% large, are needed.

Table 5.4 Effect of different types of mesh on accuracy and convergence

ith step
Non-uniform mesh
3000
4000
5000
6000
6400
uniform mesh
3000
4000
5000
6000
6400

P2_error

0.44E-04
0.58E-04
0.18E-04
0.56E-05
0.35E-05

0.73E-04
0.35E-04
0.32E-04
0.10E-04
0.64E-05

P3_error

0.40E-04
0.73E-04
0.23E-04
0.70E-05
0.43E-05

0.64E-04
0.29E-04
0.40E-04
0.12E-04
0.78E-05

T_error

0.30E-03
0.10E-03
0.32E-04
0.96E-05
0.59E-05

0.40E-03
0.14E-03
0.47E-04
0.15E-04
0.91E-05

77



5.2 Comparison of Results with Prévious Work

Beukema (1980, 1983) conducted experimental and numerical studies on natural convection
in isotropic porous media with constant heat generation rates. The results obtained by
Beukema agree very well with the numerical results found in this study under the same
conditions. To examine the accuracy of our program, a test was performed by using exactly
the same boundary conditions and the same physical properties to obtain the temperature
field and temperature versus time curves which can be compared with those of Beukema’s.

The data used in Beukema’s study and this test are shown in Table 5.5.

Table 5.5 Data used by Beukema (1980, 1983)

Constant rate of heat generation 60 W/m’
Height of container 0.5m

Width of container 0.76 m

Length of container 0.76 m

Initial temperature 28.75°C
Environment temperature 19.2°C
Isotropic permeability 1.45 x 10° m?
Effective thermal conductivity 0.25 W/mK
Heat capacity, air [p C, ] air 1230 J/mK
Heat capacity, media [p C, ], 2.3 x 10° J/mK
Dynamic viscosity, air, p 1.77 x 10”° kg/ms
Porosity 0.378
Convective heat transfer coefficient at top of the container 10 W/m’K
Convective heat transfer coefficient at bottom of the container 7 W/m’K
Convective heat transfer coefficient at side walls of the container 20 W/m’K

A non-uniform grid mesh was designed to match those particular points that Beukema used
to locate the temperature measurement. A 11x11x11 grid network was used with intervals

of 0.11 x 0.09 x 0.1 x 0.1 x 0.11 x 0.09 x 0.1 x 0.12 x 0.09 x 0.09(m) in the x direction,
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and equal intervals in the y and z directions. The criterion set for vector potential

convergence was 0.001.
Figure 5.2 shows the results of Beukema’s work and Figure 5.3 shows the present results.

Theses figures demonstrate that the temperature versus time characteristics calculated in

the two studies agree quite well.
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CHAPTER 6

NUMERICAL RESULTS FOR COOLING STORED

AGRICULTURAL PRODUCE

6.1 Introduction

The results of a series of numerical experiments designed to simulate the convective heat
transfer processes occurring in the packed beds of selected fruits and vegetables as they
are cooled are presented in this chapter. Besides modelling the characteristic variation of
heat generated by respiration with temperature for each commodity, effects due to changes
in the permeability of the packed bed are investigated by choosing fruits and vegetables
exhibiting either isotropic or orthotropic permeability. For the comodities considered,
natural convection with both adiabatic and isothermal boundary conditions imposed on the
floor of the container are studied. A comprehensive discussion of the results has been
reserved until the next chapter, however interpretations arising naturally from the results

may be dealt with as they occur in this chapter.

Data from Table 2.2 which gives respiration rates for various commodities was used for
constructing, by least squares, the respiration rate versus temperature function for apples,
Brussels sprouts, carrots and asparagus in the program. The data on the physical properties

of air used in the program are shown in Table 6.1.

81



Table 6.1 Physical data for air at atmospheric pressure, T=288K, Ozisik (1985).

Specific heat, Cp,,, KJ/Kg'K 1.0056
Air viscosity, p, Kg/m-s 1.8642 x 107

6.2 Produce with Isotropic Permeability

Because of their roughly spherical shapes, apples and Brussels sprouts were chosen as
typical of commodities, that when packed in boxes, may be treated as packed beds with
isotropic permeability. A further consideration was the desirability of studying differences
between a weakly respiring commodity, characterised by apples, and a strongly respiring

one, such as Brussels sprouts.

The physical properties data used in the program to investigate natural convection in a
container for storing apples are given in Table 6.2.

Table 6.2 Physical data for Apples, Fikiin (1983)

Water content, ¢, % 83.5
Specific heat, Cp,, KI/Kg'K 3.724
Density, p,, Kg/m’® 1066
Density of packed bed, p,, Kg/m’ 657.5
Porosity g " 0.3832
Average diameter, m? 0.067
Effective thermal conductivity in packed bed, KW/m'K 0.291x10™
Initial temperature, °C 30°

Cold wall temperature, °C 0°

Note: De=1-p/pg

2) Average diameter obtained from Gala Apples. It may vary from different grades or
different cultivars.

The data on the physical properties of Brussels sprouts used in the program are shown in

Table 6.3.
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Table 6.3 Physical data for Brussels Sprouts

Water content, ¢,,.» %, (Hardenburg, 1986) 84.9
Specific heat, Cp,, KJ/Kg'K, (Mohsenin,1980) 3.684
Density, p,, Kg/m* " 1060
Average diameter, m? 0.029
Porosity, € ¥ 0.3832
Effective thermal conductivity in packed bed, KW/m-K? 0.291x107
Initial temperature, °C - 30°

Cold wall temperature, °C 0°

Note: 1) p, = 2670/(1.67+¢,,.,), Fikiin,1983;
2) May vary from different grades;
3) Assumed having the same value in Table 6.2.

6.2.1 Natural Convection with an Adiabatic Floor

The container was assumed to have an adiabatic floor, four cool isothermal side walls and a
cool isothermal top. The box size was 320mm(w) x 520mm(l) x 280mm(h). The dimensions
were taken from an actual package box for apples. A non-uniform grid mesh of 10 + 8 x 32.5
+ 10 in the x direction, 10 + 10 x 50 + 10 in the y direction and 10 + 8 x 37.5 + 10 in the

z direction was used. The convergence criterion was 0.001 and the main iteration time step

was 0.02551.

The computed results of the evolving three-dimensional temperature and velocity fields with
respiratory heat generation for apples with an adiabatic container floor are presented in Figures
6.1 to 6.12. Figure 6.1 shows the temperature response versus time at different locations along
the central vertical axis of the box. At x=0.036 and x=0.152 the temperature initially decreases
for some 1.5 to 3 hours, after which it plateaus and then begins to cool rapidly. While at
x=0.268, x=0.384, an initial temperature rise can be observed. Some 20 hours after the cooling

process first commenced a steady state temperature distribution was reached.
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Figure 6.1 Temperature change with time along vertical central axis. Apples, adiabatic
floor.
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Figure 6.2  The x-component of velocity, u, versus time along the vertical central axis.

Apples, adiabatic floor.
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Figure 6.2 shows how the x component of velocity, u, changes along the vertical central
axis with time. It apppears that strong air movement started about one hour after cooling
commenced and reached its maximum after about 1.5 hours. The velocity at different
positions reaches its peak value at different times. In the lower part of the container the
velocity reached its maximum value before that in the upper part. The time delay between

x=0.964 and x=0.152 was approximately 30 to 40 minutes.

Figures 6.1 and 6.2 indicate that high temperature gradients were associated with strong
air movement inside the box. The x component velocity distribution near the top and
bottom walls does not show sharp changes and the average value was relatively small

compared to that in the central area.

Figures 6.3, 6.4 and 6.5 show the temperature distributions along three central axes of the
box during the cooling process. Figures 6.6, 6.7 and 6.8 show the the x component velocity
distributions along the three central axes. Because the system is symmetric in the y=0.5y,
and Z=0.5Z, planes, the temperature and x component velocity are also symmetric along

the Y and Z axes.

As shown in Figures 6.7 and 6.8, the downward air movements were limited to a narrow
layer near the cold walls. Between the upward air flow and downward flow, there was a
narrow zone where the velocity ¥ was zero. It seems that the zero velocity ¥ zone does not
change position much. The absolute velocity values near the side walls were greater than

those in the centre.
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Figure 6.3 Temperature distribution at different cooling times along the central x axis.
Apples, adiabatic floor.
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Figure 6.4  Temperature distribution at different cooling times along the central y axis.

Apples, adiabatic floor.
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Figure 6.5 Temperature distribution at different cooling times along the central z axis.
Apples, adiabatic floor.
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Figure 6.6  x component of velocity, u, distribution at different cooling times along the
central x axis. Apples, adiabatic floor.
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Figure 6.7 x component of velocity, u, distribution at different cooling times along the
central y axis. Apples, adiabatic floor.
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Figure 6.8  x component of velocity, u, distribution at different cooling times along the
central z axis. Apples, adiabatic floor.
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Figure 6.9  Nu number change with time on top and side walls. Apples, adiabatic floor.
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Figure 6.10 Steady state temperature distribution along the central x axis. Apples,
adiabatic floor.
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Figure 6.11 Steady state temperature distribution along the central y axis. Apples,
adiabatic floor.
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Figure 6.12  Steady state temperature distribution along the central z axis. Apples,
adiabatic floor.
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The average Nusselt number change with time on the side walls and the top wall is
presented in Figure 6.9. In the first two hours of cooling, the Nu number had much larger
values than in later stages of the process. This sugests that beyond three hours, conduction

plays a more dominant role than convection in heat transfer.

Figure 6.10, 6.11, and 6.12 show the temperature distributions along the central x, y and
z axes after steady state conditions were reach. The highest temperature zone was at the
bottom of the box, with temperature reaching 8=0.009537 or T= 0.286°C. The temperature
in the central part of the box was 6=0.008485 or T=0.255°C. At the steady state
temperature, the velocity was very small and the influence of convection was weak since
heat transfer was largely due to conduction. Appendix C contains the contour map of the
local temperature distribution, local velocity distribution, vector potential and local Nusselt

number distribution during the cooling process and at steady state.

Brussels sprouts were seleted to illustrate the ability of the program to deal with
commodities characterised by high respiration rates. Brussels sprouts can be kept in good
condition for a maximum period of 3 to 5 weeks at 0°C, according to Hardenbury (1986).
The computed results of the developing temperature and velocity fields with respiratory
heat generation for Brussels sprouts with adiabatic floor conditions are shown in Figures
6.13 to 6.24. The temperature and x-component of velocity, u, along the central vertical
axis are shown in Figures 6.13 and 6.14 respectively. It is evident that a much greater time
was needed to cool the sprouts than was the case for apples. The temperature distributions
within the container along the central axes for the x,y and z coordinates, as it develops in

time, are shown in Figure 6.15, 6.16 and 6.17.
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The development of the velocity fields with time are illustrated in Figures 6.18, 6.19 and
6.20, where the x component of velocity distributions for the x,y and z coordinates along
the central axes are shown. Figures 6.21, 6.22 and 6.23 depict the steady state temperature
distributions along the central x,y and z cordinates respectively. The average Nusselt

number change with time on the side walls and the top wall is presented in Figure 6.24.
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Temperature 6
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Figure 6.13 Temperature change with time along the vertical central x axis. Brussels
sprouts, adiabatic floor.
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Figure 6.14 x-component of velocity, u, change with time along the vertical x central
axis. Brussels sprouts, adiabatic floor.
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Figure 6.15 Temperature distribution at different cooling times along the central x axis.
Brussels sprouts, adiabatic floor.
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Figure 6.16 Temperature distribution at different cooling times along the central y axis.
Brussels sprouts, adiabatic floor.
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Figure 6.17 Temperature distribution at different cooling times along the central y axis.
Brussels sprouts, adiabatic floor.
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Figure 6.18 x-component of velocity, u, distribution at different cooling times along the
central x axis. Brussels sprouts, adiabatic floor.
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Figure 6.19

x-component of velocity, u, distribution at different cooling times along the
central y axis. Brussels sprouts, adiabatic floor.
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Figure 6.20

x-component of velocity, u, distribution at different cooling times along the
central z axis. Brussels sprouts, adiabatic floor.
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Figure 6.21 Steady state temperature distribution along the central vertical x axis.
Brussels sprouts, adiabatic floor.
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Figure 6.22 Steady state temperature distribution along the central horizontal y axis.
Brussels sprouts, adiabatic floor.
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Figure 6.23  Steady state temperature distribution along the central z axis. Brussels
sprouts, adiabatic floor.
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Figure 6.24 Nu number change with time on top and side walls. Brussels sprouts,
adiabatic floor.
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6.2.2 Natural Convection with an Isothermal Floor

The results computed for apples cooled under isothermal boundary conditions imposed on

the floor of the storage container are presented below in Figures 6.25 to 6.36.

Progressive changes in the temperature destribution with time along the central x axis for
apples is shown in Figure 6.25. After some 40 hours the temperature within the packed box
reached steady state. Changes in the x-component of velocity, u, distribution with time
along the central vertical axis are shown in Figure 6.26. Figures 6.27, 6.28 and 6.29 show
the temperature distributions within the container along the central axes for the x,y and z
coordinates, as it develops in time. Figures 6.30, 6.31 and 6.32 show the development of
the x component of velocity with time albng the central axes. The steady state temperature
distributions along the central x,y and z directions are shown in Figures 6.33, 6.34 and 6.35
respectively. The average Nusselt number change with time on the side walls and the top

wall is presented in Figure 6.36.
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Figure 6.25 Temperature change with time along the vertical central axis. Apples,
isothermal floor.
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Figure 6.26 x-component of velocity, u, versus time along the vertical central axis.
Apple, isothermal floor.
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Figure 6.27 Temperature distribution at different cooling times along the central x axis.
Apples, isothermal floor.
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Figure 6.28 Temperature distribution at different cooling times along the central y axis.
Apples, isothermal floor.
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Figure 6.29 Temperature distribution at different cooling times along the central x axis.
Apples, isothermal floor.
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Figure 6.30 x-component of velocity, u, distribution at different cooling times along the
central x axis. Apples, isothermal floor.
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Figure 6.31 x-component of velocity, u, distribution at different cooling times along
central y axis. Apples, isothermal floor.
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Figure 6.32 x-component of velocity, u, distribution at different cooling times along the
central z axis. Apples, isothermal floor.
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Figure 6.33 Steady state temperature distribution along the central x axis. Apples,

isothermal floor.
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Figure 6.34 Steady state temperature distribution along the central y axis. Apples,

isothermal floor.
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Figure 6.35 Steady state temperature distribution along the central z axis. Apples,
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The results computed for Brussels sprou'ts cooled under isothermal boundary conditions

imposed on the floor of the storage container are presented below in Figures 6.37 to 6.48.

Progressive changes in the temperature destribution with time along the central x axis for
Brussels sprouts is shown in Figure 6.37. After some 40 hours the temperature within the
packed box reached steady state. Changes in the x-component of velocity, u, distribution
with time along the central vertical axis are shown in Figure 6.38. Figures 6.39, 6.40 and
6.41 show the temperature distributions within the container along the central axes for the
x,y and z coordinates, as it develops in time. Figures 6.42, 6.43 and 6.44 show the
development of the x component of velocity with time along the central axes. The steady
state temperature distributions along the central x,y and z directions are shown in Figures
6.45, 6.46 and 6.47 respectively. The average Nusselt number change with time on the side

walls and the top wall is presented in Figure 6.48.
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Figure 6.37 Temperature change with time along the vertical central x axis.
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Figure 6.38

x-component of velocity, u, versus time along the vertical central axis.

Brussels sprouts, isothermal floor.
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Figure 6.39 Temperature distribution at different cooling times along the central x
axis. Brussels sprouts, isothermal floor.
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Figure 6.40 Temperature distribution at different cooling times along the central y
axis. Brussels sprouts, isothermal floor.
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Figure 6.41 Temperature distribution at different cooling times along the central y
axis, Brussels sprouts, isothermal floor.
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Figure 6.42 x-component of velocity, u, distribution at different cooling times along

the central x axis. Brussels sprouts, isothermal floor.
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Figure 6.43

x-component of velocity, u, distribution at different cooling times along

the central y axis. Brussels sprouts, isothermal floor.
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Figure 6.45 Steady state temperature distribution along the central vertical x axis.

Brussels sprouts, isothermal floor.
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Figure 6.46  Steady state temperature distribution along the central horizontal y axis,

Brussels sprout. isothermal floor.
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Figure 6.47

Steady state temperature distribution along the central z axis. Brussels
sprouts, isothermal floor.
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Figure 6.48

Nu number change versus time on top and side walls. Brussels sprouts,

isothermal floor.
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6.3  Produce with Orthotropic Penﬁeability

Carrots and asparagus packed in boxes 0.28m x 0.52m x 0.32m were chosen as representative

of the orthotropic permeability characteristics of packed produce undergoing convective heat

transfer. Data describing the physical properties of carrot, which has a low respiration rate,

and asparagus, which has a high respiration rate are shown in Tables 6.4 and 6.5 repectively.

Table 6.4 Physical properties of Carrots

Water content, ¢,,,..,» %, (Hardcnburg, 1986)
Specific heat, Cp,, KJ/KgK, (Mohscnin,1980)

Density, p,, Kg/m* "

Density of packed bed, p,, Kg/m®, (Mohsenin,1986)
Avcrage effective diameter, m

Porosity, £ ¥

Effective thermal conductivity in packed bed, KW/m-K*

Initial temperature, °C
Cold wall temperature, °C

Note: 1) p, = 2670/(1.67+4,,..), Fikiin,1983;
2) May vary from different grades. See Equation 3.23;

3)e=1-p/p,

4) Assumed having the same value in Table 6.2.

88.2

3.768
1046

641

0.041
0.3872
0.291x10?
30°

OO

Table 6.5 Physical properties of Asparagus

Walter content, ¢, %, (Hardenburg, 1986)
Specific heat, Cp,, KJ/Kg'K, (Mohsenin,1980)

Density, p,, Kg/m>"?

Densily of packed bed, p,, Kg/m®, (Mohsenin,1986)
Average effective diameter, m ?

Porosity, £

Effective thermal conductivity in packed bed, KW/m'K ¥

Initial temperature, °C
Cold wall temperature, °C

Note: 1) p, = 2670/(1.67+9,,..), Fikiin,1983;
2) May vary from different grades. See Equation 3.23;

3) €= l-p]/pl;

4) Assumed having the same value in Table 6.2.

93.0

3.936
1027

577

0.02
0.4382
0.291x10°
30°

00

As previously, Table 2.2 was used to determine the respiration rale versus temperature

functions for carrots and asparagus. The numerical experiments described in this section were
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performed on boxes experencing adiabatic floor conditions and isothermal cooling on the sides

and top.

6.3.1 Horizontally Laid Pack

When produce such as asparagus, cucumber, celery, beans or carrots are laid horizontally in
boxes, one of the horizontally directed permeabilities, say K,, has a value different to the other
two, K,, K,. In order to examine the effect of horizontal packing on heat transfer, four

different relationships between the components of permeability were used in computing the

results for carrots. The relationships used were: Da’=Dax=Daz ; Da’=2Dax=2Daz ;

Da,=3Da,=3Da, ; Da,=4Da,=4Da, .

The temperature versus time curves computed for the four different permeabilities for
horizontally packed carrots are shown in Figure 6.49 and the temperature distribution along
the central axes in the X, y, and z directions are shown in Figures 6.50, 6.51 and 6.52
respectively. Velocity profiles have been computed after cooling for one hour and after five

hours, shown in Figures 6.53, 6.54 and 6.55.

Temperature distributions along the x, y and z diresctions were computed at steady state

conditions and the results are shown in Figures 6.56, 6.57 and 6.58 for carrots.

A paralllel set of results using the same boundary conditions and permeability relationships

were computed for horizontally laid asparagus. These results are presented in Figures 6.59

through to 6.68.
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Figure 6.49 Temperature versus time curves for horizontally laid carrots, adiabatic

floor.
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Figure 6.50 Temperature distributions along the central vertical axis for horizontally
laid carrots, adiabatic floor.
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Figure 6.51 Temperature distributions along the central horizontal y axis for
horizontally laid carrots, adiabatic floor.
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Figure 6.52 Temperature distributions along the central horizontal z axis for
horizontally laid carrots, adiabatic floor.
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Figure 6.54

x-component of velocity, u, distributions along the central horizontal

y axis for horizontally laid carrots, adiabatic floor.
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Figure 6.55 x-component of velocity, u, distributions along the central horizontal
z axis for horizontally laid carrots, adiabatic floor.
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Figure 6.56 Temperature distributions along the central vertical x axis at steady
state for horizontally laid carrots, adiabatic floor.
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Figure 6.57 Temperature distributions along the central horizontal y axis at steady
state for horizontally laid carrots, adiabatic floor.
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Figure 6.58 Temperature distributions along the cental horizontal z axis at steady
state for horizontally laid carrots, adiabatic floor.
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Figure 6.59 Temperature versus time curves for horizontally laid asparagus,
adiabatic floor.
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Figure 6.60 Temperature distributions along the central vertical x axis for
horizontally laid asparagus, adiabatic floor
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Figure 6.61 Temperature distributions along the central horizontal y axis for
horizontally laid asparagus, adiabatic floor.
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Figure 6.62 Temperature distributions along the central horizontal z axis for
horizontally laid asparagus, adiabatic floor.
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Figure 6.64

x-component of velocity, u, distributions along the central horizontal
y axis for horizontally laid asparagus, adiabatic floor.
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Figure 6.65 x-component of velocity, u, distributions along the central horizontal
z axis for horizontally laid asparagus, adiabatic floor.
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Figure 6.66 Temperature distributions along the central vertical x axis at steady
state for horizontally laid asparagus, adiabatic floor.
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Figure 6.67 Temperature distributions along the central horizontal y axis at steady

state for horizontally laid asparagus, adiabatic floor.

0.125 -+
//\\
0.100
D
@
}
2 0.075
©
} &
a
g 0.050 -~
@
—
Da_x = Da_y = Da_z
0.025 + ———— 2Da_x =Da_y = 2Da_z
..... 3Da_x = Da_y = 3Da_2z
........... 4Da_x = Da_y = 4Da_z
0.000 1 1 1 L i 1
0.0 0.2 0.4 0.6 0.8 1.0
Central horizontal axis, z direction

1.143

Figure 6.68 Temperature distributions along the central horizontal z axis at steady

state for horizontally laid asparagus, adiabatic floor.
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6.3.2 Vertically Laid Pack

In packed bed convective heat transfer processes significant differences are expected to
occur when vertically packed beds and horizontally packed beds are used. The results
presented in this section are for vertically laid carrots and asparagus, as in the horizontally

laid pack, four different relationships between the components of permeability were used,

for this case they were: Dax=Day=Daz ; Dax=2Day=2Daz ; Dax=3Day=3Daz ;

Da,=4Da =4Da, . The boundary conditions for this study are identical to those used for

the horizontally laid pack.
The results of this numerical experiment are presented in identical sequence to the

horizontally laid carrots and asparagus and Figure 6.69 throught to 6.88 encompass the

entire set of results.
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Figure 6.70 Temperature distributions along the central vertical x axis for vertically

laid carrots, adiabatic floor.

126



1.2 - Da_x = Da_y = Da_z

—e—— Da_x = 2Ds_y = 2D3_zx
== == Da_x = 3Da_y = Ds_z
........ Da_x = 4Da_y = 4Da_z

1.0 A

D After eo;linq 1h
o 0.8

| S

2

o 0.6

o

o

E

o 0.4

l._

Alter cooling S5 h

o
X

0.0 — T —T !

0.0 0.5 1.0 1.5 1.857

Horizontal central axis, y direction

Figure 6.71 Temperature distributions along the central horizontal y axis for
vertically laid carrots, adiabatic floor.
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Figure 6.72 Temperature distributions along the central horizontal z axis for
vertically laid carrots, adiabatic floor.
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Figure 6.74 x-component of velocity, u, distributions along the central horizontal
y axis for vertically laid carrots, adiabatic floor.
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Figure 6.75 x-component of velocity, u, distributions along the central horizontal
z axis for vertically laid carrots, adiabatic floor.
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Figure 6.76 Temperature distributions along the central vertical x axis at steady
state for vertically laid carrots, adiabatic floor.
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Figure 6.77 Temperature distributions along the central horizontal y axis at steady
state for vertically laid carrots, adiabatic floor.
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Figure 6.78 Temperature distributions along central horizontal z axis at steady state
for vertically laid carrots, adiabatic floor.
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Figure 6.79 Temperature versus time curves for vertically laid asparagus, adiabatic

floor.
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Figure 6.80 Temperature distributions along the central vertical x axis for vertically
laid asparagus, adiabatic floor.
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Figure 6.81 Temperature distributions along the central horizontal y axis for
vertically laid asparagus, adiabatic floor.
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Figure 6.82 Temperature distributions along the central horizontal z axis for
vertically laid asparagus, adiabatic floor.
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x-component of velocity, u, distributions along the central vertical x

axis for vertically laid asparagus, adiabatic floor.

x component velocity u, mm/s

|
N
w

]

o T e e e e e b A

“a,
...........

L]

o
i

Da_x = Da_y = Da_z

——-= Dg_2z = 2Da_y = 2D0_2

- weweDo_x = 3Ds_y = 3Ds_2
........ De_x = 4Ds_y = 4De_2z
4 Aler cooling 5 howrs

O After cooling 1 howr

32 1 1 ) 1
0.0 0.5 1.0 1.5 1.857

Central horizontal axis, y direction

Figure 6.84

x-component of velocity, u, distributions along the central horizontal

y axis for vertically laid asparagus, adiabatic floor.
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Figure 6.85 x-component of velocity, u, distributions along the cental horizontal z
axis for vertically laid asparagus, adiabatic floor.
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Figure 6.86 Temperature distributions along the central vertical x axis at steady
state for vertically laid asparagus, adiabatic floor.
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Figure 6.88 Temperature distributions along the central horizontal z axis at steady

state for vertically laid asparagus, adiabatic floor.
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CHAPTER 7

DISCUSSION

7.1 Numerical Model

In bringing the numerical model to an effective state, firstly the formulation of the
underlying principles governing observed phenomena in cooling or heating of stored
agricultural produce was accomplished. As distinct from most other established practice, the
propositions advanced in this study were concerned with treating transient three-dimensional
natural convection in stored respiring produce, as that in a confined porous media with
internal heat generation and isotropic or orthotropic permeability. Secondly, the solution of
the set of non-linear partial differential equations developed to describe the heat transfer
process in packed agricultural produce was obtained numerically, using the method of false
transient and the Samarskii-Andreyev implicit alterative direction iteration scheme, as
outlined previously. Finally, the model was evaluated and so far as possible compared with
other work before applying it to a number of practical applications. It was found the
convergence, accuracy and computing time required to obtain solutions depended on a
number of factors. These included: mesh type, grid size, time step, false transient parameters,

convergence criterion, internal heat source function and container size.

Results obtained using the model were compared with the numerical and experimental results
presented by Beukema (1980, 1983), and shown in Chapter 5; the comparison was made

using the same internal heat generation, physical property values and boundary conditions.
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The results were in good agreement, but Beukema’s model does not include a temperature
dependent respiratory heat generation function, so realistic comparisons with our results for
isotropic fruits and vegetables were not possible. In fact, we were unable to find other work
with which to compare our numerical results. This study has provided a valuable perception
of the problems associated with the storage and distribution of agricultural produce, but until
more detailed information on permeability and respiration rates are available, and the
computed numerical results are borne out reasonably well experimentally, we should at the
present stage of its development, treat the results obtained with a degree of reserve. In the
following sections the results of the study are discussed and ideas for further research are

suggested.

7.2  Temperature Distribution

The cooling processes for apples and Brussels sprouts in a standard container with adiabatic
or isothermal floor are shown in Figure 6.1, 6.13, 6.25 and 6.37. As expected the
temperature changing profiles were different. With isothermal floor the temperatures dropped
faster at corresponding positions than those with adiabatic floor. It indicated that the
isothermal floor improved the cooling process. The difference of these boundary conditions
affected most on the temperature distributions in the lower part of the container, as shown

in Table 7.1.

The difference at the bottom, x=0.964, reached up to 80%. At the centre, x=0.5, there was
only about 0.02-2.5% difference in temperature between these two boundary conditions. Air

was cooled by the side walls and moved downward to the bottom. With the adiabatic floor,
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Table 7.1 Comparison of temperature values along the central vertical axis for apples and
Brussels sprouts.

Position x Bupp_ato B _ico Qb o> Oprat_iso
0.0360 0.3490 0.3473 0.2871 0.2869
0.1520 0.9570 0.9549 0.8966 0.8963
0.2680 1.0123 1.0104 1.0234 1.0232
0.3840 1.0055 1.0008 1.0340 1.0338
0.5000 1.0048 0.9795 1.0342 1.0328
0.6160 1.0017 0.9308 1.0339 1.0251
0.7320 0.9828 0.8279 1.0331 0.9862
0.8480 0.9457 0.6260 1.0307 0.8193
0.9640 0.8574 0.1605 1.0238 0.2411
Note: 1. 6,,, .4 = temperature of apples with adiabatic floor;
2. 8, i, = temperature of apples with isothermal floor;

3. Oy = temperature of Brussels sprouts with adiabatic floor;
4. 05, i, = temperature of Brussels sprouts with isothermal floor;
S. The values here were obtained at 1 hour cooling time.

the cold air was first warmed up by the produce before it reached the central region of the
lower part, thus a small temperature difference between air and produce resulted. With the
isothermal floor, when air moved into the central area, it was still cooled by the cold floor
and this enabled the air temperature to be lower than of the produce, even in the central area
near the bottom. But when the air left the cold bottom to move up, it was heated to near the
produce’s temperature. This is why there was a big difference in the bottom area and a small
one 1in the central and upper area when adiabatic and isothermal floor were introduced. There
was a overall improvement when using the isothermal floor but the temperature behaviour

in the central and upper area were quite similar.

When the steady state was reached, the temperature profiles were also different. With the
adiabatic floor, the highest temperature was located at the bottom centre. With the isothermal
floor the highest temperature was lower than that of the adiabatic floor and was located at
the centre of the container.
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These results suggest that in cooling practice, attention should be paid to the central and
upper area where produce are not easily cooled for both adiabatic and isothermal floor
conditions. While in storage practice, if an adiabatic floor is used, the produce at the bottom

might undergo damage most easily.

An interesting lower temperature decrease after cooling for a period time can be observed
at upper positions, as shown in Figures 5.2, 5.3, 6.1, 6.13, 6.25 and 6.37. This can be
explained as follows. At the beginning of cooling, the temperature differences in the
container were small and thus natural convection was weak. Heat transfer could be mainly
attributed to conduction. A temperature rise, due to the internal heat generation took place
in the cental area along with a rapid temperature drop near the cold walls. This process
could last hours and led to a significant temperature difference as the natural convection
developed completely. The air flowed downwards near the cold walls and upwards in the
central area in the container. The rising air was warmed resulting in heat transport from the

centre or bottom to the upper part of the container.

The respiration heating also had a significant effect on temperature behaviour. Brussels
sprouts have a much higher rate than apples do. It also took much longer time to cool down
to the same temperature level. As a comparison with Figure 6.25 and 6.37 we can find that
at x=0.268, it took about a hour to cool apple to 6°C and about 18 hours for Brussels
sprouts. The temperatures for Brussels sprouts at steady state were much higher than those

for apples. This is only because of the high heating rate.

With the symmetric system, the temperature distributions were also symmetric as shown in
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Appendix C. The contour map of the temperature distribution shows a clear view of the

temperature field and its changing progress inside the container.
7.3  Velocity Distribution

Velocity distribution is relative to temperature changing. As shown in Figures 6.1, 6.2, 6.13,
6.14, 6.25, 6.26, 6.37 and 6.38, both rapid temperature changes and high velocity happened
within the same .time period. When the temperature difference was large, the velocity was
also large. This is because with large temperature differences the buoyant force was also
large, thus air movement was strong. The strong air movement inside the container started
at a certain time after cooling commenced, about 1.0 hour for apples having an adiabatic
floor, and reached its maximum value later, about 1.5 hours for apples. In the lower part of
the container, velocity first reached its peak value, then those in the central and upper part.
It indicates that the commodities in the bottom would be cooled first. This was also reflected
in the temperature distribution figures. After a period of cooling, the temperature difference

inside the box was small again and thus the velocity became small and uniform.

As shown in figures of x-component of velocity along the central horizontal axes, the
downward air flows were limited to a narrow layer near the cold walls. Between the central
upward air flow and the downward air flow, the zero velocity u zones were very small and

did not change their positions much.

The velocity value near the side walls were greater than those in the centre. This is because

that the net mass flow through the plane must be zero. Thus the downward flow rate should
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be equal to the upward flow rate. With a lager area surface, the velocity in central area
should be smaller. It is found that the velocity profile is quite even within the central area.
This means that the temperature in it must be even within the same horizontal plane. Figure
6.4 and 6.5 show the same results. Contour maps of velocity distribution inside the container

are shown in Appendix C.

The differences in velocity profiles between adiabatic and isothermal floor were small. This
is because in both conditions, the air flow patterns were similar. Air was cooled by side-
walls and moved downward near the walls, then it was warmed and moved upward in the
central area. When warm air moved away from the bottom, the space was filled by cold air

when a isothermal floor was presented, or warm air when adiabatic floor was used.

Appendix C provides a view of the velocity distribution in central planes. At the top of the
container, air moved diverging from the centre while at bottom air moved converging to the

centre.

7.4 Nusselt Number

As described in last section, strong air movement happened near the side-walls. Strong heat
transfer by convection should also happen within this zone. The convection phenomena in
this zone could be a good indication to identify the starting, developing and ending of
natural convection inside the container. As defined in Chapter 3, Nusselt numbers are used

to describe the natural convection occurring on the surface. When ny <1, it implies that

there is no convection.
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Figures 6.9, 6.24, 6.36 and 6.48 display the average Nusselt numbers’ change with time
on side-walls and top and bottorn. At the beginning of cooling process, Nu had large values.
Thus heat transfer by convection played a main role. When cooling reached a certain step,
Nu numbers dropped to a low level. This indicated that due to the fact that the temperature
differences were small, natural convection was weak and conductive heat transfer was

important at this stage.

7.5  Effects of Permeability

7.5.1 Isotropic Permeability

Permeability has an significant effect on natural convection in porous media. As shown in
Figure 7.1, the temperature profiles were different when isotropic permeability changed. The
larger the permeability, the faster the temperature changed and the less time was needed to
cool down the produce. This was because that when permeability increased, the flow
resistance inside the packed bed decreased. Air moved more freely thus the convection was
enhanced. On the other hand, high permeability also means the packed bed may have a high
porosity enabling more space for air and less space for the produce. The heat capacity and
the power of the internal heat sources may also be reduced. Thus the packed bed can be

cooled quickly.

7.5.2 Orthotropic Permeability

Figure 6.49 to 6.58 show the result of horizontally laid carrots in the package and the results

for horizontally laid asparagus are presented in Figure 6.59 to 6.68.
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Figure 7.1 Temperature change versus time at central point of the container under
different isotropic permeability.

For horizontally laid produce, the results indicate that the cooling process was not
significantly affected by the different permeability relationships tried. The temperature
distributions were also similar to each other, however slight differences in the velocity fields
were observed. Velocity increased when the departure from isotropy increases. When
produce were packed horizontally, for example, the axes of produce were parallel to y
direction, air channels were formed in y direction. Thus resistance of air movement in y
direction was reduced. When natural con\./ection occurred inside the package, as described
before, at top of the container, air flowed out from central area to side-walls area and at
bottom flowed back to the central from outside region. Horizontally laid pattern improved
the air flow in y direction in top and bottom area, but did not improve much in z direction.

With no vertical channel formed the vertical air flow did not increase its velocity either.
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When produce were packed vertically, vertical channels were formed. Thus resistance in X
direction decreased. The downward air flow near side-walls and upward air flow in the
central area were enhanced. In natural convection, vertical air movement plays a very
important role in heat transfer. Due to the vertical air movement enhancement, the cooling
processes were also improved, shown in Figure 6.69 to 6.78 for vertically laid carrots.
Because the cooling process was more efficient, the temperature differences in the produce
were smaller in the non-isotropic than those in the isotropic arrangements. The velocity was

also smaller due to a smaller temperature difference.

Figure 6.79 to 6.88 show the results for vertically oriented asparagus. The vertical package
did not show much difference from the isotropic results, shown in Figure 7.2. In the late
cooling stage and the steady state, the isotropic package showed a better result. This is

because when choosing different relations of permeability in x, y and z direction,

permeability in x direction, x_, was set to a constant value, forcing K, and x, smaller when

the differences between X, K, and x_ increasing. A low value of X, and x, implied that the

resistance for air movement in y and z directions increased. Figure 7.3 shows the results

when X, and x, were set to a fixed value but x_ increased to perform the horizontally laid
effect. The cooling process was improved with x_ increasing. When x_ was larger than a
certain value, the cooling process did not improve. This may be explained as when x_ was
large enough, resistances in y and z directions became critical. Thus, increasing x, would

not improve the convection unless x, and x, were improved.
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Figure 7.3 Temperature versus time curves for vertically laid asparagus,
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7.6  Respiration Effects on Container Size

A comparison of cooling processes for apples in a large container with and without
respiration is shown in Figure 7.4. Because the respiration rate for apples was small, even
at high temperatures, the temperature differences shown in figure 7.4 were also small. At
steady state, the temperature was uniform. Without respiration heat, the temperature of the

produce finally equilibrated to the environmental temperature g =Q. With respiring heating,

the final temperature was still higher than the environmental temperature.

As discussed later, a large container is not suitable for cooling or storing produce having a
high respiration rate. But even for a small container, the inclusion of respiration heat

produces a significant temperature difference, as show in Figure 7.5.

Currently many different sized containers are used to store fruits or vegetables. When
produce is harvested, the field heat should be removed as quickly as possible and usually
this is done within a few hours. Delays between harvesting and cooling produce are certain
to increase deterioration when ambient temperatures are high. Figure 7.6 and 7.7 show the
numerical results of the cooling process for apples and Brussels sprouts in different size
boxes. It is evident that the bigger the size of the box, the higher is the temperature reached
and the longer is the time needed to cool the produce to steady state. It may be clearly seen

that a small size container is better suited for rapid cooling than large boxes provided the

cold walls can be maintained.

Referring to Figure 7.7, when a large size container was used to cool and store high
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sprouts, container size: 0.28 x 0.52 x 0.32 m
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Effect of different size boxes on the cooling process for Brussels
sprouts
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X,y central plate. %,z central plate.

Note: /.’ represents live produce and ‘*’ represents thermal death
produce.

Figure 7.8 Positions of live and thermal dead Brussels sprouts on two central plates
when reaching steady state. Box size: (0.28x0.52x0.32m, adiabatic floor, initial
temperature 30°C.

X,y central plate. X,z central plate.
Note: .’ represents live produce and ’*’ represents thermal death
produce.

Figure 7.9 Positions of live and thermal dead Brussels sprouts on two central plates
when reaching steady state. Box size: 0.28x0.52x0.32m, isothermal floor,
initial temperature 30°C.
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X,y central plate. x,z central plate.
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* . *
Note: /.’ represents live produce and ‘*’ represents thermal death
produce.

Figure 7.10  Positions of live and thermal dead Brussels sprouts on two central plates
when reaching steady state. Box size: 0.5x0.5x0.5m, adiabatic floor, initial
temperature 30°C.

X,y central plate. X,z central plate.
* * * * * . . . . * * * * *
Note: /.’ represents live produce and ’'*’ represents thermal death
produce.

Figure 7.11  Positions of live and thermal dead Brussels sprouts on two central plates
when reaching steady state. Box size: 0.5x0.5x0.5m, isothermal floor, initial

temperature 30°C.
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respiration rate produce, such as Brussels sprouts, a critically high temperature can be
reached so that the produce suffers "thermal death”. No life activities take place and no heat
can be generated after reaching this point. Figure 7.8 to 7.13 display the distribution
positions of alive and thermally dead Brussels sprouts after cooling process. When a small
size container was used, no thermal death occurred. When using a large container, produce
in the central area became thermally dead. Due to the cold top, produce in the surface layer
still remained alive. Thus it might not be easy to identify the quality of the produce by just

seeing the surface.

Even for the low respiration rate produce such as apple, a small container is still not good
enough for efficient cooling to remove the field heat. As shown in Figure 7.6, for a standard
0.28 x 0.52 x 0.32m box, it took about 8 hours to cool apples from g =1 (t=30°C) tog=02
(t=6°C). With such a long time at high temperature, apples probably suffer from

deterioration.

A fast pre-cooling procedure usually is used to remove the field heat efficiently. Different
heating rates also had strong effects on temperature at steady state even when the produce
was prechilled to 0°C, as shown in Figure 7.14. For example, Brussels sprouts reached a
steady state temperature as high as @ =0.06, ie t=0.18°C and the temperature distribution
was not uniform, as shown in Figures 6,25, 6.26 and 6.27. Figure 7.15 reveals the
temperature versus time characteristic for stored Brussels sprouts after pre-cooling to 0°C
and Figure 7.16 shows the steady state temperature distribution along the central vertical
axis, when different sized containers were chosen. The final temperature was high and
respiration remains at a relatively strong level, thus demonstrating that Brussels sprouts

usually can only be stored for a short time.
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7.7  Suggestions for Further Research

7.7.1 Permeability

along central vertical axis,

Experimentally determined permeability measurements for various fruits and

vegetables in of paramount importance and if this information becomes available it

would enhance the usefulness of the model.

7.7.2 Respiration Function

Effects should be made to develop methods, based on measurements, of rapidly

determining the characteristic temperature dependent respiration function for various

commodities. Critical temperature of thermal death, both freezing point and hot point,
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for various fruits and vegetables are important to determine the respiraton functions

in the model.

7.7.3 Transpiration Rate

Foremost of all the improvements which could be made to the model would be to
account for transpiration or moisture loss in the produce. The factors influencing
transpiration rates are temperature, humidity and barometric pressure in storage or
transportation vehicle. A suggestion for doing this would be to incorporate the
cooling effect of evaporation by adding an additional negative term to the respiratory
heat generation - its form would be "rate of moisture loss x latent heat of
vaporization”. Also a moisture transfer equation could be considered into the

equations group to obtain a mass-heat transfer model.
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CHAPTER 8

CONCLUSIONS

The theory of natural convective heat transfer with internal heat generation as
applied to the storage of agricultural or horticultural produce, was extended by
successfully incorporation a characteristic temperature dependent respiratory heat

generation term.

A three-dimensional transient model of the natural convective heat transfer
processes occurring In stored agricultural produce in closed containers with
isotropic or orthotropic permeability and temperature dependent respiratory heating

was developed to an effective state.

In stored produce, heat generated by respiration significantly influences the
temperature and velocity distributions. Respiration also affects the final uniform
steady state temperature - low respiration rates give lower steady state temperatures
and smaller temperature differences within the container, whereas higher respiration

rates lead to greater steady state temperatures and more non-uniform temperature

distributions.

Container size is an important factor in cooling and storage of agricultural produce.
Commodities with lower respiration rates may be packed in larger containers, but
for higher respiration rate commodities, restrictions on the size of container used

may be necessary to avoid high and non-uniform temperatures.
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The nature of the permeability also affects the natural convective heat transfer
process. The results of this study demonstrated that a package pattern which
produces lower resistance to flow along the direction of gravity gives more

effective heat transfer.
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APPENDIX A

SOLUTION OF LAPLACE EQUATIONS

In Chapter 3 we have two Laplace equations. One is the scale potential ¢:

V2 = 0 (3.48)
Another is the equation for the x component of vector potential when ky =k, and the x axis
is along the gravity direction:

Vg, =0 (3.87)

With their boundary conditions it is found that ¢ is an arbitary constant and y_ = 0. In

this appendix the detailed solution of ¢ is demonstrated.

The solution procedure consists of four steps. Applying the theory of Separation of
Variables, we assume that the solution of ¢ exist as products of a function X(x) of x alone,

a function Y(y) of y alone and a function Z(z) of z alone, thus we may write
d(x,y,2) = X()YD)Z(2) (A1)

Step 1

Firstly at eight corners of the enclosure, for example, at (0,0,0), it is simply found that

o _dX . (A2
0x 40,0,0) dewY(O)Z(O) 0 )
% =d—"L X(0)Z(0)=0 (A3)
Oy 0,00 dyh=0

o _dZ Y(0)=0 (Ad)
0z k0,000 dz LOX(O) ©
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supose that

X(0)=0 , Y(0)=0 , Z(0)=0 (AS - A7)
From equations A2 to A4 we have
X(0)=c,, Y(0)=c,, z(0)=c, (A8 - A10)
or,
b=c,c,c,=C (A11)

where ¢ is an arbitrary constant at the corners.

Step 2

We next solve for ¢ on the edges of the enclosure, for example, at x=0 and y=0. At the

edge, equation 3.47 becomes one dimensional and can be readily solved. We have

ﬁ:() (A12)

dz2
9 _ \ (A13)

o0z
d=c,z+c (Al4)

Applying the above results at z=0 and 7=z, in step 1 we find

¢‘z=0=cs-_-c (A15)
¢{Z=ZO=C4ZO+C=C (A16)
¢,=0, ie, d=cz+c =C (A17)

Step 3

Now the results on the edges can be used as the boudary conditions for solv'ing ¢ on the
surfaces, on which equation 3.48 becomes two dimensional, for example, on the surface

z=0, we have

26,20, (AI8)

hence
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X"Y+Y"X=0

or

X//__Y// (A19)

X Y

Now the left hand side member of the above equation is independent of y. Hence the right-
hand side of it must also be independent of y since it is identically equal to the expression
on the left. Similarly each member of the equation must be independent of x. Therefore,
being independent of both x and y, each side of the equation must be a constant, say, C’,

we can write

XY - (A20)
X Y
if ¢*<0,say, c*=-)2 (A>0), we have,
X"=-2%x = X = @ cosix + a,sinix + a, (A21)
Y’ =A%y = Y = a,coshAx + agsinhix + a (A22)
Using the result of step 2, viz,
bl = X*Y = (@, +a)*Y = C (A23)
bl,.0 = X*Y = Xx(a, +a) = C (A24)

From these two expressions we can say that both X, Y are constant and their product is

equal to C, thus, we have

¢ = X+Y =C (A25)
if ¢*=q, then
X"=0 - X=a,x +a, (A26)
Y'=0 - Y=a,y +a, (A27)
Applying the boundary conditions
¢‘x=0 =C (A28)
¢|y=0 =C (A29)
leads to
a =a;, =0 a,*a, = C
¢ =C (A30)
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if 50, then
X"= 22X = X = a coshix + a,sinhix + a, (A31)
Y’ =-A%Y - Y = a coshx + agsindx + a (A32)

Using the result of step 2, viz,
Pl = X*Y = (a, +a,) xY

C (A33)
bl,.0 = X*Y = X*(a,+a,) = C (A34)
From these two expressions we can say that both X, Y are constant and their product is

equal to C, thus, we have
¢ =X*xY=C (A35)

Step 4

Now considering ¢ on any z plane, we can use the result of step 3 and since the equation

and boundary conditions are exactually the same as those in step 3. We obtain ¢=C.
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APPENDIX B

THOMAS METHOD FOR SOLVING A TRI-DIAGONAL MATRIX EQUATION

In solving temperature and vector potential fields, an equation set having a tri-diagonal

matrix is encountered. The equation set takes the form

bix; +cx,
a,x, +byx, +c,x,

or in a matrix form

by, ¢
a b
a

a.x,

thyxy +epx,

------

n-1 n-1 n-1
anxn 1 +bnxn =dn
x | ] d,
) X, d-2
by, ¢, x, | |d-3
d.
a b ¢ x; ,
d
an-l bn-l Cn—l xn—l n-1
_ d
an b, | x| %)

(B1)

(B2)

The idea behind the Gaussian elimination scheme is to manipulate the equations into the

form

B, ¢

It is then easy to find x,, since

[ x, [ 5, -
X 16-2
X, 6-3
xj 61'

xn—l 6"_1

(B3)
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ann = 6"

or
xn = 6n/pn (B4)

Knowing x, enables us to find x,, from
Bn-lxn—l + Cn-lxn =6
x (B5)

and x,, from

- n-2  ©n n-1 (Bsa)

and so on.
The question now arises as to how to manipulate the system of equations into the desired
form.

Firstly set
[31 = bl and 61 = d1 . (B6)

So the first two equations become

B,x; + ¢x, =90, (B7)
ax, + byx, + c,x, = d, (B8)
Multiply equation (B7) by a,/ B,
a a
a,x; + —2c2x2 = 61—2 (B7a)
B, B
and subtract this result from equation (B8) to get
a a
(b, ——2c2)x2+c2x3=d2—451—2 (B8a)
1 1
a, a,
Now set b,-—~c,=p, and d,-4,—~=%,
1 1
So equation (B8a) may be written as
B,x,+c,x, =8, (B8b)

Which is exactly the form we require.

Now consider the equations
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|
On

Pyx, +Cyx; =
a,x, +b3x3 +e, X, = d3

a
Multiply equation (B8b) byF3 to get
2

a; 5,
a; X, + —C,%; = —a,
2 B,
Subtracting equation (B8c) from equation (B9) yields
a, 5,
(b, - —=C)) X, +Cx,=d, - —a,
2 2
: a; 5,
soif B, =b,-—c, andd,=d, ~—=a,
2 3

equation (B9) becomes
Byxs+c,x, =8,

and so on.

In general we have

B =b,- 2
=b -—L ¢,
J i pj_l Jj-1
and
0.
szdj_ Haj
B

(B8b)
(B9)

(B8c)

(B9a)

(B9b)

(B10)

(B11)

remembering that we have set B, =b, and & =d, therefore all the B and & can be

found and thus all the x; can be found.
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