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ABSTRACT* 

As a new technique for structural dynamic analysis, local structural modification is playing 

a more and more important role in solving practical engineering problems. This thesis 

develops methods for vibration reduction via local structural modification. 

In this thesis, the reduction of unwanted vibration in a structural system is principally 

analysed in two ways, (i) relocation of resonance, and (ii) relocation of anti-resonance -

both of which are realised by using local structural modification techniques. The local 

structural modification is characterised by locally varying the physical parameters of the 

structural system, and, an algorithm is developed for the finite element implementation. 

The algorithm which determines the physical parameters to achieve the desired resonances 

and anti-resonances can be obtained by solving a non-linear polynomial eigen-problem. 

Examples illustrating the use of various finite element models along with a practical 

structure are provided to verify the algorithms developed in this thesis and to illustrate the 

potential of the methods for solving vibration reduction problems in complicated 

engineering structural systems. 

In addition, a procedure for structural dynamic optimisation is developed to eliminate the 

unwanted resonance peak from frequency response functions using the 'POLE-ZERO' 

cancellation principle via local structural modification. This procedure enables the 

structural system to preserve certain dynamic properties after structural modification. 

Numerical and experimental simulations are presented to illustrate the general procedure 

and to demonstrate the capability of the method. 

S o m e of results included in this thesis have been published in the proceedings of local and international conferences 

and submitted to International Journal of Analytical and Experimental Modal Analysis. 
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NOMENCLATURES 

c viscous damping coefficient (Chapter 2), or real constant (Chapter 2), or 

direction cosines of local coordinate (Chapter 4) 

i complex notation (Chapter 5), or real constant 

j real constant 

k stiffness coefficient, or real constant 

1 real constant, or length of beam element (Chapter 4) 

m mass coefficient, or real constant 

n real constant 

s Laplace operator (Chapter 5), or direction sines of local coordinate (Chapter 

4) 

C: real constants (j = 1, 2, 3 ..., n) 

cr rth modal damping 

k,. rth modal stiffness 

nij rth modal mass 

t time variable 

A element cross sectional area 

E element Elastic Modulus 

F 0 amplitude of excitation force 

F: amplitude of excitation force applied on the jth coordinate 

F T amplitude of force transmitted to the foundation 

G element Rigidity Modulus 

Hij(s) transfer function of Laplace operator 

Hj-flCD) frequency response function of complex frequency 

I element area moment of inertia 

L element polar moment of inertia 

J element torsional constant 

j^nxn n x n dimension space R_ 

T force (displacement) transmissibility 
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Tmax m a x i m u m kinetic energy 

V m a x m a x i m u m potential energy 

X 0 amplitude of displacement of vibratory system 

X T amplitude of displacement transmitted to the foundation 

Y*r rth element of vector {Y*} 

SEjj. total strain energy in the ith material for the r mode 

SEr total strain energy in the structure for the rth mode 

^ rth modal constant of F R F ce^co) 

[..] matrix [..] 

[.. • .J partitioning of matrix [....] 

[..]» element in the ith row, jth column of matrix [..] 

[..]m matrix of the modified system 

[..] matrix of the original system 

[..j*1 inverse of matrix 

[..]T transpose of matrix 

[„]+ pseudo inverse of matrix 

det[..] determinant of matrix [..] 

adj[..]jj ijth adjoint matrix of matrix [..] 

[0] null matrix 

[c] real constant matrix 

[k&] ith element stiffness matrix in global coordinate 

[m_(e)I ith element mass matrix in global coordinate 

[kj(e)]i ith element stiffness matrix in local coordinate 

[m/^j ith element mass matrix in local coordinate 

[ I ] identity matrix 

[C] viscous damping matrix 

[HI structural damping matrix 

[KJ stiffness matrix 

[K]v stiffness matrix of 'virtual' system, obtained by deleting the 1th row and the 

jth column of [K] 

[K(r)] rth perturbation of stiffness matrix 

[M] mass matrix 
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[MIV mass matrix of 'virtual' system, obtained by deleting the ith row and the jth 

column of [M] 

[Mr ] rth perturbation of mass matrix 

[T] transformation matrix 

[UI left singular matrix 

[V] right singular matrix 

[Z(s)I system matrix with respect to Laplace operator 

[Z(co)] system matrix with respect to frequency 

diag[fr] diagonal matrix with diagonal terms of fr, r = 1, 2, ..., n. 

{.} column vector 

{.} transpose of a column vector 

{0} null column vector 

{er} column vector with unity in rth element and 0 elsewhere 

{e-q} column vector with unity in pth and qth elements which are opposite in sign 

and 0 elsewhere 

(er}j column vector by deleting the 1th element of {er} 

{epqjj column vector by deleting the 1th element of {e } 

{XJJ,} force response vector of modified system 

{x0} force response vector of original system 

{x^} i element displacement vector, sub-set of {X} 

{x}j ith Rayleigh's vector 

{z} eigen vector in iteration procedure 

{X} displacement vector in frequency domain 

{Y} eigen vector of original system 

{Y*} eigen vector of modified system 

{Y*}r reduced {Y*}, sub-set of {Y*} 

{ Y ^ } left side eigen vector 

{Y^R)} right side eigen vector 

{Z} state vector 

(x(t)} displacement vector in time domain 

(f(t)} force vector in time domain 
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Smj mass variation of the ith coordinate 

°\j stiffness variation between the ith and the jth coordinates 

Air^ variation of the ith modal mass 

Akj variation of ilh modal stiffness 

A y constant, scaling factor 

AYj variation of structural physical parameter of the ith element 

AoOj variation of the ith natural frequency 

AA,j variation of the ith Rayleigh's quotient 

A [ M ] mass incremental matrix 

A[K] stiffness incremental matrix 

AfM:] element mass incremental matrix scaled by Ay- of the jth element 

A [ K ] element stiffness incremental matrix scaled by Ay: of the j element 

A[a(co)I receptance F R F incremental matrix 

A{\|/i) variation of the ith m o d e shape vector 

A{\|/}r variation of the r m o d e shape vector 

a real constant, scaling factor 

„(_);: receptance F R F between the ith and the jth coordinate 

p real constant, scaling factor 

y real constant, scaling factor 

y structural physical parameter of the ith element 

y* element participant ratio of the ith element 

e perturbation factor 

z(. ith element sensitivity index for natural frequency 

G n ith element sensitivity index for anti-resonance 

£ damping lost factor for viscous damping 

^ damping lost factor for proportional damping of the rth m o d e 

rj. damping lost factor for structural damping of the ith m o d e 

r\ mass modification ratio of the rth coordinate 

iq. stiffness modification ratio between the ith and the jth coordinate 

X{ ith Rayleigh's quotient 
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^i(0) 1 Rayleigh's quotient of original system 

^i ith Rayleigh's quotient of modified system 

^i,r ith Rayleigh's quotient in the rth iteration 

V r ) ith Rayleigh's quotient in the rlh perturbation 

p element density constant 

<t>ir il element of the rth mass normalised mode shape vector 

Vir ith element of the rth mode shape vector 

Q_. rl Zero of the system transfer function 

CO frequency of sinusoidal excitation force 

coa anti-resonance frequency (eigen frequency of 'virtual' system) 

co natural frequency of modified system 

coa eigen frequency of modified 'virtual' system 

co0 natural frequency of original system 

cor rth natural frequency of original system 

con natural frequency of a multi-degree of freedom system 

co,̂ . rth natural frequency of a multi-degree of freedom system 

[ _>I mass normalised mode shape matrix 

[ _> I mass normalised mode shape matrix of modified system 

[a(co)I receptance F R F matrix 

[0^(00)] receptance F R F matrix of 'virtual' system 

[a(co)I0 receptance F R F matrix of original system 

[0^(00)] ijth sub-matrix of [cc(co)] 

[a(co)Ir reduced [a(co)], sub-matrix of [a(co)] 

[rj] mass incremental matrix scaled by Ay 

[Tjj] element mass matrix scaled by Ay-

[Ti]r reduced [T|], sub-matrix of [T|] 

[K] stiffness incremental matrix scaled by Ay 

[iq] element stiffness matrix scaled by Ay-

[K]r reduced [K], sub-matrix of [K] 

[PJ Boolean mapping matrix for the ith element 

{ y } 0 m o d e shape vector of original system 

{\j/}r rth m o d e shape vector 
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Wr,s 

(Vi) 

(¥i)r 

{Vi(r)} 

(Y*>, 

{p} 

ii) 
{«} 

sub-set of the r,h mode shape vector 

ith mode shape vector 

ith mode shape vector in the r iteration 

ith mode shape vector in the rth perturbation 

rlh mode shape vector of modified system 

eigen vector of original 'virtual' system 

eigen vector of modified 'virtual' system 

displacement vector of 'virtual' system 
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CHAPTER 1 

INTRODUCTION 

1.1 Traditional Vibration Reduction Methods 

Vibration reduction in structures and components has been a topic of longstanding interest 

in the field of vibration engineering. Traditionally, problems relating to this topic were 

tackled by four principal methods, namely: (i) vibration isolation, (ii) use of vibration 

absorbers, (iii) introduction of damping, and (iv) active vibration control. Without knowing 

the innermost characteristics of a structural system, these methods have been rigorously 

explored in recent decades and effectively used in dealing with some practical vibration 

reduction problems based on a much simplified mathematical model of the system (mass-

spring model). However, the factor that the objective system remains a 'black box', and 

the reliability of using such model to represent a real engineering system is problem 

dependent, restricts the further development of the above methods. Therefore, the 

shortcomings of these traditional methods with the increasing demands in the vibration 

performance of large, complex structural systems force structural analyst to seek for an 

alternative. 

1.2 A New Structural Analysis Technique - Local Structural Modification 

Local Structural modification is a new structural analysis technique that has been gaining 

more and more attention in recent years. This technique involves determining the changes 

to the dynamic properties of a linear elastic structural system that arise due to the re­

distribution of the mass, stiffness and damping of the system. The re-distribution can be 

realised by local modification of physical or geometrical parameters of the system, such as 
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local thickness, width or Elastic modulus. The emergence of this technique has benefited 

from well developed theories of Finite Element Analysis (FEA) and Experimental Modal 

Analysis ( E M A ) and the increasing computational power offered by sophisticated 

computers. Having been successfully applied in several disciplines of structural mechanics, 

such as model identification and dynamic prediction, this technique, by its considerable 

potential, is attracting more and more researchers in the area of vibration reduction. Since 

the technique is capable of examining the dynamic properties of a structural system from 

its innermost details, it is of particular importance from the structural design and 

optimisation view point. A typical structural modification procedure is shown in Figure 

1.2.1. 

1.3 Scope of Present Work 

The research work presented in this thesis is mainly concerned with vibration reduction 

via structural modification - an alternative to traditional vibration reduction methods. The 

feasibility of using local structural modification techniques to deal with the vibration 

reduction problem of a sinusoidally excited linear elastic structural system will be 

investigated and new vibration reduction methods based on structural modification 

technique will be developed. As one focus of the work, the theoretical background of 

existing vibration reduction methods, their recent development and application as well as 

limitations will be introduced briefly in Chapter 2. Since a good understanding of 

structural modification technique and acknowledgment of its recent advance is a pre­

requisite of the work, the theoretical development of the technique will be reviewed and a 

detailed literature research base of structural modification technique will be established as 

the central part of Chapter 2. In addition, the problem definition of this research is given 

in Chapter 2 to re-highlight the need for the work. 

To develop new vibration reduction methods using the structural modification technique, a 

multi-degree-of-freedom mass-spring system will be investigated by relocating its 

resonance and anti-resonance frequencies to suppress the vibration level at a certain 

location in the system. A s two most important indicators for evaluating the vibration level 

of linear vibratory systems, resonance and anti-resonance frequencies will be relocated to 
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desired locations by locally modifying the mass and stiffness coefficients of the mass-

spring system. N e w methods will be developed to determine the mass and stiffness 

variations in order to achieve desired resonances and anti-resonances for the purpose of 

vibration reduction of a system subjected to sinusoidal loading. The limitation of the 

methods developed on the mass-spring model will be overcome by implementing the 

methods on a F E A model. A n algorithm based on the state space theory is developed to 

solve a high order eigen problem in which the local structural modification will be 

characterised by variations of certain physical parameters of the structural system. 

Optimum structural modification can also be achieved by using a Sensitivity Index which 

is developed from sensitivity analysis theory. Detailed theoretical development of these 

methods and algorithm are given in Chapter 3. To validate these methods and algorithm, 

numerical and experimental results are presented in Chapter 4. To ensure the consistency 

of analytical results and experimental results, both F E A and E M A will be carried out prior 

to the local structural modification. Computer codes written in Fortran 77 are developed 

for analytical modal analysis and impact excitation and single-degree-of-freedom curve 

fitting methods will be used for E M A . 

A dynamic optimisation procedure is developed in Chapter 5 for the purpose of vibration 

reduction. B y applying local structural modification, a resonance peak can be eliminated in 

a specified frequency response function so that a significant vibration reduction can be 

achieved in relevant locations of the structure. This method is developed based on the 

'Pole-Zero' cancellation principle and can be proved to be an effective new vibration 

reduction method by numerical and experimental verification as presented in Chapter 5. 

The final chapter, Chapter 6, presents conclusions and addresses possible extension and 

application of the results achieved. 
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CHAPTER 2 

THEORETICAL BACKGROUND AND PROBLEM DEFINITION 

In this chapter, first, a general introduction will be given for various aspects of vibration 

reduction. Then, the need for the work which is focused on structural modification will be 

motivated. A s well, a general literature review will be provided. 

2.1 Methods and General Procedure for Vibration Reduction 

The attempt of reducing unwanted vibration levels is usually made to minimise the 

magnitude of the vibration sources. However, this attempt is often limited by practical 

considerations. W h e n the required amount of vibration reduction is impossible to be 

achieved by improving the performance of the vibration sources, the structure which is 

excited has to be designed to respond to a minimum extent. 

It is known that the response level of a structure due to a given excitation is determined 

by the threefold characteristics of mass, stiffness, and damping. Different structural 

response under different conditions of excitation will depend on these characteristics in 

different ways. Therefore, various vibration reduction methods present their own 

advantages and disadvantages. The following of this section provide a general introduction 

to some existing vibration reduction methods, and the method of structural modification 

will be discussed later in details. 
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2.1.1 Vibration Isolation 

The most elementary form of vibration isolation is the introduction of an additional 

loadpath between a structure and its mounting surface (vibration source) to reduce the 

transmitted forces and displacements over a frequency range of concern. Vibration 

isolation is applied in an attempt either to protect a delicate object from excessive 

vibration transmitted to it from its surroundings or to prevent vibratory forces generated by 

a machine from being transmitted to the surroundings. The basic objectives of vibration 

isolation systems are in fact the same, that is to reduce the transmitted forces as much as 

possible. 

A typical vibration isolation system is commonly idealised as a single-degree-of-freedom 

(SDOF) system as shown in Figure 2.1.1. Its performance can be assessed by the force 

(displacement) transmissibility T a which is defined as the ratio of the force (displacement) 

amplitude transmitted to the foundation to the exciting force (displacement) amplitude. 

l+(2Cco/co0)
2
 (211) 

(1-CO2/COO)2+(2CCO/CO0)
2 

The system shown in Figure 2.1.1 is a SDOF, viscously damped system. The isolator for 

the system is represented by a spring k and a viscous dashpot c. The assumptions for 

which equation (2.1.1) holds are as follows: 

(i) The damping of the isolator is viscous and the dashpot is rigidly connected to the 

main system (represented by the mass m ) . 

(ii) The main system is connected to the rigid foundation only through the isolator. 

(iii) The mass of the isolator is negligible. 

In equation (2.1.1), to minimise the transmissibility of the system, which is always 

desired, the optimum COQ and £ can be determined. It is noted that T a is also frequency 

dependent - For CO/COQ < V2, greater £ is desired and for co/co0 > V2, zero . is desired. This 

implies that in certain frequency ranges softer spring and less damping are required for 

?_ = 
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better performance of a vibration isolator. However, the applicability of the above 

conclusion m a y vary according to different idealisations of a practical system. Rao[l] 

discussed the isolation system by considering a flexible foundation and arrived at a similar 

conclusion. Crede and Ruzicka[2] used two other criteria to assess the performance of 

vibration isolation systems, namely, the relative transmissibility and the motion response. 

The relative transmissibility is defined as the ratio of the relative deflection amplitude of 

the isolator to the displacement amplitude imposed at the foundation whereas the motion 

response is defined as the ratio of the displacement amplitude of the equipment to the 

quotient obtained by dividing the excitation force amplitude with the static stiffness of the 

isolator. O n considering the influence of different types of damper encountered in an 

isolation system and the forms in which they are connected to the main structures which 

needs to be isolated, a more detailed discussion was also given by Crede and Ruzicka[2]. 

Schiff[3] discussed the vibration isolation problem of a multi-degree-of-freedom system. 

Using the example of a two-degree-of-freedom undamped mass-spring system, it was 

indicated that for systems with parallel spring and dashpot combinations in series, the 

reverse octave rule should be adopted to keep the transmissibility less than 1 and the 

octave rule should be adopted to avoid large transmissibility values in the resonance area. 

The octave rule states that the resonant frequency of a substructure should be at least 

twice that of its support; and the reverse octave rules states that the resonant frequency of 

a substructure should be no more than one-half that of its support. However, no further 

results were given in this study for more complicated systems. 

Most of vibration isolation theories were developed on the basis of mass-spring-damper 

systems and this limits their application. In spite this, using these mass-spring-damper 

models to investigate the simple isolation system is convenient, and to some extent, is 

capable of giving sound guidance for practical problems, but it becomes less meaningful 

when dealing with large complex structures, particularly in the high frequency ranges. 

Instead, the mobility (or, impedance) approach is commonly used for solving these 

problems. The mobility of a system is defined as the ratio of the velocity to the excitation 

force acting on the system and its inverse is called the mechanical impedance. Using 

7 



A 

V 

Machine 

Isolator 

/77777T777 

Foundation 

Figure 2.1.1 - Vibration Isolation 

8 



this approach, the motion transmissibility of the vibration source, isolator and receiver 

assembly m a y be evaluated by considering of the dynamic characteristics of the system in 

term of frequency response properties. White[41 summarised detailed applications of this 

technique. Based on this mobility approach, White also introduced a method using the 

power flow concept which can be seen as unifying vibration control methods by seeking 

to minimise the power input to the system and then to minimise the power transmission 

through the system. 

The general procedure of using the vibration isolation techniques has been summarised by 

Hain, et al[5], along with the factors which should be considered in isolator selection, and 

isolator installation. 

2.1.2 Introduction of Damping 

Damping is a dynamic characteristic which reflects energy dissipation during structural 

vibration. As one of the effective means of vibration reduction in a wide frequency band, 

introducing damping by the addition of extra damping materials and mechanisms has long 

been used. 

The damping of a mechanical system may commonly be created from (i) the hysteresis of 

the structural materials (structural damping), (ii) the friction at the structural joints and 

contacting dry surfaces (coulomb damping), and (iii) the viscous damping at the lubricated 

sliding surfaces (viscous damping). 

Damping is more difficult to predict compared to mass and stiffness properties. Since 

damping of a structural system usually can not be inferred from simple modelling or static 

measurement, there is no mathematical model which will provide an exact representation 

of the damping properties. This restrains further study of damping characteristics of 

structures and hence limits the application of damping for vibration reduction. However, it 

is noted that from a system response viewpoint, the influence of damping is only 

significant in the vicinity of resonances. In theoretical studies, a viscous damping model, 
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in which the energy dissipation per radian is often assumed proportional to the velocity, is 

normally employed and is usually assumed to be proportional to the mass and stiffness of 

the structural system (so called proportional damping) for convenience. 

The primary consequences of damping to the response of structures are twofold: (i) 

Suppression of resonance responses, and (ii) more rapid decay of free vibration. The 

suppression of vibration response at resonances by introducing more damping into a 

structure can be easily visualised by investigating the frequency response properties of the 

system against the damping changes. To enable a mathematical solution with physical 

significance, the proportional damping model which is first recommended by Lord 

Rayleigh [6], and then expressed in matrix form by Wilson [7] is widely adopted, 

[C] = a[M] (2.1.2a) 

or 

[C] = P[/H (2.1.2b) 

Using the damping model given in equation(2.1.2a) and equation (2.1.2b), Ewins[81 gave 

the receptance frequency response functions of a multi-degree-of-freedom system, which is 

defined as the ratio of the displacement of certain response coordinates, Xj, to the only 

external sinusoidal force acting on the certain excitation coordinate, Fj, 

a(0})y = T = £ Fi '=1 (kr-®
2mr)n2l\rJkjn~r 

(2.1.3) 

In equation (2.1.3), 

mr = ty£[M]W (2>L4a) 

K . VfwH (2'L4b) 
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cr = {y}J[C]ty}_ (2.1.4c) 

cr (3cor 
W = , = - y - (2.1.4d) 

2^/n r
 2 

where cor is the r-th natural frequency of the system. From the above equations it is noted 

that constant p can be assigned from a known value of modal damping ratio ̂ , which can 

be identified experimentally as the ratio of actual damping to the critical damping for a 

particular natural mode of vibration. Figure 2.1.2a shows a series of typical frequency 

response function curves of a M D O F system as the |3 varies. It is observed that the 

resonance peak will be more suppressed as P increases, but the anti-resonance responses 

will be increased. This observation is also applicable to other damping models. However, 

since the parameter P is a theoretical approximation, it depends to a large extent on the 

validity of the proportional viscous damping model. In practice, a higher |3 is expected 

from materials with higher internal damping, such as cast iron, or some composite 

materials. 

Using the same damping model, Newland[9] gave an impulse response function which was 

defined as the displacement of response coordinate i due to a unit impulse excitation 

applied on input coordinate j as a function of time t. 

hift) = £ Jlp^e -^sincor/K?r (2.1.5) 
r"1 coryi-cr

2 

Figure 2.1.2b shows a series of impulse response function curves as p varies. It is 

observed that as P increases, the attenuation of the impulse response becomes rapid.The 

effect of improving the damping characteristics of a structure in regard to its vibration 

response is significant, as stated above. However, due to the difficulty of the 

identification of real damping properties, vibration reduction by the introduction of 

damping is mainly applied to practical cases relying mainly on trial-and-error techniques. 
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O n an experimental basis, Ungar[10] measured systematically the influence of damping on 

the vibration behaviour of panels. As well, friction damping and viscoelastic damping 

inherent in the panel structure and imposed by an external mechanism were discussed 

separately. Ungar also discussed the cases which include the configuration design and 

material selection to achieve maximum damping from the viewpoint of a damping loss 

factor T[, a parameter defined by Lazanfll], as the ratio of the energy dissipated per 

radian. A s another factor related to energy dissipation, the effect of edges and other 

discontinuities which can be seen as a form of damping was also discussed by Ungar. 

Ikegami et _/[12] presented a method which applied viscoelastic passive damping to the 

suppression of vibration level in a satellite structure. Using a commercial finite element 

analysis package, the viscoelastic components of the structure were modelled with elastic 

solid elements and the damping loss factor was given using the modal strain energy 

method: 

I>W (2.1.6) 
- '=t 

n' = —_r~ 
The effects of introducing high damping materials into the structure may be evaluated 
quantitatively by this formula. However, it was also indicated that the accompanying 

decrease in the strength and stiffness by the introduction of the damping materials limited 

the application of this method. Using viscoelastic material, Dutt and Nakra[13] also 

presented a vibration response reduction method for a rotor shaft system. 

As another existing damping method for vibration reduction, the application of friction 

damping has also well studied, particularly for practical applications. Relevant research 

can be found in Han[14] and Cameron et aJ[15_. However, this method is only applicable 

when there exist contacting surfaces, which implies that in most situations extra 

mechanisms have to be introduced. 

Panossian[16] summarised the existing methods of using damping for vibration reduction, 
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namely, (i) viscoelastic materials application; (ii) friction devices; (iii) impact dampers; 

and (IV) fluid dampers. A new method using non-obstructive particle damping ( N O P D ) 

technique for enhancing the structural damping was also presented. The N O P D technique 

involves the potential of energy absorption/dissipation through friction, momentum 

exchange between moving particles and vibrating walls, heat, and viscous and shear 

deformations. Compared with other damping methods, it has been found that the N O P D 

technique has many advantages, particularly from the economic, environmental and design 

viewpoints. 

2.1.3 Dynamic Absorbers and Mass Dampers 

Dynamic absorbers and mass dampers are also called vibration absorbers. The technique of 

using vibration absorbers to reduce the vibration level of a mechanical system involves 

attaching auxiliary masses to a vibrating system through spring and damping devices. If a 

vibration absorber does not involve damping, then it is called a "dynamic absorber". 

Otherwise, it is called a "mass damper". Compared with other methods such as improving 

the damping properties, the main advantage of the vibration absorber is that it can be 

added to machinery in order to reduce vibration after the machinery has been constructed. 

However, the extra dimension and weight due to the introduction of a vibration absorber 

to an original system thus becomes the main limitation of the application of this method. 

The theoretical basis of a vibration absorber can simply be explained using an undamped 

single-degree-of-freedom vibrating system which represents the main system and an 

auxiliary mass connected to the main system by a spring and a dashpot which represents 

the mass damper. The system thus constructed is a damped two-degree-of-freedom system, 

as shown in Figure 2.1.3. This idealisation is usually that based on the work of 

Ormondroyd and Den Hartog[17]. The purposes of introduction of a mass damper will be 

twofold, (i) to eliminate the resonance response of the original system due to a given 

sinusoidal excitation force by selecting appropriate mass and stiffness coefficients for the 

mass damper, (ii) to suppress the resonance peaks, which result from introducing the 

additional degree-of-freedom (mass damper) into the system, by selecting an appropriate 
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damping coefficient for the mass damper. The response of the main system and the 

auxiliary mass due to a given sinusoidal excitation of magnitude F acting on the main 

system may be expressed, in terms of mass, stiffness and damping of the system, as, 

F(k2-m2U)
2+ic2(i)) 

1 ~ 2 5 1 o 5- (2.1.7a) 
[(k{ -m{(0 )(k2-m2(a

z)-/w2£2ar] +/coc2(&1 -mlar-m2ur) 

„1(„2+/_2a>) 
x2 = 5 =• (2.1.7b) 

k2-m2(0+ic20) 

If the sinusoidal excitation acts on the original main system with frequency co = ̂ (k^/m^), 

resonance will occur. However, from equation (2.1.7) and equation (2.1.8), it can be seen 

that this resonance peak is eliminated by adding a dynamic absorber (c2=0) with V(k2/m2) 

= ^(kj/mj), resulting in X1(co=V(k1/m1) = 0. Because of the additional degree of freedom, 

it is found that two resonances will be created on each side of the eliminated resonance. 

This makes the dynamic absorber effective only for a system subjected to a narrow-banded 

frequency excitation. For this reason, in spite of the fact that the introduction of the 

damping will increase the response at the tuned frequency (for X^co) = 0), mass dampers 

are more commonly used to reduce the over-all vibration level. 

Although lower vibration response is always expected for higher damping, as stated in 

Section 2.1.2, it becomes changes when dealing with the mass damper problems. If the 

damping of the mass damper is too high, the two systems will be locked together and 

vibrate as an undamped single-degree-of-freedom system. Thus it becomes necessary to 

choose the damping of the mass damper in such a way that the main system has the 

maximum possible damping at the lower frequency range. This is because the first 

resonance is usually of major concern when dealing with a vibration reduction problem. 

Jones[18] has shown that an optimum coefficient can be given as, 

c2,optinnml =
 L63m2 

3m2kl 

m0 - (2.1.8) 
2(1 + _ ) 3 

M m\ 
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Further work related to the optimum design of a mass damper can also be found in 

Puksand[191 and Soom and Lee[20]. 

Large machinery and structures can not normally be treated as lumped parameter (mass-

spring) systems. Considerations for which the vibration absorbers need to be designed in 

order to give optimum conditions at each resonance frequency of a large structure have to 

be accounted for when applying the absorbers to continuous systems. Hunt[21] gave a 

detailed discussion about this topic. Hunt also discussed the application of continuous and 

miscellaneous absorbers for the vibration reduction of typical continuous systems, such as 

plates and beams. A n approach using anti-resonance theory to study the effectiveness of 

applying vibration absorbers to a continuous system was presented by W a n g et al[22\. 

According to their work, anti-resonances exist at the point when any change in the 

frequency of a sinusoidal excitation causes an increase in the response at this point. Using 

this approach, an anti-resonance point can be created at a specified location by attaching 

an appropriate absorber at the specified location of the system. As well, the sensitivity of 

the response with respect to parameters (mass, stiffness coefficients) of the absorber was 

also examined in search of the optimum design of the absorber. 

For excitations within a wide frequency band a normal vibration absorber is obviously 

inadequate. Usually, this problem can be overcome by using active vibration absorbers but 

inevitably the complexity is increased. For this reason, Igusa and Xu[23] developed a 

method of using distributed tune mass dampers and demonstrated that such devices, which 

are constructed by mass dampers with natural frequencies distributed over a frequency 

range, are more effective than a single mass damper in reducing vibration response to 

wide band excitation. A n alternative method has also been presented by Semercigil et 

al[24], where a simple vibration absorber was used in conjunction with an impact damper. 

A n impact damper is a small rigid mass placed in a container which is firmly attached to a 

resonant main system. Using a normal vibration absorber in conjunction with this impact 

damper, significant attenuation was achieved in the response of the main system over 

approximately the entire frequency range studied. 
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2.1.4 Active Vibration Control 

Since passive vibration control devices become less effective in responding to higher 

demand vibration situations, efforts have been focused in recent years on active vibration 

control methods which were developed on the basis of feedback control theory. The 

passive vibration isolator, vibration absorber introduced in the previous sections m a y be 

upgraded using servomechanism which are characterised by sensors and actuators, to 

become active isolators and active absorbers, where the variation of vibration is 

continuously monitored and the physical parameters (mass, stiffness, damping) comprising 

these devices can be adjusted according to these variations, so that the desired response 

can be obtained. Relevant research outcomes can be found in literature[251, [26], [27]. 

However, the application of active vibration control devices still experiences two 

shortcomings, namely, (i) it requires external energy, thus increasing the risk of generating 

unstable states, and (ii) complex servomechanisms increase the weight, dimension and 

cost. 

2.1.5 Local Structural Modification and Redesign 

Dynamic properties of a structural system may be improved by changing its mass and 

stiffness magnitudes and distributions at certain locations. This technique is referred to as 

'local structural modification' or 'structural redesign'. The structural modification 

technique is normally applied at the design stage or/and carried out once a prototype is 

available. Compared with other vibration reduction methods, the local structural 

modification method will not involve auxiliary mechanism and normally does not consider 

the damping effect. Since the modification can be carried out locally, the configuration of 

the conceptual structural system or an existing design will not be changed significantly. 

The approach of using local structural modification for vibration reduction is similar to 

some of other methods, namely, (i) relocating the resonance frequency out of the 

excitation frequency range, (ii) relocating the anti-resonance frequency into the excitation 

frequency range. A particular structural modification may be realised by means of locally 

varying design variables, such as local thickness, width, or of local addition of mass and 
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stiffness, or of selecting different materials. Recent developments in structural dynamic 

analysis, such as the application of Finite Element Analysis (FEA) and/or Experimental 

Modal Analysis ( E M A ) have facilitated vibration researcher in the application of structural 

modification technique in structural vibration reduction. 

2.2 Local Structural Modification 

The study of local structural modification in this work addresses the problem of predicting 

how the structural modifications affect the dynamic properties and assumes that the 

mathematical representation of a structural system is available. The fundamentals of local 

structural modification and a general survey of various methods in this area were 

presented by W a n g et a/[28], Starkey[29], Brandon[30], and are generally grouped into 

two categories: methods of prediction and methods of specification. 

2.2.1 The Mathematical Representations for Structural Dynamics Analysis 

As the prerequisite for theoretical structural dynamic analysis, the development of an 

accurate and economic mathematical representation is essential. One of the most broadly 

used mathematical representation of a structural system is the matrix model, which 

represents a structural system in terms of its mass, stiffness and damping matrices in the 

spatial (physical) domain as a "spatial model" or in terms of mode shape and natural 

frequency matrices in the modal domain as a "modal model". The spatial model may be 

obtained by mass-spring-dashpot idealisation or FEA, whereas the modal model may be 

obtained by eigensolution to the spatial model or by E M A . Normally, the connectivity 

information - the magnitude and distribution of mass, stiffness and damping can be 

visualised from their respective matrices. Thus, any modification of the stractural system 

can be reflected in the change of these matrices. Modelling a continuous structural system 

into a matrix form implies the dicretisation of the system. For a simple mechanical system, 

the mass-spring-dashpot system is usually adopted, whereas for a complex structural 

system, the matrix model should be established from F E A or E M A . 
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The F E A method has been the focus of many researchers in structural analysis over the 

past two decades. The construction of mass and stiffness matrices using the F E A method 

can be found in standard finite element text books[31], [32]. The development of many 

commercial F E A packages based on the state-of-the-art manner further facilitates the 

application of this method. However, F E A still suffers certain shortcomings. Firstly, the 

inclusion of damping is not feasible in the original description of a problem. Therefore, 

damping must be incorporated separately and estimated based on previous experimental 

work. Work in this regard can be found in He[33] and Wei et a/[34]. Secondly, it is 

difficult to model joints, complicated stamping, spot welds and so on, which are often 

found in complex structural assemblies. 

Using experimental data to correct the analytical model (FEA model) of a structural 

system has been considered as one of the effective methods to obtain a mathematical 

model which is more accurate in representing a real structure. E M A plays a vital role in 

this respect. The mode shapes and natural frequencies of a prototype of a structure 

obtained from experimental modal analysis are usually considered to be accurate and thus 

they constitute the experimental modal model of the structure. The fundamentals of this 

technique can be found in Ewins[8]. If all the modal information is available from the 

E M A , then the discrepancy between the analytical modal model and the experimental 

modal model can be projected from the modal space to the spatial space in order to adjust 

the analytical spatial model. This method is called model updating. However, only a small 

number of modes can be determined within a limited frequency band, which implies that 

only a truncated modal model can be obtained experimentally. This decreases the 

reliability of this method. Numerous methods have been developed in the research of 

recent years. Up-to-date advances in this topic can be found, for instance, in the 

publications by Kabe[35J, Liml36], Ibrahim! 37] and many others. 

Detailed discussion of developing an accurate model for structural modification is beyond 

the scope of this work. In the following sections accurate models to which local structural 

modification is applied are assumed to be available based mainly on the F E A and/or on 

lumped mass-spring systems. Therefore, the following assumptions have been made in this 
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study: 

(i) The system is linear and conservative. 

(ii) The mass matrix is symmetric and positive definite, and the stiffness matrix is 

symmetric and at least positive semi-definite. 

(iii) the damping effect will be neglected. 

(iv) The eigenvalues are distinct. 

2.2.2 Prediction Methods 

Prediction methods are characterised by using the modal model or response model 

(analytical or experimental) of the original structural system to estimate the new modal 

model or response properties of the modified structural system without re-undertaking a 

complete procedure of eigensolution or E M A . Therefore, these methods are usually only 

considered effective if the solution thus obtained is believed to be more accurate, and the 

computational cost is significantly less than that of using the original procedure to obtain 

the new modal model of the modified structural system by incorporating the modification 

information into original spatial model. Considerable effort has been focused on this area 

and the existing methods are normally classified into two categories, namely: (i) localised 

modification methods, (ii) small modification methods. 

Perhaps the most often quoted work in the literature of localised modification methods is 

that of Weissenburger[38], although similar work can be traced back to that by Young[39]. 

Based on an undamped structural system, Wissenburger[38] developed a method where the 

localised structural modification was characterised by using a single lumped mass or a 

linear spring connecting two specified coordinates to predict the natural frequencies and 

mode shapes of the modified system. The equation of motion of the modified system was 

given by, 

[\K] +A[/H -co*2([M] +A[A_])]ft} = (0) (-22A) 

Since the mass or the stiffness modification can be expressed by a matrix whose rank is 

unity, 
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A[M] = hm{e){e)T (2.2.1a) 

or 

A\K] = Me^fe)]; (2-2. lb) 

the method is also called the 'unit rank modification' method. The computational 

efficiency achieved by the unit rank mass modification may be exploited by transferring 

equation (2.2.1a) into the modal domain, (assuming that A[K] = [0]) 

[(d/ag[co2]-co*2[ / ])diag[mp]]{q} = -omlrkV/V <
2-2-2) 

where 

diag[mD] = PF]r[A_]PF] (2.2.2a) 
p 

diag[kp] = V¥f[K]V¥] (2-2-2b) 

diag[a>2p] = diag[kp]diag[mpY
l Q22^ 

W = Wfie,} (2-2-2d) 

__> = VV]iq) (2'2'2e) 

Considering a general row of equation (2.2.2), noting that 

-W _ rn - (eo^2)-- = (co^*2)^ = • («£-»*2)-^ <2-2-2f) 
__/ p p * i- /*„ r 
p=l 'l '2 '« 

the eigenvalue of the modified system can be solved from the characteristic equation 

(2.2.3) by using the Newton-Raphson algorithm and the solution will be given in terms of 

natural frequencies of the original system. 
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V> rP _ 1 

p=i m (co^-co*2) 5/MCO2 
(2.2.3) 

Once the natural frequencies of the modified system are found, the eigenvectors(modc 

shapes) will be given by, 

{\|/} = P 
/w^co^-co,) w2(co*

2-co2) m„(co*2-co2) 

(2.2.4) 

where P is a scaling factor. 

The fact that the method may be extended to the combination of unit rank mass and 

stiffness modifications was also discussed by Weissenburger[38]. More complex 

modifications (with the rank greater than unity) can be carried out by the repeated 

applications of the unit rank modification. Because of the high computational efficiency, 

this method has gained wide acceptance and has been generalised to the non-conservative 

system by Pomazal and Snyder[40]. Further studies on utilising the computational 

advantages of low rank modification matrices can be found in Skingle and Ewins[41] 

which is based largely on an experimental interpretation of the structural system, ie. 

experimental modal model. The main shortcoming of those methods derived from 

Weissenburger's method is that they restrict the modification into single rank, despite the 

fact that, a mass modification would affect terms of the mass matrix corresponding to the 

coordinates of three perpendicular directions, (as stated by Ewins[8]). More details of the 

development of these methods can also be found in Hallquist[42] and Brandon et al[43]. 

Another type of well developed approach to predict the dynamic properties of the locally 

modified system is the response predicting method (also called receptance method). The 

theoretical basis of this method is the Shermann-Morrison Identity, 
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[[/IMflHD.]-1 = [A\~l-[AVl\B\[[ I }+[B\[AVl[D]]-l[D][Arl (2-2-5) 

The numerical advantage of equation (2.2.5) was firstly exploited by Kron[44] for 

analysing the dynamic characteristics of electrical networks and then extended into 

structural dynamic analysis, which the receptance matrix (details of receptance matrix can 

be found in Section 3.1.1 or Ewins[8]) of the modified structural system [a(co)]m = 

[a(co)]0+A[a(co)] can be derived in terms of the local modifications and recptance matrix 

[«(co)]0 of the original system. Given that the localised modification m a y be expressed in 

equations (2.2.2a,b), and assuming the receptance matrix of the original system is 

available, then, the receptance matrix of the modified structural system due to a unit rank 

mass modification can be expressed as, 

[a(co)]0+A[cx(co)] = [-w^AfH/q-c^AtM]]"
1 

r co2[a(co)]>}5myr[a(co)]0 _ } 2 ' Z 6 ) 

= [a(0))]o- , (SW- ) 
1 +w2bm{e}T[a(w)]0{e} feF[a(co)]>} 

The computational efficiency of equation (2.2.6) is high, since the computation of a full 

matrix inverse is replaced by a series of matrix multiplications. This method is of 

particular significance in dealing with low rank modification (characterised by low rank of 

A[M] and A[K]). Based on this method, Moraux et _7[45] gave the forced response {_,_} 

of the modified system in terms of that of the original system {x0} as, 

_ _ jmamw* fc (221) 
\+(028m{e}T[a(w)]o{e} 

They also further reduced the order of the problem by considering that only one 

coordinate, say U(2)}(ixi)'
 was involved in modification. Rearranging and partitioning 

[a(co)]0 and A [ M ] yields, 

ian(G))]0 [a12(co)]_ 

[a21(co)]0 [a22(co)]0 
[a(co)]0 = (2.2.7a) 
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A[M] = 
[0] n [0]1: 

[0]21 [AM] 

(2.2.7b) 

where 

[AM]22 = [8m] (2.2.7c) 

thus the equation (2.2.6) is reduced to, 

a12(co) 

a22(co) 

Moraux's work was carried out on a general structural system. Similar results have also 

been given by Hirai et al[46] based on an undamped system. The limitation of this method 

is that it requires evaluation of new response properties at each frequency of interest, these 

make it uneconomical if the response of the modified system across a wide range of 

frequency is required. Nevertheless, the method is still regarded as the most direct method 

for response prediction. 

Details of other methods which utilise low rank properties of localised modification can be 

found in the publications by Palazzoro[47] and Sadeghipour et a/[48]. 

To predict the dynamic properties of a modified structural system due to small 

modification, three methods have been discussed in literature, namely: Rayleigh's method, 

first order perturbation method and modal sensitivity analysis method. 

The basic assumption of Rayleigh's method for predicting the effect of small structural 

modification is that the mode shape vectors of a modified structural system may be 

approximated by those of the original system. Thus the Rayleigh's Quotient of the 

modified system may be expressed as, 

mi 

a12(co) 

o_2(co) 

- CO' 

a,2(co) 

a22(co) 
8m[a22(co)]0 

(2.2.8) 

.0 
1 +co28/w[a22(co)] 

26 



x; - (o,+Aco;)
2 - * * W ^ 

{^[M]+A[M]%)T 

(2.2.9) 

_ X+^^Af/n^;7 

1 +{^)A[M]{^T 

Using the generalised Rayleigh's method, which involves an iterative procedure, the 

methods for eigenvalue reanalysis by Rayleigh's quotient, Timoshenko's quotient and 

inverse iteration was presented by Wang and Pilkey[49]. The upper and lower bounds of 

the predicted eigenvalues of the locally modified structural system using Rayleigh's 

method were investigated as well. Similar work is also found in R a m et a/[50]. Once the 

eigenvalue of the modified structural system is identified, a procedure which was proposed 

by To and Ewins[51 ] may be employed to predict the eigenvector of the modified system, 

(1) {\|/}0 is given, ||{\j/}0||2=l (||{\j/)0||2 is the Euclidean norm of vector {A|/}0) 

(2) For r=0, 1, ... 

K _ Wftq^nM (2.2.10) 
{\|/$[A^A[A/]]ty.}r 

(3) Solve 

[[K] +A[K] -Xir([M] +A[M])]{z)r+1 = [[M] +A[A_]]{\j/ilr (
2-2-l D 

for {z}r+1 

(4) 

{¥.}r+1 = _!!____ (2.2.12) 

The accuracy of this method depends to large extent on the validity of the assumption that 

the mode shape vector of the modified structural system for estimating its Rayleigh's 

Quotient can be approximated by the corresponding mode shape vector of the original 

system. Higher accuracy can be achieved if the above procedure is made iterative, which 

in turn implies more computational effort. 
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Similar to the Rayleigh's Quotient method, the first order perturbation method and 

sensitivity analysis method are also based on the small modification approximations to 

simplify the analysis and computations along with the assumed mode assumption (see 

details in Section 2.2.3). Both methods are achieved by neglecting the higher order terms 

encountered in the analysis procedure. 

The difference between the Rayleigh's Quotient method and the first order perturbation 

method is that the latter provides a clear understanding of the involvement of the mode 

shape. The basic formulation of the first order perturbation method can be found from 

Rudisill[521 and is described as below: 

According to the perturbation theory, the mass and stiffness matrices of a modified 

structural system due to small modification may be expressed as, 

[M]+A[M] = [M]+e[M(1)]+e2[M(2)]+ (2.2.13a) 

[K\+A[K] = [K]MK
(l)]+e2\K(2)}+ (2.2.13b) 

respectively, the eigenvalue and corresponding eigenvector may be written as, 

xi+A\ - v^
1 Vx<2)+ <

2-2-14a> 

{¥,}+A(¥/} = W+e^UHy?)* <
2-2-14b> 

Substituting equations (2.2.13a,b) and (2.2.14a,b) into equation (2.2.1), and neglecting the 

terms which contain e with higher order than one, yields, 

y^K-1 \mtyhHM^HntfMK<xyity ={0} (2'2'15) 

Pre-multiplying equation (2.2.15) by [yf and considering the orthorgonality properties 

given by Lancaster[53] which is: 

the first order perturbation of the eigenvalue can then be obtained as, 
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fcir/ltfltyj1*} = iy}r[K]{y(2)} = 0 (2.2.16b) 

xa) = W^^WW
1^} (22 n) 

The first order perturbation of the eigenvector can then be obtained as, 

V(i)} m _K[M
(1)]V^> 

2{\l//[M]ty.} 
(2.2.18) 

+ " [V/[^(1)]V;-V¥/[M<1)]{¥S
1)}]{¥J 

5-1,«* (VM^/i^W 

If more accurate prediction is required, higher order perturbation in equations (2.2.14a,b) 

should be taken into account. Flax[54] discussed this case and presented the higher order 

perturbation of the eigenvalue and eigenvector in terms of results of the first order 

perturbation. For mass modification, T o and Ewins[51] showed that the first order 

perturbation can also be obtained from the power series expansion with respect to the 

Rayleigh Quotient. Similar results were also found from Romstad et al[55]. Since the first 

order perturbation method and Rayleigh's Quotient method are both based on small 

modification, the study on the numerical stability of using these methods becomes vitally 

important. Discussion of this topic can be found in Stewart[56]. A detailed comparison 

between the first order perturbation method and the Rayleigh's Quotient method was given 

by Kaminski[57]. 

As perhaps the most accepted method in dealing with small modification problems, the 

modal sensitivity method has been studied with great enthusiasm by numerous researchers 

in both theoretical and experimental arenas. The modal sensitivities are the derivatives of 

the modal properties (natural frequencies and mode shapes) of a structural system with 

respect to selected structural variables. Using this method to predict the effects of 

proposed structural modification relies on the matrix Taylor series expansion of the modal 
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properties of the original system. Thus, the truncation error stemmed from neglecting the 

higher order terms in the series limits the application of this method for small 

modification of the structural system. T h e first order sensitivities of an undamped system 

with respect to structural parameter y are given below. 

The derivative of the equation of motion of a structural system with respect to y is given 

as, 

__!_i[Mi^2__! 
37 dy dy 

¥/}^
2[M]]_^> - fol 

(2.2.19) 
dy 

Pre-multiplying equation (2.2.19) by { y } T and solving for dm2 I dy gives: 

W 7 dm _w2 dm 
dy l _r 

;¥; (2.2.20) 

tyfmty) 

The m o d e shape derivative can be obtained by assuming that it can be expressed as a 

linear combination of the eigenvectors of the original system (so called assumed m o d e 

assumption), 

_{\|/} 

dY M -E<M (2.2.21) 

The constants c} are given as, 

v/ 
cj, (j=l,2,...,n jti) 

d[K]_(2d[M] 

_Y ' 3y 
]W 

(C0;"„p{¥/[M]{\|/y} 

(2.2.22a) 

f, 0=0 lT/ 93v Y^ 2dy 
(2.2.22b) 

Although the mathematical foundation of sensitivity analysis had been laid by 
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Lancaster[58] and others, extending this method into structural vibration analysis is 

attributed to Fox and Kapoor[59]. Since the calculation of the m o d e shape derivative from 

equations (2.2.21) and (2.2.22a,b) requires the knowledge of all m o d e shapes of the 

original system, which is not always possible in practice, Nelson[60] developed a 

simplified method by which only the modal data associated with particular m o d e is 

required. 

Provided that the modal sensitivity information is available, the effect of changes of the 

structural parameter y can then be predicted by using a Taylor's series expansion about the 

modal properties of the original system, 

co2+Aco
2 = w^Ay^Ar2* (2-2-23a) 

ay ay2 

{¥},+Aty.} = hj/^^Ay+^Ay
2^- (2.2.23b) 

dy ay2 

Normally, for small structural modification, the higher order terms in equations (2.2.23a,b) 

are assumed negligible and therefore these equations can be readily applied to structural 

modification problems. However, higher order derivatives are required in some cases for 

more accurately predicted results. Brandon[61] discussed these cases in detail and 

formulated higher order modal derivatives in his work. As well, Brandon[62] and He[63] 

discussed the response sensitivities in terms of receptance derivatives. For large amount of 

structural modifications, the computation of higher order modal derivatives are rather 

complicated and lower order approximations is inaccurate. Hence a repeated application of 

modal sensitivities based on the piece-wise linear principle is usually employed. Although 

this approach has defects which are difficult to overcome, it is still considered as an 

effective approach in structural analysis due to the following advantages (i) suitable for 

distributed modification, (ii) straightforward to compute using information from 

experimental modal analysis, (iii) provides the information as to the most sensitive 

location for a particular structural modification. 
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2.2.3 Specification Methods 

The specification methods for local structural modification comprise those methods used to 

predict the variations in the structural parameters of a structural system which will lead to 

specified modal properties (natural frequency and/or mode shape). These methods can also 

be described as 'inverse methods' - the opposite of the prediction methods discussed in 

Section 2.2.2. Therefore, the problem characterised in equation (2.2.1) becomes to one of 

searching for A [ M ] and A[K] of [M] and [K] respectively in order to produce co*, and/or 

The localised modification approach in prediction methods can readily be applied in 

specification methods. Returning to equations (2.2.3) and (2.2.8), it is noted that the 

problems defined by these equations will be significantly simpler if the unknown becomes 

the unit rank mass modification. However, since these prediction methods are only valid 

for lumped mass systems with unit rank modification, they are only suitable for parametric 

studies. A similar method was also presented by Tsuei and Yee[64], where only the 

information (physical and modal) of the original system related to the location of 

modification are required to obtain a proposed unit rank mass or stiffness modification for 

a specified natural frequency. This method was then extended by Li et al[65] to solve 

multiple mass and stiffness modifications for both a specified natural frequency and a 

specified anti-resonance frequency. As well, an approach for finite element implementation 

of this method which is characterised by a set of non-linear eigenpolynomials has been 

developed by Li et a/[66] based on the state space theory. 

A similar problem was discussed earlier by Lancaster[58] to search for a mass and 

stiffness incremental matrices which, when applied to the structural system, will 

mathematically satisfy a specified eigenproblem. H e stated that for a fully determined 

undamped system with distinct engen values, unique solutions for mass and stiffness 

matrices exist. Nowerdays, theories for such a problem have been well developed in the 

area of analytical model updating. Most of them attempt to use experimental modal data 

of a structure from E M A to update or correct its analytical model obtained by FEA. The 
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differences between the analytical and the 'correct' models may be described as the 

incremental matrices. S o m e well known model updating methods are: Objective Function 

Method where solutions are obtained in a least square sense (Barueh[67]); Error Matrix 

Method based on an inverse perturbation approach (Sidbu and Ewins[68]); Pole Placement 

Method originating from control theory (Starkey[69]); Error Location Method using simple 

dynamic equation (He and Ewinsl70]) and Inverse Sensitivity Method (Lin and He[71]). 

Most of these methods may readily be, or have been extended to be, applied as the 

specification methods in the structural modification problem. Although the general 

procedure for solving inverse structural modification problems and model updating 

problems may be the same, the problems themselves are essentially different. Model 

updating methods aim at identifying the location and quantity of the errors between the 

analytical and the 'exact' models using would-be errorous mass and stiffness matrices and 

correct modal properties, whereas the inverse structural modification methods aim at 

finding the location and quantity of the modifications which lead to specified modal 

properties using 'exact' mass and stiffness matrices. The consequence of this difference 

implies that the 'error' matrices in model updating problems will always exist and with 

explicit physical significance. However, the local structural modification represented by 

the incremental matrices in inverse structural modification may not be always physically 

realisable, meaning that the desired modal properties may not always be achievable 

through a practical structural modification. In the remainder of this Section, a general 

examination will be undertaken into some of the widely adopted methods which focus on 

the inverse problems of structural modification. Most of these methods are based on two 

assumptions which have already been stated in the prediction methods, namely: the small 

modification assumption and assumed mode assumption. 

As one of the most popular specification approaches based on the small modification 

assumption, the inverse perturbation approach has been well studied by many researchers 

(Stetson and Palma[72], Stetson et al[13]). The processes to obtain the mass and stiffness 

incremental matrices by using these approaches is rather complicated. Thus realisation 

processes of these incremental matrices are often featured by expressing the mass and 

stiffness incremental matrices as the functions of variation of a particular structural 
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parameter. Hoff et al[14] introduced an algorithm which involved a typical procedure of 

using inverse perturbation approach in specification methods. In their work, the mass and 

stiffness incremental matrices were expressed as, 

p 

A[M] = Y,*lfi\MA (2.2.24a) 
7=1 

and 

A[K] = J_ AyfilKj] (2.2.24b) 
7=1 

However, it is noted that the expression of such linear functions may not always be 

possible in practice (see detailed discussion in Section 3.2.2). 

According to Hoff et al, the algorithm was developed in two stages: 

(i) Predictor stage: Ay is obtained in terms of the modal properties of the 

original system as, 

£ Ay/^At^Vp-VyfAtM/^.} ^ 
^ = ____} 

Equation (2.2.25) becomes a set of linear equations from which the 

parameter changes Ay can be solved subject to the desired changes in 

multiple natural frequencies, and the first order perturbation of mode shapes 

to the Ay can then be written in term of the parameter's change as, 

1 U J 2ty?[M]ty (2.2.26) 

+ " [ { ¥ / A [ ^ { ¥ ; - M # A [ M / ¥ j ] { ¥ g } ] 

(ii) Corrector stage: the pre-defined natural frequencies and the mode 
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shapes obtained from equation (2.2.26) are used to solve the corrected 

structural parameter's change, 

£ (V^At^Iy^.-w^VfAtM^V^Ay: 
j'1 (2.2.27) 

= co;2{\|/*}[A[My.]{v|/*}-{¥*}jA[/nV*} 

where 

ty\ = M^+AM. (2.2.27a) 

co*2 = co2-_co2 (2.2.27b) 
I 1 1 

Equation (2.2.27) is a set of linear equations whose the number depends on 

the number of the specified natural frequencies. 

In case of large modal property changes, the algorithm can be applied in several small 

steps. This will then require more computational effort. A similar method has also been 

presented by Zhang and Wang[75] using a viscously damped mass-spring system. Due to 

the involvement of complex mode shapes, the computation becomes more complex and an 

iteration procedure must be employed. The application of the higher order perturbation 

was also discussed in [75]. However, the accuracy of specification methods based on the 

inverse perturbation approach still suffer from shortcomings stemming from: (i) 

computational cost because they always involve iterative processes, (ii) the limitation on 

the amount of modification because they always neglect the higher order terms in the 

perturbation equation, and (iii) the fact that the modification predictions are not always 

realisable because the modification must be idealised as concentrated mass modification or 

the incremental matrices are expressed as linear function of structural parameter. The 

fundamentals of methods based on inverse perturbation are clearly depicted by Stetson and 

Palma[72] and Auburn[76]. 

The assumed mode assumption has become one of the most important theoretical 
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foundation of many structural dynamic analysis methods - the mode shape vector of the 

modified system belongs to the space which is spanned by a truncated set of mode shape 

vectors of the original system. Widely accepted not only in the prediction methods, but 

also in the specification methods, this assumption is of great significance when using an 

incomplete set of modal properties to deal with structural modification problems. Firstly, 

the assumption implies that the mode shape vectors and/or their variations due to local 

structural modification can be expressed as a linear combination of an incomplete set of 

mode shape vectors of the original system. Secondly, it implies that the order of the 

problem can be greatly reduced by transferring the problem into the modal space spanned 

by this incomplete set of original mode shape vectors. Nevertheless, this may sacrifice the 

physical connectivity information. The methods involving this assumption are also referred 

to as assumed mode methods by some researchers (see also White and Maytum[77] for the 

application of this method). A series of investigations about this assumption have been 

carried out by Braun et „7[78],[79],180] and some valuable conclusions have been drawn. 

Based on this assumption, R a m and Braun[81] proposed a new method to calculate 

mathematically the mass and stiffness incremental matrices subjected to given natural 

frequencies and corresponding mode shapes without any knowledge of the mass and 

stiffness matrices of the original system. Assuming the mode shapes of the modified 

structural system can be expressed as, 

[<_»] = [Ot i<t>2] meRn™ [4>i]eJ?l*», [02]E/?2"X*, nw
 (222S) 

Ki - [<w iwr. M._r. »IMI
 (2,2'29) 

The equations of motion of the modified system can be written as, 

[[K]+A[K]][<I>*] = [[M]^A[M]][^]diag[(o;2] (3.3.30a) 

Substituting equation (2.2.29) into equation (2.2.30a) and pre-multiplying by [c]T, yield, 

[c\ 

Ic]1 

'diag[(02]+[<t>l]
TA[K][<&l] [c] = 

[ / W ^ f A f A f H O , ! \c]diag\v>;*] 

(3.3.30b) 
*2, 
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where 

[0/[M][<p,] = [ / ] (2.2.30c) 

l^il7!*]!*,] =diag[(o2r] (2.2.30d) 

considering 

[c]1^ I MO/AIMHOjJtc] = [ / ] (2.2.31) 

[cl^dto^H O,]7^^!*!]^] = rf/^tco;2] (2-2.32) 

The non-unique symmetric matrices A[M] and A[K] can be obtained according to Ben-

Isreal and Grevillle[82] as, 

(2.2.33) 

(2.2.34) 

A[M] = [^ftcV^cV1^ I ]][0{r 

A[K] = [O^^jfcl-^/^tco^ltcl^-f/^Ico2]]^!]* 

+[Z]-[<^,]
r+[<I>1]

7'[Z][01][01]
+ 

the matrices A[M] and A[K] may then be realised using finite element method as, 

A[M| = f^lP/lAgiP,.] (2-2.35) 
;=i 

and 

a 
A[K] -£AtfP/[_g[ft] (2-2-36) 

j=l 

The realisation problem given in equations(2.2.35) and (2.2.36) may not always have exact 

solutions. In many cases, it will exist as a over-determined problem, which is similar to 

that discussed by Lim[36]. The mathematical conditions on which this assumed mode 
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assumption based were also discussed and given by Bucher and Braun[83]. 

2.3 Problem Definition 

It was shown in the previous Sections that theories in areas of establishing mathematical 

models and structural modification analysis have been well developed from both 

theoretical and practical application viewpoints. As one of the most important applications, 

using these theories in vibration reduction is attracting more and more attention. For this 

application, the resonance and anti-resonance phenomena are of major concern. The goal 

of this work is to investigate and develop an effective method for vibration reduction by 

local structural modification. In this work, two algorithms will be developed along with 

the theoretical background based on analytical (mass-spring or F E A ) models. 

The first algorithm performs the relocation of resonance and anti-resonance by local 

structural modification to serve for the vibration reduction purposes. A s well, some 

important properties of anti-resonance relevant to the vibration reduction will be explored. 

The element sensitivity index will be defined in order to provide guidance for local 

structural modifications. The algorithm developed will readily be applicable to an existing 

finite element model. Both numerical and experimental examples will be examined to 

validate the algorithm. 

The second algorithm performs the structural dynamic optimisation by local structural 

modification. It aims at the elimination of a resonance peak from certain frequency 

response functions. The theoretical basis of the algorithm will be investigated in detail. 

Numerical examples will be provided to verify the effectiveness of the algorithm. 

The problems addressed in this work will also be focused on the applicability of using the 

local structural modification approach in vibration reduction. The frequency response in 

the vicinity of resonance and anti-resonance will become the main criterion to evaluate the 

effectiveness of the outcome. 
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CHAPTER 3 

RELOCATION OF RESONANCE AND ANTI-RESONANCE BY 

LOCAL STRUCTURAL MODIFICATION 

This Chapter aims to present a complete theoretical development of a procedure to 

perform local structural modification which is focused on vibration reduction. A s a 

manifestation of vibration level, the frequency response characteristics of a structural 

system are of major concern. These characteristics are commonly interpreted in terms of 

receptance, mobility, inertance, resonances and anti-resonances. In this Chapter, mass and 

stiffness modifications will be determined which will result in specified relocation of 

resonance and/or anti-resonance in an FRF. 

3.1 Receptance FRF 

For an NDOF structural system undergoing forced vibration, the equations of motion in 

matrix form are, 

[M\mnC]{x(t)^i[HMtMK]{x(t)) = {fit)) (3A-v 

If the system is lightly damped, the inherent damping of either viscous type or hysteresis 

type is assumed to be negligible. Thus, damping is not considered in local structural 

modification. The symmetrical mass and stiffness matrices, [M] and [K], are normally 

derived from the finite element analysis (FEA) of an existing or conceptual structure. It is 

generally assumed that matrix [M] be positive definite and matrix [K] be at least positive 

semi-definite. The [MJ and [K] matrices thus derived comprise the mathematical model of 

the structural system which is used to express the magnitudes and distributions of mass 

and stiffness of the system. 

39 



The transformation relations, which are used to convert equation (3.1.1) from time domain 

to frequency domain are, 

ix(t)) = 0cVM' <3-L2a) 

ft/)} ={F)eiat (3A.2b) 

which imply that the structural system is subjected to harmonic excitation. Substituting 

equations (3.1.2a,b) into equation (3.1.1), and assuming damping is negligible, will lead to, 

-a>2[M]{X)+[K\{X) = iF) (3-L3) 

The equation of motion of the structural system subject to free vibration can be written as, 

-<o2n[M]<YU[K]{Y} = (0) C
3-1-4) 

Rearranging equation (3.1.3) yields, 

0.) = [-co2[M]+[/n]_1 iF) = [Z(w)Vl{F} (3'L5) 

The matrix [Z(co)] = [-co2[M]+[K]] is referred to as the 'dynamic stiffness matrix' or the 

'system matrix'. Provided [Z(co)] is non-singular, matrix [a(co)] is given as, 

[cx(co)] = \Zdto)rl = [-co2[M]+[/n]
_1 (3,1,6) 

It is customary to define the matrix [a(co)| as receptance frequency response functions 

(FRF) matrix, for the structural system, the condition of its existing is that co * con, since 

equation (3.1.5) can not be solved if the structural system is excited at one of its natural 

frequencies. The general elements in the receptance F R F matrix are defined as follows, 

^)S^.0H^* (3'L7) 
j 

The physical significance of cx^co) is explicit. It represents the displacement response of 

coordinate i to a unit sinusoidal excitation with frequency co applied on coordinate j, as no 

other excitation is assumed. However, to solve for each element of [cc(co)] using equation 

(3.1.6) involves the matrix inverse of [Z(co)l at each frequency co. Ewins[8] has discussed 

the disadvantages of this direct matrix inverse method as follows: 
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(i) c°stly for large-order systems, 

(u) inefficient if only a few of the individual F R F expressions are required, 

(iii) provides no insight into the form of various F R F properties. 

Using the orthogonality properties of the structural system which consists of [M] and [K], 

an alternative form of expression of a^co) can be derived as, 

mT[M][<&] = [ / ] (3.1.8a) 

[0]T[K][0] = diag[m2nr] (3.1.8b) 

Rearranging equation(3.1.6) yields, 

[-co2[M|+[Al] = [a(co)]-1 (3-L9) 

pre-multiplying both sides by [<t>]T and post-multiplying both sides by [<£] yields, 

[0]^-(o2[M]+[K]]m = [&f[a((o)Vlm (3.1.10) 

which results in the spectral decomposition form of [a(co)], 

[cx(co)] = [<D] diag[(O2nr-(o
2]Tl[0]T (3.1.11) 

It is clear from this equation that the receptance matrix is symmetric. This demonstrates 

the principle of reciprocity, in other words, 

al7 = Hi = a, = _?_. (3.L12) 
J i 

Response of coordinate i to the excitation applied at coordinate j will be the same as that 

of coordinate j to the excitation applied at coordinate i. This property is important for 

vibration reduction which involves certain coordinates of the structure system, as will be 

discussed later. 

To compute an individual FRF at any frequency of interest, cx^co) may be expressed in 

the form of partial fractions as, 
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a-(co) = V _______ 
,J ^ 2 2 (3.1.13) 

r=1 co„ -or ' 
equation (3.1.13) is normally written in the form of equation (3.1.14) by introducing 

modal constant - rAjj, as, 

<x.<a» = £—4L. (3.1.14) 

So far, we have defined the receptance FRF a^co). It will be used as the main parameter 

to assess the system vibration behaviour. From the vibration reduction point of view, the 

objective of this research is to decrease the value of the receptance frequency response 

within the frequency range of interests. Three methods will developed in this thesis, they 

being, 

(i) shifting a natural frequency away from the frequency range of concern, 

(ii) relocating an anti-resonance (the concept of anti-resonance will be 

explained later) into the frequency range of interest, 

(iii) eliminating a resonance peak of a required FRF. 

3.2 RELOCATION OF RESONANCE IN FRF 

3.2.1 Relocation of Resonance for a Lumped Mass System 

It is well known that when encouraged to vibrate at a natural frequency, systems joyfully 

respond. This frequency is also called a resonance frequency. It is so called because of the 

fact that if the excitation frequency is equal to a natural frequency, then violent motion 

may be expected. This extreme magnification of motion is known as 'resonance'. This 

phenomenon is described mathematically in equation (3.1.14). Rewriting equation (3.1.14) 

yields, 

a,(co) = _______+ £ ______ (\<p<n) (3.2.1) 
CO„„-Gr r=l,rtp 0)_ .-GT 

njp n,r 

From equation (3.2.1), it can be seen that when the exciting frequency is equal, or close, 
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to the natural frequency of the pth mode of the structural system, the response of the 

system to the excitation will tend to be infinite in the case of no damping. The total 

response will be dominated by the first term on the right side of equation (3.2.1). In the 

other words, it is dominated by the contribution of the pth natural mode of the system. 

However, when the plh modal constant is zero or is approximately zero, the pth natural 

mode will not show a resonance peak in F R F curves relating certain coordinates. This will 

be discussed in Chapter 5. 

A forced vibration usually becomes significant only if resonance occurs. In practice, it has 

been recognised as an efficient means to 'detune' a system so that the natural frequency is 

shifted away from the exciting frequency and unwanted resonance vibration is hence 

averted. The practical determination of changes in mass and stiffness distribution to 

relocate a natural frequency is therefore vital. 

If equation (3.1.4) is used as the equation of motion of a structural system, then it is 

recognised that the system be fully identified and the mass and stiffness matrices obtained 

from F E A or other methods be capable of representing the mass and stiffness distribution 

of the real or the conceptual structure. The global sum of mass and stiffness modification 

applied on the system can be expressed as mass and stiffness incremental matrices, A[M] 

and A[K] respectively, 

Recasting equation (3.1.4) with mass and stiffness incremental matrices yields, 

-co*2[[Af ] +A[A/]]{r *}+[[/H +A[K]]{Y >) = (0) (3'2'2) 

Equation (3.2.2) is the equation of motion of the modified structural system subjected to 

free vibration, where the A|M] and A|K| matrices can be constructed as follows: 

For a lumped mass system, where an individual mass modification represented by a mass 

increment in the r,h coordinate, typical of the attachment of a 'lumped' mass, A[M] can be 

constructed by using {er} mapping vector, 

A[M] = \e)hmr{e)
T
 G , 3a) 
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Therefore, multiple mass modifications, say, on coordinates i, j, k, can be represented as 

a summation of individuals, 

A|M| = £ {e)omr{e)
T
 (323h) 

r=ij,k 

Similarly, the global sum of stiffness modification between coordinates p, q(p=i,j,k, 

q=i,j,k), can be written as, 

A ^ = E kjU^J (p*q) (3.2.3c) 
p,q=ij,k 

Re-arranging equation (3.2.2) yields, 

-co*2[M]{r *)+[K]{Y *} = co*2A[M]{F *}-A[K]{Y *} (3-2-4) 

which leads to, 

{Y*} = [-(i}*2[M]+[K]] [co*2A[M]-A[/n]{r1 (3*2,5) 

Considering equation (3.1.6), and assuming co=co , equation (3.2.5) becomes, 

iY*) = [a(co*)]co*2A[M]-A[/n iY*) 
(3.2.6) 

If we only intend to change one natural frequency which may be close to the excitation 

frequency, then the problem of determining A|M1 and A[K] becomes simple, since any 

modification of mass and stiffness to any part of a vibrating system is likely attended by 

the variation of the system natural frequencies of interest. However, the goal is to relocate 

a natural frequency so that the exciting frequency can be out of the resonance region 

(normally it is banded by approximate co/con= l±(lV2), where co and con are respectively 

the excitation frequency and a natural frequency of the original stmctural system). To 

achieve it, the optimum amount of mass and stiffness modification have to be determined. 

For a lumped mass system, without loss of generality, assume the mass modification is 

applied on coordinates i, j, k which are Smj, 5nij, 8 m k (more mass modifications can be 

studied likewise). Assume also that such mass modification do not affect stiffness 

44 



distribution of the original system (in practice this situation occurs when lumped masses 

are added to or subtracted from the system). Then, the mass modification can be expressed 

in matrix form to, 

A[M] = 

[0] 

[AM] 

[0] 

(3.2.7a) 

where 

[AM] = 

8Wi 

8m. 

- 5m, 

(3.2.7b) 

By introducing mass modification ratios rj_ j k, which are pre-defined ratios of the 

modified masses (positive ratios mean the addition of masses, and negative ratios mean 

the subtraction of masses), the relationship among 8m., 8mj5 and 8m k will be as follows, 

tim; 8m, 8m/ = yH r\j TI/ (3.2.8) 

where y is a scaling factor of a unit of mass. 

Substituting equation (3.2.8) into equation (3.2.6) when A[K]=0, yields, 

{Y*} = [a(co*)](co*2y[Ti]){r 1 
(3.2.9) 

where 

[0] 

[TI] = [Til. 
(3.2.9a) 

[0] 

and 
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r,. ... 

[11 = vj 
(3.2.9b) 

\ 

By considering the equations corresponding to coordinates i, j, k only, equation (3.2.9) can 

then be reduced to, 

1.{Y\ Ma(co%(„*2[TiL){r*}, (3.2.10) 

where 

[ct(co% = 

cx(co% a(co*)-; a ( c o % 

a(co*)y.- a(co*)y>- a(co*)J/t 

a ( c o \ a(w\j a(w*)kk 

(3.2.11a) 

[Tllr = 

Tli 

0 

0 

0 

^7 

0 

0 

0 

\ 

(3.2.11b) 

{Y f = {Y* Y* Ykr 

Let 1/y = X and [a(co)lr|Tilr = |C|, equation (3.2.10) can be re-written as, 

XiY\ =co*2[C]{r*}r 

(3.2.11c) 

(3.2.12) 

Equation (3.2.12) is a reduced ('reduced' implies that the order of the original problem has 

been reduced to the number of coordinates involved in the modification) standard eigen 

problem. By solving this eigen problem, the eigenvalues, which are X, will be obtained. 

The multiple eigenvalues may indicate there exist several acceptable modifications. The 

mass modifications which are applied on coordinates i, j, k, to obtain desired new natural 
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frequency co can then be determined as follows, 

8m- = yr)_ (3.2.13a) 

8my = yr\j (3.2.13b) 

bmk = ynk (3.2.13c) 

Similarly, stiffness modification between the pth and the qth coordinates (p=i, j, k, q=i, j, k, 

p*q), which can be expressed as b\, 8kjk, 8kiIc, with stiffness modification ratio Ky, Kjk, 

Kjk, can be solved as follows, 

The matrix form of stiffness modification may be expressed by equations (3.2.14a,b) 

A[K] = 

[0] 

[AK] 

[0] 

(3.2.14a) 

where 

[AK] = 

dkij+bk^ - -8^ - 8 * ik 

-M-. - 8 * ^ - -8*^ 

-3k: ik -tejk - *kjk+MiU 

(3.2.14b) 

Assume that the stiffness modification is carried out without changing the mass 

distribution of the original system. By substituting equations (3.2.14a,b) into equation 

(3.2.6), and considering A[M] = [0], the stiffness modifications between the pth coordinate 

and the qth coordinate can then be obtained in the same manner as mass modification to 

obtain the desired natural frequency of the system by solving equation (3.2.15). 

X{Y\ = ic|{r*}r 
(3.2.15) 

where 

X. = l/y 
(3.2.15a) 
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[C\ = |a(co)|r[Klr (3.2.15b) 

Mr = 

K.-+Ka "Ky -K •it 

" ^ Kij+Kjk -*jk 

"Kit "K/k K / f c + K * 

(3.2.15c) 

<S*.. 8*,-,... 5 ^ t / = Tffcy *,* % > 7 (3.2.15d) 

3.2.2 Finite Element Implementation of the Local Structural Modification 

The methods described above to determine the mass or stiffness modification of a lumped 

mass system to achieve a desired natural frequency have significant importance and can 

find immediate practical application. However, its effectiveness becomes limited because 

the method assumes that either mass or stiffness modification be made, but not both. To 

utilise the full potential of the method, a structural modification procedure with both mass 

and stiffness being involved has to be explored. This is particularly important in the case 

where a consistent mass matrix rather than a lumped mass matrix is used to deal with a 

structural system. Traditionally, by using FEA, the global mass and stiffness matrices are 

assembled from element mass and stiffness matrices which are usually governed by the 

element types and their physical properties. Once the elements used to construct the 

system have been defined, they can be described in terms of physical structural parameters 

(elasticity modulus, poisson ratio, density, cross section area, thickness, etc). Details of the 

derivation of mass and stiffness matrices can be found in standard F E A text books. 

The finite element implementation of the local structural modification on a vibratory 

structural system can be realised by varying the physical parameters of local elements to 

achieve the desired dynamic properties. For a single element, assume y is one of its 

physical structural parameters which is to be modified, and mass and stiffness incremental 

matrices with respect to y are assumed to be linear (for instance, the mass and stiffness 

matrices of a truss bar element is linear with respect to its cross sectional area) and are 
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denoted as A[M] and A|K| respectively, then they can be expressed as, 

AIM,-] = Ay^T].] (3.2.16a) 

A[_Tf.] = Ay-[K-] (3.2.16b) 

In case more than one element is involved in modification, A[M] and A[K] can be 

expressed as the summation of the individual mass and stiffness incremental matrices, 

A[M1 = £Ayjp/[r,-][P;] 
i=l 

(3.2.17a) 

and 

A[K] ='£Ay$i]
T[Ki][Vi] 

j=i 

(3.2.17b) 

Using a similar concept of mass and stiffness modification ratios, element participant ratio 

Vj (i=l,2...n) is introduced which can be predetermined. Then, equation (3.2.17a) and 

(3.2.17b) can be re-written as, 

and 

AIM| =Ay5>;iP,l/[Tl/llP/l 
«=i 

(3.2.18a) 

A[K] =AY£y;[P/]
/[K.][Pi] (3.2.18b) 

where 

{Ay, Ay2 ... A y / = Ayty,* Y2* - In? 

Substituting equations (3.2.18a) and (3.2.18b) into equation (3.2.6) yields, 

(3.2.19) 

{y*} = [cx(co*)l \T,„*1 ^yrm'i^w-ww] 
i=\ 

Y*) (3.2.20) 

Rearranging equation (3.2.20) yields, 
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-L{r*} = [a(co*)i 
Ay 

EYi,[WT(©-a[Tll-]-[K|.])[p.] 
i = l 

y*) (3.2.21) 

Equation(3.2.21) is a standard eigen problem from which Ay can be solved. Once Ay is 

determined, the modifications of parameters y{ can be computed from equation (3.2.19). 

For some finite element types, the relationship between the element matrices and the 

structural parameters to be modified may not be expressed ideally as equations (3.2.16a) 

and (3.2.16b), for instance, the incremental matrices may not be linear functions of the 

structural parameter y-. For the sake of simplicity, assume A[Mj] is a first order function of 

Y- and A[Kj] is the p order function of yt, respectively, the mass and stiffness incremental 

matrices may be derived as follows: 

A[M,1 = (x+Ay^Til-IM,.] = Ax-lnj (3.2.22a) 

A[/g = (X+Ay/fK,.]-[AT-] = £ 
P=i *J 

yT'Ay/tK.] (3-2-22°) 

where ( \ 

<7! 

pKq-pV-
(p = 1,2,3, ,q) 

Substituting equations (3.2.22a) and (3.2.22b) into (3.2.6) yields, 

{y*} = [a(co*)][AyX;y;[p/co*2[7i;][p.]-
<=i 

f \ 

£ mTck 
/=i p=\ J; 

\fH-pAylP[Kj\)[^i0*) 

(3.2.22c) 

(3.2.23) 

Re-arranging yields, {Y *} = [a(co*)][AyJ_ Y,-*[P;] V
2 ^ - ] ^ - ] 

i=i 

P=l i-l 

f \ 
<7 

KPJ 
rtii\*m\w 

(3.2.24) 
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Equation (3.2.24) is a polynomial eigenequation, which can be re-written as, 

(y *) = (Ay[A] - £ Af [B]_){_- *} (3.2.25) 
P=\ 

where 

n 

[A] = ["(co^Jf^y^tp/co^tri.]^]] (3.2.26a) 
i=l 

and r \ 
n 

71 IB]_ =[<x(co*)][£|p.] 
i=l 

q 

yPj 

ft-P K*P 
fi ̂  t^ltP/] (3.2.26b) 

re-arrange equation (3.2.25), yields, 

( £ &f[B\p}lY *}-Ay|A](y»}+[ / ]{y *} = (0) (3.2.27) 
P=i 

By combining the terms including Ay, equation (3.2.27) can be written as, 

(_£ Af[B]p){Y•}-AT([A]+[B]1){_' 1+[ / ]{y *} = (O) (3.2.28) 
p=2 

Equation (3.2.28) is a non-linear polynomial eigenequation. Here a method using the 'state 

space' theory is introduced to solve this equation. By means of the state space concept the 

non-linear eigenequation can be linearised so that it can be solved using a general eigen 

solution routine. 

Assuming a system is characterised by the following differential equation of order p, 

£ [B]tY^-([AHB],)^ *(,)}+[ / ]{y *) = fo} (3-2-29) 
p=2 

where {Y*(p)}; the pth order derivative of {Y*} with respect to x. 
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Let {Y*} = {u}eA^, then, 

{Y*(P)}=AyP{p}eA^ = Af{Y*} 

{Y*(2)}=Ay2{p}eATrc = Ay2{Y*} 

{Y*(1)}=Ay{u}eAyt = Ay{Y*} 

Thus, it may be noted that equation (3.2.29) is actually equivalent to equation (3.2.28). 

By defining the state vector [Z] of the assumed system as, 

{_}7- = { Y *(p-i) Y *(p-2) Y *<°) }
T (3.2.30a) 

(Z}T = { Y *W y *^
_1) y *(1) f (3.2.30b) 

equation (3.2.29) can be recast into, 

[[B]_i[B]__,i[B]__r _AMB]1]_^[0]f[Q_.'[0] [ / ]](Z} = (0) (3.2.31) 

This equation can be adjoined by following (p-1) sets of identity which are in the form of, 

[[0]J[ / ]J[0J [0]]{Z}+[-[ / mO]:[Q] [0]]iZ) - (0) (3-2.31,1) 

[[0]i[0]:[ / ] lO]]{Z}+[[0] i -[ / ]:[0] [0]]{Z) 

[[Op [0| (0| i i / IJZKIOIUOI -f / ] = C0]](Z) 

Thus, equation (3.2.29) becomes, 

[H](Z)+[P]{Z} = (0) 

where, 

= {0} (3.2.31,2) 

= {()} (3.2.31,p-l) 

(3.2.32) 

52 



[HI 

[fiV 'BV-. 
101 |/1 

10| 10| 

[RV-2 
[ o i 

[ / 1 

.[ 0 ] [ 0 ] [ 0 ] 

4AMB], 

[0 ] 

[0] 

[/] 

(3.2.33a) 

and 

[PI = 

[0] [0 ] [0] 

-[ / ] [ 0 ] [ 0 ] 

[ 0 ] -[ / ] [ 0 ] 

[/] 

[0] 

[0] (3.2.33b) 

.[ 0 ] [ 0 ] [ 0 ]-..-[/][ 0 ] 

which equation (3.2.31) can be transformed to be a generalised eigen problem as, 

Ay[H]{Z}+[P]{Z} = {0} (3.2.34) 

If matrix [H] is singular, and this will occur in most situations due to the singularity in 

matrix [B] which is the global sum of element stiffness incremental matrices, an 

alternative procedure can be employed for solving equation (3.2.34) as follows. 

Let Ay = l/£, then equation (3.2.34) becomes, 

[P]~l[H]{Z) = C,{Z) (3.2.35) 

This is a standard eigen equation. By solving this eigen problem, Ay can be determined to 

give the desired structural parameter variations to achieve the required natural frequency 

to*. Since [H] and [P] are real and non-symmetrical, the eigenvelues of equation (3.2.35) 

will occur either in real or in complex conjugate pairs. However, only those real 

eigenvalues will be considered in structural modification. The flexibility of this method is 

characterised by the multiple eigenvalues and the modification ratio can be assigned 

differently. This allows the user to choose various alternatives to achieve specific 
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modification requirements. In addition, it should be noticed that even after A y has been 

found, it m a y not be realisable in practice since the final decision may be subject to 

practical limitations. 

3.3 'Virtual' System and Relocation of Anti-Resonance Frequency 

3.3.1 Anti-Resonance of an F.R.F 

Anti-resonance theoretically occurs when a given excitation induces no response at certain 

coordinates, such as ajj(co)=0. A n F R F curve will show anti-resonances as 'troughs' if the 

curve is plotted using d B scales. As an important dynamic property, anti-resonance seems 

to be have been overlooked. The principle of dynamic vibration absorbers is to create an 

anti-resonance at the frequency where a resonance previously existed. However, a dynamic 

vibration absorber is usually applied to a single degree-of-freedom system or a lumped 

mass system. Unlike a resonance, the appearance of an anti-resonance is the combined 

effect of many modes of a system. The nature of the anti-resonance may limit its 

application because: 

(i) it is always associated with particular excitation and response locations, thus, for 

different FRFs, the anti-resonances may be different. However, the resonances are 

the same. 

(ii) since it is always accompanied with low response level, an anti-resonance is much 

more sensitive to the constraint conditions and noise, compared with the resonance. 

Therefore, it becomes difficult to predict the anti-resonance accurately by using 

analytical (FE) models, particularly for complex structures, and to identify anti-

resonance experimentally. 

In recent years, a number methods for dynamic system identification have been developed, 

most of them are based on the correlation of experimental data and analytical (FEA) 

models. They have provided efficient tools for obtaining an acceptable model for the 

structural engineer to study anti-resonances effectively. 

In the vicinity of an anti-resonance, there will always be a region which has a significantly 
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low response level, and the anti-resonance 'troughs' should have the same sharpness as 

those neighbouring resonance 'peaks'. This property was discussed by Ewins[8] as a 

criterion for assessing the quality of the experimental F R F data. Thus, it can be expected 

that once a resonance peak is replaced by an anti-resonance 'trough', a low response level 

will appear. This has special significance for vibration reduction. 

Whether or not anti-resonances will appear in a FRF between two consecutive resonances 

depends on the modal constants of two neighbouring vibration modes[8]. If the modal 

constants are of the same sign, an anti-resonance will occur. Otherwise, a minimum 

occurs. From Section 3.1, w e know that a modal constant is defined as the product of two 

eigenvector elements, which represent the mode shape cofactors of response and excitation 

coordinates respectively. For a receptance F R F of a point measurement, the modal 

constants of all modes will be positive, which implies that there must be an anti-resonance 

between every two neighbouring resonances. For an F R F of a transfer measurement, since 

the signs of the modal constants vary, the F R F will usually be in the form of mixture of 

resonances, anti-resonances and minima. For a lightly damped structural system, the signs 

of cofactors in a mode shape vector represent the phase difference between excitation and 

response coordinates. If the mode shape cofactors of two coordinates have different signs, 

they are 180 degree out of phase. In general, for a structural system, the further apart the 

two coordinates in question are, the more likely the two corresponding mode shape 

cofactors are 180 degrees out of phase, or are opposite in sign, as one progresses through 

the modes, and therefore, the less anti-resonance exhibited in the FRF. From the vibration 

reduction point of view, more anti-resonances are often preferred. 

Assume that the response coordinate and excitation coordinate are rigidly connected, the 

FRF of transfer measurement between these two coordinates will be the same as those 

FRFs of point measurement of these coordinates. From this w e may draw a useful 

conclusion that if the stiffness between two coordinates of a structural system is increased, 

it is likely that anti-resonances will be created in the relevant FRF. However, this should 

be achieved by introducing new connectivity, which means the increase of 'relative' 

stiffness other than the 'global' stiffness. It can be further explained as follows: The stiffer 

the connection between the two coordinates, the more stable the phase relationships of two 
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coordinates is, namely, the more likely that the signs of the modal constants in the F R F is 

kept unaltered, particularly in the low frequency range. It can be illustrated with a mass-

spring system as shown in Figure 3.3.1. The receptance F R F between points 2 and 5 is 

examined. Figure 3.3.1 gives the F R F curves comparison and it indicates that anti-

resonances can be obtained by locally increasing the stiffness between coordinates 2 and 5, 

particularly at the lower frequency range. 

It is worthy of mentioning that, although the response level at any frequencies is mainly 

determined by the contribution of the nearby modes, the 'exact' location of an anti-

resonance is also affected by the remote modes. In some situations, more than one anti-

resonance exist between two consecutive resonances, which indicates that remote modes 

have a significant effect on the location of anti-resonances. In the following Section, a 

method for relocating anti-resonance will be developed on a lumped mass system. The 

method can be applied on the F E model by following the same procedure stated in Section 

3.2.2. 

3.3.2 'Virtual' System and Relocation of Anti-Resonance 

In this section, a method is developed for relocating an anti-resonance of a FRF of a given 

N D O F vibrating structural system by using the structural modification approach. The pre­

requisite of the method is that the system has been fully identified in terms of mass and 

stiffness matrices. 

Considering equation (3.1.6), the individual terms in the matrix [cx(co)] can be expressed 

as, 

det(-co2[M]v+[/nv) det(-co2[M]v+[/nv) 
ccfcoV- = —— = — \j.j.i-j 

11 det(-co2[MH/rj) det[Z(co)] 

When an anti-resonance occurs, a(co)_j=0, where co can be determined by the positive roots 

of the following equations: . e\r\r)\ 
det(-co2[M] +[/c-]v) = 0 (3-3^ 
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Figure 3.4.1 - Anti-Resonance Creation of a Mass-Spring System 
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However, the roots of the above equation can also be interpreted as the square roots of 

positive eigenvalues of the follows equation, 

(-^[Mjv+[/clv){p} = 0 (3.3.3) 

Assume there exists a multi-degree-of-freedom dynamic system whose equation of motion 

can be expressed in the same way as equation (3.3.3), 

(-co2JM]v+[/nv){u} = 0 (3-3.4) 

where coa = y/Xa can be interpreted as the natural frequency of this system. Since this 

system, which is derived from the 'actual' system comprising [K] and [M] matrices does 

not exist actually, w e call it a 'virtual' system whose mass and stiffness matrices are [M] v 

and [K]v respectively. Therefore, the equation of motion of the 'virtual' system subjected 

to a harmonic excitation force vector {G} with frequency of coa is, 

(-coa*
2[M]v+[/n>} - iG) (3-3.5) 

Using a similar definition for cc(co), equation (3.3.5) can be re-written as, 

{_} = [a„(aO]te) (3'3-6) 

The mass and stiffness modifications applied to the 'virtual' system corresponding to 

alm(co) can be expressed as incremental matrices A [ M ] V and A[K] V which are sparse and 

their counterparts A[M] and A[K1 for [M] and [K] respectively can be identified from the 

formation of the 'virtual' system. Considering the above notations, the equation of motion 

of the modified 'virtual' system becomes, 

-co/2([M]v+A[M]v)+([/nv+A[/nv)]{p*} = 0 (3.3.7) 

here we have defined coa* as the natural frequency of the modified 'virtual' system, which 

is an anti-resonance frequency of the modified 'actual' system. 

Following the same procedure from equation (3.2.1) to equation (3.2.6), equation (3.3.7) 

can be rewritten as, 

58 



<M*} = -[av(coa*)l[-„a*
2A[M]v+A[iqv,]{M1 (3.3.8) 

To demonstrated the procedure of implementing the method for relocating anti-resonance, 

for a simplicity, an n-degree of freedom lumped mass system is discussed. Assume the 

local modification of mass and stiffness are expressed in the form of equations (3.2.3b) 

and (3.2.3c): 

A[M] = £ ie)hmr{ef (3.2.3b) 
r =ij,k 

W] = £ igK-fc,/ (3.2.3c) 
p,q -ij,k 

Here, 8m,. (r=i,j,k) in equation (3.2.3b) and 5 1 ^ (p=i,j,k; q=i,j,k; p*q) in equation (3.2.3c) 

represent the mass variation of coordinate Y and stiffness variation between coordinates 

'p' and 'q' respectively. By introducing the user-defined modification ratios r\ and K, the 

following equations can be derived, 

AIM] =yj] feXfe/ (3.3.9a) 
r =ij,k 

MK\ = y E ^PK^J (3.3.9b) 
p,q =tj,k 

Hence, the mass and stiffness incremental matrices for the 'virtual' system corresponding 

to receptance FRF a]m(co) can be expressed as, 

r =ij,k 

A[AT]V = y E KMp<t
{eP<ri (3.3.10b) 

p,q =ijk 

For the 'virtual' system corresponding to receptance ct(co)|m, after the mass and stiffness 

modifications applied to the original system have been defined, A[M]V and A[K]V can be 

identified by using the same operations on A[M| and A[K]. Therefore, the matrix forms of 

M M ] V = y E ^Mr^/m (3.3.10a) 
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A[M]V and A[K]V are, 

A[M]V = 

0 

0 - 8m 

0 

IIV 

8m 
wx 

0 8m 
yz 

0 n-l)x(n-l) 

(3.3.11a) 

and 

8muv = 8m(, 8mwx = Sw;, 8mMV = 8m* 

A[/Cl 

0 
5*«v - 5*u* " Skuz 

~ 8 * w - 5 * H * - 8* M'Z 

- 5*v, - S V - 5 Ẑ (3.3.11b) 

°4«-i)x(»-i) 

8*«v = 8*tf+*a» 8*,„ = " 8% 8*«z = "
5^ 

8 ^ = § W 8^V = -5 >̂> 8 ^ = "5^ 

8kyz = S^+fy, 5^_ = -Sfy, 8^v = - 5 ^ 

However, there is a slight difference in problem reduction procedures when dealing with a 

'virtual' system. As discussed above, A[M] and A[K] for the 'actual' system should always 

be symmetric and sparse matrices, due to the assumption of system linearity and principle 

of reciprocity. Since the mass and stiffness matrices of the 'virtual' system are only 

derived mathematically from those of the actual system, no obvious physical significance 
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is apparent. In fact, A[M|V and A|K]V are obtained from A[M] and A[K] by deleting one 

row and one column of them so they are no longer symmetric unless the FRF of interest is 

a drive point FRF. 

For the 'virtual system', its eigen equation for modification without change in stiffness can 

then be written as, 

ui 

M_ 

= coa*
2[av(coa*)] 

0 - 8m 
u\> 

0 •• 8m 
wx 

0 8m 

u»-i 

Equation (3.3.12) can then be reduced to: 

yz 

< 

' _.n-l)x(n-l) 

<- •< 

* 
Ul 

* 
u2 

: 

i 

* 

IVi 

(3.3.12) 

1 

Y 
=co 

a 

V-MiXu av(Wa)vw *v<ti> vy 

OyC^X av^Xw av(W_). 'xy 

av(C0«)Z«
 a v ( ° O z w av(Ma)Zy. 

r,- 0 0 

0 T];. 0 

0 0 Ti* 

< * (3.3.13) 

Equation (3.3.13) is a standard eigenproblem whose eigenvalue is 1/y. Therefore, for a 

specified frequency coa* which is the desired anti-resonance frequency of the original 

system, and given mass modification ratios i\r (r=i,j,k), the mass modification factor can 

be determined from one of the eigenvalues of equation (3.3.13). The actual mass variations 

of the original system can then be determined, which will create an anti-resonance at 

frequency coa* for the receptance FRF o ^ y . Similarly, the eigenequation for stiffness 

modification can be derived as, 

uv 

* 
ux 

* 

Mz 

0»( m X av(°}fl)vw av(<°X 

avK\« av(<°X av«°X 

av(
WX av(°)a)Zw

 av(WX 

Ktf+K* "Ky ~Kik 

-K;; K....+K* -Kfi 

-K ik 

Sj^jk 

~*jk Kik+K<U 

* 

* 

pz 

(3.3.14) 
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By following the same procedure, the stiffness modification needed to produce the desired 

anti-resonance can be obtained. 

Similarities and differences of the procedures for relocating resonances and anti-resonances 

are summarised below: 

(i) Both procedures are based on the assumption that the mass and stiffness 

incremental matrices are obtained analytically, and the F R F data associated with 

the involved coordinates are available. 

(ii) Both procedures can eventually be expressed as reduced eigen-problems whose 

orders are dependent on the coordinates involved in the modification. N o iteration 

is required. 

(iii) For the relocation of a resonance, the F R F data needed can be obtained 

individually from equation (3.2.4) or by experiment directly. For relocation of an 

anti-resonance, the 'virtual' mass and stiffness matrices are not longer symetric and 

posititive (semi-poistive) definite as the actual system, also normally no 'modal 

properties' will be available before hand and only sigle frequency point are 

required. Considering above factors, the most economical way of obtaining 'virtual' 

receptance matrix is by obtained inversion. This needs more computational effort 

for large, complex structures. 

3.4 Optimum Structural Modification 

The first question encountered in a structural modification procedure is usually which 

locations of the structural system are more sensitive to a modification. A s mentioned in 

Chapter 2, the sensitivity analysis which normally involves the calculation of the 

eigenderivatives is widely employed to answer a question of this kind. B y using 

information obtained from a sensitivity analysis, effort for the determination of optimum 

modification location can be greatly reduced. Another application of sensitivity analysis is 

to assess the secondary effect which may occur as a result of structural modification, that 

is, relocating one natural frequency accompanied by introducing a different one into 

frequency range of interest. The effectiveness of the sensitivity analysis is problem 

dependent, which implies that for some structures, the most sensitive locations m a y vary 
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as a consequence of the changes of mass and stiffness distribution introduced with the 

modification. However, it is difficult to predict to what extent a certain modification will 

invalidate the sensitivity information obtained from the original system. Thus it is 

advisable that a group of elements with relatively higher sensitivity values be included in 

the potential modification location by assuming that the global sensitivity distribution of 

the original structure will vary continuously during modification. A n alternative is the 

introduction of second order sensitivity to indicate the rate of change of the first order 

sensitivity. Since the second order sensitivity is much more intensive in computation and 

does not provide as much information as expected without being further processed, it is 

used only for limited number of cases. The subject on eigenvalue and eigenvector 

derivatives for a dynamic system has been presented by numerous authors (Brandon[82], 

Xie et a/[84]). More details of application of sensitivity analysis have been given in 

Chapter 2. In this Section, a sensitivity index for a structural system is developed and the 

derivative of an anti-resonance frequency with respect to structural parameters has been 

derived based on a 'virtual' system. 

3.4.1 Element Sensitivity Index for Natural Frequency 

For a linear, conservative, discrete dynamic system, by equating the maximum kinetic 

energy to the m a x i m u m potential energy, w e have, 

T =V (3.4.1) 
' max max 

where 

Tma x: m a x i m u m kinetic energy 

Vma_: m a x i m u m potential energy 

For a system which is completely identified in term of mass and stiffness matrices [M] 

and [K], using the natural frequency C0j and the corresponding assumed or identified mode 

shape {x)j , its T m a x and V m a x can be expressed as, 
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rmax = ]fMW]\x\ (3.4.2a) 

^max = \ ^ ] \ ^ \ (3.4.2b) 

The substitution of equations (3.4.2a,b) into equation (3.4.1) leads to the Rayleigh's 

quotient, 

- {X)][K]{X}; k; 
\.t = co,

2 = ' = _ L (3.4.3) 

where k4 and mv are referred to as the modal stiffness and modal mass respectively. 

Using the Taylor's series expansion with respect to multi-variables, equation (3.4.3) can be 

written as, 

Xt = X^iJ-Am^J-Ak;)^ (3.4.4) 
v ' ami okj 

neglecting the higher order terms and re-arranging equation(3.4.4), yields, 

k i 1 
AXt = -—lAm.+J-A*- = —(Afc.-^Am.) (3.4.5) 

m 2 ™i ™i 

The Rayleigh's quotient has a stationary value when the assumed mode shape vector {xjj 

is in the neighbourhood of an 'exact' mode shape vector. It is reasonable to assume that 

the mode shape does not change drastically for a small amount of local structural 

modification. Considering these notations, the Rayleigh's quotient of the modified system 

X can be expressed as, 

v = {r}f([/n+A[/n)lr},. = *,•+_*,• (3 4 6) 

' " lr}[([M[+A[Ml)(r}.
 m i + A m i 

where - ,,, A n >. 
Ak-t = Wj_[K]ty. <3.4.7a) 
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Am- = „}J_[M]ty. (3.4.7b) 

The A[K] and A[M] in equations (3.4.7a,b) can be expressed in terms of element 

incremental matrices, thus, equation (3.4.5) will lead to, 

mi p=i 

r ̂  
q 

yPj r^KM^v (3A8) 

The variation of a natural frequency due to the modification of an element physical 

parameter Ay4 can be evaluated roughly form equation (3.4.8). However, its application is 

limited by the assumption that the mode shape vector dose not change drastically by local 

modifications. In most cases, equation (3.4.8) can be used as a guide for structural 

modification by introducing the Element Sensitivity Index e(i), which is defined as, 

f \ 
B(/) = ̂ [K,llr(,,>E I fj^r^/^ix^ (3.4.9) 

This index e(ij can be computed individually for the elements to be modified. The 

elements with the largest absolute values of £(_) will then indicate the most sensitive 

locations for local structural modification. 

3.4.2 Element Sensitivity Index for Anti-resonance 

Considering the eigenequation of a 'virtual' system, equation (3.3.4) can be re-written as, 

(--Xa[M\vHK]v){Y^) = (01 (3-4.10) 

and 

lYW(-Xa[M\v+[K\v) = {Of (3.4-11) 

Since [M] v and [Klv are obtained from deleting one row and one column of [M] and [K], 

Xa can not be solved using a general eigen routine if [Mlv becomes singular. In fact, for a 

lumped mass system, this will always happen when dealing with the 'virtual' system for a 
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transfer F R F of interest In this case, an alternative form of eigenequation is proposed, this 
is, 

and 

HM]v +t;a[/nv){yW} = {fj} (3.4.12) 

{Y{L))T(-[M]v^a[K]v) = {0)T (3.4.13) 

where £a = lAa. 

The Element Sensitivity Index for anti-resonance frequency e(i) is defined by the 

eigenvalue derivative with respect to the design variable v. of element i. Differentiating 

equation (3.4.12) and pre-multiplying by {Y(L)}T yields, 

H H 37. (3414) 

+^1{YW[K]AY^) = 0 

H 
Considering equation (3.3.13) and 3X/3y_ = -^2dl\Jd^v equation (3.4.14) yields, 

_dX1_ yl 3yt-
 Sfl -y, (3.4.15) 

G(° ~ dy " " a {YW[K]vtyW) 

Thus the most sensitive modification location for an anti-resonance of a given FRF can be 

identified from the biggest Index e(i). 
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CHAPTER 4 

ANALYTICAL AND EXPERIMENTAL VERIFICATION 

This Chapter describes two numerical and one experimental study to illustrate and verify 

the methods developed in Chapter 3. Several computer codes were developed to facilitate 

these studies. The first study, which was conducted on an FE planar truss structure of 32-

elements, was used to check the validity of methods for relocating resonances and anti-

resonances. The second study, which was conducted on a 10-element planar beam 

structure, was used to illustrate the general procedure of finite element implementation of 

resonance relocation. The third study, was experimental and was conducted on a cross-

stiffened grid (flat grillage) structure which was used in conjunction with F E A results to 

detail how the methods developed work for a practical engineering problem. 

4.1 Example Systems 

4.1.1 System #1 - A 32-Element Planar Truss Structure 

This system is a finite element plane-truss structure with 30 bar elements and 2 

concentrated mass elements located at node 6 and node 8 (ref Figure 4.1.1a). T w o nodes, 

node 1 and node 14, are fully constrained. Each element has two nodes with two degree of 

freedom in each node, namely, the translational displacement along x and y directions in 

the global coordinate system. N o bending displacement was considered. The physical 

parameters of the system were given in Table 4.1.1a. The formulation of element mass 

and stiffness matrices in the global coordinate is given by [86].For a bar element, the 

element mass and stiffness matrices in the global coordinate are, 
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I 

Figure 4.1.1 - 32-Element Planar Truss Structure 
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Table 4.1.1 - Physical Parameters for Planar Finite Element 
Truss Structure (System #1) 

No. 
Element 

1 
2 

3 

4 

5 
6 

7 

8 

9 

10 

11 

12 

13 
14 

15 

16 

No. 

1 
1 

2 

2 

2 
3 

3 
4 

4 

4 

5 

5 

6 
6 

6 

7 

Nodes 

2 
3 

3 

4 

5 
4 

5 

5 

6 

7 

6 

7 

7 
8 

9 

8 

Cross 
Sectional 

Area ( M 7 ) 
19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

No. 
Element 

17 

18 

19 

20 
21 

22 

23 
24 

25 

26 

27 

28 

29 
30 

31 

32 

No. 

7 

8 

8 

8 
9 

9 

10 
10 

10 
11 

11 

12 

12 

13 

6 _ 

84 

Nodes 

9 

9 

10 
11 

10 
11 

11 
12 

13 
12 

13 

13 

14 
14 

Con. 
ass) 
Con. 
ass) 

Cross 
Sectional 
Area (M7) 
19.7E-4 

19.7E-4 

19.7E-4 

19.4E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

19.7E-4 

28 K G 

28 K G 

-3 Elastic Modulus = 68 GPa, Mass Density = 2800 K G M ° for All Bar Elements 

wr\ pAl 

2 2 

c cs -c -cs 
2 2 

cs s -cs -s 
2 2 

-c -cs c cs 
2 2 

-cs -s cs s 

(4.1.1) 

and 

rt'X EA cs s 

cs -c 

2 

-c -cs c 

-cs -s 

cs -s 

2 

CS 

cs 

2 

CS 

„2 

(4.1.2) 

For the concentrated mass element, the element mass matrices in the global coordinate are, 
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[m\e)] = ml 
1 0 

0 1 

The system mass and stiffness matrices can be obtained as follows, 

(4.1.3) 

m = E iP/i V/e)] m 
i=\ 

(4.1.4) 

and 

M = E wM\m 
j=i 

(4.1.5) 

4.1.2 System #2 - A 10-Element Planar Beam Structure 

For finite element modelling, an uniform free-free beam is divided into ten two 

dimensional finite elements (ref Figure 4.1.2a). Each element has two nodes. Each node 

has two degrees of freedom, the translational displacement along the y direction and the 

rotation displacement about the z direction in the global coordinate. N o constraints were 

given to this structure. The physical parameters are given in Table 4.1.2a. The formulation 

of element mass and stiffness matrices in the global coordinate can be found in [86] as, 

156 Sym. 

-22/ 4/2 

54 -13/ 156 

13/ -3/2 22/ 4/2 

r to, pAl 
[m. L = i-— 
' 8 420 

(4.2.1) 

and 

vtX = El 
12//3 Sym. 

-61 I2 All 

-\2/l3 6//2 12//3 

-6//2 2/1 6//2 4//_ 

(4.2.2) 
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10 - Element Beam Structure 

1 2 3 4 5 6 J 8 9 10 11 

£ r r r r r r r r r 

w 100 cm 

Y 

J-

A — A 

_ _ _ , 

K 3 
2 cm 

<_J_ 1 cm 

Material: Mild Steel 

Figure 4.1.2 - 10-Element Planar Beam Structure 
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Table 4.1.2 - Physical Parameters for Planar Finite Element 
Beam Structure (System #2) 

No. Element 

1 

2 

3 

4 

5 

! 6 

7 

8 

9 

10 

No. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Nodes 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

Element Height 
(M) 

(Y Axis 
Thickness) 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

Element Width 
(M) 

(Z Axis 
Thickness) 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

Elastic Modulus = 209 GPa, Mass Density = 7860 KGM'3 for All Beam Elements 

The system mass and stiffness matrices can be obtained using equations (4.1.4-5). 

4.13 System #3 - A Free-Free Cross-Stiffened Grid Structure 

A grid (flat grillage) is a structure on which loads are applied perpendicular to the plane 

of the structure. Therefore, in finite element modelling, only those degrees of freedom 

which are not in the plane of the structure are considered. In practice, examples of grids 

include floor and bridge deck systems. The grid structure used in this study is shown in 

Fig.4.1.3a. The physical parameters are given in Table 4.1.3a. 

The finite element model of this structure was constructed using 22 uniform grid beam 

elements, and 23 node. Each node had 3 degrees of freedom in the local coordinate, 

including one torsional rotation D O F about x axis, one bending rotation D O F about z axis 

72 



and one translation D O F about y axis. The stiffness and mass matrices of the grid element 

in global coordinate can be found in [86] as: 

and 

[ki\ - [T\T[k\e\[T] (4.1.8) 

where 

\m\\ = \T]r\m\%T] (4.1.7) 

[7] = 

1 0 0 

0 c s 0 

0 -s c 

1 0 0 

0 0 c s 

0 -s c 

(4.1.10) 

imje\ = pAI 

"13 

35 
0 

lP 

3A 

sym. 

-11/ 

210 

0 

I2 

105 

9 

70' 

0 

-13/ 

420 

13 

"15 

0 

lP 

6A 

0 

0 

lP 

3A 

13/ 

420 

0 

I2 

420 

0 

0 

I2 

105 

(4.1.11) 
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Table 4.1.3a - Physical Parameters for Finite Element Grid Structure (System #3) 

No. Element 

1 

2 
3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

No. 

1 

4 

8 

10 

12 

16 

19 

2 

6 

9 

12 

14 

17 

21 

3 

4 

5 

6 

10 

11 

15 

17 

19 

20 

Nodes 

4 

8 

10 

12 

16 

19 

22 

6 

9 

12 

14 

17 

21 

23 

4 

5 

6 

7 

11 

12 

16 

18 

20 

21 

Element 
Thickness 
in Z Axis 

(M) 
2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-2 

2E-1 

Element 
Thickness 
in Y Axis 

(M) 
1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

1E-2 

Element 
Length 
in X Axis 
(M) 
2E-1 

1E-1 

1E-1 

1E-1 

1.5E-1 

0.5E-1 

1E-1 

2E-1 

1E-1 

1E-1 

1E-1 

1.5E-1 

0.5E-1 

1E-1 

1E-1 

2E-1 

2E-1 

1E-1 

2E-1 

2E-1 

1E-1 

1E-1 

2E-1 

2E-1 

Elastic Modulus = 209 GPa, Mass Density = 7860 KGM"3 for All Grid Beam 
Elements 
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1 

Modal Analysis - FE Grid 

Figure 4.1.3 - Cross-Stiffened Grid Structure 
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I3£_ o 
/3 

GJ 

~T 

sym. 

-6EI 

I2 

0 

4£/ 

-\2El 

I3 

0 

6Ef 

I2 

\2EI 

I3 

0 

GJ 

~T 

0 

o 

GJ 

~T 

-6EI 

I2 

0 

2EI 

6EI 

I2 

0 

4EI 

(4.1.12) 

/ 

The system mass and stiffness matrices can be obtained using equations (4.1.4) and 

(4.1.5). 

4.2 Numerical Results and Discussions for Example System #1 and System #2 

4.2.1 Relocating First Three Resonances of the Finite Element Truss Structure 

The 24-DOF planar truss structure given in Section 4.1.1 was used to validate numerically 

the method developed in Sections 3.2.1 and 3.2.2 for relocating resonances by local 

structural modification. A computer code truss.sdm.ftn was developed to facilitate the 

studies in this Section and in Section 4.2.2. The first three natural frequencies were given 

in Table 4.2.1a after the eigen solution of the system. 

Table 4.2.1a - Natural Frequencies of Original Truss Structure 

Mode 

1 

2 

3 

Natural Frequency (Hz) 

44.686 

110.565 

182.409 
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Figure 4.2.1a and Figure 4.2.1b illustrated the corresponding mode shapes. For local 

structural modification, the element cross sectional areas and concentrated masses were 

utilised as the physical parameters to be modified. Note that in a truss system, the 

variation of element cross sectional areas will influence both the mass and stiffness 

distribution of the system linearly. The global mass and stiffness incremental matrices can 

then be formulated by equation (3.2.17a) and equation (3.2.17b). Therefore, the method 

developed in Section 3.2.1 can be readily applied on such systems after the desired natural 

frequency, location of modification and element participant ratios have been specified. 

For relocating the first natural frequency of the truss system from 44.486 Hz to 50.000 Hz, 

the elements selected for modification, the corresponding element participant ratios and 

modification results were given in Table 4.2.1b. Table 4.2.1c gives the first three natural 

frequencies after modification. It can be seen that the first natural frequency of the original 

truss system has been relocated accurately from 44.686 H z to 50.000 Hz. Figure 4.2.1c 

graphically shows the comparison of two typical F R F curves belonging to the original and 

modified systems respectively. 

Note from Table 4.2.1b that two 'practical' modification results were obtained. In fact, 

only the first set of modification results is reasonable. The second set of modification was 

to relocate the third natural frequency down from 110.56 H z to 50 H z (Ref Table 4.2.1c). 

However, which set of modification should be used will be subjected to practical 

considerations. Similarly, the results for relocating the second and third resonances to 

desired locations were given in Table 4.2.1 d, Table 4.2.1e, Figure 4.2.1d and Table 

4.2.1f, Table 4.2.1g, Figure 4.2.1e, respectively. 

Typical input and output files for truss.sdm.ftn are given in Appendix IV. 

4.2.2 Relocating Anti-Resonances of the Finite Element Truss Structure 

To relocate an anti-resonance a receptance FRF of interest has to be specified. Two 

receptance F R F of the example system #1 were examined: (i) receptance F R F between 

coordinate 5 (translational D O F along Y axis of node 4) and coordinate 16 (translational 
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Figure 4.2.1a - Mode Shape of Truss Structure 
Upper: Undeformed Structure, Lower: The 1-st Mode Shape 
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Figure 4.2.1b - Mode Shape of Truss Structure 
Upper: The 2-nd Mode Shape, Lower: The 3-rd Mode Shape 
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Table 4.2.1b - Modification Results For Relocating The 1-st Resonance of Truss 
Structure From 44.686 Hz To 50.000Hz 

No. Element 

9 

13 

18 

23 

31 

No. Nodes 

4 

6 

8 

10 

6 (Con. 

6 

7 

9 

11 

Mass) 

1-st 
Modification 
Results(Mz) 
2.370E-4 

2.370E-4 

2.370E-4 

2.370E-4 

3.738KG 

2-nd 
Modification 
Results^) 
1.42E-1 

1.42E-1 

1.42E-1 

1.42E-1 

1988KG 

Element 
Participant 

Ratio 

Table 4.2.1c - Natural frequencies of Truss Structure Modified 
by Results in Table 4.2.1b 

Mode 

1 

2 

3 

Natural Frequency by 
1-st Modification (Hz) 

50.000 

111.453 

194.602 

Natural Frequency by 
2-nd Modification (Hz) 

9.966 

28.756 

50.000 
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Table 4.2.1 d - Modification Results For Relocating the 2-nd Resonance of Truss 
Structure From 110.564 Hz To 80.000Hz 

No. Element 

8 

9 

10 

11 

12 

13 

No. 

4 

4 

4 

5 

5 

6 

Nodes 

5 

6 

7 

6 

7 

7 

1-st 
Modification 
Results(M2) 

2.798E-2 

1.498E-2 

2.798E-2 

1.498E-2 

2.798E-2 

1.498E-2 

2-nd 
Modification 
Results(M2) 

1.043E-1 

5.315E-2 

1.043E-1 

5.315E-2 

1.043E-1 

5.315E-2 

Element 
Participant 

Ratio 

2 

1 

2 

1 

2 

1 

Table 4.2.1 e - Natural frequencies of the Truss System Modified 
by Results in Table 4.2.1 d 

Mode 

1 

2 

3 

Natural Frequency (Hz) 

29.558 

80.000 

114.824 
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Table 4.2.1f - Modification Results For Relocating the 3-rd Resonance of The Truss 
Structure From 182.409 Hz To 160.000Hz 

No. Element 

8 

i 9 

10 

H 
12 
13 

No. 

4 

4 

4 

5 

5 

6 

Nodes 

5 

6 

7 

6 

7 

7 

1-st 
Modification 
Results(Mz) 
6.474e-3 

4.222E-3 

6.474E-3 

4.222E-3 

6.474E-3 

4.222E-3 

2-nd 
Modification 
Results(M2) 
1.289E-1 

6.545E-2 

1.289E-1 

6.545E-2 

1.289E-1 

6.545E-2 

Element 
Participant 

Ratio 
2 

1 

2 

1 

2 

1 

Table 4.2.1 g- Natural Frequencies of Truss Structure Modified by the 1-st Set of 
Results in Table 4.2.1f 

Mode 

1 

2 

3 

Natural Frequency (Hz) 

41.914 

103.678 

160.000 
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D O F along y axis of node 9), ie., cc(5,16), and (ii) receptance F R F between coordinate 9 

(translational D O F along y axis of node 6) and coordinate 16 (translational D O F along X 

axis of node 9), ie., a(9,16). 

The first three anti-resonances in a(5,16) and a(9,16) of the original truss system can be 

obtained by solving the eigen problem with respect to the corresponding 'virtual' system 

and are listed in Table 4.2.2a. 

Table 4.2.2a - Anti-Resonances in FRFs a(5,16)and a(9,16) 

Anti-Resonance 

1 

2 

3 

Receptance Frequency Response Function 

a(5,16) a(9,16) 

65.427 Hz 

508.500 Hz 

559.397 Hz 

52.915 Hz 

300.962 Hz 

353.550 Hz 

The problem here is to determine the modification of cross sectional area of selected truss 

elements which can create the desired anti-resonance at a specified frequency. Thus, the 

vibration response at this frequency and nearby can be significantly reduced. 

Assume that anti-resonances need to be created one at a time at the frequencies of the first 

and second resonances of the original system which are 44.686 H z and 110.564 H z 

respectively. The target cross sectional area of pre-selected elements listed in Table 4.2.2b 

and Table 4.2.2c are required. Using the method developed in Section 3.3, the 

modification results for a(5,16) and a(9,16) are given in Table 4.2.2b and Table 4.2.2c. 

Again, several possible modifications have been found, and the eventual modification is 

subject to the practical consideration or designer's decision. The anti-resonance frequency 

of the original truss system had been relocated accurately to a desired location by using 

the proposed method. Figure 4.2.2a, Figure 4.2.2b and Figure 4.2.2c graphically 

illustrate comparisons of F R F curves between the original and modified systems, and 

indicate that within the frequency ranges of interest the response at certain 
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Table 4.2.2b - Modification Results for Relocating Anti-Resonance 
of Receptance FRF cc(5,16) 

Receptance FRF 

Desired Anti-
Resonance 

No. 
Elements 

13 

14 

15 

16 

17 

18 

No. 
Nodes 

6 7 

6 8 

6 9 

7 8 

7 9 

8 9 

a(5,16) 

44.685 Hz 

Element 
Part. Ratio 

1 

2 

1 

2 

1 

2 

Modificat 
ion 

Results 
(M2) 

1.588E-2 

2.979E-2 

1.588E-2 

2.979E-2 

1.588E-2 

2.979E-2 

Receptance FRF 

Desired Anti-
Resonance 

No. 
Element 

13 

14 

15 

16 

17 

18 

No. 
Nodes 

6 7 

6 8 

6 9 

7 8 

7 9 

8 9 

a(5,16) 

110.560 Hz 

Element 
Part. Ratio 

1 

2 

1 

2 

1 

2 

Modifica 
tion 

Results 
(M2) 

1.00E-4 

2.00E-5 

1.00E-4 

2.00E-5 

1.00E-4 

2.00E-5 

Table 4.2.2c - Modification Results for Relocating Anti-Resonance 
of Receptance FRF a(9,16) 

Receptance FRF 

Desired Anti-Resonance 

No. 
Elements 

13 

14 

15 

16 

17 

18 

No. 

6 

6 

6 

7 

7 

8 

Nodes 

7 

8 

9 

8 

9 

9 

a(9,16) 

44.685 Hz 

Element Part. 
Ratio 

Modification 
Results (M2) 

5.683E-3 

5.683E-3 

5.683E-3 

5.683E-3 

5.683E-3 

5.683E-3 | 
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locations (coordinates determined by FRFs) have been significantly reduced. Given a 

sinusoidal excitation with frequency in the vicinity of one of the system's resonances at 

coordinate 5 (translational D O F along x axis of node 4), a resonance response at 

coordinate 16 (translational D O F along y axis of node 9) will happen for the original truss 

system. For the modified truss structure, with the same excitation at the same location, not 

only the resonance will be attenuated, but an anti-resonance will be created in the desired 

location (node 5 and node 16). This is of great significance if an extremely low vibration 

response at a certain location is required for a sinusoidally excited vibratory system. 

4.2.3 Finite Element Implementation of Structural Modification of the Planar 

B e a m Structure 

Studies in Section 4.2.1 and Section 4.2.2 help to establish the validity of the methods 

developed in Chapter 3. However, these studies are based on the planar truss structure, 

whose mass and stiffness matrices can be formulated as linear (first order) functions of the 

modified structural parameters. The problem can then be solved as a first order eigenvalue 

problem. For most of element types used in FEA, such as beam elements and shell 

elements, the mass and stiffness matrices can not be idealised as linear functions of 

structural parameters. Thus, the eigenvalue problem generated in modification will become 

a high order one. A n alternative algorithm has been developed in Section 3.2.2 for these 

cases. 

In this Section, a planar beam structure will be investigated. The elements to be modified 

whose mass and stiffness matrices can not be expressed as linear functions of a structural 

parameter are described as 'high order elements'. The eigenvalue problem with 'high order 

elements' can be solved based on the algorithm developed in Section 3.2.2 (some basic 

mathematical manipulation may be needed depending on the formation of finite element). 

Results obtained from example system #3 used in this Section can readily be extended to 

the structural system with other high order elements. 

The structural parameters were given in Table 4.1.2. After eigensolution, the first 3 

natural frequencies and their corresponding mode shapes are given in Table 4.2.3a and 
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Table 4.2.3a - The 1-st Three Natural Frequencies 

of Original Free-Free Beam Structure 

Mode 

1 

2 

3 

Natural Frequency (Hz) 

53.004 

146.136 

286.818 
' 

Figure 4.2.3a, Figure 4.2.3b, Figure 4.2.3c with configurations of the original beam. The 

element height (thickness in z axis) is considered as the structural parameter to be 

modified. A computer code called beam.sdmftn was developed to facilitate this study. 

Using the method developed in Section 3.2.2 to relocate the resonance to a desired 

location, results were given in Table 4.2.3b. The corresponding mode shapes and modified 

configurations were given in Figure 4.2.3d, Figure 4.2.3e and Figure 4.2.3f. It is noted 

that the original uniform beam has been stepped to achieve the desired natural frequencies. 
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Figure 4.2.3a - The 1-st Mode Shape of Original Beam Structure 
Upper: Configuration, Lower: The 1-st Mode Shape 
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Figure 4.2.3b - The 2-nd Mode Shape of Original Beam Structure 
Upper: Configuration, Lower: The 2-nd Mode Shape 
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Figure 4.2.3c - The 3-rd Mode Shape of Original Beam Structure 
Upper: Configuration, Lower: The 3-rd Mode Shape 
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Table 4.2.3b - Modification Results for Relocating Resonance of Free-Free Beam 
Structure 

Desired Natural Frequency (Hz) 

Variation (Hz) 

No. Element No. Nodes 

4 4 5 

5 5 6 

6 6 7 

Desired Natural Frequency (Hz) 

Variation (Hz) 

No. Element No. Nodes 

4 4 5 

5 5 6 

6 6 7 

Desired Natural Frequency (Hz) 

Variation (Hz) 

No. Element No. Nodes 

3 3 4 

8 8 9 

E. 

E. 

E. 

P.R* 

1 

1 

1 

P.R* 

1 

2 

1 

P.R* 

1 

1 

63.000 

10.000 

] 

160.000 

13.468 

250.000 

-36.818 

Mod. Res.* (M) 

1.296E-2 

1.296E-2 

1.296E-2 

Mod. Res.* (M) 

1.711E-2 

2.422E-2 

1.711E-2 

Mod. Res.* (M) 

0.735E-2 

0.735E-2 

E.P.R*: Element Participant Ratio. Mod. Res.*(M): Modification results. 
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Figure 4.2.3d - The 1-st Mode Shape of Modified Beam Structure 
Upper: Configuration, Lower: The 1-st Mode Shape 
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Figure 4.2.3e - The 2-nd Mode Shape of Modified Beam Structure 
Upper: Configuration, Lower: The 2-nd Mode Shape 
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Figure 4.2.3f - The 3-rd Mode Shape of Modified Beam Structure 
Upper: Configuration, Lower: The 3-rd Mode Shape 
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4.3 Application of Methods For Cross-stiffened Grid System (System #3) 

This section will demonstrate the application of the methods developed in Chapter 3 in an 

practical engineering problem. A cross-stiffened grid structure which was given in Section 

4.1.3 is investigated for this purpose. The original dynamic model of this structure will be 

provided from both E M A and FEA. 

4.3.1 Experimental Modal Analysis of Cross-stiffened Grid 

The modal model (natural frequencies and mode shapes) of a dynamic structure can be 

experimentally determined by using an experimental modal analysis technique. These 

techniques involve acquiring the frequency response function data from some points whose 

mode shape are of interest on the structure, and these data can then be curve-fitted to 

extract natural frequencies and mode shapes. The theoretical background and general 

procedure for the E M A have been systematically described by Ewins[8]. A modal analysis 

software package called M O D A L 3.0SE developed by S M S [87] was utilised to facilitate 

this study. 

In this study, a single-degree of freedom polynomial curve fitting algorithm was used. The 

conditions under which this algorithm can provide sufficient accuracy are: 

1. the structure is lightly damped (structures exhibiting resonance conditions 

and/or modal damping of 1 0 % of critical or less); 

2. the structure has low modal density within the frequency range of interest. 

For the grid structure under investigation, both conditions were considered satisfied. 

Detailed discussion of this algorithm can be found in SMS[87]. 

Figure 4.3.1a and Figure 4.3.1b lay out the experimental set-up for this study. The 

geometry mapping of the grid consisted of 23 coordinate locations. Details are given in 

Figure 4.3.1c. Note that only those translational degrees of freedom perpendicular to the 

plane of structure are measured. They are named as IY, 2Y, ... 23Y in turn. The grid 

structure is suspended with 4 elastic bands at points 4, 6, 16, 17 to simulate the Free-Free 
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boundary condition. Impact excitation method was adopted. Specifics for the data 

acquisition of the modal test are given in Table 4.3.1a, Table 4.3.1b. 

The first three non-rigid body natural modes which fall into the frequency range from 

25Hz to 125Hz are curve-fitted and the results (natural frequencies and mode shapes) are 

given graphically in Figure 4.3.1 d, Figure 4.3.1e and Figure 4.3.1f. These results will be 

compared with those from F E A in following Section. 

4.3.2 Finite Element Analysis of the Cross-Stiffened Grid 

The finite element analysis of the grid structure was carried out on the finite element 

model described in Section 4.1.3. The location and number of nodes used to discretise the 

structure are accordance with those in E M A as shown in Figure 4.1.3c. Since only those 

translational D O F perpendicular to the plane of the structure are considered in E M A , The 

FEA model was reduced to match the translational experimental model by applying the 

Guyan reduction to eliminate the torsional and bending rotation D O F . A computer code 

system.grid.ftn was developed to facilitate building up the system mass and stiffness 

matrices for eigen solution and carrying out modification. The first three natural mode 

shapes of non-rigid body mode and corresponding natural frequency are given in Figure 

4.3.2a, Figure 4.3.2b. The comparison of natural frequencies from F E A and E M A are 

given in Table 4.3.2a. 
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Figure 4.3.1a - E M A Set-Up for Crossed-Stiffened Grid Structure 
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1. elastic band (*4) 

2. accelerometer 

4 3. testing structure 

4. hammer (force transducer) 

5. conditioning amplifier 

6. dual channel analyser 

7. desk-top computer 

Figure 43.1b - E M A Set-Up for Cross-Stiffened Grid Structure 

103 



Undeformed Structure 

^ 

^x 

Figure 43.1c - E M A Geometry Mapping of Cross-Stiffened Grid Structure 

104 



4.3.1.a - Experimental Set-Up for E M A of the Grid Structure 

Structure: 

Dual Channel Analyser: 

Exciter: 

Signal Amplifier: 

Accelerometers: 

Data Processor: 

Plotter: 

Cross Stiffened Grid 

Bruel & Kjaer, Type 2032 

PCB Hammer, Force Transducer 
Sensitivity: 2.10 mv/N 

N V M S Conditioning Amplifier 

PCB 10729, Voltage, 
Sensitivity: 0.804 mv/g 

H P Desktop Computer, Model 7957A 

HP, Model 7440A 

Table 4.3.1b - Equipment Setting 

Dual Channel Analyser 

Frequency Range: 

Resolution: 

Windows: 

Sensitivity: 

(Calibrated) 

Averages: 

0 - 800Hz 

800 Lines 

Excitation: Transient 
Response: Exponential 

Excitation: lmv/N 

Response: 102um/ms~2 

22 

Signal Amplifier 

Gain: 

High Pass: 

Frequency Filter: 

Sensitivity Unit: 

(Calibrated) 

1.0 

5.0Hz 

All Pass 

Excitation:2.10 

Response: 0.804 
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Figure 43.1d - The 1-st Mode Shape of Cross-Stiffened Grid Structure (EMA) 
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Mode: 2 
Freq: 66.29 Hz Damp: .62 X 
Undeformed Structure 

^ 

Figure 43.1e - The 2-nd Mode Shape of Cross-Stiffened Grid Structure (EMA) 

107 



Figure 4.3.1f - The 3-rd Mode Shape of Cross-Stiffened Grid Structure (EMA) 
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Figure 43.2a - The 1-st M o d e Shape of Grid Structure (FEA) 
Upper: Undeformed, Lower: The 1st M o d e Shape 
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Table 4.3.2a - Comparison of Natural Frequencies From E M A and FEA 

Non-Rigid Natural Frequency (Hz) Natural Frequency (Hz) Errorf%) 
M n H p TJK4A FEM Mode E M A 

1 44.41 

2 66.29 66.93 

3 110.75 in.72 

44.73 0.72 

0.96 

0.87 

4.33 Relocating Resonance and Anti-Resonance of the Grid Structure by 

Concentrated Mass 

Results of Sections 4.3.1 and 4.3.2, indicate that the finite element model of the grid 

structure was reasonably accurate. Comparing the first three natural mode from FEA and 

EMA, it has shown that the error of natural frequencies between them are within 1% (refer 

to Table 43.2a). These errors are propably due to the boundary condition in EMA. In this 

Section, the numerical results from the finite element model will be applied to the real 

structure to verify the theoretical prediction. 

For easy physical realisation, the concentrated mass will be selected as modification type. 

To relocate the first natural frequency of the grid structure from 44.41 Hz to 40.00 Hz, 

points (coordinate locations) 4, 6, 19, 21 were selected to apply point mass modification. 

This is realised by rigidly attaching 4 brass blocks of calculated weight to the 

corresponding points. The results are given in Table 43.3a. 

To relocate the anti-resonance from 71.00 Hz to 66.00 Hz, which is the second resonance 

of the original system, using concentrated mass, the receptance FRF between point 8 and 

point 16 was examined (note that point 6 and point 8 actually represent the y coordinates 

of these two points). The resonances and anti-resonances of the FRF within frequency 

range of 35 Hz to 85 Hz were identified from both FEA and EMA. Since the E M A 

identifies anti-resonances by graphically reading from measured FRF data, the accuracy of 

anti-resonances will largely depend on the frequency resolution of the FRF data. Another 
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possible error source is the noise encountered in the measurement, which is particularly 

important due to the low response level in the vicinity of an anti-resonance. The first anti-

Table 4.33a - Modification Results of Relocating The 1-st Resonance 
of Grid Structure 

EMA 

Original co, (Hz) Desired Result Desired Result Error (%) 
co, (Hz) co, (Hz) Aco,(Hz) Aco,(Hz) 

44.41 40.00 39.93 4.41 4.48 1.58 

FEA 

Original co, (Hz) Desired Result Desired Result Error (%) 
co, (Hz) co, (Hz) Aco,(Hz) Aco,(Hz) 

44.73 40.00 40.00 4.73 4.73 .000 

N o d e Element Part. Ratio Modification Results 
(KG) 

3 1 0.217 

4 1 0.217 

16 1 0.217 

17 1 0.217 

resonances from F E A and E M A were 72.5 Hz and 72 Hz respectively. Points 10, 11, 12 

and 20 were selected for applying the modifications. These modifications were realised by 

rigidly attaching 4 brass blocks to the corresponding points. The results are given in Table 

43.3b. 

From Table 4.3.3a and Table 43.3b, it is noted that the proposed methods for relocating 

resonance and anti-resonance have been successfully applied to the grid structure. The 

analytical results (those from the finite element model) produced no errors. However, 

when analytical results are applied to the real structure, small errors appeared due to the 

original discrepancies between the analytical model and the real structure. As described in 

Chapter 2, these discrepancies are mainly from the modelling idealisation. Figure 4.3.3a 
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Table 4.33b - Modification Results of Relocating Anti-Resonance of 
F R F a(8,16) of Grid Structure 

Original coa (Hz) Desired Result Desired Result Error (%) 

coa(Hz) coa(Hz) Acoa(Hz) Aco,(Hz) 

71 66.65 65 5.57 6 0.5 

FEA 

Original co, (Hz) Desired Result Desired Result Error (%) 
co, (Hz) co, (Hz) Aco,(Hz) Aco,(Hz) 

72.49 66.45 66.45 5.57 5.57 0.00 

Node 

10 

11 

12 

21 

Element Part. Ratio Modification Results 

(KG) 

1 0.186 

1 0.186 

1 0.186 

1 0.186 

and Figure 4.3.3b show the experimental FRF curves of the original structure and 

modified structure which shows that the first natural frequency has been relocated as 

predicted from 44.41 Hz to 39.93 Hz. Fig.433c and Figure 43.3d show the experimental 

FRF curves of the original structure and the modified structure and shows that the first 

anti-resonance of oc(8,16) has been relocated as predicted from 71 H z to 65 Hz. 
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Figure 4.3.3a - F R F of Original Cross-Stiffened Grid Structure, a(16,16) 
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Figure 4 3 3 b - F R F of Modified Cross-Stiffened Grid Structure, a(16,16) 
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Figure 43.3c - F R F of Original Cross-Stiffened Grid Structure, cc(8,16) 
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Figure 4.3.3d - F R F of Modified Cross-Stiffened Grid Structure, a(8,16) 
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CHAPTER 5 

STRUCTURAL DYNAMIC OPTIMISATION BY LOCAL 

STRUCTURAL MODIFICATION 

The previous Chapters have developed and verified the procedures for relocating a 

resonance and an anti-resonance of a structural system by local structural modifications. 

The purpose of this Chapter is to introduce a method for dynamic optimisation by 

structural modification. For a linear vibratory system, its dynamic properties are usually 

characterised by its frequency response characteristics whose resonance and anti-resonance 

phenomena are of major concern. The objective of system dynamic optimisation entails 

avoiding the resonance response to a specified excitation within a frequency range of 

interest 

5.1 FRF and 'POLE-ZERO' Cancellation Theory 

5.1.1 Expressions for FRF 

(i) Characteristic Polynomial Expression of System Receptance FRF - For an 

undamped N D O F vibratory structural system, its receptance FRF matrix is expressed as, 

[cx(co)| =[-co2[M|+[/.|]"
1 (5'L1) 

the individual term la(co)| can be computed using the following equation, 

dci-utadjW^+adfiK];} 
a -(co) = ^ z—=• \J.I.£) 
11 det[-co2[MM/n] 

Equation (5.1.2) can also be written as the ratio of two characteristic polynomials, 
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-. .(co) _ q0^iC0
2H-„2co

4
+ ^ . ^ - D 

60+_,co
2+_2co

4+ +b„_i(o
2(n-lKb co2w 

ft I ft 

,27̂ -T 7—^rr, :_- (5-1.3) 

Since equations (5.1.2) and (5.1.3) are derived from the mass and stiffness matrices of the 

system, they will be available once the system is fully identified by F E M . A s well, from 

equations (5.1.2), note that the system frequency response property can be determined in 

the physical domain in terms of the system mass and stiffness distributions. However, 

equation (5.1.3) appears just another mathematical expression of the receptance FRF. The 

0,^0)) given in equation (5.1.3) offers no explicit physical significance. 

(ii) Partial Fraction Expression of System Receptance FRF - The partial fraction 

expression of an F R F has been developed in Chapter 3 which is in terms of the system's 

modal properties, 

r~i co_-or r-i cor-ar 

Mathematically, equation (5.1.4) can be expanded from equation (5.1.3). The conditions 

on which this partial fraction expansion depends are that (i) the eigenvalues are distinct, 

and (ii) the order of co in the numerator of equation (5.1.3) is less than the corresponding 

order of the denominator. These two conditions are met for most linear vibratory systems. 

Equation (5.1.4) relates the system frequency response properties to the system modal 

properties. Using equation (5.1.4) ensures it will be easier to understand the nature of 

resonance response and h o w different modes contribute to the system response to certain 

excitation. Equation (5.1.4) also indicates that if the structure is driven by a single-point 

force, a mode which has a nodal coordinate at the excitation point can not be excited. 

This means that if §• or 0ir is equal or close to null, then the r-th term on the right hand 

side of equation (5.1.4), which represents the contribution of the r-th m o d e to the 

receptance, will be eliminated. The total frequency response of the system is usually 

dominated by the contribution of the mode whose natural frequency is closest to the 

excitation frequency. Therefore, by eradicating this mode, a low vibration level results. 
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(iii) P O L E - Z E R O Expression of System Receptance FRF - POLEs and Z E R O s of the 

system transfer function originate from control theory. If the system matrix for the 

undamped structural system is obtained by Laplace transform, it may be expressed as a 
function of Laplace variable s, 

\Z(s)\ =[s2[M\+[K]] (5.1.5) 

The transfer matrix [H(s)|, which is defined as the inverse of the system matrix [Z(s)j, is 

constructed by the individual transfer function H^s) between input i and output j, where, 

U M = Laplace transform of output i ,c t „ 
V• ' ~1 7 7- r. (-.1.0) 

Laplace transform of input j 
Thus, 

At{s2adj[M]+adj[K]] 

The POLEs of the system are defined as those s which result in a null denominator in 

equation (5.1.7), whereas the Z E R O s of the system are those s which lead to null 

numerator in equation (5.1.7). 

For harmonically excited undamped linear vibratory systems, the Laplace variable s may 

be replaced by ico (co is the frequency of excitation). Thus, equation (5.1.7) becomes, 

__ _ de^A^WJ (5.1.8) 
dt{-w2adjW\+adj[K]\ 

Note that for such systems, the system transfer function and FRF are effectively the same. 

Each transfer function (or FRF) describes the dynamic properties of the structure between 

the input at a particular D O F and the response at another D O F and is a function of 

Laplace variable s (or frequency co). 

Factorising the numerator and denominator of equation (5.1.8) gives the singular points in 

the form of Z E R O s of the FRF, that is, when a ^ Q - ) ^ , and the poles of the FRF, occur 

where a^co^eo. 
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V<°> " X ' L__=i = X_J (5.1.9) 

^ - . x ^ <»2^> fi,^ 
(7=1 

The square root of the Z E R O s of the F R F are in fact the anti-resonance frequencies of the 

FRF, which are also the eigen-frequencies of the respective 'virtual' system. The square 

root of the P O L E s are in fact the resonance frequencies of the system. For an undamped 

structural system, the system matrix is symmetrical and positive-definite. Therefore, the 

POLEs of the system will be real and positive. However, the Z E R O s will be real and 

positive or complex conjugate pairs. Only those positive Z E R O s correspond to the anti-

resonances of the system. 

5.1.2 Drive Point FRF and Transfer FRF 

(i) Drive Point FRF - An FRF whose response and excitation coordinates are identical 

is defined as a 'drive point FRF'. Considering the definition of a 'virtual' system (see 

Chapter 3), it is noticed that the 'virtual' system corresponding to a drive point F R F is 

equivalent to a system which is obtained by constraining the 'question' coordinate of the 

original system. Such a system will always possess vibration modes whose number is one 

less than that of the original system. The resonance frequencies of such a system will be 

the anti-resonances of the F R F of the original system. In addition, all driving point FRFs 

have an anti-resonance between any two neighbouring resonances, as discussed from the 

partial fraction form of the F R F in Chapter 3. 

(ii) Transfer FRF - An FRF whose response and excitation coordinates are different is 

defined as a transfer FRF. The general form of a transfer F R F depends on the 'Modal 

Constants'. The definition of 'Modal Constant' is given in Section 3.1. Since the 'mass' 

and 'stiffness' matrices of the 'virtual system' corresponding to a transfer F R F are 

obtained by deleting one row and one column of the mass and stiffness matrices of the 

original system, normally, the symmetry and positive definiteness or semi-positive 

definiteness properties associated with the original mass and stiffness matrices will be 
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destroyed. Therefore, the eigen-values of such a 'virtual' system will generally exist in the 

forms of positive, negative and complex conjugates. However, only positive eigen-values 

have a clear physical meaning, since their square roots represent the anti-resonance 

frequencies of the FRF. For an FRF without any anti-resonance, the corresponding 

'virtual' system will only have negative and complex conjugate pair eigen-values. This 

type of transfer FRF is also called 'transmissibility FRF'[91], 

5.1.3 'POLE-ZERO' Cancellation and Nodal Coordinate Creation 

(i) 'POLE-ZERO' Cancellation - As discussed above, the square roots of the POLEs 

in an FRF are the resonance frequencies of the system, and the square roots of the ZEROs 

in the FRF are the anti-resonance frequencies. Considering the 'POLE-ZERO' form of an 

FRF given in equation (5.1.9), 

m 

(co2-Q2)(co2-Q2) (co2-Q2) n « ° -<y 
a-<co) = % 1 i _ = x- C5-1-9) 

(co2-co,)(co2-co2) (co2-co„) TJ(Co
2-co2) 

_=1 

Note that if one of the POLEs can be made to coincide with one of the ZEROs, the 

corresponding terms in the numerator and denominator of the equation will eliminate each 

other. This phenomenon is also known as 'POLE-ZERO' cancellation. For instance, if the 

rth P O L E equals the s,h Z E R O , the equation will become, 

m 

n c*2-^ 
a,/co) = %Z±p. (5.1-10) 

f[ (a2-*2,) 
<7=1, q±r 

The 'POLE-ZERO' cancellation effect can be visualised by investigating the FRF curves 

of a 3-DOF system, see Figure 5.1.2. For drive point FRFs, for instance, ocu(co) and 

o_2(co), normally, their FRF curves will exhibit 3 resonance peaks and 2 anti-resonance 

troughs as shown in the upper graph for a,,(co). However, only 2 resonance peaks and 

one anti-resonance trough are seen from a^to) (lower graph). This is because the second 
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resonance of the system coincides with one of its anti-resonances. As a result, they 

eliminate each other. In addition, it is worth mentioning that, for the same system, 

different FRFs will have different anti-resonance frequencies. Therefore, the 'POLE-

Z E R O ' cancellation will not occur in all FRFs simultaneously. 

(ii) Nodal Coordinate Creation - It has been found that the 'POLE-ZERO' cancellation 

is always accompanied by the creation of a nodal coordinate. Comparing equations (5.1.4) 

with (5.1.9), if the rth resonance peak is eliminated by 'POLE-ZERO' cancellation, it is 

equivalent to eliminating the rth term in the partial fraction series of equation (5.1.4). This 

means the rth modal constant of the corresponding F R F is equal to null. Considering that 

the rth modal constant is defined as the product of two elements in the rth mode shape 

which are relevant to the excitation and response coordinates, the null modal constant 

implies that either the excitation or the response coordinates is a nodal coordinate for that 

vibration mode. It is difficult to ascertain which coordinate will be the nodal coordinate 

for the transfer FRF, but provided that if the excitation or response coordinate is a nodal 

coordinate for a vibration mode, the resonance with respect of this vibration mode will not 

manifest itself. This is also in accordance with the fact that if the excitation force acts on 

the nodal coordinate of one mode, this vibration mode will not be excited, and the total 

response of the system will be determined by the contribution of the other vibration 

modes. However, if the 'POLE-ZERO' cancellation occurs in a drive point FRF, as the 

modal constant becomes the square of one element of the mode shape, the nodal 

coordinate can be readily determined. 

5.2 Dynamic Optimisation By Local Structural Modification 

The dynamic optimisation of a vibratory system is aimed at searching for feasible design 

configurations which satisfy a set of functional requirements, for the design that performs 

best given pre-defined criteria. A typical structural dynamic optimisation problem is to 

find a set of p variables, expressed mathematically as: 
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® = {81 §2 S3 V (5.2.1) 

which satisfy a set of q of constraints, such that 

_f<S) > 0 1 - 1,2, « 
(5.2.2) 

hj(S) = 0 ; = 1,2, qh q = ̂ +<?/j 

for a pre-defined criterion. 

5.2.1 Expansion of Non-Resonance Frequency Range By Dynamic Optimisation 

One of the methods used for averting the resonance is to relocate the natural frequencies 

of a system beyond the working frequency range. It is vital to modify the structure so as 

to effect the desired changes without at the same time introducing new unwanted effects. 

For example, an unwanted effect could be that a proposed modification intended to 

relocate a natural frequency beyond the working frequency range, introduces an adjacent 

natural frequency into the working frequency range. This emphasises the need to search 

for a structural modification by quantitative means, to preserve some of the system 

dynamic properties, such as resonance frequency or anti-resonance frequency, after the 

modification. 

For a modified system, which is characterised by changing the magnitude and distribution 

of mass and stiffness of the original system, it should usually be expected that all of its 

natural frequencies (and, of course, their corresponding mode shapes) will be affected, 

even if different modes are affected to differing extents. It is difficult to predict how a 

modification aimed at changing a certain vibration mode will affect the neighbourhood 

modes, particularly if the structural modification involves both mass and stiffness. It is 

important to 'fix' a certain mode when the modification is carried out for other modes. 

(i) Modification by a Semi-Definite System - As stated in Chapter 3, the equation of 

motion of the modified system, which is differs from the original system by the matrices 

A[M] and A|K], may be written as, 
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-co*2([A_ 1 +A| Af |){r* *H[K\ +A[K]){Y *} = (0) (5-2.3) 

where 

A1M1 = _T 5m»/ (5.2.4a) 
r=i, j, k 

41*1" E UW' (5.2.4b) 

Without loss of generality, the coordinates which are involved in the modification are 

assumed to be the coordinates i, j, k. Thus, the mass modification of local coordinate r 

(r=i, j, k) is represented as 5m,., the stiffness modification between coordinate p (p=i, j, k) 

and coordinate q (q=i, j, k) is represented as 81c, . 

If the free vibration of the original system can be started off accurately by its uth mode, 

say, {\|/}u , the equation of motion of the system can be expressed as, 

-co2fA_lV}M+[/rj{\|/}H = (0) (
5-2-5) 

Mathematically, comparing equation (5.2.5) with equation (5.2.3), it may be observed that 

if the modified system also satisfies equation (5.2.5), then, 

-co2A[Af]{\|/}M+A[/nV}M = 10} (
5-2-6) 

In other words, if equation (5.2.6) is satisfied, the u,h mode of the original system will be 

preserved after structural modification. However, other modes will be modified. 

The above relationship can be easily proved mathematically, and the physical meaning is 

explained as follows: 

Considering the sparsity of the mass and stiffness incremental matrices A[M] and A[K], 

equation (5.2.6) can be reduced to, 

It is evident that equation (5.2.7) is also the equation of motion of a 3-DOF semi-definite 
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(5.2.7) 

mass-spring system subjected to free undamped vibration whose mass and stiffness 

coefficients are 5m, (p=iJJ0 and 8\^ (M=i Jtk), respectively. Using the concept of mass and 

stiffness modification ratios (see Chapter 3) and sub-matrix method (see [36]), equation 

(5.2.7) can be re-written as, 

(-co2* JT {e)\{eyX £ {ejKpq{ep^)us = {0} 
r=ij,k p.q=ij.k 

(5.2.8) 

Equation (5.2.8) can also be recast as, 

r=ij,k p.q=ij.k 
(5.2.9) 

if this initially at rest 3-DOF semi-definite system is attached to the original system, 

which is vibrating accurately in its uth mode, on the corresponding coordinates determined 

by the sth sub-vector of the ulh mode, it will be equivalent to starting off this semi-definite 

system in a mo d e identical to the s,h sub-vector. Therefore, the vibration of the combined 

system will still vibrate harmonically under the uth m o de of the original system. It can 

then be concluded that the uth m o de of the original system will not be affected if system 

is modified by attaching a semi-definite system which possesses a mode identical to a 

sub-set of the uth m o d e of the original system. This can also explained using the pseudo 

force method (details can be obtained from Brandon et a/[43]). The pseudo force method 

states that the free vibration of a modified structural system can be considered as a 

harmonically forced vibration of the original system whose the excitation force m a y be 

replaced by the variations of internal constrain force caused by the local structural 

modification. This can also be visualised from equation (3.2.4), where the mode shape and 

natural frequency of the modified structural system m a y be treated as the harmonic 

response subjected to the pseudo force with the natural frequency of the modified system. 

If the inertia part and potential part of the right hand side (which represents the pseudo 

force) of equation (3.2.4) balance with each other at one of the natural frequencies of 
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original system, the natural mode of the original system corresponding to this natural 

frequency will not be affected. Otherwise, the system must self-adjust to achieve a new 

balance which will be reflected in creating new natural modes. 

It has to be pointed out that no definite physical significance is required for such a semi-

definite system. The mass and stiffness coefficients of such a system m a y be negative, 

which implies subtraction of mass or/and stiffness from the original system. In other 

words, the semi-definite system is only an 'assumed' system. 

(ii) Determination of Mass and Stiffness Modification Ratios - From equation (5.2.8), 

note that the semi-definite system mentioned above can be determined by adjusting the 

mass and stiffness modification ratios. For certain structural modifications which are 

expressed in terms of the mass and stiffness modification ratios and scaling factors, the 

dynamic optimisation problem m a y be defined as below: 

To determined a set of variables that satisfy the objective function, 

G(X TI, r|2 rip K, K 2 K_) = 0 

subjected to the constraints, 

_/Cn.i n2 %
 Ki K2 Kq> = ° 

i=l,2 p+q 

where, the objective equation (5.2.10) is for relocating a natural frequency from con to 

con*, as discussed at Chapter 3, the constraint equation (5.2.11) is for searching the 

modification ratios which can preserve a natural mode after structural modification. Re­

writing equation (5.2.9), yields, 

_2 £ nfeAM/- E ^,Wl •(0) <5-2-12' 
rnj.k p,q=ij.k 

Notice that cou and (y } u are the known eigen-pair of the original system which need to be 

preserved. To avoid a trivial solution, presetting T|j, equation (5.2.11) can be re-arranged 

to become, 

(5.2.10) 

(5.2.11) 
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^ * E V * A M , , + £ Kpq{epf{ep]Wus 
M"M ' (5.2.13) 

= co2r,t.{_ )
T{e .}{¥}Mi 

Let, 

-co2{./{.rH>}„ _ = U>_ , (r _ /^) (5.2.14a) 

and 

K/^M-^U ' <P* = iVJfe) (5.2-14b) 

define vectors 

<*} « H Tly- tl_ ^ K/t K_/ (5.2.15a) 

_/} = cofTi^,.}7"!.^., (5.2.15b) 

and matrix 

[D\ = [U,} <Aj _?jyl _?J] (5.2.16) 

equation (5.2.13) can then be recast into, 

[ D I M = {d) (5-2.17) 

Since the total number of mass and stiffness modification ratios need to be identified from 

equation (5.2.17) is problem dependent, the coefficient matrix [Dj is normally rectangular. 

This will make matrix [D| rank deficient. The singular value decomposition (SVD) 

method is employed to solve equation (5.2.17), which lead to solution, 

{/?} = [V]\Z]-\U\T{d) (5.2.18) 

where 

|D| = rtVHLIlVr7, (5.2.19) 
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For an under-determined problem, that is, the number of unknowns in equation (5.2.17) is 

greater than the number of constrained equations, the solution of equation (5.2.18) is not 

unique. Using the S V D method, the minimum Euclidean norm solution is given. The 

under-determined problem is normally characterised by the fact that the row dimension of 

[D] is less than its column dimension. For an over determined problem, i.e., the number 

of unknowns in equation (5.2.17) is less than the number of constrained equations, no 

exact solutions are given. However, using the S V D method, the least square solution will 

be obtained. This type of problem is normally characterised by the notion that the row 

dimension of [D] is smaller than its column dimension. 

(iii) Expanding the Non-Resonance Frequency Range - Once the mass and stiffness 

modification ratios have been identified, the optimisation procedure can be carried out 

according to the mass and stiffness modification ratio thus obtained. For a structural 

modification problem without involving the optimisation, the mass and stiffness 

modification ratios can be given arbitrarily, as discussed in Chapter 3. Here, the mass and 

stiffness modification ratios can be utilised as a set of optimum values which lead to 

certain dynamic properties. Substituting the mass and stiffness modification ratios into 

equation (3.2.6), and re-arranging, it yields: 

[a(co;)l(co;2 £ {e)\{e)~ £ {ep}\q{epq)){y?r = hfi (5.2.20) 
r=ij.k p.q=ij.k K 

From equations (5.2.9) and (5.2.20), it is noticed that the uth vibration mode ( including 

the natural frequency and mode shape) which need to be preserved is independent to the 

variation of the scaling factor X, since the X obtained from equation (5.2.20) will not 

effect the uth mode, as indicated by equation (5.2.8). If the rth mode is adjacent to the ul 

mode, using these modification ratios, the rth resonance can be relocated to a desired 

location (subject to the practical considerations) without altering the ul mode. This is of 

particular significance for creating a non-resonance region in a wide frequency range. 

5.2.2 POLE-ZERO Cancellation 

(i) Determination of Mass and Stiffness Modification Ratio For Unaltered Anti-
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Resonance - In general, for an arbitrary structural modification, the relocation of 

resonances is usually accompanied by the change of anti-resonances. However, if the 

optimisation procedure using a semi-definite system can be applied to the 'virtual' system 

, one of its eigen frequencies (an anti-resonance frequency for the original system) is 

expected to be unaltered, the pole-zero cancellation can be achieved by relocating a 

resonance frequency to match this anti-resonance frequency. 

Considering the 'virtual' system corresponding to receptance FRF a(co)uv, the mass and 

stiffness modification ratios can be optimised by the following equation, 

VE^AWv¥>£ Kpg{epq}u{epfM 
r=y.A- p.q=ij.k (5.2.21) 

By following procedure in Section (5.2), the mass and stiffness modification ratios can be 

determined. 

(ii) Elimination of Resonance Peak - Once the mass and stiffness modification ratios 

are identified by equation (5.2.21), the resonance frequency adjacent to the preserved anti-

resonance can be relocated to meet it by solving for the appropriate scaling factor X. 

Substituting the mass and stiffness modification ratios and coa into equation (5.2.20) 

yields, 

fa(to_)l(co2 £ {e)\{e)~ £ {epq)\q{epq)M = hfi (5.2.22) 
r=ijji p,q=ijJi 

By solving this generalised eigen equation, the modification which will lead to the 

'POLE-ZERO' cancellation can be determined. 

5.3 Numerical and Experimental Verification 

In this Section, results of two numerical and one experimental studies will be reported to 

illustrate and verify the method developed in this Chapter. The first study is numerical and 

is carried out on a mass-spring system to check the validity of the methods. The second 
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study is numerical and is carried out on a truss system to illustrate the general procedure. 

The third study is experimental and is carried out on a grid structure by concentrated mass 

modification to demonstrate the applicability of the method for practical engineering 

problems. 

5.3.1 A 7-DOF Mass-Spring System 

A 7-DOF mass-spring system which appeared in Li et _/[85] is considered in this Section, 

see Figure 5.3.1a. The receptance F R F between coordinates 5 and 6 (mass 5 and mass 6) 

was examined. Table 53.1a gives the first three resonances and anti-resonance. To 

eliminate the second resonance peak by relocating it to coincide with the first anti-

resonance, the mass constants of coordinates 1, 2, 3 and relevant stiffness constants k12, 

k23 are considered as modification objectives. The results of using the method in Section 

5.2.2 are given in Table 53.1b. Figure 53.1b gives the comparison of the F R F curve of 

the original system and that of the modified system. It can be observed from the figure 

that the second resonance and the first anti-resonance have eliminated each other. The first 

three resonances and anti-resonances of the modified system are given in Table 5.3.1c. 

Table 53.1 d shows that coordinate 5 of the modified system has been made a nodal 

coordinate for the seconde mode after 'POLE-ZERO' cancellation. The general procedure 

is summarised as follows, 

(1) determine the coordinates of interest for excitation and response; 

(2) identify the resonances and anti-resonances of the F R F selected in (1); 

(3) determine the resonance and anti-resonance for cancellation; 

(4) determine the mass and stiffness (element) modification ratios; 

(5) determine modification amounts with the identified modification ratio from (4) by 

using methods developed in Section 3.2.1 and Section 3.2.2, 

(6) determining whether the proposed modification is acceptable. 
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Table 5.3.1a - The 1-st Three Resonances and Anti-Resonances of FRF a(5,16) 
of Original Mass-Spring System 

No. 

1 

2 

3 

Resonance (Hz) 

0.26338 

0.43932 

0.50816 

Anti-Resonance (Hz) 

0.42935 

0.48059 

0.50329 

Table 5.3.1b - Dynamic Optimisation of the Mass-Spring System* 

Location 

m, 
m2 

m 3 

k2 

k3 

Mass (Stiffness) Modification 
Ratio 

1.0000 (pre-; 

-0.4606 

0.0000 

-6.2123 

0.0000 

*et) 

Variations 

4.047 KG 

-1.864 KG 

0.000 KG 

-25.14 NM"1 

0.000 N M 1 

The Minimum Euclidean Norm Solution 

Table 5.3.1c - The 1-st Three Resonances and Anti-Resonances 
of Optimised Mass-Spring System 

Mode 

1 

2 

3 

Resonance (Hz) 

0.26175 

0.42935 

0.48325 

Anti-Resonance (Hz) 

0.42935 

0.50329 

0.55772 ! 
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Table 5.3.1c - The 2-nd M o d e Shape (Mass Normalised) Comparison of 
the Mass-Spring System 

Coordinate (Mass) 

1 

2 

3 

4 

5 

6 

i 

Before Dynamic 
Optimisation 

-0.10578 

-0.11576 

-0.09350 

0.01700 

0.01903 

0.09036 

0.18979 

After Dynamic Optimisation 

-0.13776 

-0.06098 

-0.04793 

0 

0 
0.09839 

0.18071 

53.2 A Planar Truss System 

The planar truss system which was used in Section 4.4.1 is considered for further 

illustrating the general procedure. According to the procedures stated in Section 5.3.1, the 

receptance F R F between X coordinate of node 6 and X coordinate of node 10 of the truss 

system was investigated and the first resonance was selected for elimination. The results 

are given in Table 5.3.2a, and the comparison of the original and modified F R F curves 

are given in Figure 5.3.2a. Since the X coordinate of node 4 had been created as a nodal 

coordinate, the resonance peak in receptance F R F between X coordinate of node 6 and Y 

coordinate of node 9 had been eliminated as well, as shown in Figure 5.3.2b. 

5.33 Cross-Stiffened Grid Structure 

The cross-stiffened grid structure which was given in Section 4.1.3 and Section 4.3 will be 

investigated to demonstrate how to achieve a 'POLE-ZERO' cancellation by applying the 

concentrated mass modification to a practical engineering structure. Since the mass matrix 

of the 'virtual' system corresponding to a certain FRF, say, the one related to coordinates i 

and j, is derived from deleting the _h row and jlh column of the mass matrix of the 

original system, any concentrated mass modification applied on coordinates i and j will 

not influence the anti-resonance in the corresponding FRF. However, the resonances of the 
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Table 53.2a - Dynamic Optimisation of the 32-Element F E Truss Systi 

No. Element 

8 

9 

10 

11 

12 

13 

14 

15 

17 

18 

31 

32 

No. 

4 

4 

4 

5 

5 

6 

6 

6 

7 

8 

6 (Con 

8 (Con 

Node 

5 

6 

7 

6 

7 

7 

8 

9 

9 

9 

. Mass) 

. Mass) 

Elemental Part. Ratio 

-0.7200E-1 

-0.5311E+1 

+0.1746E+0 

+0.2069E+0 

+0.1145E+0 

+0.1827E-0 

-0.2944E-2 

-0.1274E+1 

+0.4664E-1 

-0.1927E+0 

+0.7044E+1 

-1 (Pre-set) 

Modified C.S.A (M2) 

19.53E-4 

7.059E-4 

20.11E-4 

20.19E-4 

19.72E-4 

20.13E-4 

19.70E-4 

16.67E-4 

19.81E-4 

19.24E-4 

32.69KG 

27.33KG 

original system will be affected. This is based on the assumption that the concentrated 

mass modification applied on the ith and j,h coordinates offers no effects on the other 

coordinates. For the grid structure, if, say, only the translational D O F along Y axis are of 

concern, the assumption holds. Therefore, the principle described above can be used to 

relocate a natural frequency to coincide with an anti-resonance frequency in order to 

achieving a 'POLE-ZERO' cancellation. 

The same structure and experimental method described in Section 4.3 were used and FRF 

between coordinate locations 16 and 19 was investigated. Using F E M and methods 

developed in Section 3.2, the mass modification was predicted. Thus, a 0.266KG brass 

block was rigidly attached to location 19 to create a nodal coordinate in the 2-nd mode at 

location 16, which means that a 'POLE-ZERO' cancellation has been achieved in the F R F 

relating locations 16 and 19. Figure 533a. Figure 5 3 3 b gave the mode shapes of the 

original and modified grid structures. Figure 5 3 3 c and Figure 53.3d show the F R F 

curves of the original and optimised structure. As well, the curves of receptance F R F 
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relating coordinate locations 1 and 16 of the original and modified structures were given 

in Figure 5 3 3 e to exhibit the effect of vibration response reduction by eliminating the 2-

nd resonance after modification. 

5.4 Discussions and Concluding Remarks 

The numerical example used in Section 5.3 represents an under-determined problem, that 

is, the number of the unknowns is greater than the number of constraint equations. 

Therefore, the solution is not unique. Using the S V D method, the minimum Euclidean 

norm solution is given. It should be noted that even if the final solution is obtained, it may 

not be realisable, since the location and allowable modification is limited by practical 

considerations. As well, it should be noted that it is impossible to 'fix' a natural frequency 

and then to relocate an anti-resonance to achieve a 'POLE-ZERO' cancellation. This is 

because the realisation of 'POLE-ZERO' cancellations is always accompanied by the 

creation of a nodal coordinate, which implies a fundamental change (from nodal 

coordinate to nodal coordinate) in the mode shape. However, this change contradicts the 

condition that the resonance is 'fixed', and means the corresponding mode shape should 

not be changes after modification. In fact, it has been found that attempts to relocate an 

anti-resonance peak to eliminate a resonance will always result in an adjacent resonance 

being relocated to the very location where 'POLE-ZERO' cancellation occurs. Thus, the 

appearance of this new resonance overrides the achieved 'POLE-ZERO' cancellation. 

However, the proposed method can still be used to 'fix' a resonance and relocate an 

adjacent resonance as far as possible to create a wide frequency range without resonance. 

In the event of 'over-determined' problem, one where, the number of structural parameters 

to be determined is less than that of constraint equations, the solution can only be obtained 

in the least square sense. This implies that a resonance will be relocated close to an anti-

resonance. So far as structural dynamic optimisation is concerned, this can lead to a 

response in the vicinity of the relocated resonance being greatly reduced. 

140 



Mode: _ " 
Freq: 66.29 Hz Damp; 
Undeformed Structure 

.62 V. 

>l 

Figure 53.3a - The 2-nd Mode Shape of Original 
Cross-Stiffened Grid Structure (EMA) 

141 



Mode: 2 " " 
Freq: 65.29 Hz Damp: 1.0? Z 
Undeformed Structure ~ 

r-

j 

Figure 53.3b - The 2-nd Mode Shape of Optimised Cross-Stiffened Grid Structure 
(Location 16 had been made to be Nodal Coordinate) 

142 



67.000 Hz: 
20.000 

3.713 

LOGMHG 
10.000/Dfv 

BLOCK *1 
FRF 

GRID,19 
16Y/19Y 

-60.0001 

125.000 Hz: -3.308 

25.000 FREQUENCY (Hz) 125.000 

Figure 53.3c - F R F of Original Cross-Stiffened Grid Structure, a(16,19) 

143 



67.000 Hz: -3.421 125.000 Hz: -5.834 
20.000 

L0GMRG 
10.000XD1V 

BLOCK _1 
FRF 

GRID,24 
16Y. 19Y 

-60.000 JL X _L 
25.000 FREQUENCY (Hz) 125.000 

Figure 5.33d - F R F of Optimised Cross-Stiffened Grid Structure, ct(16,19) 

144 



Wl FREQ RESP HI 
Y: 50.0 LIN 
X: 25.00Hz + 100Hz 
SETUP S7 #A: 5 

MAG STORED 

LIN 

MAIN Y: ia.3 
X: 66.25Hz 

50 r* 

__J 

Wl FHEQ RESP HI MAG 
Y: goTol LIN 
X: _5.00Hz + 100Hz LIN 
SETUP W7 # A: 5 

MAIN Y: 674m 
X: 66.25Hz 

Figure 533e - FRF Comparison of Cross-Stiffened Grid Structure, a(l,16) 
(Upper: Original, Lower: Optimised) 

145 



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

The goal of the research presented in this thesis was to investigate and develop effective 

methods and algorithms for vibration reduction by local structural modification. Significant 

contributions of this research include: the development of a unique method for vibration 

reduction; the initial investigation of a method for relocating anti-resonance and a method 

of structural dynamic optimisation by using the local structural modification technique for 

vibration reduction; development of an algorithm to solve a high order eigen problem. The 

purpose of this Chapter is to discuss the merits and limitations of the developed methods 

and algorithm and to provide suggestions for future research. 

6.1 Discussions and Concluding Remarks 

There are four important conclusions of this research which should be emphasised. First, 

the numerical and experimental examples indicated that the methods developed are capable 

of relocating an unwanted resonance to a desired location so that the vibration within a 

frequency range of interest can be greatly reduced. Since only those response properties 

related to the modification locations of the original system are required to determine the 

new response properties, the size of the problem can be greatly reduced by considering 

only the locations and D O F s selected for structural modification. Thus, the method is 

computationally efficient. A s well, the element participant ratios ( mass and stiffness 

modification ratios) provide multiple options for the application of this method and the 

accompany algorithm. By assigning the element participant ratios, users can decide to 

which extent a certain part of a structure should be modified to achieve desired dynamic 
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properties. 

Secondly, a method has been developed to relocate the anti-resonance by applying the 

structural modification on a 'virtual' system which is defined according to the 'real' 

structural system. The numerical and experimental examples indicated that this method 

was able to relocate an anti-resonance to a desired location. Thus, it will lead to a 

significantly lower response in the vicinity of a frequency due to a given sinusoidal 

excitation. This is of considerable significance for a dynamic system whose regular input 

force is permanently located and whose vibration of a given location is of major concern, 

particularly when this location experiences a resonance response. Again, the method 

provides users with various possible solutions but the final decision m a y depend on 

practical considerations. 

Thirdly, an algorithm was developed for the finite element implementation of the methods. 

The development of this algorithm enables the methods applied to the finite element 

model of a structural system with definite physical meanings by characterising the 

structural modification with locally altered structural physical parameters (thickness, width 

etc.). This algorithm is particularly useful when a finite element model constructed by 

higher order elements is dealt with thus making the implementation of the methods more 

straightforward and readily for practical application. 

Compared with other methods, which (i) the modifications are represented by addition or 

subtraction of lumped masses while no stiffness variation is allowed in or/and of rib 

stiffeners while no mass changes are considered, or (ii) the modification is characterised 

such that the variations of the structural physical parameters are obtained from the 

perturbation or sensitivity analysis method, the primary merits of methods developed in 

this research can be summarised as follows: 

(i) N e w methods have been developed in which structural vibration reduction can be 

analysed at the design stage by using local structural modification techniques. 

(ii) Structural modification can be carried out locally to obtain desired resonance and 

anti-resonance features which can lead to a significant reduction of vibration level. 
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Since no iterative process is required, the procedure is computationally efficient. 

(iii) Structural modification is realised with respect to the structural physical 

parameters directly and the parameter changes are limited only by practical 

considerations. 

Finally, based on the above methods, a structural dynamic optimisation procedure has been 

designed for eliminating a resonance at some structural locations, by relocating the 

resonance to coincide with an anti-resonance and for expanding a no-resonance frequency 

range by 'fixing' a resonance and relocating its adjacent resonance. The effectiveness of 

this procedure has been validated by both numerical and experimental examples. 

Since these methods are mainly based on the analytical models, the accuracy of the results 

from these methods will be influenced by the accuracy of the models adopted. In 

particular, care must be taken when dealing with a large, complex structure to ensure the 

most efficient use of the proposed methods. 

6.2 Future Work 

The research has provided methods for vibration reduction via local structural 

modification, and it also opens up some areas from which significant outcomes can be 

achieved by further investigation. Considering the limitations of the methods stated above, 

attention should first be given to the major cause(s) which induce inaccuracy in the 

proposed methods. It is recognised that major inaccuracy in the analytical model results 

from miss-modelling of the structural joints and boundary conditions, and experimental 

data are always considered accurate. If the structural modification and optimisation 

procedure can be based on the experimental data, and only those locations irrelevant to the 

joints and boundary conditions are utilised in conjunction with the experimental data, then 

the results obtained can be expected to be more reliable. The sub-structure synthesis and 

separation method and advanced data acquisition and analysis technology may be 

employed for this purpose. However, the availability of a adequate experimental modal 

data or response data of the original structure required by the structural modification 

procedure will still be a main barrier. A more efficient and accurate dynamic reduction 
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method becomes vital to make possible that the structural modification can be realised in a 

desired range of locations whose required data can easily be obtained experimentally. 

Anti-resonance, as one of the important structural dynamics properties, should be further 

investigated. In particular, its effects on the vibration reduction should be explored further. 

To create an anti-resonance at desired locations becomes one of the targets of future 

research. A s well, damping properties should be considered and an appropriate damping 

model may be the key to perfecting the technique. 

For the structural dynamic optimisation problem, it has been noted that the linear 

programming and matrices derivative theories developed in recent years provide powerful 

tools for solving the multi-variate problems of linear models. Introducing these theories 

into the structural modification and dynamic optimisation techniques is also recommended 

for the future research. 
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APPENDIX I 

THE BOOLEAN MAPPING MATRIX 

The Boolean mapping matrix was used in Chapter 3 to transform the local mass and 

stiffness matrices and incremental matrices to the global mass and stiffness matrices. A 

basic mathematical description will be given in this section along with a numerical 

example to explain h ow Boolean mapping matrix works for the transformation. For more 

detailed discussions readers can refer to |88J. 

As known, to construct a finite element model, a structure should have been discretised 

with a finite number of elements and these elements must satisfy the compatibility 

conditions, which implies that the elements can fit continuously together to form the 

complete model. 

Provided that all elements have been disconnected from the original model, two different 

types of nodal point (at where the elements joint to each other) will be defined, namely, 

the global nodal points labelled {x1}^,0 and local nodal points labelled { x e
N } N = 1

N e ; 

e=l,2,...,E. Since the compatibility conditions are satisfied, there must exist a simple 

correspondence between the label {xc
N} used to count local nodal points and labellx1} 

used to count global nodal points. W h e n such a correspondence exists, it is said that node 

xe
N of an element is coincident with node x' of the connected model. 

Mathematically, a mapping |p| of local labels into global one is defined to described this 

correspondence as, 

IP.|:Ofc. -»<*£. ^ 

Al 



Equivalently, since the correspondence is linear, it can be affected by the transformation, 

(A1.2) *' = E^lPJ> e e fixed 
A/=l 

where P{e}N' is an array of binary numbers(l and 0) defined by, 

1 // node N of element e is coincident 

fPeW = { with n°de i of connected model 

0 // otherwise 

(A 1.3) 

For each element e, the numbers P(e}N' constitute elements of a rectangular (Ne by G ) 

matrix |_{e} which is called a Boolean matrix. 

Considering a one dimensional finite element mass-spring model shown in Figure Al.l 

which is constructed by three finite elements, the formulation of a Boolean matrix and 

transformation procedure will be given as follows: 

The node numbering scheme indicated inside each element describes the local nodes, 

whereas that indicated externally labels the global nodes. Here G =6, Nj =4, N 2 =3, and 

N3 =4. From observing that, 

1 
x(\) 
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X(D 
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x2 

x3 
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(A1.4) 

Hence, the Boolean matrix for element 1 is given by, 

IP.I -

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 

1 

0 

0 

0 

0 
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0 

0 

0 

1 
0 
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(A1.5) 
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Figure ALI - 3-Element Mass-Spring System 
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Likewise, 

IM = 
0 0 1 0 0 0 

0 0 0 1 0 0 

0 0 0 0 0 1 

(A1.6) 

IP3] = 

0 0 0 0 1 0 

0 0 0 0 0 1 

0 0 0 1 0 0 

(A1.7) 

Thus, using Boolean mapping matrices, the local mass matrices, which are 

[M 
1 '« 

m, 0 0 

0 m2 0 

m-x 
0 0 _ 

0 0 

0 

0 

0 

mc 

0 -1 

(A 1.8) 

\M2
(e\ = 

m-i 
J 

2" 

0 

0 

0 

m4 

T 
0 

0 

0 

m 

(A1.9) 

! < _ • 

W, 
_1 0 
2 
0 m, 

0 

0 

0 

0 -1 
m6 

3" 

(ALIO) 

will be transformed into global matrices as, 
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'<*)i - rn i7.„„ W , _ w n , " IP,1'rAf̂ l lp,] -
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1 0 
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and 
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[<\ = 
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The global mass matrix for the connected model thus become, 
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1-1 

m, 

0 
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m2 
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m3 
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m4 
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m5 
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0 
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mf 

Following the same procedure, the global stiffness matrix can be obtained. 
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APPENDIX II 

THE SINGULAR VALUE DECOMPOSITION 

The singular value decomposition (SVD) technique is a powerful mathematical tool in 

dealing with problems characterised by a set of linear equations which is over-determined 

or under-determined. It is beyond the scope of this thesis to present a detailed explanation 

with a rigorous mathematical discussion of this technique. However, it is necessary to 

outline a simple description to highlight its specific applications in solving a set of over-

determined or under-determined linear algebra equations which is encountered in the 

structural dynamic optimisation procedures as discussed in Chapter 5. 

The focus here is the case where the coefficient matrix of a set of linear algebra equations 

is real and either the number of its row is greater than that of its column or otherwise. A 

Fortran subroutine can be found in [89], and a full review of this technique can be referred 

to [90]. 

For the over-determined problems defined by Equation (5.2.17), which implies more 

equations than unknowns, the singular value decomposition of the coefficient matrix can 

be expressed as, 

ID1 = f(/l [SI [V]T„ (m>n) (A2.1) 

where 

M m x n orthonormal matrix with its columns called left singular matrix 

[V]nxn orthonormal matrix with its columns called right singular matrix 
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[I] nxn a matrix which contains singular values of [A], and singular values are 

ordered so that: o, > o2 > > o > 0 and 

ra nxn 

0 

0 

nxn 

(A2.2) 

Since [ U ] m x n and [ V ] n x n are orthonormal matrices, they satisfy 

WlxnWLxn ' mnJ^Ln = I ' 1 «x« 
(A2.3) 

The singular values are the non-negative square-roots of the eigenvalues of the matrix 
T T 

[A] [A]. Because [A] [A) is symmetric and non-negative definite, its eigenvalues are 
always real and non-negative and therefore, singular values are always real and non-
negative. The left and right singular matrices are the corresponding eigenvectors matrices 

of [A]T[A] and [A][A]T. Therefore, the least square solution of equation (5.2.17) is given 

as, 

w*xi - m^iii^LM^i (A2.4) 

where 

IZI nxn 

0 

0 a„ 

(A2.5) 

Jixn 

In general, the diagonal matrix consisted of the singular values of matrix [D] will not be 

singular, and no G{ (i_, 2 n) need to be set to zero. Occasionally, there might be column 

degeneracies in [D|. In this case, some unusually small singular values need to be set to 

zero and excluded from matrix IS]*1 to prevent matrix [If1 from becoming ill-conditioned 
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(noting that the corresponding column vectors in [V] and [U] should be excluded as well). 

The {R} vector thus obtained will give minimum residual r where, 

r = \[D]{R}-{d)\ (A2.6) 

For the over-determined problems defined by Equation (5.2.17), which implies fewer 

equations than unknowns, no unique solution will be obtained. However, using S V D 

method, basis vectors which span the solution space will be given. Augmenting [D] matrix 

with zeros to be a square matrix and applying S V D to the augmented [D] matrix, 

following the same procedure stated above, a particular solution will be given as vector 

[R]. As well, the columns of [V] corresponding to zeroed Oj are the basis vectors whose 

linear combinations, added to the particular solution, span the solution space. The 

particular solution {R} satisfies minimum l{R}P (minimum Euclidean norm) for all 

possible {R}. 
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APPENDIX III 

PROGram SYSTEM 

C I 
C | * EXAMPLE RPOGRAM DESIGNED FOR SOLVING STRUCTURAL 
C | DYNAMIC MODIFICATION PROBLEM OF A PLANAR TRUSS SYSTEM 
C I 
C I 
C I 
C | * AUTHOR ... YUEQIANG LI 
C I 
C I 

c I 
C | * DEPARTMENT OF MECHANICAL ENGINEERING 
C | VICTORIA UNIVERSITY OF TECHNOLOGY 
C I 

c I 
c I 
C | 
C | * FILES * 
C I 
C | * TRUSS.DAT INPUT FILE FOR STRUCTURAL 
C | GEOMETRICAL MAPPING & 
C | PHISICAL PROPERTIES 
C I 
C | * TRUSS.OUT OUPUT FILE OF CONSTRUCTED 
C | ELEMENTAL MASS AND STIFFNESS 
C | MATRICES 
c I 
C | * SYSTEM.TRUSS.RES OUTPUT FILE FOR GLOBAL MASS 
C | AND STIFFNESS MATRICES, 
C | EIGEN SOLUTIONS 
C | 
C | * SYSTEM.TRUSS.MODIF.DAT . INPUT FILE FOR MODIFICATION 
C | DATA 

C I 
C | * TRUSS.MOD1F.RES OUTPUT FILE FOR STRUCTURAL 
C | MODIFICATION 
C | 

C - MAIN PROGRAM STARTS HERE 

PARAMETER(ID=30) 
CHARACTER CH*80,SM*12 
REALSYSM(ID,ID),SYSK(ID,ID),X(ID),Y(ID), 
+ WN(ID),CSA(ID,ID),EL(ID,ID),RSPHI(ID,ID) 
INTEGER DOF 
OPEN(3,FILE=_YSTEM.TRUSS.RESU') 
0PEN(4,FILE=SYSTEM.TRUSS.MODIF.DAT) 
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CALLTRUSS(SYSM,SYSK,DOF,CSA,EL,X,Y,ID) 

WRITE(*,*)'ELEMENTAL RESULTS IN TRUSS.OUT 

CALLEIGENSOL(SYSM,SYSK,DOF,ID,WN,RSPHI) 

WRITE(*.*)-GLOBAL RESULTS & EIGEN SOLUTION IN SYSTEM.TRUSS.RESU 

WRITE(*,*) PERFORM STRUCUTRAL DYNAMIC MODIFICATION' (Y/NV 
READ(4,*)SM l ' 
WRITE{*,*) SM 
CLOSE (UNIT=4) 
CALL SDM(CSA,EL,WN.RSPHI,X,Y,DOF ID SM) 

WRITE(\7MODIFICATION RESULTS IN TRUSS.MODIF.RES' 

END 

C-

SUBROUTINETRUSS(SYSM,SYSK,DOF.CSA,EL.X,Y,ID) 

PARAMETER (ID1=30) 
CHARACTER CH*80 
REALSTIFF(ID1,ID1),SMAS(ID1,ID1),SYSK(ID,ID),SYSM(ID,ID), 
+ NSUP(ID1),NPOSS(ID1),NXSUP(IDl),NYSUP(ID1),ST(4,4),SM{4,4) 
+ TEMPKflDI.IDIJ.TEMPMflDI.IDIJ.CSAOD.ID}, 
+ EL(ID,ID),X(ID),Y(ID) 
INTEGER LEMS,NFIXD,FIXD,DOF,NON 

C 
OPEN (1.FILE=TRUSS.DAT) 
OPEN (2,FILE='TRUSS.OUT) 

READ(1 ,*)NON.LEMS,NFIXD 
DOF=2*NON 
READ(1/)(NPOSS(ll),NXSUP(ll),NYSUP(ll).ll=1,NFIXD) 
DO 32 11=1,NON 

READ(1,*) X(II),Y(II) 
WRITE(2,*) T H E COORDIANTE OF NODE'.ii,- is: a.X(ll).Y(ll) 

WRITE(2,*) 
32 CONTINUE 
WRITE(2,*) 
WRITE(2,*)' 

CALLNULL(STIFF,ID1,ID1) 
CALLNULL(SMAS,ID1,ID1) 
CALLNULL(CSA,ID1,ID1) 
CALL NULL(SYSM,ID,ID) 
CALL NULL(SYSK,ID,ID) 

D010II=1,NFIXD*2 
NSUP(ll)=0 

10 CONTINUE 
FIXD=0 
DO20ll=1,NFIXD 

IF (NXSUP(II).NE.O) THEN 
NSUP(II*2-1)=NP0SS(II)'2-1 
FIXD-FIXD+1 

END IF 
IF (NYSUP(II).NE.O) THEN 
NSUP(ir2)=NPOSS(ll),,2 
FIXD=FIXD+1 

END IF 
20 CONTINUE 

All 



READ(1,*) E.RHO 

DO30LEM=1,LEMS 
WRITE(2,*) 

WRITE(2,111)LEM 
WRITE(2,*) 

111 FORMAT(' ELEMENT NUMBER',14,' UNDER COMPUTATION) 
READ(1,*)I, J,CSA(I,J) 

IF (I.EQ.J) G O T O 2000 
EL(I,J)=SQRT((X(J)-X(I))"2+(Y(J)-Y{I))**2) 
XL=EL(I,J) 
WRITE(2,7 THE ELEMENT BETWEEN NODES \I.J 
WRITE(2,*)' CROSS SECTIONAL AREA ', CSA(I,J) 
WRITE(2,*)' ELEMENTAL LENGTH \ EL(I,J) 

C=(X(J)-X(I))/XL 
S=(Y(J)-Y(I))/XL 
ST(1,1)=C"2 
ST(1,2)=C*S 
ST(1,3)=-C**2 
ST(1,4)=-C*S 
ST(2,1)=C*S 
ST(2,2)=S"2 
ST(2.3)=-C*S 
ST(2.4)=-S"2 
ST(3,1)=-C"2 
ST(3,2)=-C*S 
ST(3,3)=C"2 
ST{3,4)=C*S 
ST(4,1)=-C*S 
ST(4,2)=-S"2 
ST(4.3)=C*S 
ST(4,4)=S"2 

CN=CSA(l,J)*E0(L 
WRITE (2,*) 'ELEMENTAL STIFFNESS CONSANT :\CN 

WRITE (2.*) 

CALL SCPROD(ST,4,4,CN) 
CH=ELEMENTALSTIFFNESS MATRIX' 
CALL MATOUTF2(4,ST,CH,4) 

CALL NULL(SM,4,4) 
SM(1,1)=2.0 
SM(2,2)=2.0 
SM(3,3)=2.0 
SM(4,4)=2.0 
SM(1,3)=1.0 
SM(3,1)=1.0 
SM(2,4)=1.0 
SM(4,2)=1.0 

CN=RHO*CSA(I,J)*XL/6.0 
WRITE (2,*) 'ELEMENTAL MASS CONSTANT.CN 

CALL SCPROD(SM,4,4,CN) 

GOTO 2001 

2000 WRITE(2,*)'CONCENTRATED MASS ON NODE \i,CSA(l,J)*RHO 
SM(1,1)=CSA(l,J)*RHO 

SM(2,2)=CSA(l,J)'RHO 
SM(3,3)=0 
SM(4,4)=0 

2001 CH='ELEMENTAL MASS MATRIX' 

CALL MATOUTF2(4,SM,CH,4) 
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CALL ASSEMB(I,J,4,ST,STIFF,ID1) 
CALL ASSEMB(I,J,4,SM,SMAS,ID1) 

CALL NULL(ST,4,4) 
CALL NULL(SM,4,4) 

30 CONTINUE 

L1=1 
K=1 
D0 55ll=1,DOF 

IF (NSUP(K).NE.II) THEN 
D0 56J=1,DOF 
TEMPK(L1,J)=STIFF(II,J) 
TEMPM(L1,J)=SMAS(II,J) 

56 CONTINUE 
L1-L1+1 

ELSE 
K=K+1 

END IF 
55 CONTINUE 
L1=1 
K=1 
DO 5711=1,DOF 

IF (NSUP(K).NE.II) THEN 
D0 58J=1,DOF 
SYSK(J,L1)=TEMPK(J,II) 
SYSM{J,L1)=TEMPM(J,II) 

58 CONTINUE 
L1=L1+1 

ELSE 
K=K+1 

END IF 
57 CONTINUE 
DOF=DOF-FIXD 

CH=THE DOF OF THE TRUSS SYSTEM :' 
WRITE(3,*) CH, DOF 
CH=THE SYSTEM MASS MATRIX' 
CALL MATOUT(DOF,SYSM,CH,ID) 
CH=THE SYSTEM STIFFNESS MATRIX-
CALL MATOUT(DOF,SYSK,CH,ID) 
END 

SUBROUTINE NULL(A,M,N) 
REALA(M,N) 
DO 1 I-1.M 

D01 J=1,N 
A(I,J)=0.0 

1 CONTINUE 
RETURN 
END 

SUBROUTINE SCPROD(A,M,N,CN) 
REALA(M.N) 
D010I=1,M 

D010J=1,N 
A(I,J)=CN'A(I,J) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE ASSEMB(I,J,NDF2,ST,A,ID1) 
REAL A(ID1,ID1),ST(NDF2,NDF2) 



NDF-NDF2/2 
I1=NDF*I-NDF 
J1=NDF*J-NDF 
DO 10 11=1,2 

DO10JJ=1,2 
MM=I1+II 
MN=I1+JJ 
NM=J1+II 
N9=J1+JJ 
A(MM,MN)=A(MM,MN)+ST(II,JJ) 
A(NM,MN)=A(NM,MN)+ST(II+NDF,JJ) 
A(MM,N9)=A(MM,N9)+ST(II,JJ+NDF) 
A(NM,N9)=A(NM,N9)+ST(II+NDF,JJ+NDF) 

10 CONTINUE 
RETURN 
END 

SUBROUTINE MATOUTF2(N,A,CH,NP) 
CHARACTER CH*80 
REALA(NP.NP) 
WRITE(2,*)' - -
WRITE(2,33) CH 

33 FORMAT (1X.A80) 
WRITE(2,*)' -
WRITE(2,*) 
DO 333 11=1,N,6 
DO 222 1=1,N 
lll-H+5 

IF (III .GT. N) lll=N 
WRITE(2,555) (A(I,J),J=II,III) 

555 FORMAT (1X,8E20.8) 
222 CONTINUE 

WRITE(2,*) 
333 CONTINUE 

END 

SUBROUTINE EIGENSOL(SYSM,SYSK,DOF,ID,WN,RSPHI) 

PARAMETER(ID2=30) 
CHARACTER CH*80 
REALSYSM(ID,ID),SYSK(ID,ID),RSPHI(ID,ID),RLUMDA(ID2), 

+ RLUMDA1(ID2),WN(ID) 
COMPLEX A(ID2,ID2),B(ID2,ID2),XC(ID2,ID2),EIGV(ID2) 
INTEGER DOF 
OPEN(10,FILE='DATA1) 

CALLDAPREP(SYSK,SYSM,A,B,ID,ID2,DOF) 
CALL JACOBS(A,B,XC,EIGV,ID2,DOF) 
CALLUNDAMP(XC,EIGV,RSPHI,RLUMDA,ID,ID2,DOF) 
CALL EIGSRT(RLUMDA,RSPHI,ID2,DOF) 
CALL RESET(RLUMDA.RLUMDA1 ,ID2,DOF) 
CALLNATFREfWN.RLUMDAI.IDa.DOF.ID) 
CH= NATURALFREQ(Hz)' 

CALL VNOUT(WN,CH,ID,DOF) 
CH='THE MASS NORMALISED MODESHAPES ARE-

CALL MATOUT(DOF,RSPHI,CH,ID) 
WRITE(10,*)(WN(l)/2/3.14159,l=1,DOF) 
WRITE(10,*)((RSPHI(I,J),J=1 ,DOF),l=1 ,DOF) 
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END 

SUBROUTINE DAPREP(SYSK,SYSM,A,B,INP NP N) 
REAL SYSM(INP,INP),SYSK(INP,INP) 
COMPLEX A(NP,NP),B(NP,NP) 
DO 1 l=1,N 
DO 1 J=1,N 
A(l,J)=CMPLX(SYSK(I.J),0) 

1 B(l,J)=CMPLX(SYSM(I.J),0) 
END 

SUBROUTINE JACOBS(A,B.X,EIGV,NP,N) 
PARAMETER(NPS=257,NSMAX=70,RTOL=1E-8) 
REAL DE(NPS),TOL 
COMPLEX A(NP,NP),B(NP,NP),X(NP.NP),EIGV(NP),D(NPS) 
COMPLEX F,G,AA,BB,CC,D1 ,D2,AK,AJ,BK,BJ,DLT,XJ,XK,CMM 
DO110l=1,N 
IF (A(l.l).NE.O.ODO.AND.B(l,l).NE.O.ODO) G O T O 100 
STOP 

100 D(I)=A(I,I)/B(I,I) 
110 DE(I)=ABS(D(I)) 

DO 130 l=1,N 
DO120J=1,N 

120 X(l,J)=(0.0D0,0.0D0) 
130 X(I,I)=(1.0D0,0.0D0) 

IF (N.EQ.1) RETURN 
NSWEEP=0 
NR=N-1 

140 NSWEEP=NSWEEP+1 
EPS=(0.01 D0**NSWEEP)"2 

150 FORMAT(1X,'EPS=',D16.10) 
DO240J=1,NR 
JJ=J+1 
DO 240 K=JJ,N 
AJK=ABS(A(J,K)) 
AJJ=ABS(A(J,J)) 
AKK=ABS(A(K,K)) 
EPTOLK=AJK*AJK/AJJ*AKK 
BJK=ABS(B(J,K)) 
BJJ=ABS(B(J,J)) 
BKK=ABS(B(K,K)) 
EPTOLM=BJK*BJK/BJJ*BKK 
IF ((EPTOLK.LT.EPS).AND.(EPTOLM.LT.EPS)) G O T O 240 
AA=A(J,J)*B(J,K)-B(J,J)*A(J,K) 
CC=A(J,K)*B(K,K)-B(J,K)*A(K,K) 
BB=B(J,J)*A(K,K)-A(J,J)*B(K,K) 
DLT=BB*BB/4.0D0-AA*CC 
D1=BB/2.0D0-SQRT(DLT) 
D2=BB/2.0D0+SQRT(DLT) 
IF(ABS(D2)-ABS(D1)) 170,170,160 

160 F=CC/D2 
G=AA/D2 
GOTO 180 

170 F=CC/D1 
G=AA/D1 

180 IF (N-2.LE.0) G O T O 220 
JP1=J+1 
JM1=J-1 
KP1=K+1 
KM1=K-1 
DO 190 1=1,JM1 
AJ=A(I,J) 
AK=A(I,K) 
A(I,J)=AJ+G*AK 
A(I,K)=AK+F*AJ 
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BJ=B(I,J) 
BK=B(I,K) 
B(I,J)=BJ+G*BK 

190 B(I,K)=BK+F*BJ 
DO200l=KP1,N 
AJ=A(J,I) 
AK=A(K,I) 
A(J,I)=AJ+G*AK 
A(K,I)=AK+F*AJ 
BJ=B(J,I) 
BK=B(K,I) 
B(J,I)=BJ+G*BK 

200 B(K,I)=BK+F*BJ 
DO210l=JP1,KM1 
AJ=A(J,I) 
AK=A(I,K) 
A(J,I)=AJ+G*AK 
A(I,K)=AK+F*AJ 
BJ=B(J,I) 
BK=B(I,K) 
B(J,I)=BJ+G*BK 

210 B(I,K)=BK+F*BJ 
220 AJ=A(J,J) 

AK=A(K,K) 
A(J,J)=AJ+2*G*A(J,K)+AK*G*G 
A(K,K)=AK+2*F*A(J,K)+AJ*F'F 
A(J,K)=O.ODO 
BJ=B(J,J) 
BK=B(K,K) 
B(J,J)=BJ+2*G*B(J,K)+BK*G*G 
B(K,K)=BK+2*F*B(J,K)+BJ*F*F 
B(J,K)=O.ODO 
DO 230 1=1,N 
XJ=X(I,J) 
XK=X(I,K) 
X(I,J)=XJ+XK*G 

230 X(I,K)=XK+XJ*F 
240 C O N n N U E 

DO 250 1=1,N 
CAB=SQRT(B(I,I)) 
IF (CAB.EQ.0.0D0) STOP Z E R O DIAGONAL IN JACOBS' 

250 BGV(I)=A(I,I)/B(I,I) 
DO 260 1=1,N 
TOL=RTOL*DE(l) 
DE(I)=ABS(EIGV(I)-D(I)) 
IF (DE(I).GT.TOL) G O T O 310 

260 CONTINUE 
EPS=RTOL"2 
DO270J=1,NR 
JJ=J+1 
DO 270 K=JJ,N 
AJK=ABS(A(J,K)) 
AJJ=ABS(A(J,J)) 
AKK=ABS(A(K,K)) 
EPSK=AJK*AJK/AJJ*AKK 
BJK=ABS(B(J,K)) 
BJJ=ABS(B(J,J)) 
BKK=ABS(B(K,K)) 
EPSM=BJK*BJK/BJJ*BKK 
IF (EPSK.GT.EPS.OR.EPSM.GT.EPS) G O T O 310 

270 CONTINUE 
280 D O 290 1=1, N 

DO290J=1,N 
B(J,I)=B(I,J) 

290 A(J,I)=A(I,J) 
DO300J=1,N 
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DO300K=1,N 
300 X(K,J)=X(K,J)/CMM 

RETURN 
310 CONTINUE 

DO 320 1=1,N 
D(I)=EIGV(I) 

320 DE(I)=ABS(D(I)) 
IF (NSWEEP.LT.NSMAX) GOTO 140 
GOTO 280 

330 FORMAT(25HO"* ERROR SOLUTION STOP ) 
END 

SUBROUTINE UNDAMP(XC,EIGV,RSPHI,RLUMDA,ID,ID2,N) 
REAL RSPHI(ID,ID),RLUMDA(ID2) 
COMPLEX XC(ID2,ID2),EIGV(ID2) 
D0 2I=1,ID2 

2 RLUMDA(l)=0 
DO 1 1=1,N 
RLUMDA(I)=REAL(EIGV(I)) 
DO 1 J=1,N 
RSPHI(I,J)=REAL(XC(I,J)) 

1 CONTINUE 
END 

SUBROUTINE EIGSRT(D,V,NP,N) 
REAL D(NP),V(NP,NP) 
DO 13 1=1,N-1 

K=l 
P=D(I) 
DO 11 J=I+1,N 
IF(D(J).LE.P)THEN 
K=J 
P=D(J) 

ENDIF 
11 CONTINUE 

IF(K.NE.I)THEN 
D(K)=D(I) 
D(I)=P 
D012J=1,N 
P=V(J,I) 
V(J,I)=V(J,K) 
V(J,K)=P 

12 CONTINUE 
ENDIF 

13 CONTINUE 
RETURN 
END 

SUBROUTINE RESET(RLUMDA,RLUMDA1,NP,N) 
REAL RLUMDA(NP),RLUMDA1(NP) 
DO 1 1=1,N 
RLUMDA1(I)=RLUMDA(I) 
IF (ABS(RLUMDA(l+1)/RLUMDA(l)).GT1E+4) THEN 
D0 2J=1,I 

2 RLUMDA1(J)=0 
ENDIF 

1 CONTINUE 
END 

SUBROUTINE NATFRE(WN,RLUMDA1,NP,N,ID) 
REAL WN(ID),RLUMDA1 (NP) 
DO 1 1=1,N 

1 WN(I)=SQRT(RLUMDA1(I)) 
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END 

SUBROUTINE MATOUT(N,A,CH,NP) 
CHARACTER CH*80 
REAL A(NP.NP) 
WRITE(3,*)' • 
WRITE(3,33) CH 

33 FORMAT (1X.A80) 
WRITE(3,*)' - - • 
WRITE(3,*) 
DO 333 11=1,N,6 
DO 222 1=1,N 
IIWI+5 

IF (III .GT. N) lll=N 
WRITE(3,555) (A(I,J),J=II,III) 

555 FORMAT (1X.8E20.8) 
222 CONTINUE 

WRITE(3,*) 
333 CONTINUE 

IF(CH.EQ.THE MASS NORMALISED MODESHAPES ARE) 
+ WRITE(3,*)'—- END OF RESULTS OUTPUT --' 

RETURN 
END 

SUBROUTINE VNOUT(A,CH,NP,N) 
CHARACTER CH*80 
REAL A(NP) 
WRITE(3,*)' ' 

WRITE(3,100) CH 
100 FORMAT (1X,A80) 

WRITE(3,*)' - ' 
WRITE (3,*) 
DO 1 1=1, N 
WRITE(3,110) l,CH,A(l)/2/3.14159 

110 FORMAT(1X,'MODE',l2,A12,' = \F25.8) 
1 CONTINUE 

END 

SUBROUTINE SDM(CSA,EL,WN,RSPHI,X,Y,DOF,ID,SM) 

PARAMETER(ID3=30) 
CHARACTER CHM*80,CH*80,SM*12,WM*12 
REALRSPHI(ID,ID),WN(ID),CSA(ID,ID),EL(ID,ID),X(ID),Y(ID) 
REALDM(ID3,ID3),DK(ID3,ID3),RMF(ID3.ID3),ALF(ID3,ID3), 

+ A(ID3,ID3),B(ID3,ID3),H(ID3,ID3),AUX(ID3,ID3), 
+ WR(ID3),WI(ID3) 
INTEGER DOF 
DIMENSION IR(ID3).JR(ID3),NONM(ID3) 
OPEN(4,FILE='SYSTEM.TRUSS.MODIF.DAT) 
OPEN(5,FILE=TRUSS.MODIF.RES') 

READ(4,*) SM 
READ(4,*) W M D 
WRITE(5,*) 
WRITE(5,7 ## THE RESULTS FILE OF truss.sdm.ftn ## ' 
WRITE(5,*) 

CHM=THE FIRST FIVE NATURAL FREQUENCIES' 
CH ='NATURAL FREQUENCY 

WRITE(5.*)' ' 
WRITE(5,173)CHM 
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173 FORMAT (1X.A80) 
WRITE(5,*)' • 
WRITE (5,*) 
DO 81 1=1,5 
WRITE(5,183)l,CH,WN(l)/2/3.14159 

183 FORMAT(1X,'MODE',l2,A17,' = ' F10 4) 
81 CONTINUE 

WRITE(5,*) 
WRITE(5,7 
WRITE(5,185)WMD 

185 FORMAT(1X,DESIRED NATURAL FREQUENCY (Hz) ' F104) 
WRITE(5,*) 
WRITE(5,*) 
WRITE(5,7 " " ** 
WRITE(5,7 STRUCTURAL PARAMETER FOR MODIFICATION" 
WRITE(5,*) 'CROSS SECTIONAL AREA OR/AND CONCENTRATED MASS' 
WRITE(5,*) 
WMD=WMD*2*3.14159 

CALLBUILD1(DM,DK,EL,X,Y,IR,JR,RMF,NONM,ID 
+ ,ID3,WMD,NMDOF,LEMS,MNOD) 
CALLRECPTNCE(WN,RSPHI,ALF,IR,JR,ID,ID3,WMD,DOF,NMDOF) 
CALLFORMH(DK,DM,A,B,H,ALF,AUX,IR,JR,NMDOF,ID3) 
CALL ELMHES(AUX,NMDOF,ID3) 
CALL HQR(AUX,NMDOF,ID3,WR,WI) 
CALLRWM(CSA,RMF,WR,WI,NONM,NMDOF,LEMS,MNOD,ID,ID3) 
END 

SUBROUTINE BUILD1(DM,DK,EL.X,Y,IR,JR,RMF 
+ ,NONM,ID,ID3,WMD,NMDOF,LEMS,MNOD) 

PARAMETER(ID4=30) 
CHARACTER CH4*80 
REAL EL(ID,ID),X(ID),Y(ID) 
REALDM(ID3,ID3),DK(ID3,ID3),RMF(ID3,ID3) 
DIMENSION IR(ID3),JR(ID3),NONM(ID3) 

REALSTIFF(ID4,ID4),SMAS(ID4,ID4),SM(4,4),ST(4,4), 
+ TEMPK(ID4,ID4),TEMPM(ID4,ID4) 
DIMENSION NSUP(ID4),NPOSS(ID4),IR1(ID4),IR2(ID4),IR3(ID4), 
+ NXSUP(ID4),NYSUP(ID4) 
INTEGER FIXD.EFIX 
READ(4,') MNOD.LEMS.NFIXD 
WRITE(5,*) 
WRITE(5,7 " " ". 
WRITE(5,7 NODES INVOLEVED IN MODIFICATION '; MNOD 
WRITE(5,7 ELEMENTS INVOLVED IN MODIFICATION...', LEMS 
NMDOF=MNOD*2 
CALL NULL(STIFF,ID4,ID4) 
CALL NULL(SMAS,ID4,ID4) 
CALL NULL(RMF,ID3,ID3) 
CALL NULL(DK,ID3,ID3) 
CALL NULL(DM,ID3,ID3) 
D01000 IM=1,MNOD 

1000 READ(4,*) NONM(IM) 
D0 82II=1,NFIXD 

82 READ(4,*) NP0SS(ll).NXSUP(ll),NYSUP(ll) 
DO 1006 IDM=1,2*MNOD 
IR1(IDM*2-1)=2*NONM(IDM)-1 
IR1(IDM*2)=2*NONM(IDM) 

1006 IR2(IDM)= IR1(IDM) 
DO 1011=1,104 

NSUP(ll)=0 
10 CONTINUE 
FIXD=0 
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DO20ll=1,NFIXD 
IF(NXSUP(ll).NE.O) THEN 
NSUP(il*2-1)=NPOSS(ll)*2-1 
FIXD=FIXD+1 

ENDIF 
IF(NYSUP(ll).NE.O) THEN 
NSUP(ll*2)=NPOSS(ll)*2 
FIXD=FIXD+1 

END IF 
20 CONTINUE 
DO 1001 IRE=1,2*MNOD 
DO 1001 ll=1,2*NFIXD 
IF (NSUP(II).NE.0.AND.IR2(IRE).GE.NSUP(II)) THEN 
IR1(IRE)=IR1(IRE)-1 

ENDIF 
1001 CONTINUE 

EFIX=0 
DO1002IRE=1,2*MNOD 
IF(IR1(IRE).EQ.0)THEN 
EFIX=EFIX+1 

ENDIF 
1002 CONTINUE 

NMDOF=2*MNOD-EFIX 
IJD=1 
DO 1003 U=1,NMDOF 
DO 1004 IRE=IJD,2*MNOD 

IF (IRI(IRE).NE.O) THEN 
IJD=IRE+1 
GOTO 1005 
ENDIF 

1004 CONTINUE 
1005 IR(IJ)=IR1(IRE) 

JR(IJ)=IR(IJ) 
1003 CONTINUE 

READ(4,*) E.RHO 
WRITE(5,*) 
WRITE(5,*) 

WRITE(5,7 " ** ** 
DO40LEM=1,LEMS 

WRITE(5,*) 
WRITE(5,7 ' 

WRITE(5,111)LEM 
111 FORMATf MODIFIED ELEMENT NO. ',14) 

READ(4,*) I, J,RMF(NONM(l),NONM(J)) 
IF(I.EQ.J) GOTO 3000 
WRITE(5,7 ELEMENT BETWEEN NODES -,NONM(l),', ',NONM(J) 
WRITE(5,7- - ' 
ER=RMF(NONM(l),NONM(J)) 
XL=EL(NONM(l),NONM(J)) 
WRITE(5,7ELEMENTAL RATIO OF MODIFI. :\ER 
WRITE(5,7LENGTH OF ORIGINAL ELEMENT :',XL 
C={X(NONM(J))-X(NONM(l)))/XL 

S=(Y(NONM(J))-Y(NONM(l)))/XL 

ST(1,1)=C"2 
ST(1,2)=C*S 
ST(1,3)=-C"2 
ST(1,4)=-C*S 
ST(2,1)=C*S 
ST(2,2)=S"2 
ST(2,3)=-C*S 
ST(2,4)=-S"2 
ST(3,1)=-C"2 
ST(3,2)=-C*S 
ST(3,3)=C*'2 
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ST(3,4)=C*S 
ST(4,1)=-C*S 
ST(4,2)=-S"2 
ST(4,3)=C*S 
ST(4,4)=S**2 

CN=ER*E/XL 
CALL SCPROD(ST,4,4,CN) 

CALL NULL(SM,4,4) 
SM(1,1)=2.0 
SM(2,2)=2.0 
SM(3,3)=2.0 
SM(4,4)=2.0 
SM(1,3)=1.0 
SM(3,1)=1.0 
SM(2,4)=1.0 
SM(4,2)=1.0 

CN=WMD"2*ER*RHO*XL/6.0 
CALL SCPROD(SM,4,4,CN) 

GOTO 3001 

3000 SM(1,1)=WMD**2*RHO*RMF(NONM(l),NONM(J)) 
SM(2,2)=WMD"2*RHO*RMF(NONM(l),NONM(J)) 
SM(3,3)=0 
SM(4,4)=0 

3001 CALL ASSEMB(I,J,4,ST,STIFF,ID4) 
CALL ASSEMB(I,J,4,SM,SMAS,ID4) 

CALL NULL(ST,4,4) 
CALL NULL(SM,4,4) 

40 CONTINUE 

LR=1 
KR=1 
DO50ll=1,MNOD*2 

IF (NSUP(KR).NE.IR2(II)) THEN 
DO60J=1,MNOD*2 
TEMPK(LR,J)=STIFF(II,J) 

TEMPM(LR,J)=SMAS(II,J) 
60 CONTINUE 

LR=LR+1 
ELSE 
KR=KR+1 

ENDIF 
50 CONTINUE 

LR=1 
KR=1 
DO70ll=1,MNOD*2 

IF (NSUP(KR).NE.IR2(II)) THEN 
DO80J=1,MNOD*2 
DK(J,LR)=TEMPK(J,II) 
DM(J,LR)=TEMPM(J.II) 

80 CONTINUE 
LR=LR+1 

ELSE 
KR=KR+1 

ENDIF 
70 CONTINUE 
END 

SUBROUTINE PROD(A,B,M,N,CN) 
REAL A(M,N),B(M,N) 
DO 1 I.1.M 
DO 1 J=1,N 



1 A(l,J)=0 
D 0 2I=1,M 
D 0 2J=1,N 

2 A(I,J)=B(I,J)*CN 
END 

SUBROUTINE MATOUTF5(N,A,CH,NP) 
CHARACTER CH*80 
REALA(NP.NP) 
WRITE(5,*)-
WRITE(5,33) CH 

33 FORMAT (1X.A80) 
WRITE(5,V-
WRITE(5,*) 
DO 333 11=1,N,6 
DO 222 1=1,N 
IIUII+5 

IF (III .GT. N) lll=N 
WRITE(5,555) (A(I,J),J=II,III) 

555 FORMAT (1X.8E20.8) 
222 CONTINUE 

WRITE(5,*) 
333 CONTINUE 

END 

SUBROUTINE RECPTNCE(B,C,ALF,IR,JR,ID,ID3,OME,DOF,NMDOF) 
INTEGER DOF 
REAL B(ID),C(ID,ID),ALF(ID3,ID3) 
DIMENSION IR(ID3),JR(ID3) 
D0 1 N2=1,NMDOF 
DOI N3=1,NMDOF 
ALF(IR(N2),JR(N3))=0 
D0 2N4=1,DOF 
ALF(IR(N2),JR(N3))=ALF(IR(N2),JR(N3))+ 

+ C(IR(N2),N4)*C(JR(N3),N4)/(B(N4)*B(N4)OME*OME) 
2 CONTINUE 
1 CONTINUE 

END 

SUBROUTINE FORMH(DK,DM,A,B,H,ALF,AUX,IR,JR,NMDOF,ID3) 
REALDM(ID3,ID3),DK(ID3,ID3),ALF(ID3,ID3),A(ID3,ID3), 
+ B(ID3,ID3),H(ID3,ID3),AUX(ID3,ID3) 
DIMENSION IR(ID3),JR(ID3) 
DO 1 l=1,NMDOF 
DO 1 J=1,NMDOF 

1 H(I,J)=ALF(IR(I),JR(J)) 
CALL MUL(H,DK,A,NMDOF,ID,ID3) 
CALL MUL(H,DM,B,NMDOF,ID,ID3) 
D0 2l=1,NMDOF 
D0 2J=1,NMDOF 

2 AUX(I,J)=B(I,J)-A(I,J) 

RETURN 
END 

SUBROUTINE MUL(H,SIG,C,NMDOF,ID,ID3) 

REALH(ID3,ID3),SIG(ID3,ID3),C(ID3,ID3) 
D0 2I=1,NMDOF 
D0 2J=1,NMDOF 

2 C(l,J)=0 
DO 1 l=1,NMDOF 
DO 1 J=1,NMDOF 
DO 1 K=1,NMDOF 
C(I,J)=C(I,J)+H(I,K)*SIG(K,J) 

1 CONTINUE 
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END 

SUBROUTINE RWM(CSA,RMF,WR,WI,NONM,NMDOF,LEMS MNOD ID 
PARAMETER(ID7=30) 
REALCSA(ID,ID),RMF(ID3,ID3),WR(ID3),WI(ID3) 
REAL CSAM(ID7,ID7) 
DIMENSION NONM(ID3) 

CALL NULL(CSAM,ID7,ID7) 
WRITE(5,*) 
WRITE(5,*) 

WRITE(5,*)' "* THE MODIFICATION RESULTS "* 
D0 2l=1,NMDOF 

C=0 
D0 1 11=1,MNOD 
DO 1 J1 =11, MNOD 
IF(WI(I).EQ.O.AND.RMF(NONM(I1),NONM(J1)).NE.O)THEN 
IF(WR(I).NE.O.AND.ABS(RMF(NONM(I1),NONM(J1))/WR(I))/ 

+ (CSA(NONM(I1),NONM(J1))+1E-10).LE.100) THEN 
IF ((RMF(NONM(l 1 ),NONM(J 1 ))/WR(l)+ 

+ CSA(NONM(I1),NONM(J1))).GT.O) THEN 
CSAM(NONM(l1),NONM(J1))=RMF(NONM(l1),NONM(J1))/WR(l)+ 

+ CSA(NONM(l1),NONM(J1)) 
C=C+1 
ENDIF 
ENDIF 
ENDIF 

1 CONTINUE 
IF (C.EQ.LEMS) THEN 

WRITE(5,*) 
WRITE(5,7~ -

WRITE(5,184) 
WRITE(5,7 -

WRITE(5,*) 
184 FORMAT(1X,' NODE',' NODE',' ORIGINAL O S A ' 

+,' MODIFIED C.S.A.) 

DO 3 11=1,MNOD 
DO 3 J1 =11,MNOD 
IF (CSAM(NONM(I1),NONM(J1)).NE.O) THEN 
WRITE(5,183)NONM(H),NONM(J1),CSA(NONM(l1),NONM(J1)) 

+,CSAM(NONM(l1),NONM(J1)) 
183 FORMAT(1X,I8,I8,E20.4.E20.4) 

ENDIF 
3 CONTINUE 

GOTO 2 
ENDIF 

2 CONTINUE 
END 

SUBROUTINE ELMHES(A,N,NP) 

REALA(NP.NP) 
D017M=2,N-1 
X=0. 
I=M 
DO 11 J=M,N 
IF(ABS(A(J.M-1)).GT.ABS(X))THEN 
X=A(J,M-1) 
l=J 

ENDIF 
11 CONTINUE 

IF(I.NE.M)THEN 
D0 12J=M-1,N 
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Y=A(I,J) 
A(I,J)=A(M,J) 
A(M,J)=Y 

12 CONTINUE 
DO 13J=1,N 
Y=A(J,I) 
A(J,I)=A(J,M) 
A(J,M)=Y 

13 CONTINUE 
ENDIF 
IF(X.NE.O.)THEN 
D 0 16UM+1.N 
Y=A(I,M-1) 
IF(Y.NE.O.)THEN 
Y=Y/X 
A(I,M-1)=Y 
D 0 14J=M,N 
A(I,J)=A(I,J)-Y*A(M,J) 

14 CONTINUE 
D 0 15J=1,N 
A(J,M)=A(J,M)+Y*A(J,I) 

15 CONTINUE 
ENDIF 

16 CONTINUE 
ENDIF 

17 CONTINUE 
RETURN 
END 

SUBROUTINE HQR(A,N,NP,WR,WI) 

REALA(NP.NP) 
REAL WR(NP),WI(NP) 
ANORM=ABS(A(1,1)) 
D0 12I=2,N 
D011 J=I-1,N 
ANORM=ANORM+ABS(A(l,J)) 

11 CONTINUE 
12 CONTINUE 

NN=N 
T=0. 

1 IF(NN.GE.1)THEN 
ITS=0 

2 DO 13 L=NN,2,-1 
S=ABS(A(L-1,L-1))+ABS(A(L,L)) 
IF(S.EQ.0.)S=ANORM 
IF(ABS(A(L,L-1))+S.EQ.S)GO TO 3 

13 CONTINUE 
L=1 

3 X=A(NN,NN) 
IF(LEQ.NN)THEN 
WR(NN)=X+T 
WI(NN)=0. 
NN=NN-1 

ELSE 
^=A(NN-1,NN-1) 
W=A(NN,NN-1)*A(NN-1,NN) 
IF(LEQ.NN-1)THEN 
P=0.5*(Y-X) 
Q=P"2+W 
Z=SQRT(ABS(Q)) 
X=X+T 
IF(Q.GE.0.)THEN 
Z=P+SIGN(Z,P) 
WR(NN)=X+Z 
WR(NN-1)=WR(NN) 
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IF(Z.NE.O.)WR(NN)=X-W/Z 
WI(NN)=0. 
WI(NN-1)=0. 

ELSE 
WR(NN)=X+P 
WR(NN-1)=WR(NN) 
WI(NN)=Z 
WI(NN-1)=-Z 

ENDIF 
NN=NN-2 

ELSE 
IF(ITS.EQ.30)PAUSE too many iterations' 
IF(ITS.EQ.10.OR.ITS.EQ.20)THEN 
T=T+X 
D 0 14I=1,NN 
A(I,I)=A(I,I)-X 

14 CONTINUE 
S=ABS(A(NN,NN-1))+ABS(A(NN-1,NN-2)) 
X=0.75*S 
Y=X 
W=-0.4375*S"2 

ENDIF 
ITS-ITS+1 
DO 15 M=NN-2,L,-1 
Z=A(M,M) 
R=XZ 
S=Y-Z 
P=(R*S-W)/A(M+1,M)+A(M,M+1) 
Q=A(M+1,M+1)-Z-R-S 
R=A(M+2,M+1) 
S=ABS(P)+ABS(Q)+ABS(R) 
P=P/S 
Q=Q/S 
R=R/S 
IF(M.EQ.L)GO TO 4 
U=ABS(A(M,M-1 ))*(ABS(Q)+ABS(R)) 
V=ABS(P)*(ABS(A(M-1,M-1))+ABS(Z)+ABS(A(M+1,M+1))) 
IF(U+V.EQ.V)GO TO 4 

15 CONTINUE 
4 DO 16 l=M+2,NN 

A(l,l-2)=0. 
IF (I.NE.M+2) A(l,l-3)=0. 

16 CONTINUE 
DO 19 K=M,NN-1 
IF(K.NE.M)THEN 
P=A(K,K-1) 
Q=A(K+1,K-1) 
R=0. 
IF(K.NE.NN-1)R=A(K+2,K-1) 
X=ABS(P)+ABS(Q)+ABS(R) 
IF(X.NE.O.)THEN 
P=P/X 
Q=QO< 
R=R^< 

ENDIF 
ENDIF 
S=SIGN(SQRT(P"2+Q"2+R"2),P) 
IF(S.NE.O.)THEN 
IF(K.EQ.M)THEN 
IF(LNE.M)A(K.K-1)=-A(K,K-1) 

ELSE 
A(K,K-1)=-S*X 

ENDIF 
P=P+S 
X=P/S 
Y=Q/S 
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Q=Q/P 
R=R/P 
D 0 17J=K,NN 
P=A(K,J)+Q*A(K+1,J) 
IF(K.NE.NN-1)THEN 
P=P+R*A(K+2,J) 
A(K+2,J)=A(K+2,J)-P*Z 

ENDIF 
A(K+1,J)=A(K+1,J)-P*Y 
A(K,J)=A(K,J)-P*X 

7 CONTINUE 
D O 18 l=L,MIN(NN,K+3) 
P=X*A(I,K)+Y*A(I,K+1) 
IF(K.NE.NN-1)THEN 
P=P+Z*A(l,K+2) 
A(l,K+2)=A(l,K+2)-P*R 

ENDIF 
A(I,K+1)=A(I,K+1)-P*Q 
A(I.K)=A(I,K)-P 

18 CONTINUE 
ENDIF 

19 CONTINUE 
G O T O 2 

ENDIF 
ENDIF 
GOT0 1 
ENDIF 
RETURN 
END 

C -END OF PROGRAM-



APPENDIX IV 

1 % cat TRUSS.DAT 
14 

1 
14 

0 
1 
1 
2 
2 
3 
3 
4 
4 1 
5 
5 
6 
6 
7 

68E9 

1 
1 
2 
2 
2 
3 
3 
4 
4 
4 
5 
5 
6 
6 
6 
7 
7 
8 
8 
8 
9 
9 
10 
10 
10 
11 
11 
12 
12 
13 
6 
8 

32 

1 
1 

0 
0 
1 
0 
1 
0 
1 
0 

0 
1 
0 
1 
0 

2.8E3 

2 
3 
3 
4 
5 
4 
5 
5 
6 
7 
6 
7 
7 
8 
9 
8 
9 
9 
10 
11 
10 
11 
11 
12 
13 
12 
13 
13 
14 
14 
6 
8 

2 

1 
1 

19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
19.7E-4 
1E-02 
1E-02 

(No. of nodes, No. of elements, No. of fixed nodes) 

(fixed nodes) 

(geometrical data) 

(E modulus, desity) 

(connectivity, cs.a.) 

end of file TRUSS.DAT — 
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2 % cat SYSTEM.TRUSS.MODIF.DAT 

T 

80 

4 6 

4 
5 
6 
7 

1 
14 

2 

1 
1 

1 
1 

(performing sdm) 

(desired natrual frequency) 

(No. of nodes, elements and fixed node involes modification) 

(nodes topology) 

(fixed d.o.f) 

68E9 2.8E3 (E modulus, density) 

(connectivity, element part, ratio) 1 
1 
1 
2 
2 
3 

2 
3 
4 
3 
4 
4 

2 
1 

2 
1 
2 
1 

~ end of file SYSTEM.TRUSS.MODIF.DAT 

3 % truss.sdm.bin 

ELEMENTAL RESULTS IN TRUSS.OUT 
GLOBAL RESULTS & EIGEN SOLUTION IN SYSTEM.TRUSS.RESU 
PERFORM STRUCUTRAL DYNAMIC MODIFICATION? (Y/N) 
Y 
MODIFICATION RESULTS IN TRUSS.MODIF.RES 

4 % cat TRUSS.MODIF.RES 

## THE RESULTS FILE OF truss.sdm.ftn ## 

THE FIRST FIVE NATURAL FREQUENCIES (Hz) 

MODE 1 NATURAL FREQUENCY = 44.6858 
MODE 2NATURAL FREQUENCY = 110.5648 
MODE 3NATURAL FREQUENCY = 182.4096 
MODE 4NATURAL FREQUENCY = 246.6581 
MODE 5NATURAL FREQUENCY = 341.1596 

DESIRED NATURAL FREQUENCY (Hz) 80.0000 

STRUCTURAL PARAMETER FOR MODIFICATION: 
CROSS SECTIONAL AREA OR/AND CONCENTRATED MASS 

NODES INVOLEVED IN MODIFICATION 4 
ELEMENTS INVOLVED IN MODIFICATION... 6 
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MODIFIED ELEMENT NO. 1 
ELEMENT BETWEEN NODES 4. 5 

ELEMENTAL RATIO OF MODIFI. : 2.000000 
LENGTH OF ORIGINAL ELEMENT : 1.000000 

MODIFIED ELEMENT NO. 2 
ELEMENT BETWEEN NODES 4, 6 

ELEMENTAL RATIO OF MODIFI. : 1.000000 
LENGTH OF ORIGINAL ELEMENT : 1.000000 

MODIFIED ELEMENT NO. 3 
ELEMENT BETWEEN NODES 4, 7 

ELEMENTAL RATIO OF MODIFI. : 2.000000 
LENGTH OF ORIGINAL ELEMENT : 1.414214 

MODIFIED ELEMENT NO. 4 
ELEMENT BETWEEN NODES 5, 6 

ELEMENTAL RATIO OF MODIFI. : 1.000000 
LENGTH OF ORIGINAL ELEMENT : 1.414214 

MODIFIED ELEMENT NO. 5 
ELEMENT BETWEEN NODES 5, 7 

ELEMENTAL RATIO OF MODIFI. : 2.000000 
LENGTH OF ORIGINAL ELEMENT : 1.000000 

MODIFIED ELEMENT NO. 6 
ELEMENT BETWEEN NODES 6. 7 

ELEMENTAL RATIO OF MODIFI. : 1.000000 
LENGTH OF ORIGINAL ELEMENT : 1.000000 

* THE MODIFICATION RESULTS *" 

NODE NODE ORIGINAL C.S.A. MODIFIED C.S.A. 

4 
4 
4 
5 
5 
6 

5 
6 
7 
6 
7 
7 

0.1970E-02 
0.1970E-02 
0.1970E-02 
0.1970E-02 
0.1970E-02 
0.1970E-02 

0.2799E-01 
0.1498E-01 
0.2799E-01 
0.1498E-01 
0.2799E-01 
0.1498E-01 

NODE NODE ORIGINAL C.S.A. MODIFIED C.S.A. 

4 
4 
4 
5 
5 
6 

5 
6 
7 
6 
7 
7 

0.1970E-02 
0.1970E-02 
0.1970E-02 
0.1970E-02 
0.1970E-02 
0.1970E-02 

0.1043E+00 
0.5315E-01 
0.1043E+00 
0.5315E-01 
0.1043E+00 
0.5315E-01 
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