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SUMMARY 

SUMMARY 

This study extends the Evolutionary Structural Optimization (ESO) method for 

application to multi-storey buildings. The objective is to find the optimal 

topologies of multi-storey buildings subject to overall stiffness or displacement 

constraints. It emphasizes the derivation of a methodology to help the structural 

designers to choose the optimal topology among many topologies that are 

generated during the evolutionary optimization process. Other problems of the 

E S O method such as the termination condition, sharp change in structural mean 

compliance or constrained displacements are also investigated. 

The new added features provide the ESO method with the capability of dealing 

with structures containing different types of finite elements. For the structure 

being considered, only continuum elements are allowed to be removed during 

the optimization process while beam elements are assumed to be fixed and are 

referred to as a non-design domain. By having all the topologies with the same 

weight as the initial structure, the performance of these topologies can be 

evaluated by comparing the mean compliance or constrained displacements. 

The results of this study show the extended ESO method can effectively find 

efficient bracing systems for multi-storey buildings. 
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CHAPTER /• INTRODUCTION 

C H A P T E R 1: INTRODUCTION 

1.1 STRUCTURAL OPTIMIZATION 

Structural optimization aims to find the best design for a loaded structure which 

has the minimum weight or cost, while satisfying the requirements of strength, 

stiffness, stability and functionality. It is motivated by the growing realization 

of the scarcity of natural resources. In general, it is desirable that every design 

should be optimized. For example, a car must be designed such that minimum 

fuel consumption is achieved while maintaining the highest performance, an 

aeroplane is designed in such a way that it costs the least for material or capital 

while it maintains good in-flight performance during its lifetime. Structural 

optimization can be divided into three main categories, namely, size, shape and 

topological optimization. Among them, topological structural optimization is 

considered the most challenging because the topology and shape of the 

structure are both changed during the optimization process. Topological 

structural optimization will seek the pattern or the configuration of structural 

components which form an optimal structure. 

In the building industry, the task of integrating structural optimization into a 

building design is an issue of significant concern. A typical building structure 

contains columns, beams and shear-walls. The sizes and locations of these 

elements need to be determined during the design process. Because of the 

complexity of the overall behaviour of multi-storey building structures, finite 

element method (FEM) is usually used for the structural analysis. 
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CHAPTER I- INTRODUCTION 

The evolutionary structural optimization (ESO) method introduced by Xie and 

Steven (1997) effectively bridges the gap between Finite Element Analysis 

(FEA) and structural optimization. In the E S O method, the structural 

optimization is carried out in an iterative manner based on the simple idea of 

systematically removing inefficient elements, with the result that the residual 

structure evolves toward an optimum. Currently, the E S O method has been 

developed to solve those structural optimization problems which are subject to 

overall stiffness, displacement, frequency and buckling constraints. 

In the ESO method, by removing inefficient elements, there are a series of 

topologies generated during the evolution. The problems of choosing the 

optimal topology and appropriate termination condition become important. 

Additionally, sharp changes in the constrained function values are often 

encountered during the iterations. These shortcomings of the E S O method have 

been considered in the related research of the E S O method. Chu et. al. (1996) 

used a prescribed volume limit as the termination condition in the optimization 

process. In this technique, the structural optimization process is terminated 

when the ratio of the volume of the current structure to that of the initial 

structure reaches a prescribed limit. This termination condition is quite 

arbitrary because it cannot guarantee the optimal structure is reached in the 

process. Liang (2001) introduced the Performance Index to monitor the 

performance of topologies generated and terminated the process when the 

performance of the current structure is worse than that of the initial structure. 

This method is very efficient for generating the optimal topology and load 
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CHAPTER I- INTRODUCTION 

carrying mechanism of two-dimensional (2D) structures. The applicability of 

this method, however, is limited to 2D structures because of the basic 

assumption that the global stiffness matrix is a linear function of the design 

variables. 

The purpose of this thesis is to extend the ESO method for applications to 

multi-storey building structures. Weaknesses in the ESO method such as the 

termination conditions, the sharp changes in the constrained function values 

and maintenance of structural symmetry are examined. A review of current 

literature identifies a lack of application of structural optimization to practical 

building structures, particularly to three-dimensional (3D) structures. 

A multi-storey steel frame building is considered in this thesis. The steel frame 

is a 2D plane frame structure. Two topological structural optimization problems 

will be carried out to determine the optimal bracing system for the building: (1) 

for the overall stiffness constraint subject to multiple lateral load cases; (2) for 

the top deflection constraint subject to multiple lateral load cases. An example 

of 3D frame is also considered. 
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CHAPTF.R /• INTRODUCTION 

1.2 AIMS OF RESEARCH 

The aim of the thesis is to extend the ESO method to multi-storey buildings 

with stiffness and displacement constraints. The model of the building contains 

a combination of beams and continuum elements under multiple cases of lateral 

loading. 

In order to achieve this general aim, the following specific aims are considered: 

• Review the existing methods of structural optimization, their advantages, 

disadvantages and difficulties when applied to solve practical problems. 

Study topological optimization in detail. Particular attention will be paid to 

the Evolutionary Structural Optimization (ESO) method. 

• Derive an algorithm to determine the optimal topology among the whole 

series of topologies generated during the evolutionary optimization process. 

Based on the algorithm the termination condition of the procedure will be 

derived. 

• Derive an algorithm to handle sharp changes in constrained function values. 

• Develop a program to carry out the structural optimization automatically. 

This program will use the output data of the finite element analysis package 

STRAND6™. 
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CHAPTER I- INTRODUCTION 

• Test the program on several simple topological structural optimization 

problems and compare optimal topologies with previous results in the 

literature. 

• Apply the topological structural optimization technique to multi-storey 

buildings and determine the optimal topologies subject to overall stiffness 

or displacement constraints under multiple load cases. 

1.3 SIGNIFICANCE OF THE RESEARCH 

In this research, the ESO method is extended and is applied to multi-storey 

buildings subject to overall stiffness or displacement constraints. This 

extension has not been satisfactorily investigated in the discipline of structural 

optimization. The outcome of this research will make a contribution to building 

structural design in particular and the application of structural optimization in 

general. 

1.4 LAYOUT OF THESIS 

This thesis consists of seven chapters: 

• Chapter 2: Literature review. A review of the development and application 

of structural optimization methods will be presented. Topological 

optimization will be examined in more detail. Particular attention will be 

focused on the Evolutionary Structural Optimization (ESO) method. 
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CHAPTFR 1- INTRODUCTION 

Chapter 3: The extended ESO method for overall stiffness constraint. An 

extended ESO method for continuum topology optimization subject to 

overall stiffness constraint is developed. Concepts and definitions of the 

proposed method will be introduced. The issues related to the extended 

ESO method such as the termination condition, choosing optimal topology 

and sharp change in constrained function values will be addressed and 

handled. Several numerical examples including a 3D structure will also be 

presented to demonstrate the effectiveness of the method. 

Chapter 4: The extended ESO method for multi-storey frame buildings 

subject to overall stiffness constraint. The proposed method will be applied 

to a multi-storey steel frame subject to overall stiffness constraint. The 

structural optimization problem is to determine an efficient bracing system 

for the frame under multiple lateral load cases. The issue of maintaining 

structural symmetry will be also considered. 

Chapter 5: The extended ESO method for displacement constraints. The 

theoretical basis of the extended ESO method for displacement constraints 

will be developed. Several numerical examples will be given at the end of 

the chapter to verify the method. 

Chapter 6: The extended ESO method for multi-storey buildings subject to 

deflection constraint. The structural optimization method developed in 

Chapter 5 will be applied to a multi-storey steel frame building. The 

structural optimization problem is to find an optimal topology for the 

6 



CHAPTER I- INTRODUCTION 

bracing system for the steel frame subject to constraint on the deflection at 

the top under multiple lateral load cases. 

• Chapter 7: Conclusions and recommendations. Conclusions and 

recommendations of the thesis will be presented. Limitations of the research 

will be addressed. Further research will also be suggested. 
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CHAPTER 2: LITERATURE REVIEW 

CHAPTER 2: LITERATURE REVIEW 

In this chapter, a review on the development and applications of structural 

optimization methods will be presented. Although this thesis focuses on 

topological structural optimization, sizing and shape structural optimization 

methods are also reviewed in this chapter. 

2.1 DEFINITIONS 

• Design variables 

A structural system can be described by a set of quantities. Based on practical 

experience, some quantities are chosen before the optimization process. Those 

quantities are considered as pre-defined variables and they are fixed during the 

optimization process. Other quantities, which are allowed to vary for 

optimization purposes, are considered as design variables. From a physical 

point of view, design variables can be divided into the following categories: 

> Material properties: Material properties of structural elements such as 

modulus of elasticity E and material density p are design variables. 

> Structural topology: The patterns of connections as well as the number of 

elements in the structure are design variables. 

> Structural geometry: The geometrical dimensions of the structures are 

design variables. Geometrical dimensions include the height of the roof or 
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CHAPTER 2: LITERATURE REVIEW 

the width of the bay in a frame building or the cross sectional dimensions of 

structural elements. 

Depending on specific problems, design variables may be treated as discrete or 

continuous. 

• Constraints 

Every structural system has to satisfy the design requirements. 

These requirements may be given by the design practice code, the availability 

of material, the feasibility of construction, the behaviour or other 

considerations. Sets of design variables that meet all the requirements are 

called a feasible design. Restrictions on the design variables or the structural 

response are called constraints. There are two types of constraints: 

> Side constraints: These constraints are imposed upon the design variables 

in explicit or implicit forms. Constraints such as minimum height of the 

beam for electrical conduit placement or minimum thickness of the plate are 

typical examples of side constraints. 

> Behavioural constraints: These constraints are derived from the 

behavioural requirements of the structure. Limitations on the maximum 

stresses, displacements or buckling are typical examples of behavioural 

constraints. 

(/ <a <CJ13 (Stress constraints) (2:1) 
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CHAPTER 2: LITERATURE REVIEW 

D <D <D (Displacement constraints) (2.2) 

where: 

cr. the stress of structural members. 

(j1, <ru: the lower bound and upper bound of the stress respectively. 

D: the displacement of the structure. 

DL, Du: the lower bound and upper bound of displacement respectively. 

Along with the number of design variables, the number of constraints in 

optimization problems has a significant impact on the time and effort of 

solution process. Therefore, the simplification of constraints needs to be 

carefully considered in order to reduce the solution effort. 

Optimization problems, which have no constraints, are called unconstrained 

optimizations or considered as constrained optimizations otherwise. 

• Objective functions 

In order to evaluate the efficiency of designs, objective functions are defined 

and minimized during the optimization process. Objective functions may be the 

functions that represent the weight or the cost of the structures. The weight of 

the structure is the most commonly used due to the fact that it is readily 

quantified. Although a cost is of more practical importance, it is often difficult 

to obtain sufficient data for the construction of the real cost function. The 

objective function representing the weight of the structure can be expressed as: 

10 



CHAPTER 2: LITERATURE REVIEW 

f{X) = fdWl (2-3) 
/=! 

where: 

f(X): objective function. 

W(. the weight of the ith element of the structures. 

n: the number of total elements. 

2.2 CLASSICAL METHODS IN STRUCTURAL OPTIMIZATION 

The development of mathematical optimization started with the introduction of 

calculus by Newton and Leibniz during the latter part of the 17 century. Given 

a continuously differentiable objective function/^, the necessary condition 

for the minimization off(X) atX is: 

Vf = 0 (2.4) 

where: 

Vf: the vector of the first derivatives, or the gradient vector of the 

objective function calculated atX. 

F/^(__,__.,./l (2.5) 
\dxx dx2 dxn\ 

X: the vector of the design variables. 

n: the number of design variables. -„ .,, • 

The sufficient condition for a local minimum of f(X) at X involves the 

calculation of the matrix of the second derivatives H. 

AJ^xH*xAX>0 (2.6) 
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CHAPTER 2: LITERATURE REVIEW 

where: 

AX: the vector of changes in the design variables: 

AX = X-X (2.7) 

H: the matrix of the second derivatives or the Hessian matrix defined as: 

H 

d2f d2f d2f 

dXxdXx 8XX8X2 dXx8Xn 

d2f d2f d2f 
[dxndxx dxndx2 dxndxn 

(2.8) 

Equation (2.6) requires that the Hessian matrix H is a positive definite matrix. 

A n extension of the simple differential calculus is the introduction of the 

Lagrangian function, which consists of both an objective function, and a 

constrained function, with additional variables called Lagrange multipliers. The 

Lagrangian function is defined as: 

j=i 

where: h/X) = 0 (j=l...nrf: the equality constraints. 

A j: Lagrange multipliers. 

(2.9) 

At the optimum, the differential change in the Lagrangian junction L(X)Y'm 

terms of differential change in design variables X and Lagrange multipliers A, 

must be equal to zero. 
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U i = 1,2, ...,n 
dXi 

dL (2-10) 

— 0 j = l2,.,nh 

For general optimization problems, where there are equality and inequality 

equations in the constraints, the Kuhn-Tucker condition can be used to test for 

relative minimum at a given point. The Kuhn-Tucker condition is simply 

expressed as: 

J 

vy+yA.vg.=o 

£ " (2.n) 
Ay. >0 

where: 

gj(X) < 0: the inequality constraints. 

J: the number of active constraint gj that are evaluated at the point being 

tested. 

2.3 MODERN METHODS IN STRUCTURAL OPTIMIZATION 

2.3.1 MATHEMATICAL PROGRAMMING METHODS (MP 

METHODS) 

The basic concept of MP methods in optimization is quite simple. It employs 

numerical search techniques, which involve a point-to-point search for the 

optimum in an n-dimensional design space (Venkayya et. al. 1968, 1973). First 

of all, an initial design is selected in the design space. Based on the initial 

design, a procedure for evaluation of the objective function is carried out. 
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CHAPTER 2: LITERATURE REVIEW 

Having obtained the value of the objective function, the current design is 

compared with all of the preceding designs. Finally, a rational way to select a 

new design is presented and the whole process is repeated. 

The development of numerical search techniques has attracted particular 

attention to the linear programming methods (LP methods) proposed by 

Dantzig (1963). In LP methods, the objective functions and all of the 

constraints are linear functions of design variables. LP methods have 

significant advantages and were reviewed by Kirsch (1993): 

« Within a finite number of steps, the exact global optimum is reached. 

• Good reliability and efficiency in computational programming. 

• Some non-linear problems can be approximated by a linear formulation 

and solved by LP algorithms. 

Although LP algorithms are reliable and efficient, their applications to practical 

design problems reveal many difficulties. As the number of design variables 

increases, the computational effort involved in the solution process becomes 

prohibitively high and is the main drawback of these algorithms. In addition, 

the dependence of the optimal result on the initial design is one of the 

numerical uncertainties in the procedure. In practical design problems, 

differentiability and continuity of the objective functions and constraints are 

not satisfied easily. To reduce the number of functional evaluations and thus 
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easing computational effort, many transformation and approximation 

techniques have been proposed. One of the commonly used transformation 

techniques is the dual and primal problem. The solutions of the two problems 

are identical. If one of the two problems is solved, we can find the solution of 

the other. Since the computational effort in solving LP problems is a function 

of the number of constraints, it is desirable to reduce this number. The number 

of constraints in the dual problem equals the number of design variables in the 

primal problem, thus we can solve the problem with a smaller number of 

constraints. 

The development of non-linear programming methods is motivated by the fact 

that most practical design problems are formulated as non-linear functions in 

terms of design variables. In general, no single non-linear programming 

method can solve efficiently all optimization problems. Generality, simplicity, 

and easy adaptability to computers are the compelling features of linear and 

non-linear programming methods. Schmit (1960) integrated non-linear 

programming to finite element analysis. Since then, many numerical techniques 

for solving as well as improving convergence speed have been developed, for 

example, the penalty-function method (Zangwill, 1967), the feasible direction 

method (Zoutendijk, 1960) and the gradient-projection method (Rosen, 1961). 

15 



CHAPTER 2: LITERATURE REVIEW 

2.3.2 OPTIMALITY CRITERIA METHODS (OC METHODS) 

The Optimality Criteria methods were first introduced by Prager and his co­

workers in the 1960s (Prager et. al. 1967, 1974, 1977 and 1978). Optimality 

Criteria methods and Mathematical Programming methods are basically similar 

in concept to objective functions and constraints, but they differ in the redesign 

step. In MP methods, the objective function is optimized directly until a 

convergent condition is satisfied by several numerical search techniques, 

whereas in OC methods a priori criterion is derived before the optimization 

process and the optimal result is reached when that criterion is satisfied. 

According to the derivation of the priori criterion, OC methods can be divided 

into two main categories: 

• Intuitive OC methods, where a priori criterion is defined based on the 

intuition and experience of the designers. The recurrence relations of the 

design variables are formulated explicitly based on approximations of the 

constraints. Initially, the methods are applied to problems with stressed 

constraints, for example Schmit (1960) and Reinschmidt (1975) and were 

later extended for displacement constrained problems by Berke (1970) and 

Venkayya and Berke (1973). 

• Mathematical OC methods, in which the Kuhn-Tucker conditions for a 

minimum point are employed to define the condition of optimality as 

discussed by Falk (1967) and Fleury and Braibant (1986). Kuhn-Tucker 
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CHAPTER 2: LITERATURE REVIEW 

conditions naturally lead to the definition of the Lagrangian function and 

Lagrange multipliers, which need to be computed. 

For a general optimization problem subject to several constraints, the 

mathematical formulation can be expressed as follows: 

Minimize f(x) (2.14) 

Subject to: gj(x)>0 j = l,2,...,n (2.15) 

The Kuhn-Tucker conditions are: 

X.'jgj(x') = 0 j = U2,...,ng (2.16) 

Aj-O j = \,2,..,ng (2.17) 

I^-ZA;^-° i = W,.,n (2.18) 
dx, j=l dxi 

Equation (2.18) can be re-written as: 

£V*=1 / = l,2,...,n (2.19) 

where : ea = ^-/-^ / = l,2,..,n j = 1,2,...,«, (2.20) 
dXj dxt 

is the effectiveness of the ith design variable with respect to the jth constraint. 

Since Lagrange multipliers are the measure of the importance of the constraints 

in terms of their effect on the optimum value of the objective function, equation 

(2.19) indicates that: at the optimum, the effectiveness of all design variables, 

weighted by Lagrange multipliers, are the same. Venkayya (1973) referred to 

17 
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the term e.tj as virtual strain density of the member, which equals unity in the 

case a of single constraint. Based on these findings, several derivations of 

recurrence formulation for design valuables have been proposed. The most 

commonly used recurrence formulation was presented by Venkayya (1973) 

which employs the over-relaxation v greater than unity to improve the 

convergence. 

xr=xf w=1 
(2.21) 

where k denotes iteration cycles. 

A special form of intuitive optimality criteria method is the fully stressed 

design method. It has been traditionally used as the optimality criteria for the 

optimal design for skeletal structures; see Schmit (1960), Reinschmidt, Cornell 

and Brotchie (1966) and Razani (1965). Since the optimal criterion is imposed 

on stress, the method is applicable to structures that are subject only to stress 

constraints. The basic concept of the fully stressed design (FSD) method can be 

simply stated as: 

At the minimum weight design, each member of the structure sustains its 

allowable stress a "'under at least one loading condition. 

In the recurrence formulation, the design variable in the next iteration is 

calculated by the redesign rule. 

18 



CHAPTER 2: LITERATURE REVIEW 

*r = A -jr (2-22) 
<>•,• 

The underlying assumption in the concept of the FSD method is that the 

primary effect of adding or removing material from a structural member is to 

change the stresses only in that member. This assumption is true for statically 

determinate structures. However, for statically indeterminate structures, where 

changes in a member will affect the stresses in other members, fully stress 

design procedure may not lead to minimum-weight designs as pointed out by 

Razani (1965). In this case, fully stress design procedure has to be applied 

repeatedly until convergence to any desired tolerance is achieved. Due to it's 

simplicity and fast convergence, the fully stress design method has been 

extensively used as a starting point for other structural optimization methods. 

Stroud (1982) considered another intuitively optimality criteria method based 

on the simultaneous failure mode approach, which assumed that the lightest 

design is obtained when two or more modes of failure occur simultaneously. It 

is also assumed that the failure modes that are active at the optimum design are 

known in advance. Later on, Xie and Steven (1993) presented an evolutionary 

structural optimization method which utilizes the fully stress design and 

element elimination concept based, on the Von Mises stress. Baumgartner et al. 

(1992) proposed a topology optimization method by changing,.Young's, 

modulus based on local stress levels. 

19 



CHAPTER 2: LITERATURE REVIEW 

Compared to MP methods, OC methods are more efficient and most suitable 

for large-scale structures. OC methods usually have a good convergence rate in 

structures with low order of indeterminacy. The convergence of the MP 

methods may be stable but usually slower near the optimum. Furthermore, the 

iteration number and computational effort required in MP methods may be 

prohibitively high when solving practical problems with multiple types of 

constraints and a large number of design variables. However, MP methods are 

more general and rigorous than OC methods. To overcome the shortcomings of 

each method, many approximation concepts have been proposed based on their 

positive features to establish better solution methods. While the efficiency of 

MP methods has been increased significantly by using approximation concepts 

(Kirsch, 1981, 1982), OC methods have been extended to more general 

problems and more rigorous optimality criteria. Different approximation 

formulation problems have been reviewed by Fleury (1978). 

2.3.3 GENETIC ALGORITHM METHOD (GA METHOD) 

GA method is a stochastic direct search strategy that mimics the process of 

genetic evolution. It has its philosophical basis in Darwin's postulates of the 

"survival of the fittest". The developments in the field of genetic algorithms 

were originally started by Holland (1975), but the concept of analysis and 

design based on principles of biological evolution may be attributed to 

Rechenberg (1965). It is interesting that the method is suitable for a 
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combination of sizing optimization and structural layout optimization 

problems. 

In the GA search procedure, at the beginning, an initial population of designs is 

randomly created by the design variables represented by strings of digital bits. 

Each bit in the design variables has a physical meaning that can be interpreted 

when the optimum is reached. After generating the initial population of 

designs, the GA search then establishes the fitness of each design by evaluating 

the fitness function. The definition of a fitness function requires that the 

objective and constraint functions be represented as a single composite 

function. Hajela et. al. (1993) defines the fitness function by using the usual 

neon 2 

exterior penalty function form Pt = ^(gj) i = 1,2,...,M 

fs if g ^ 0 
where (g.) = \ J J are the 'ncori constraints on 

* J' [0 otherwise j = 1,2,...,neon 

kinetic stability. 

By conducting structural sensitivity analysis and adopting a first-order Taylor 

series expansion to approximate the magnitude of the displacements, Grierson 

and Pak (1993) proposed the fitness function as. 

F = F -YA.L, 
* x max / i i I 

0 ,ifu'r<ur 

c(ulr-uj ,ifu'r<ur 

(2.23) 

where: 
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Fmax: A" arbitrarily large positive value that ensures fitness F never 

becomes negative. 

A., Li: Member cross-section area and length, respectively. 

c: a multiplier which is selected so as to heavily penalize a serious 

constraint violation while penalizing a minor violation more lightly. 

ur, u'r: Displacement and first-order Taylor series expansion 

approximation of displacement of the structure. 

A typical GA search procedure contains three basic operators, namely 

reproduction, crossover and mutation. The GA search procedure starts with a 

reproduction stage, in which the fittest members of the current population are 

simply allowed to contribute to a larger extent to the progeny population. In the 

crossover operation, design characteristics of mating members are exchanged 

to produce the next generation based on a probability number. Eventually, the 

mutation operator is carried out with a low probability and at a randomly 

selected site on the chromosomal string of the chosen design to prevent the 

premature loss of some genetic information from the population. 

Recently, the applications of the GA method have been developed for 

combined sizing and layout structural optimization of truss structures. Grierson 

and Pak (1993) used the method for combined size and geometry optimization 

of a simple frame structure. Hajela et. al. (1993) modified the penalty terms in 

fitness function to overcome the difficulties in numerical computation of 
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distinguishing between good and poor designs from the population. Using the 

ground structure approach, sizing and topological optimization of the truss 

structure is solved successively subject to stress and displacement constraints. 

Koumousis and Arsenis (1994) applied the GA method to the optimal detailed 

design of reinforced concrete members of multi-storey buildings. The method 

decides the detailed design on the basis of a multi-criterion objective that 

represents a compromise between a minimum weight design, a maximum 

uniformity and the minimum number of bars for a group of members. Due to 

the large design space, a method is adopted to search for near optimum 

solution. It is worth knowing that most of the applications of the GA method 

relate to truss or detailed structural members. This is because of the difficulties 

involved in the solution process of the method, especially the re-analysis task 

to evaluate the objective functions and the constraints. In other words, GA 

methods are generally not as efficient as classical MP and OC methods. 

2.3.4 HOMOGENIZATION METHOD 

The homogenization method was first introduced by Bendsoe and Kikuchi 

(1988). The main idea for solving a class of optimization problems involving 

topology is to introduce an 'infinite' number of micro-scale voids to form a 

porous medium. This is because it is difficult to define a structural topology 

optimization problem by using a finite number of parameters according to 

Cheng and Olholf (1982). The optimization problem is formulated in terms of 
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the design variables, which are represented by the geometry parameters of 

these voids. Three common ways to construct microstructure and voids are 

rectangular micro-scale voids, ranked layer material cells and artificial 

materials. 

• Rectangular micro-scale voids: Figure 2.1 illustrates a square cell with a 

rectangular cavity. 

where a, b are the design variables. 

a = b = 0, solid 

0<a<ll 
> porous 

0<6<lj F 

a - b = 1 void 

x2 

Xl 

Figure 2.1 

Ranked layered material cells: Each cell of this type of microstructure is 

constructed from layers of different material. Figure 2.2 illustrates the 

construction of rank-2 bi-material composite. 

Figure 2.2 

Artificial material: The structure is described by a discrete function as 

Z(x) 
1 if x G Q material 

10 if x <£ Q no material 
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where Q is the design domain. 

The solution of the optimization problem involves the determination of 

effective (homogenized) material properties of micro structures. There are two 

methods for finding the effective material properties of microstructures and 

they can be expressed as follows: 

• Numerical approach: In this approach, finite element models for the 

microstructure are constructed and appropriate boundary conditions for the 

periodicity are applied. A series of finite element analyses are carried out 

for voids of different sizes. In order to obtain a continuous variation of the 

homogenized material properties with respect to the void sizes, an 

interpolation process can be applied to the "discrete" results from the finite 

element analyses. 

• Analytical approach: In this approach, explicit expressions for the 

effective elastic tensor can be obtained by establishing the optimal upper 

and lower bounds for the complementary elastic energy density of the 

perforated material. These microstructures are known as "external" 

microstructures in the sense that achieve in the Hashin-Shtrikman bounds 

on the effective properties of composite materials. This method can be 

applied to both 2D and 3D layered material cells of finite rank. 
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Once the effective material properties of the microstructure are determined, 

they will be used as input data for the normal finite element analysis of the 

structure, which is to be optimized. The unknowns in this problem are an array 

of densities (and orientations of the holes for some types of microstructures). In 

the optimization module, considering the geometrical parameters of the 

presumed material model in finite elements as design variables, the total 

potential energy is adopted as the objective function. The volume of material is 

considered as the global constraint that has to be active. Using the optimality 

criteria method, an updating scheme is constructed. 

2.3.5 EVOLUTIONARY STRUCTURAL OPTIMIZATION METHOD 

(ESO METHOD) 

By slowly removing inefficient material from a structure, the residual shape of 

the structure evolves towards an optimum. That is the simple concept of the 

ESO method. The ESO method was first introduced by Xie and Steven (1993, 

1994a). At the beginning, the ESO method was developed for topology and 

shape design of continuum structures based on fully stressed design. By 

gradually removing elements, which have the lowest Von Mises stress, the 

remaining structure evolves towards an optimum. Chu et. al. (1996) extended 

the ESO method to layout design of continuum structures with stiffhe'ss and 

displacement constraint. During the optimization procedure, the sensitivity 

number of each element was computed. It represents the change in structural 
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behaviour due to element removal. Xie and Steven (1994b, 1996, and 1997) 

also used the ESO method to optimize structural frequencies and buckling 

loads. The frequency of a structure can be shifted in a desired direction by 

removing material from the design domain based on a sensitivity analysis. A 

typical ESO method procedure is given as follows: 

• Step 1; Model the structure using finite elements. Assign material 

properties, applied loads and boundary conditions. The design and non-

design domains are defined. 

• Step 2: Carry out finite element analysis (FEA) for the structure to obtain 

the structural behaviour i.e. element stresses, mean compliance or 

constrained displacements. 

• Step 3: Compute the sensitivity number for each element. The sensitivity 

number is a number representing the change in structural behaviour due to 

element removal. 

• Step 4: Remove elements that have the lowest sensitivity numbers. 

• Step 5: Repeat Steps 2 to 4 until one of the constraints is violated. 

The ESO method can be used to solve a wide range of practical engineering 

problems. The main assumption in the ESO procedure is that the pattern of the 

global stiffness matrix of the structure is not changed dramatically within an 

iteration. In other words, only a small number of elements are removed in a 
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single iteration in order to maintain the smooth change between two successive 

iterations. Although the ESO method proves to be a reliable and efficient tool, 

there are drawbacks in the procedure that need to be improved. The 

deficiencies of the ESO method are listed below: 

• Because of the assumption that the global stiffness matrix of the structure 

does not change significantly in a single iteration, only a small number of 

elements can be removed at each iteration. 

• There is no rationale to determine the removal ratio for a specific problem. 

The removal ratio is the number of elements removed in each iteration 

over the number of all elements in the initial design or the number of all 

elements in the current design. So far, this number has been assigned 

based on the experience of the ESO users. 

• There is no method for deciding which topology generated in the 

evolutionary process is the optimum. Previous studies decide the optimum 

topology when the prescribed number of iterations is reached or the 

specified amount of material that is allowed to be removed from the 

design is reached. These assumptions are quite arbitrary. 

• So far, the application of the ESO method to a 3D model with combination 

of discrete and continuum elements has been very limited. This is due to 
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the fact that different types of elements in the model cause it to become 

highly non-linear. 

Yang (1999) developed the so-called bi-directional evolutionary structural 

optimization method (BESO method). In the BESO method, elements can be 

removed from as well as added to the model to obtain the optimum. Although 

BESO method starts with the simplest initial design connecting the load and 

supports, the maximum design domain in which the structure is allowed to 

occupy must also be defined. In other words, these elements are still stored in 

the data file but they do not physically exist as part of the structure in the initial 

design. By adding and removing elements simultaneously in the optimization 

procedure, the BESO method has many advantages according to Yang (1999). 

• As the BESO method starts from the simplest initial design, the degree of 

dependency of the optimal result on the initial design may be less than the 

ESO method which starts from an over-sized full design. 

• By starting from the simplest initial design, the computational time and 

cost needed to carry out the finite element analysis for the model in the 

BESO method is dramatically less than that in the ESO method, which 

starts from a full design. This fact is especially true when dealing with 

practical large-scale structures. The difference between the size of the 

simplest structure and the size of the full model is usually significant. 

However, as indicated by Yang (1999), if that difference is not large 
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enough, it may lead to computational times in the B E S O procedure greater 

than times for the ESO method. 

• In the BESO method, elements that are removed prematurely can be 

recovered. This makes the method more reliable than ESO method. 

The BESO method also has some disadvantages: 

• In some cases, the designer may only need a better design rather than a 

theoretically optimal solution. On one hand, this may be satisfied with the 

ESO method that starts from a feasible design. On the other hand, the 

BESO method starts from an infeasible design and all the intermediate 

solutions lie in an infeasible region. 

• Compared with the ESO method, the BESO procedure requires more 

parameters that have to be specified by the users. 

Compared with other methods, the ESO method is likely to be the most 

efficient method with acceptable reliability. Liang (1999a, 1999b, and 2000) 

proposes a method called the performance-based optimization method for 

structural topology and shape design. It employs the ESO method in the 

element elimination procedure and uses a scaling technique at the end of each 

iteration to monitor and determine the optimal topology (Liang, 2000). This 

method has proved reliable for 2D continuum structures in which the global 

stiffness matrix is a linear function in terms of the design variables. However, 
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for structures with a combination of discrete and continuum elements, Liang's 

performance index is no longer valid. 

2.4 COMMENTS ON CURRENT RESEARCHES AND 

APPLICATIONS 

Despite significant effort directed towards the study of structural optimization 

in the past, most studies have been restricted to the area of sizing or 

geometrical optimization problems. Much less effort has been spent on 

topological optimization that could result in most significant material savings. 

Furthermore, as stated by Liang (2001), structural optimization techniques 

could become more attractive to civil engineers if they are developed not only 

for saving materials but also for simplifying the designer's task by automating 

the major design process. 

For building structures, the appropriate method for structural optimization 

needs to have the following features: 

• Capable of dealing with large-scale structures. For example, buildings 

with more than 50 storeys and multiple bays. The data entry and output 

handling tasks need to be automated. 

• Have an acceptable level of reliability i.e. the guarantee of convergence, 

the stability of numerical solution. 
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• Capable of solving structures with combination of discrete and continuum 

elements. For example, shear wall-frame building where beams and 

columns are modelled by beam elements and shear walls are considered as 

plate elements. 

• Capable of dealing with both 2D and 3D models. 

• Capable of dealing with multiple load cases. 

• Capable of dealing with multiple support environments. 

• Capable of dealing with multiple material environments. 

Most of the commercial FEA packages available satisfy most of the items 

shown above. In this thesis, the ESO method will be extended for dealing with 

structures containing both beam and continuum elements. The method 

proposed will use the output data of the FEA package STRAND6™ to carry 

out the optimization process. 
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CHAPTER 3: THE EXTENDED ESO METHOD FOR 

O V E R A L L STIFFNESS CONSTRAINTS 

3.1 INTRODUCTION 

A review on the development and applications of structural optimization methods 

has been presented in Chapter 2. In this chapter, the extended E S O method for 

continuum topology optimization subject to overall stiffness constraints will be 

developed. Firstly, the topological structural optimization problem is stated for 

seeking the optimal topology of a structure subject to overall stiffness constraints. 

The optimal topology will be the one which has the same weight as the initial 

structure, but has the m a x i m u m stiffness compared with all other topologies that 

are generated during the optimization process. Secondly, sensitivity analysis will -

be carried out to derive the element removal criteria. Thirdly, termination criteria 

and techniques to overcome sharp change in the mean compliance value of the 

structure will also be discussed in order to complement the method. Finally, three 

examples representing different types of finite element models will be presented to 

demonstrate the validity and effectiveness of the extended E S O method. 

3.2 OPTIMIZATION PROBLEM STATEMENT 

u In the ESO method*'for overall stiffness constraints, the task of the designer is to ra^ 

find the stiffest structure. It is known that maximizing the stiffness is equivalent to 

minimizing the mean compliance value of a structure. Therefore, the constraint of 
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the optimization problem for overall stiffness constraint can be mathematically 

expressed as: C-C* <0 where C and C*are the mean compliance value and its 

prescribed limit for the structure, respectively. Flowever, in practice, the mean 

compliance limit of the structure is usually unknown in advance. 

By removing inefficient elements at each iteration, there will be a number of 

topologies generated during the optimization process. In order to determine the 

topology which has the maximum stiffness, it is natural to scale the topologies so 

that they all have the same weight and then their stiffnesses can be compared with 

each other. The topological structural optimization problem for overall stiffness 

constraint can be stated as: 

Starting from an initial structure, the topological structural optimization problem 

for overall stiffness constraint is to find the structural topology which has the same 

weight as that of the initial structure and has the minimum mean compliance 

value. 

In order to determine which elements are most inefficient, element removal 

criteria will be derived by undertaking a sensitivity analysis. 
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3.3 ELEMENT REMOVAL CRITERIA BASED ON STRAIN ENERGY 

DENSITY 

Before developing the strain energy density formulation, it is useful to present 

some definitions and theoretical concepts used in the ESO method. 

The variable X;: As defined by Yang (1999), in the ESO method for topological 

design of structure, the design variable is a non-dimensional quantity. For beam 

A. 
elements, it is defined as x, = —- where zL and A, are the sectional area of the 

A 

bar before and after being removed respectively. This means that _t. only receives 

value 0 (after elimination) or A0i (before elimination). Therefore, xt only receives 

value 0 or 1. Similarly, for continuum elements, xt is defined as x{ = — where tQi 
hi 

and t, are the thicknesses of the continuum elements before and after being 

removed, respectively. 

In finite element analysis (FEA), the static behaviour of a structure is represented 

by the following equilibrium equation: 

Ku = P (3-1) 

where K is the global stiffness matrix, wis the displacement vector and P is the 

external load vector. 

The strain energy of the structure, which is defined as 
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C = -Pru (3.2) 

is commonly used as the inverse measure of the overall stiffness of the structure. C 

is also known as the mean compliance of the structure. 

Differentiating equation (3.1) with respect to the ith design variable, the result is: 

8K „ du . 
-u + K— = 0 dx, 3X; 

(3.3) 

du 

dx, 
AdK 

-K~v—u 
8X: 

(3-4) 

From equations (3.2) and (3.4) w e have: 

dx; 2 

f 
-K 

\ 

_,dK 

dx, 
i y 

(3.5) 

Because the global stiffness matrix K is a symmetrical matrix, thus 

8C 1 TdK 
= — u u 

dXi 2 dxt 

Using the first term of a Taylor series expansion, w e obtain 

(3.6) 

dc AC = C'-C = S^Ax,=-VS^Ax, 
1=1 dx 

8K 

M 9x; 
u (3.7) 

where Cis the mean compliance of the structure after element removal and m is 

the total number of elements removed in the iteration. 

Because the ESO process is a. 0-1 decision scheme, elements are gradually 

removed from the structure. Thus 

1 T 
AC = ~-uT 

2 

dK 
IfMO-1) 

1 T 
2 

f 
2>, «̂ £«/r*/"/=£c* (3.8) 

v i=\ J I=I /=i 
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where 

ut is the displacement vector of the i
th element. 

C,. = —ufKiUi is the strain energy of the ith element. 

In the ESO method the continuum design domain is usually divided into a finite 

element mesh of identical elements, and all the elements have the same volume. 

Therefore the element strain energy above can be successfully used as a driving 

force for the optimization process. However, for a model with finite elements of 

different shapes or sizes, the strain energy density of the ith element is defined as 

1 T 
—u, K,u, 
r\ I It 

^ = 2 (3.9) 
w, 

where wt is the weigh of the i
th element. 

In the ESO process for continuum topology design with stiffness constraint, the 

elements with the lowest strain energy densities will be automatically removed at 

each iteration. To ensure a smooth change between two consecutive iterations, 

only a small number of elements are removed from the model. 

3.4 STRUCTURE UNDER MULTIPLE LOAD CASES 

In the case of multiple load cases, the procedure of deriving the strain energy 

density for individual elements is much the same* as the last section. The strain 

energy density of the f element due to the/* loading condition can be re-written 

as 
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1 T 

«-=^ ~ ~ (3.10) u 
w. 

where ui} is the displacement vector of the i
th element due to they'* load case. 

The element strain energy density under multiple load cases is defined as the sum 

of the strain energy density due to each load case. 

j 

«,=2X (3.H) 
/=i 

where J is the number of load cases. 

3.5 UNIFORMLY CHANGING THE THICKNESS OF CONTINUUM 

ELEMENTS 

Uniformly changing the thickness of continuum elements is often referred to as 

scaling the structure. Scaling technique has been proposed by many researchers 

(Kirsch, 1993; Morris, 1982 and Liang, 2000). As stated by Kirsch, the great 

advantage of the scaling technique is that it can convert an infeasible design into a 

feasible one. For example, in topological continuum optimization, by uniformly 

changing the thickness of the continuum elements, the topology of the structure 

unchanged, the designer can change the stiffness or displacements of a model from 

an unaccepted value to an acceptable one. 

The scaling multiplier is simply defined as 
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(P = ~ (3.12) 
X 

where x and x' are the vector of design variable before and after scaling, 

respectively. 

If the global stiffness matrix of the model is a linear function of the zth order of the 

design variable, i.e. 

K = C* (3.13) 

where C is a constant, then the global stiffness matrix of the model after scaling 

:.K =Cx'z = C{cpx)z =cpzCx2 = cpzK (3.14) 

From equations (3.1) and (3.14) and assuming the scaling does not affect the 

applied load, we have 

K~x 1 

u>=K'-
lP = P = — u (3.15) 

cpz (pz 

The mean compliance of the structure after scaling becomes 

v l..iTzr.. if U }(„,„{ U 1_ 1 l..T~ 1 
C=-u" K'u v) H uTKu = — C (3.17) 

<pz 2 (pz l i\(p ) \cp ) 

For truss elements: The element stiffness matrix is a linear function of the 

width of cross-sectional area. Thus z=l 

C=-C (3.18) 

For plane stress finite elements: The element stiffness matrix is a linear 

function of the thickness of continuum elements. Thus this is similar to the 
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case for truss elements, however the thickness of the element is used as the 

design variable instead of the cross-sectional area of the truss member. 

• For plate bending elements: The element stiffness matrix is a linear function 

of the 3rd order of the thickness of the plate. Thus z=3 

C=\c (3.19) 
9 

• For general plate and shell elements: They have both in-plane and flexural 

action. For small deflections, these two actions are independent. Therefore, it 

is assumed that flexural deflections and rotations of the element are only 

related to the forces normal to the plane and the in-plane displacements are 

only related to the in-plane forces. The element stiffness matrix consists of 

two parts, namely in-plane behaviour term and bending behaviour term. 

K = KP+Kb (3.19) 

where p denotes in-plane behaviour and b denotes bending normal to the plane. 

From equations (3.14) and (3.19) 

K*=(pKP+(p'Kb (3.20) 

For this type of elements, the problem becomes non-linear and the scaling 

technique cannot be used. This type of problem is also encountered when dealing 

with structures containing both beam and plate finite element combinations, in 

which only the continuum elements are removed from the structure while beam 

elements are assumed to be fixed. 
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Liang (2000) proposed a method to monitor and select the optimal topology by 

calculating the performance index of each design that is generated in the ESO 

process. He defined a performance index 

c w 
PI = ̂ !Z!L (3.2i) 

ciwi 

where PI: performance index of the current structure. 

C0, Q: mean compliance the initial structure (ground structure) and 

the current structure, respectively. 

W0, W{. the weigh of the initial structure and the current structure, 

respectively. 

According to Liang (2000), the optimal topology is the one which has the highest 

PI value. However, this method is based on the assumption that the global stiffness 

matrix of the structure is a linear function of the zth order of the design variables. 

As shown in equation (3.20), this method is invalid when applied to structures 

containing general plate and shell elements, as of 3D structures or structures 

containing different types of finite elements. 

In order to solve the above problem, this thesis proposes a new procedure for 

comparing the structural performance of general 2D and 3D topologies. In each 

iteration,.after removing inefficient elements, the thickness of the plate elements 

will be uniformly changed ("scaled") to make the weight of the current structure 

(after scaling) equal to the weight of the initial structure. Then the performance of 

the structure is evaluated by its mean compliance value. Consider the structural 
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model with a mesh of identical elements, the relationship between the element 

thickness of the current structure and of the initial structure can be expressed as 

pAt0n0=pAtknk (3.22) 

•'•hno=tknk (3-23) 

where p : the weight density of the material used. 

A: the area of one continuum element, which is the same for all 

elements. 

t0,tk: the thickness of the continuum elements of the initial structure 

and the current structure at kth iteration, respectively. 

n0,nk: The total number of continuum elements of the initial 

structure and the current structure at k*h iteration, respectively. 

From equation (3.23), it can be shown that tk can be calculated from the element 

thickness of the previous iteration, i.e. 

h ~ h-\ 
n k-\ 
nk 

(3-24) 

After changing the thickness of the elements, a new finite element analysis will be 

carried out to compute the mean compliance of the current design. This value will 

be saved into a database. At the end of the optimization process, based on the 

mean compliance history, the optimal topology will be picked from among many 

topologies generated in the evolutionary process. The optimal topology is the one, 

which has the same weight as all the others, but has the lowest mean compliance. 

42 



CHAPTER 3: THE EXTENDED ESO METHOD FOR OVERALL STIFFNESS CONSTRAINT 

3.6 TERMINATION CONDITIONS 

In the ESO method, several criteria for stopping the optimization process have 

been proposed before. Xie and Steven (1994), in the original ESO method, 

proposes to stop the process when the volume of the current structure reaches a 

prescribed value, says 50% of the initial structure. This criterion is arbitrary 

because it does not guarantee that the optimal topology is included in the 

optimization process. The performance-based topological optimization method 

proposed by Liang (2000) states that the optimization process is terminated when 

the performance index of the current structure is greater than that of the initial 

structure. This termination condition is rigorous as it means the performance of 

the current structure, at that iteration, is even worse than the performance of the 

initial structure and hence the optimization process should be terminated. 

However, Liang's termination condition may not be applied to general 3D 

structures or structures with a combination of beam and plate elements. 

In this thesis, the optimization process is terminated when there is no more 

decrease in the mean compliance of the equally weighted topologies. In the 

computer code, the optimization process will be terminated if the structural 

topology remains unchanged for over 20 consecutive iterations. 
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3.7 HANDLING SHARP CHANGE IN THE MEAN COMPLIANCE 

VALUES 

The basic assumption of the ESO method for continuum topology optimization is 

that the global stiffness matrix of the structure is not changed significantly within 

an iteration. It means that a smooth change in the topology of the structure must be 

kept between consecutive iterations. If this requirement is violated, the values of 

the mean compliance will change sharply and the structure may become a 

mechanism (thus unstable). To keep the changes of the mean compliance between 

consecutive iterations to be small, it is necessary to restrict the number of elements 

removed in each iteration by specifying a removal ratio. The removal ratio is 

defined as the ratio of the number of elements to be removed to the total number of 

elements of the initial or current structure. If the removal ratio is based on the 

initial structure, the number of removed elements in each iteration is kept constant 

during the whole optimization process. If the removal ratio is based on the current 

structure, the number of removed elements in each iteration is gradually decreased 

during the optimization process and hence the computational cost is increased. 

However, it is worth using a removal ratio based on the current structure as the 

accuracy of solution is improved. 

It has been observed that after a certain number of iterations sharp changes in the 

mean compliance value still occurs although the number of elements removed in 
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each iteration is small. Consider two consecutive iterations i and i+1 where there 

is a sharp change in the mean compliance values between them, the elements 

removed in the ith iteration must have played an important role in foiming the 

global stiffness matrix of the structure. Therefore, to correct this problem, we can 

go back to the ith iteration and force the optimization process to remove other 

elements instead. In the computer code, the elements removed in the /' iteration, 

which have caused the sharp change, will be recovered temporarily and fixed and 

the program will look for other elements to remove. It is noted that, after 

temporarily recovering and fixing the elements, because the weight of the current 

structure has been increased, the thickness of the continuum elements needs to be 

uniformly reduced to keep the weight the same as the initial structure. 

The technique of handling sharp changes in the mean compliance values can be 

illustrated in Figure 3.1. 

Recover the elements 
remove in iteration n-1 
and temporarily fix 

Sharp change occurs these elements 

Iteration n-1 Iteration n Iteration n+1 

Decrease the current 
thickness t„ to the 
thickness of iteration 
n-1 (t„.,) 

Fig.3.1 Technique of handling sharp change in the mean compliance values 

Those temporarily fixed elements are temporarily stored in a specific data file and 

they will be released later in the optimization process. In order to avoid structural 
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mechanism collapse due to removing these elements, it is necessary that the 

temporarily fixed elements be released only if the optimization process finds other 

elements to remove without causing the sharp change in the mean compliance 

value. The temporarily fixed elements can only be released when one of the 

conditions listed below is met. 

• The number of temporarily fixed elements reaches a fixed ratio Is 

defined by the ratio of the number of the temporarily fixed elements to the 

number of total elements of the current structure. 

• After a successful iteration involving element removal. A successful 

iteration involving element removal is defined as an iteration in which 

elements are removed without causing sharp change in the mean compliance 

value. This means that the optimization process is successful in finding a new 

way of removing elements for evolution. The temporarily fixed elements now 

can be released and allowed to participate in the future evolution. 

The technique of releasing the temporarily fixed elements is illustrated in Figure 

3.2 and Figure 3.3. 
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Temporarily fix 

elements removed at 
the previous 
iteration 

Number of the fixed 
elements greater 
than fixed ratio 

Release all the 
temporarily fixed 
elements 

Iteration n- Iteration n Iteration n+1 

Fig.3.2 Releasing temporarily fixed elements when the number of temporarily fixed 
elements is greater than fixed ratio 

Sharp change does not 
occurs at this iteration 

Successfully remove 
low strain energy 
density elements 

Iteration n-1 Iteration n 

Release all the 
temporarily fixed 
elements 

• Iteration n+1 

Fig.3.3 Releasing temporarily fixed elements after an iteration involving element removal 

3.8 DESIGN PROCEDURE 

The design procedure for topological structural optimization for overall stiffness 

constraint is outlined as follows 

Step 1; The structure is modelled using finite elements. The beam elements are 

considered as a non-design domain. Their sizes and shapes are not changed 

during the optimization process. Only continuum elements are considered as the 

design domain and allowed to be removed during the optimization process. This 

model is called an initial structure. 

Step 2: Carry out the finite element analysis to compute the mean compliance of 

the current structure. The mean compliance of the structure is then saved in a 

database. 
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Step 3: Calculate the strain energy density of each continuum element by using 

equation (3.10). 

Step 4: If there is a sharp change in the mean compliance value, temporarily fix 

those elements removed at the previous iteration. Return the thickness of 

continuum elements to the thickness value of the previous iteration. Repeat from 

Step 2. 

Step 5: If the number of temporarily fixed elements is greater than or equal to the 

fixed ratio, release all the temporarily fixed elements. Repeat from Step 2. 

Step 6: Remove elements which have the lowest strain energy density from the 

structure. The number of removed elements is equal to the removal ratio (RR) 

multiplied by the number of elements of the current structure. 

Step 7: If there is no sharp change in the mean compliance value at the previous 

iteration, release all the temporarily fixed elements. 

Step 8: Uniformly increase the thickness of continuum elements in the design 

domain by using equation (3.24). 

Step 9: Save the current structure. 

Step 10: Repeat from Step 2 to Step 9 until the termination condition in Section 

3.6 is met. 
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Step 11: Plot the mean compliance history and select the optimal topology. 

The design procedure can be illustrated in Figure 3.4 
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( Start) 

jr. 
Discretize the initial structure 

using finite elements. 

Carry out finite element analysis for the current structure. ^ 

I Calculate the strain energy density of each continuum 
element in the design domain by using equation (3.10). 

Y 

N 

Release all the temporarily fixed elements. 

Save the current structure 

Return the thickness of continuum elements to the 

thickness value of the previous iteration. 

Temporarily fix elements that have been 
removed at the previous iteration. 

Remove RR|(%) elements with the lowest 
strain energy density. 

Release all the temporarily fixed elements. 

Uniformly increase the thickness of 
continuum elements by equation (3.24) 

N 

Plot the mean compliance value history and select the optimal topology. • End 

Fig.3.4 Procedure for topological optimization for overall stiffness constraint 
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3.9 EXAMPLES 

In this section, three examples are provided to demonstrate the effectiveness of the 

proposed method. Firstly, topological optimization for overall stiffness for a plane 

stress problem is solved. Secondly, a structure with plate elements (bending only) 

is considered. Finally, the topological optimization problem of a 3D structure 

containing both continuum and beam elements is solved. 

3.9.1 A PLANE STRESS STRUCTURE (TWO-BAR FRAME) 

The efficiency and reliability of the proposed method is first examined by solving 

the well-known two-bar frame problem shown in Figure 3.5. The structural 

optimization problem is to determine the optimal geometry of the frame under a 

point load P subject to overall stiffness constraint. This problem has been 

analytically solved by Rozvany (1976). If the frame structure is assumed to be a 

truss for the minimum-weight design, its optimal height H is obtained as H = 2L. 

Later, Suzuki and Kikuchi (1991) obtained the same result by using the 

homogenization method. 

Figure 3.6 shows the initial design for the optimization process. In order to achieve 

the optimal solution, it is necessary to have the initial design domain larger than 

the resultant two-bar frame structure. The continuum design domain is divided 

into a 30x80 mesh of four-node plane stress elements. A point load of 200 N is 
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applied to the middle of the free end. The value of elastic modulus is 200 GPa and 

Poisson's ratio is 0.3. The initial value of the thickness of continuum elements is 

lmm. The finite element analysis input and optimization parameters are listed in 

Table 3.1. 

/ 

Design domain divided into 30x80 finite 
elements 

400 

150 

200N 

Fig.3.5 Optimal geometry of 
the two-bar frame structure. 

Fig.3.6 Initial design of the 
optimization process. 

Table 3.1 Input values for the two-bar frame optimization. 

Finite element analysis input 

• Height 400 m m 

• Length 150 m m 

• Continuum design domain: 
30x80 mesh of four-node plane 
stress continuum elements. 

• Load: P = 200 N 

• Modulus of elasticity: E=20Q 
GPa 

• Poisson's ratio: v=0.3 

• Initial plate thickness: £=lmm 

• Static plane stress elastic 

analysis. 

Optimization parameters 

• Removal ratio: RR=l% of total number 
of continuum elements of the current 
structure. 

• Topological structural optimization 
(cavities allowed). 

• Maximum number of temporarily fixed 
elements, fixed ratio=20%. 

• Difference in the change of mean 
compliance value that will be 
considered as sharp change, sharp 
change ratio=5 % between two adjacent 
iterations. 
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The mean compliance history of the two-bar frame structural optimization subject 

to overall stiffness constraint is given in Figure 3.7. It is seen from Figure 3.7 that 

the mean compliance of the structure gradually decreases during the process. In 

other words, the overall stiffness of the structure is increasing during the 

optimization process. The straight line AB indicates that the optimization program 

cannot remove any more elements without causing the structure to collapse. 

Therefore, there is no improvement obtained during those iterations. The 

minimum mean compliance value was 0.167, which was obtained at iteration 93, 

and the corresponding topology is the optimal topology, as shown in Figure 3.8 

(c). It is observed that the optimal topology also results in H=2L, which agrees 

well with the results of other researchers. 
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« 4.00E-01 -— 

« 3.50E-01 - ^ v " 

8 3.00E-01 ^ 
| 2.50E-01 ^ * > ^ ^ 
£ 2.00E-01 ^ ^ ^ ^ ^ A B 

8 1.50E-01 

| 1.00E-01 
5 5.00E-02 

0.00E+00 -I 1 ~< ' ' ' ' 
0 20 40 60 80 100 120 140 

Iterations 

Fig.3.7 Mean Compliance History 
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(a) Topology at (b) Topology at (c) Optimal topology 
iteration 30. iteration 50. at iteration 93. 
Mc=0.316 Mc=0.239 Mc=0.167 

Fig.3.8 Optimal topologies and mean compliance. 

The thickness of the continuum design domain increases during the iterative 

optimization process to ensure the topologies generated have the same weight as 

that of the initial structure (see Figure 3.9). The zig-zag section AB indicates that 

the optimization program is only fixing and releasing elements during those 

iterations, hence, there is no improvement in structural topology. 
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0 20 40 60 80 100 120 140 

Iterations 

Fig.3.9 History of element thickness 

3.9.2 A PLATE IN BENDING 

The extended E S O method is further examined by solving a plate in bending 

problem. A plate is fully fixed along its four edges and is loaded at the centre by a 

point load P=100N. Figure 3.10 shows the geometry of the plate under the 

concentrated load. The finite element analysis input and optimization parameters 

are listed in Table 3.2. 
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1 
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Continuum design 
domain: 50x50 plate 
elements. 

+ 
I 
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mmmmmm 
i 

-500-

500 

Fig.3.10 Boundary and loading conditions of the plate. 

Table 3.2 Input values for plate in bending optimization subject to overall stiffness 
constraint. 

Finite element analysis input 

• Plate side length 500 m m 

• Continuum design domain: 
50x50 mesh of plate elements. 

• Load: P= 100 N 

• Modulus of elasticity: £=200 
GPa 

• Poisson's ratio: v^O.3 

• Plate thickness: ^ l m m 

• Static elastic analysis. 

Optimization parameters 

• Removal ratio: RR=\% of total number 
of continuum elements of the current 
structure. 

• Topological structural optimization 
(cavities allowed). 

• Maximum number of temporarily fixed 
elements, fixed ratio=20%. 

• Difference in the change of the mean 
compliance value that will be 
considered as sharp change, sharp 
change ratio=5% between two adjacent 
iterations. 
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Figure 3.11 shows the mean compliance history during the evolutionary process. A 

rapid decrease in the mean compliance value has been observed during the first 

100 iterations. After iteration 151, the optimization process can no longer gain any 

further improvement. The optimal topology is reached at iteration 151, the mean 

compliance reduced from 380 to 6.75. 
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Iterations 

Fig. 3.11 Mean Compliance History 

Figure 3.12 shows various topologies and their corresponding mean compliance 

values during the optimization. The overall stiffness of the plate has increased 

dramatically during the first 60 iterations. The checkerboard pattern in the 

topology has occurred after the iteration 80. The history of the element thickness is 

illustrated in Figure 3.13. The thickness of elements, initially assigned to 1mm, 

has increased to the maximum value of 6.95mm. 
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Fig.3.12 Topologies of the plate in bending optimization 
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Fig. 3.13 History of the element thickness 
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The optimal topology of the plate in bending given by Liang (2001) is shown in 

Figure 3.15. This topology was obtained by minimizing the mean compliance of 

the plate and using the performance index to choose the optimal topology. By 

using the technique to avoid the sharp change in the mean compliance, the optimal 

topology in Figure 3.12 (d) is better than that in Figure 3.14. 

Fig.3.14 Optimal topology by Liang (2001) 

3.9.3 A 3D STRUCTURE CONTAINING BEAM AND CONTINUUM 

ELEMENTS 

In engineering applications, a 2D model is often an approximation of a real 3D 

structure. The task of finding the optimal 3D structure for a particular environment 

is far more challenging. In this section, the extended ESO method is applied to a 

3D structure that contains both beam and plate elements under two lateral loads 

and subject to overall stiffness constraint. The geometry and boundary conditions 
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of the 3D structure are given in Figure 3.16. Due to architectural requirements, 

only the face along the y axis of the frame is allowed bracings to be located. The 

structural optimization problem is to find an efficient bracing system at the face 

along the y axis of the frame. Because the lateral loads are often reversible, four 

lateral load cases are defined in the model depicting two load cases in the real 

structure, which is along the x and y axes. The finite element analysis input and 

optimization parameters are listed in Table 3.3. 

Fig. 3.15 Geometry and boundary conditions of the 3 D structure 
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Table 3.3 Finite element analysis input and optimization parameters for the 3D 
structure 

Finite element analysis input 

• Cross sectional geometry: 
Column: 400x300 m m 
Beam: 300x300 m m 

• Continuum design domain: 
Along X axe: 30x20 mesh of 
finite elements 
Along Y axe: 30x30 mesh of 
finite elements. 

• Load: 
Load case l:P}= 10 K N 
Load case 2: P2 = 8 K N 

• Modulus of elasticity: 
£=27.5 GPa 

• Poisson's ratio: v=0.15 

• Initial plate thickness: t= 30 m m 

• Static elastic analysis. 

Optimization parameters 

• Removal ratio: RR=\% of total number 
of continuum elements of the current 
structure. 

• Topological structural optimization 
(cavities allowed). 

• Maximum number of temporarily fixed 
elements, fixed ratio=20%. 

• Difference in the change of the mean 
compliance value that will be 
considered as sharp change, sharp 
change ratio =5 % between two 
adjacent iterations. 

The history of the mean compliance of the continuum elements due to two lateral 

load cases is shown in Figure 3.16. It can be seen that the minimum mean 

compliance values corresponding to two lateral load cases do not occur at the same 

iteration. It is clear from Figure 3.16 that the optimization process tends to narrow 

the difference between the mean compliance of the two load cases along the x and 

y axes. The optimal topology for the bracing system along the y axis is determined 

by monitoring the mean compliance caused by load case 2. Theoretically, the 

optimal topology is the one, which has the minimum mean compliance of the 

entire structure (beam and continuum elements). However, because the author 

does not have access to the source code of the beam elements, various topologies 
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of the structure are given in Figure 3.17. The interpreted structure of topology at 

iteration 32 is also shown in Figure 3.18. 

60 80 

Iterations 

Fig. 3.16 History of the mean compliance of continuum elements 
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(a) Initial design (b) Topology at iteration 32, M C 2 = 347.06 
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(c) Topology of the 
bracing system along y 
axe at iteration 32. 

(d) Topology at iteration 42, M C i= 335.81 
MC,= 429.25 

Fig. 3.17 Topological history of the 3 D structure (continued) 
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(e) Topology at iteration 50. MCi= 411.61 
MC,= 396.2 

(g) Topology at iteration 90. MCi= 409.51 

M C = 504.49 

(f) Topology at iteration 65. MC,= 422.7 
MC,= 465.45 

(h) Topology at iteration 100. MCj= 493.11 

MC,= 488.44 

BJ •••!. • 

jr _r ii. 

r" / V s 
L
(i) Topology at iteration 120. MC,= 466.59 

MC?= 409.43 

Fig. 3.17 Topological history of the 3D structure 

1 
(j) Topology of the bracing system along y 

axe at iteration 120. MC,= 409.43 
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\ ! 

Frame 

Wall 

Fig. 3.18 The interpreted structure 
the topology at iteration 32. 

Fig. 3.19 History of the continuum element thickness 
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3.10 S U M M A R Y 

An extended ESO method for overall stiffness constraint has been developed in 

this chapter. Starting from a ground structure, continuum elements in the design 

domain were gradually removed according to their strain energy density. As 

elements were removed from the initial structure, there were a series of topologies 

generated during the optimization process. The mean compliance values of those 

topologies were stored in a database and were plotted after the evolution process 

was completed. The optimal topology was the one that had the highest stiffness 

i.e., the smallest mean compliance and had the same weight as the initial structure. 

The weight of the structure was kept constant during the optimization process by 

uniformly changing the thickness of the continuum elements. 

It was observed that a sharp change in the mean compliance occurs after a certain 

number of iterations. This is because the connection patterns of continuum 

elements in the structure and the global stiffness matrix were changed significantly 

due to removal of elements that were required to maintain structural integrity. To 

correct this problem, when a sharp change in the mean compliance occurred, 

elements removed in the previous iteration were temporarily fixed and the next 

few iterations were carried out without removal of these elements. The temporarily 

fixed elements were released only if there was a successful iteration involving 

element removal without causing a sharp change or the number of temporarily 
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fixed elements was greater than or equal to a fixed ratio. This technique could 

maintain a smooth change in the mean compliance in two adjacent iterations 

during the optimization process. 

Three examples have been solved in this chapter to demonstrate the effectiveness 

of the extended ESO method. Firstly, the reliability of the method has been 

examined by solving the well-known two bar plane stress problem. The result 

obtained agreed well with results achieved from the homogenization method. 

Secondly, by solving a clamped plate in bending problem, the proposed method 

has been further examined when dealing with structures containing plate elements. 

It is noted that by using the "temporarily fix and release" technique, a sharp 

change in structural behaviour can be avoided and the result obtained is improved 

compared with those of previous methods in the ESO field. Thirdly, a 3D structure 

subjected to lateral loading has been solved to demonstrate the effectiveness of the 

method when dealing with 3D structures. The resultant topology gives the 

structural designer valuable information about the best bracing system and the 

locations for column size transitions. 

Although the examples in this chapter were relatively simple, the theory of the 

proposed method and the computer program developed can be applied to practical 

engineering structures. 
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CHAPTER 4: THE EXTENDED ESO METHOD FOR MULTI­

STOREY BUILDINGS SUBJECT TO OVERALL STIFFNESS 

CONSTRAINTS 

4.1 INTRODUCTION 

A typical rigid frame building comprises parallel or orthogonally arranged frames 

consisting of columns and girders (Smith and Coull, 1991). The lateral load 

resistance of the frame is provided by the bending resistance of the columns, 

girders and joints. For buildings higher than about 30 stories or having a high 

slenderness ratio, rigid frame systems are not sufficient because the bending 

resistance of the column-girder intersection cannot provide enough stiffness for 

the building. A braced frame is used to reduce the column and girder bending 

factor by adding truss members such as diagonals between floor systems. A 

typical braced frame consists of columns and girders, whose primary purpose is to 

support the gravity loading, and diagonal bracing members that are connected so 

that the total set of members forms a vertical cantilever truss to resist the 

horizontal loading. 

Diagonal bracing is inherently obstructive to the architectural plan and can pose 

problems in the organization of internal space and traffic as well as in locating 

window and floor openings. For this reason it is usually Concentrated in vertical 

panels or bents that are located to cause a minimum of obstruction while satisfying 

the structural requirements of resisting the shear and the torque on the building 
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(Smith and Coull, 1991). Several types of bracing are shown in Figure 4.1. 

Generally, the types of the braced frames that respond to lateral loading by 

bending of the girders, or of the girders and columns, are laterally less stiff and, 

therefore, less efficient, weight for weight, than the fully triangulated trusses, 

which respond with axial member forces only. 

? v/////////, m m ? , 
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>-

> <i> A 

v, v////////, ? m 

< 

P, ?/////////, ?W/, 

Fig.4.1 Types of bracing in frame building's. 

During the past few decades, the traditionally storey-height, bay-width bracing 

systems have been extended to a larger modular scale, both within the building 

and externally acrossthe faces. Sometimes, the massive diagonals at building 

faces have been emphasized as an architectural feature of the facades. 
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The basic theory of the extended ESO method for overall stiffness constraint has 

been developed in Chapter 3. It was noted that the method can be applied to 

structures containing both beam and continuum elements. In this chapter, the 

applicability and effectiveness of the proposed method to multi-storey buildings 

will be demonstrated. The aim of structural optimization is to find the optimal 

topology for the bracing system subject to overall stiffness constraints under 

multiple lateral load cases. 

4.2 STRUCTURAL OPTIMIZATION PROBLEM 

The topological structural optimization problem for the multi-storey buildings in 

this chapter is to determine the optimal configuration of the bracing system subject 

to overall stiffness constraints under lateral load cases. It is traditionally assumed 

that, in braced frames, the columns and girders are designed only for gravitational 

loads based on strength criteria, whilst the bracing is designed based on the overall 

stiffness performance of the building under lateral loads. 

The structural optimization problem for multi-storey buildings studied in this 

chapter is illustrated in Figure 4.2. 
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What is the 

connecting pattern 
of the bracing 
system? 

Fig.4.2 Topology design for multi-storey buildings. 

4.3 OPTIMIZATION PROCEDURE 

The optimization procedure for multi-storey buildings can be divided into two 

main stages. At the first stage, the unbraced frame is designed to support the 

gravitational loads based on strength criteria. This task can be carried out on the 

individual structural component level. After the unbraced frame is designed for 

gravitational loads, the initial sizes of beams and columns are known. The second 

stage is to design the braces subject to overall stiffness constraints under lateral 

load cases. The braces of the frame will be modelled using a mesh of continuum 

finite elements. During the optimization process, the beams and columns of the 

frame will be fixed and referred to as the non-design domain. Only continuum 
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elements are removed from the structure to obtain the optimal topology for the 

bracing system. 

Maintaining symmetry of a building is often important for resisting the twisting 

moments produced by lateral loads. The symmetry of a bracing system can be 

maintained during the optimization process, if required. At a specific iteration, 

should the structure become unsymmetrical, the elements removed at the previous 

iteration will be temporarily fixed and the optimization process will be forced to 

remove other elements of lowest strain energy density values. 

The optimization design procedure for multi-storey buildings is illustrated in 

Figure 4.3, and is set out below: 

Step 1: Design the unbraced rigid frame for gravitational load cases based on 

strength criteria. 

Step 2: Model the columns and girders of the unbraced frame by using beam 

elements. Lateral load cases, support conditions and material properties of the 

beam elements also assigned. These beam elements will not be removed during 

the optimization process and are referred to as the non-design domain. 

Step 3: Use a fine mesh of continuum, finite elements to model, the bracing 

system. During the optimization process, these continuum elements will be 

gradually removed to get an optimal topology. The thickness of the continuum 
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elements must be chosen such that their stiffnesses are comparable to that of the 

beam elements. Otherwise, the analytical solving module will become corrupted. 

Numerical problem will occur in the form of near-zero energy modes in the 

global stiffness matrix of the structure. 

Step 4: Carry out finite element analysis to compute the displacements of the 

current structure. 

Step 5: Calculate the strain energy density of each continuum element by using 

equation (3.10). Calculate the mean compliance of the current structure by adding 

the strain energy of each beam and continuum element. The mean compliance 

value is then stored in a database. 

Step 6: If there is a sharp change in the mean compliance value, temporarily fix 

the elements removed at the previous iteration. Return the thickness of the 

continuum elements to the thickness value of the previous iteration. Repeat from 

Step 4. 

Step 7: If the number of temporarily fixed elements is greater than or equal to a 

fixed ratio, release all the temporarily fixed elements. Repeat from Step 4. 

Step 8: Remove continuum elements which have the lowest strain energy density 

from the continuum design domain. The number of removed elements is equal to 
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the removal ratio (RR) multiplied by the number of elements of the current 

structure. 

Step 9: If the current structure becomes unsymmetrical, temporarily fix the 

elements removed in the previous iteration. Return the thickness of continuum 

elements to the thickness value of the previous iteration. Repeat from Step 4. 

Step 10: If there is no sharp change in the mean compliance value at the previous 

iteration, release all the temporarily fixed elements. 

Step 11: Uniformly increase the thickness of continuum elements in the design 

domain by using equation (3.24). 

Step 12: Save the current structure. 

Step 13: Repeat from Step 4 to Step 12 until the termination condition is met. 

Step 14: Plot out the mean compliance history of the optimization process from 

the saved database and select the optimal topology for the bracing system which 

corresponds to the lowest mean compliance. 
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C__D 
Design the unbraced frame for gravity 

load cases based on strength criteria. 
Model the unbraced framework 

and assign lateral load cases. 

Carry out finite element analysis to compute the mean 
compliance value of the current structure. 

I 
Calculate the strain energy density of each continuum 
element in the continuum design domain by using 
eauation (3.101. 

___ 

N 

Release all the temporarily fixed elements. 

_^ Model the bracing system by using 
finite continuum elements. 

I Return the thickness of continuum elements to the 

thickness value of the previous iteration. 

T 
J_ 

Temporarily fix elements that have been 
removed at the previous iteration. 

Remove RR,{%) elements with the lowest 
strain energy density. 

Release all the temporarily fixed elements. 

Uniformly increase the thickness of 
continuum elements by equation (3.24) 

Plot the mean compliance history and 
select the optimal bracing system. 

I FnH 

Fig.4.3 Procedure for topological optimization subject to overall stiffness constraint 
of multi-storey buildings. 
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4.4 EXAMPLE 

A three-bay twelve-storey steel frame shown in Figure 4.4 is to be designed to 

resist lateral loads. A similar structure has been investigated by Liang (2000) using 

standard steel sections subject to the overall stiffness constraint. Because lateral 

loads are usually reversible, two lateral load cases with the same magnitudes but 

opposite directions are considered - one from the left and the other from the right. 

Connections between columns, girders and the diagonal braces are assumed to be 

rigid. The support connections at points A, B and C are assumed to be fixed. All 

beams and columns are rigidly connected. The material used has Young's modulus 

E = 200 GPa, shear modulus G = 7,690 MPa and density p =7,850 kg/m3. The 

unbraced multi-storey frame is designed for gravity loads based on structural 

component strength criteria. The BHP hot rolled standard steel sections are used 

for the unbraced frame. Section members are tabulated in Table 4.1. 
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Table 4.1 Member section 
for three-bay twelve-storey 
steel frame 

Section number 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Section 

150 UB 18.0 
180 UB 18.1 
200 UB 29.8 
250 UB27.3 

310 UB 40.4 
360 UB 50.7 
360 UB 56.7 
410 UB 53.7 
460 UB 67.1 
460 UB 74.6 
150 UC 23.7 
150 UC 37.2 
200 UC 46.2 
200 UC 59.5 
200 UC 52.2 
250 UC 72.9 
250 UC 89.5 
310 UC 96.8 
310 UC 118 
310 UC 137 

Fig. 4.4 Three-bay twelve-storey steel frame 

The bracing system of the frame is modelled using a mesh of 108x48 four-node 

plane stress finite elements. The removal ratio RR~ 1% based on the current 

structure is used. The finite element analysis input and optimization parameters 

are listed in Table 4.2. 
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Table 4.2 Finite element analysis input and optimization parameters of three-bay 
twelve-storey steel frame building 

Finite element analysis input 

• Continuum design domain: 
108x48 four-node plane stress 
continuum elements 

• Load: 
Load case 1: lateral load case from 
the left. 
Load case 2: lateral load case from 
the right. 

• Modulus of elasticity: 
5=200 GPa 

• Poisson's ratio: v=0.3 

• Initial plate thickness: t= 25 m m 

• Static 2 D analysis. 

Optimization parameters 

• Removal ratio: RR=l% of the total 
number of continuum elements of the 
current structure. 

• Topological structural optimization 
(cavities allowed). 

• Maximum number of temporarily 
fixed elements, fixed ratio=20%. 

• Difference in the change of the mean 
compliance that will be considered as 
sharp change, sharp change ratio 
= 5 % between two adjacent iterations. 

The history of the mean compliance of the continuum elements of the three-bay 

twelve-storey steel frame is shown in Figure 4.5. When a small number of 

continuum elements with the lowest strain energy density were removed from the 

continuum design domain, the mean compliance of the continuum elements 

decreased to the minimum value of 207391.5. After the minimum at iteration 93, 

the mean compliance gradually increased until iteration 240. After that, there was 

no further change in the topology of the structure. The minimum value of the 

mean compliance of the continuum elements was 207391.5, which occurred at 

iteration 93. Theoretically, the optimal topology of the bracing system could be 

found by monitoring the total mean compliance of the structure (beam and 

continuum elements). But at this stage the author does not have access to the 
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source code for the beam elements. Therefore, the lowest point in Figure 4.5 may 

not correspond to the optimal topology, as the stiffness contributions from the 

beam elements were not included. 

Various topologies of the bracing system are given in Figure 4.6. It is observed 

that the discrete-like result of the braces gradually emerges from upper levels to 

lower levels. The history of continuum element thickness is illustrated in Figure 

4.8. An interpreted structure of the topology at iteration 93 is given in Figure 4.7. 
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'"5.210000 
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0 20 40 60 80 100 120140 160 180 200 220 240 260 280 
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Fig.4.5 Mean compliance value history for plane stress steel frame 
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(a) Initial structure 
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(b) Topology at iteration 50 

Fig. 4.6 Topology history of three-bay twelve-storey plane stress steel 
frame optimization subject to overall stiffness constraint (Continued) 
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(c) Topology at iteration 93 (d) Topology at iteration 100 

Fig. 4.6 Topology history of three-bay twelve-storey plane stress steel frame 
optimization subject to overall stiffness constraint (Continued) 
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(e) Topology at iteration 180 (f) Topology at iteration 240 

Fig. 4.6 Topology history of three-bay twelve-storey plane stress steel frame 
optimization subject to overall stiffness constraint **"j 
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(a) Topology at iteration 

93 

(b) Interpreted structure 
of Figure 4.7 (a) 

Fig. 4.7 Topology at iteration 93 and its interpreted structure. 
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Fig. 4.8 History of the thickness of continuum elements 

4.5 SUMMARY 

The application of the extended ESO method to a multi-storey steel frame has 

been presented in this chapter. The purpose of the optimization was to find the 

optimal topology of the bracing system subject to the overall stiffness constraint 

and under multiple lateral load cases. Gravitational loads were resisted by the 

unbraced frame alone. Therefore, the unbraced frame was designed for structural 

component strength under gravitational loads. The braces was modelled using a 

mesh of finite continuum elements. Only continuum elements are allowed to be 

removed during the search for the optimal topology for the bracing system. 

By making all the topologies generated during the optimization process have the 

- same weight, their stiffnesses can be compared and the optimal structure can. be 

found. The optimal topology is the one with the lowest mean compliance. 

Maintaining the symmetry of the building form, and avoiding sharp changes in the 
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mean compliance can be achieved by temporarily fix and release elements during 

the optimization process. 
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CHAPTER 5: THE EXTENDED ESO METHOD FOR 

DISPLACEMENT CONSTRAINTS 

5.1 INTRODUCTION 

The optimal topology design method for overall stiffness constraint and its 

applicability to building structures have been demonstrated in Chapters 3 and 4. 

However, in practical engineering problems, it is often required that the 

m a x i m u m displacement of a structure or the displacement at a specific location 

be within a prescribed limit. For example, the m a x i m u m lateral deflection of a 

multi-storey building subjected to lateral loading is usually limited to 1/400 of 

the building height. 

In this chapter, the theoretical basis of the extended ESO method for 

displacement constraints will be developed. Definitions and concepts presented 

in Chapter 3 will be adopted and modified for displacement constraints. Firstly, 

the topological optimization problem will be presented for seeking the optimal 

topology of the structure subject to multiple displacement constraints. The 

optimal topology will be the one which has the same weight as the initial 

structure, but has the lowest value of concerned displacement(s) compared with 

other topologies generated during the evolutionary process. Secondly, the 

element removal criteria will be derived from the sensitivity analysis. The 

virtual strain energy density of each element in the structure under a single load 

case as well as multiple load cases will also be formulated. The optimization 

process will be carried out in an iterative manner in which elements with the 

86 



CHAPTER 5: THE EXTENDED ESO METHOD FOR DISPLACEMENT CONSTRAINTS 

lowest virtual strain energy density will be gradually removed from the finite 

element model. The technique of changing the thickness of the continuum 

elements in the design domain is similar to that presented in Chapter 3. Thirdly, 

other effects of the proposed method such as sharp change in displacement 

values and termination criteria will be also investigated. Finally, three 

examples representing the different types of finite elements will be solved to 

illustrate the effectiveness of the proposed method at the end of this chapter. It 

is noted that the technique of handling sharp change in the displacement(s) is 

similar to that for the mean compliance developed in Chapter 3. 

5.2 OPTIMIZATION PROBLEM STATEMENT 

In the ESO method for displacement constraints, if a displacement constraint is 

imposed on the jth displacement component u}, the mathematical expression 

of the displacement constraint may be given in the form 

is the prescribed limit for u]. . Starting from an initial structure, the topological 

structural optimization problem for displacement constraints is to find the 

structural topology which has the same weight as that of the initial structure 

but has the lowest value of concerned displacement(s). 

The optimization process is carried out in an iterative manner by removing 

elements which have the least contributions to the constrained displacement(s) 

in each iteration. An element removal criterion will be derived in the next 

section. 

87 

Uj 
u*<0 where u) 



CHAPTER 5: THE EXTENDED ESO METHOD FOR DISPLACEMENT CONSTRAINTS 

5.3 E L E M E N T R E M O V A L CRITERION B A S E D O N V I R T U A L 

STRAIN ENERGY DENSITY 

For structures under a single load case and subject to multiple displacement 

constraints, elements with the least effect on the change in the constrained 

displacements should be eliminated. These elements are underutilized in the 

design domain compared with other elements. To determine underutilized 

elements, a sensitivity analysis is undertaken on constrained displacements due 

to element removal. 

From equations (3.1) and (3.4), the change of the nodal displacement vector 

due to the change of the design variable x, (the thickness of continuum 

elements) can be expressed as: 

A S U A 

Aw,. = Axt = 
dx, 

r -^ \ 
K u 

v fy J 
Axt (5.1) 

A usual approach to extracting the j'th constrained displacement from the 

displacement vector is to use a virtual load vector /y, which has all its 

components equal to zero except the one corresponding to the jl constrained 

displacement. The non-zero component is given a unit value and the unit 

virtual load is in the same direction as the jth constrained displacement. 

Multiply both sides of equation (5.1) by the unit virtual load value //, we 

have 

Ax,=-\uT,^u Ax,. (5.2) / > , - / ; •K-^u 
dxt j 

( TdK
 A 

U: U 
J dx 
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where u} is the displacement vector due to the unit virtual load /.. 

Recall that ESO is a 0-1 decision procedure. Elements will either remain in or 

be removed from the structure. When an element is removed, 

dK. r ~„ \ 
AM.. T 

u, — u 
V dxi J 

(0-i) = uTjKiu = ufJKiui (5.3) 

where AM,., is change of the fh constrained displacement due to the f element 

removal, __, is the stiffness matrix of the f element, ut and u.. are the element 

displacement vectors containing the entries of u and „y, respectively, related to 

the ith element. Unlike the value a,.in equation (3.9), the value Aw., in equation 

(5.3) can be either negative or positive which implies that the constrained 

displacement may change in two directions due to element removal. For a 

structure under a single load and subject to multiple displacement constraints, 

the virtual strain energy of the ith element can be defined as: 

Pi - E N 
7=1 

(5.4) 

where m is the number of displacement constraints. 

In the ESO method, the continuum design domain is often divided into a mesh 

of identical elements, and all the elements have the same volume and weight. 

Therefore, the virtual strain energy above can be used as the removal criterion 

for the optimization process. However, in situations where the finite element 

mesh has elements of different sizes, the virtual strain energy per unit volume 

of each element should be considered as the removal criterion. The virtual 

strain energy density of the ith element in the structure is defined as: 
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Pi 
r^~ (5-5) w. 

•th where w(. is the weight of the i element. 

The virtual strain energy density of the continuum element in equation (5.5) 

serves as the element removal criterion. To obtain the stiffest structure, it will 

be most effective to remove the elements which have the lowest virtual strain 

energy density number /.. 

5.4 STRUCTURES UNDER MULTIPLE LOAD CASES 

A structure is usually subjected to multiple load cases. From equation (5.2), 

considering the /th load case, the change in the jth constrained displacement 

due to the vh element removal can be expressed as: 

Auifl=ulKiUil (l = l,...,L) (5.6) 

where uu is the displacement vector of the i
th element under the /' load case, 

L is the total number of load cases acting upon the structure. When a structure 

is under multiple load cases, the elements which have the least effect on the 

constrained displacements under all load cases should be considered as 

underutilized elements and could be removed. The virtual strain energy density 

of the rth element in structure under L load cases can be simply defined as: 

L m 

E2> 
v = '-"-' - (5-7) 
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The virtual strain energy density of each continuum element in the structure 

can be calculated at the element level after the finite element analysis. The 

optimization module extracts the displacement vector and the element stiffness 

matrix from the output data of the finite element package to calculate the 

virtual strain energy density of each continuum element. 

5.5 UNIFORMLY CHANGING THE THICKNESS OF CONTINUUM 

ELEMENTS 

By removing elements with the lowest virtual strain energy density at each 

iteration, a series of topologies will be produced during the optimization 

process. To compare the performance of these topologies, it is convenient to 

make their weight equal so that their performance can be compared to each 

other by using the values of constrained displacement(s). Therefore, after 

removing elements with the lowest virtual strain energy density from the 

structure, the thickness of the remaining continuum elements will be uniformly 

increased by using equation (3.24) in Chapter 3 so that the weight of the 

current structure will be the same as that of the initial structure. 
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5.6 TERMINATION CONDITIONS 

As the optimization module runs in an iterative manner, underutilized elements 

are gradually removed from the structure. The material of the structure is 

redistributed so that its performance is improved. The constrained 

displacements of the structure will decrease during the optimization process. 

The termination condition of the optimization process needs to ensure that the 

optimal topology is achieved. In other words, the optimal topology must be 

among the topologies generated in the evolutionary path. Therefore, for 

topological structural optimization subject to multiple displacements under 

multiple load cases, the optimization process will be terminated if there is no 

further decrease in the constrained displacements of the equally weighted 

topologies. When programmed into computer code, the optimization process 

will be terminated if there is no decrease in the constrained displacements for 

over 20 consecutive iterations. 

5.7 HANDLING SHARP CHANGES IN THE CONSTRAINED 

DISPLACEMENT(S) 

Like the topology optimization for overall stiffness constraint in Chapter 3, the 

temporarily fixed elements can only be released when one of the conditions 

below is met: 

• The number of temporarily fixed elements reaches a fixed ratio, which 

is defined by the ratio of the number of temporarily fixed elements to the 

number of total elements of the current structure. 
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• After a successful iteration involving element removal. A successful 

iteration involving element removal is defined as an iteration in which 

elements are removed when the shaip change in the constrained 

displacements does not occur in the previous iteration. 

The technique of releasing the temporarily fixed elements for topological 

optimization subject to displacement constraints is given in Figures 5.1 and 5.2 

below. 

Sharp change 
does not occurs 
at this iteration 

** Iteration n-1 

Successfully remove low 
strain energy density 
elements 

*" Iteration n 

Release all the 
temporarily 
fixed elements 

"^ Iteration n+1 

Fig,5.2 Release temporarily fixed elements after a successful iteration involving element 

removal 

Temporarily fix elements 
removed at previous 
iteration 

Number of fixed elements 
greater than fixed ratio 

Release all the 
temporarily 
fixed elements 

^ Iteration n-1 ^ Iteration n Iteration n+1 

Fig.5.1 Release all temporarily fixed elements when its number greater than fixed ratio. 

5.8 D E S I G N P R O C E D U R E 

The design procedure for topological structural optimization subject to 

displacement constraints is illustrated in Figure 5.3 and explained as follows. 
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Step 1; Discretize the structure using finite elements. Discrete elements in the 

structure such as columns, beams, girders etc. are modelled using beam 

elements and considered as the non-design domain. Continuum elements are 

used for the design domain. The boundary conditions and applied loads are 

applied to the model. This model is the initial design. 

Step 2: Apply the virtual unit loads on the constrained displacement locations 

in the structure. 

Step 3: Carry out the finite element analysis to compute the constrained 

displacements and save the constrained displacements of the current structure 

in a database. 

Step 4: Calculate the virtual strain energy density of each continuum element 

in the design domain using equation (5.7). 

Step 5: If there is a sharp change in the constrained displacements, 

temporarily fix the elements removed at the previous iteration. Return the 

thickness of continuum elements to the thickness value of the previous 

iteration. Repeat from Step 3. 

Step 6: If the number of temporarily fixed elements is greater than or equal to 

a prescribed fixed ratio, release all the temporarily fixed elements: Repeat 

from Step 3. 



CHAPTER 5: THE EXTENDED ESO METHOD FOR DISPLACEMENT CONSTRAINTS 

Step 7: Remove elements which have the lowest virtual strain energy density 

from the structure. The number of removed elements is equal to the removal 

ratio (RK) multiplied by the number of elements of the current structure. 

Step 8: If there is no sharp change in the constrained displacements at the 

previous iteration, release all the temporarily fixed elements. 

Step 9: Uniformly increase the thickness of continuum elements in the design 

domain by using equation (3.24). 

Step 10: Save the current structure. 

Step 11; Repeat from Step 3 to Step 10 until the termination condition in 

Section 5.6 is met. 

Step 12: Plot the constrained displacement history of the optimization process 

from the saved database and select the optimal topology. 
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(Sfflrtj 

Model the initial structure in finite 
element analysis package. 

£_ 

Apply virtual unit loads. 

1 ' 
Carry out structural analysis for the current structure. 

Calculate virtual strain energy density of each continuum 
element in the design domain by using equation (5.7). 

Y 

N 

Release all the temporarily fixed elements. 

Save the current structure 

Return the thickness of continuum elements to the 
thickness value of the previous iteration. 

Temporarily fix elements, which have been 
removed at the previous iteration. 

Remove RR,{%) elements with the lowest 
virtual strain energy density. 

Release all the temporarily fixed elements. 

Uniformly increase the thickness of the 
continuum elements using equation (3.24) 

Fig.5.3 Procedure of topological optimization for displacement constraints 
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5.9 EXAMPLES 

In this section, three simple structures representing different types of finite 

elements are presented to demonstrate the proposed method. Firstly, a simply 

supported deep beam with three point loads is considered to find the optimal 

topology subject to multiple displacement constraints, which are imposed on 

the loaded points. The design domain is modelled by a fine mesh of continuum 

plane stress elements. Secondly, the validity of the proposed method is 

examined by solving a plate in bending problem, which has been solved for 

overall stiffness constraints in Chapter 3. The constrained displacement is 

imposed on the loaded point, at the centre of the plate. Finally, the 

effectiveness of. the. proposed method when applied to a 3 D structure is 

demonstrated by solving a 3D structure. The 3 D structure is subjected to 

multiple displacement constraints and multiple load cases. 

For each example, the finite element package STRAND6™ is used to carry out 

the structural analysis. A n optimization module, which serves as a post­

processor of S T R A N D 6 ™ , is executed to remove elements with the lowest 

virtual strain energy density as described in the previous sections. 

5.9.1 A PLANE STRESS STRUCTURE J ? 

This simply supported deep beam is designed to carry three concentrated point 

loads, each of lOkN, under the given boundary conditions shown in Figure 5.4. 

The displacement constraints are imposed on the loaded points in the vertical 
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direction, and their limits are set to large values to ensure the optimum is 

included in the optimization process. The design domain is modelled using a 

mesh of 30x80 four-node plane stress elements. The material used has a 

Young's modulus of 200GPa, Poison's Ratio=0.3 and the initial thickness of the 

elements £=10mm. The removal ratio RR=l% based on the current structure is 

used in the optimization process. 

The finite element analysis input and optimization parameters are listed in 

Table 5.1. 

Fig.5.4 Simply supported deep beam. 
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Table 5.1 Input values for 2D plane stress deep beam optimization subject to 
displacement constraints 

Finite element analysis input Optimization parameters 

Length of the beam 400 m m 

Depth of the beam 150 m m 

Continuum design domain: 
30x80 four-node plane stress 
elements. 
Load:P/=P 2 =P 5 =10KN 

Modulus of elasticity: 
£=200GPa 

Poisson's ratio: v^O.3 

Initial plate thickness: 
t=\0mm 
Static elastic analysis. 

Removal ratio: RR=\% of the total number 
of continuum elements of the .current 
structure. 
Topological structural optimization 
(cavities allowed). 
Maximum number of temporarily fixed 
elements, fixed ratio=20%. 
Limit of the constrained displacements: u 
= 1000mm 
Difference in the change of constrained 
displacements that will be considered as 
sharp change, sharp change ratio=5% 
between two adjacent iterations. 

Figure 5.5 shows the history of constrained displacements. The negative 

numbers of constrained displacements mean that the direction of the 

displacements is downward. Due to symmetry, the displacements at points A 

and C are the same. By making all the topologies, which are generated during 

the optimization process, have the same weight, the deflections of the beam at 

three loaded points gradually decreases. The minimum deflections of point A 

and B are 0.0886mm and 0.1065mm respectively. The optimal topology 

corresponding to the minimum deflection occurs at iteration 73 for both of 

point A and B. 
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Fig.5.5 History of constrained displacements 

The topological optimization history of the simply supported deep beam 

subject to multiple displacement constraints is shown in Figure 5.6. 

(a) Topology at iteration 20 

Fig.5.6 Topology optimization history of simply supported thick beam subject 

to multiple displacement constraints (Continued) 
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(e) Optimal topology at iteration 73 

Fig.5.6 Topology optimization history of simply supported thick beam 
subject to multiple displacement constraints 

The thickness of continuum elements is changed during the optimization 

process to make the weights of topologies equal: The history of the continuum 

element thickness is shown in Figure 5.7. 
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Fig.5.7 The history of the continuum element thickness of the 

simply supported deep beam. 
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5.9.2 A PLATE IN BENDING 

A clamped plate under a concentrated loading at the centre in Chapter 3 is 

designed to subject to the displacement constraint at the loaded point. The 

finite element analysis input and optimization parameters are listed in Table 

5.2. 

Table 5.2 Input values for clamped plate optimization under multiple displacement 
constraints 

Finite element analysis input 

• Plate side length 500 m m 

• Continuum design domain: 
50x50 mesh of plate 
elements. 

• Load: P= 100 N 

• Modulus of elasticity: £=200 
G P a 

• Poisson's ratio: v=Q3 

• Plate thickness: t= 1 m m 

• Static elastic analysis. 

Optimization parameters 

• Removal ratio: RR=\% of the total 
number of continuum elements of 
the current structure. 

• Topological structural optimization 
(cavities allowed). 

• Maximum number of temporarily 
fixed elements, fixed ratio=20%. 

• Difference in the change of 
constrained displacement values that 
will be considered as sharp change, 
sharp change ratio=5% between two 
adjacent iterations. 

The history of the deflection at the centre of the plate during the optimization 

process is shown in Figure 5.8. By uniformly increasing the element thickness, 

all topologies generated have the same weight as the initial structure. It was 

observed that the deflection at the centre of the plate was decreasing throughout 

the optimization process. The straight line observed at the end of the 

optimization process indicates that there is no further improvement in the 

performance of the structure during those iterations. 
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Figure 5.9 shows the topology optimization history of the clamped plate. The 

optimal topology is obtained at iteration 180, which has the minimum value of 

deflection of 0.252mm (see Figure 5.10). 

Iteration 

100 120 140 160 180 

Fig.5.8 Constrained displacement history of the clamped plate under concentrated 
loading subject to displacement constraint at loaded point 
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Fig.5.9 Topology optimization history of the clamped plate under a 
concentrated load 

Fig.5.10 Optimal topology (iteration 180) 
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The history of the thickness of the continuum elements is shown in Figure 5.11. 

The zig-zag pattern near the end of the optimization process is a result of 

element being removed and then temporarily fixed. 

0 20 40 60 80 100 120 140 160 180 

Iteration 

Fig.5.11 History of the continuum element thickness 
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5.9.3 A 3D STRUCTURE 

This example examines the capability of the proposed topological optimization 

method when dealing with a structure containing both discrete (beams) and 

continuum elements (plates). A 3D structure shown in Figure 3.15 in Chapter 3 

is designed to resist two orthogonal lateral load cases in x and y directions. The 

optimization problem is to find the optimal topology of the bracing system in 

the facades along x and y directions subject to displacement constraints at the 

top of the frame. The four columns and four beams of the frame modelled by 

beam elements, and will not be removed during the optimization process. They 

form the non-design domain. The four faces of the frame are modelled using 

four-node plate elements. Only continuum elements are to be removed during 

the optimization process. They form the design domain of the optimization 

problem. The top deflection limit of the frame is set to a high value in order to 

ensure the optimal topology is included in the evolutionary procedure. 

The history of the constrained displacements in x and y direction is shown in 

Figure 5.12. It is seen that while the displacement of the top of the frame along 

x-direction reduces gradually, the displacement along y-direction increases 

during the optimization process. It is clear that the optimization process tends 

to reduce the difference between the displacements along x and y direction. 

The optimum topology, which has the lowest difference between displacements 

in x and y directions, occurs at iteration 180. It is noted that there is no further 
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improvement in the results since iteration 170, which is represented by a 

straight line in Figure 5.12. 
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Fig. 5.12 History of the constrained displacements of the 3 D structure 

The topological history of the 3D structure is shown in Figure 5.13. During the 

optimization process, the bracing system of the structure gradually evolves to a 

X-type bracing at the faces along both x and y axes. The interpreted model of 

the optimal topology is shown in Figure 5.14. 
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(a) Topology at iteration 40 (b) Topology at iteration 80 

(c) topology at iteration 120 . (d) Topology at iteration 160 

Fig.5.13 Topology history of the 3D structure 
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(a) Optimal topology at iteration 180 

(c) Optimal topology of the bracing 
system along the y axis 

Fig. 5.14 Optimal topology of the 3D 

(b) Optimal topology of the bracing 
system along the x axis 

(d) Interpretation of optimal topology 

structure 
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After removing element with the lowest virtual strain energy density in each 

iteration, the thickness of continuum elements is increased to keep the weight 

of the current structure equal to that of the initial structure. However, if 

elements are temporarily fixed in an iteration due to sharp change in the 

constrained displacements, the thickness of continuum elements is uniformly 

reduced. The continuum element thickness histoiy of the simple 3D frame 

structure is given in Figure 5.15 below. 
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Fig.5.15 The history of the continuum element thickness of the 

3D structure. 
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5.10 SUMMARY 

The extended ESO method for displacement constraints has been developed in 

this chapter. A sensitivity analysis has been undertaken in terms of constrained 

displacements to determine underutilized elements. After removing 

underutilized elements in each iteration, the thickness of continuum elements in 

the current structure was then uniformly increased to obtain the same weight as 

the initial structure. The performance of the current structure was evaluated by 

its constrained displacements. 

Other effects of the method have also been discussed. They were the sharp 

change in the constrained displacements and the termination conditions of the 

process. Firstly, the sharp change in the constrained displacements occurs in a 

particular iteration because the elements removed in that iteration play an 

important role in forming the global stiffness matrix of the structure. Removal 

of these elements may lead to a collapse of the whole structure. Secondly, the 

termination conditions must ensure that the optimal topology was included in 

the evolution process. 

Three examples representing different types of finite elements have been 

studied in this chapter. For plane stress and plate in bending examples, the 

optimal topology was the one having the lowest values of constrained 

displacements. For the 3D structure, which contains both beam and continuum 

elements, only continuum elements were allowed to be removed whereas the 

beam elements were fixed during the optimization process. It was observed that 
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the optimization process tends to reduce the gap between two orthogonal 

constraint displacements at the top of the frame. 
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CHAPTER 6: THE EXTENDED ESO METHOD FOR MULTI­

STOREY BUILDINGS SUBJECT TO TOP DEFLECTION 

CONSTRAINTS 

6.1 INTRODUCTION 

In the structural design of buildings, the design criteria of serviceability usually 

requires that the deflection at the top of the building must be less than ^/ 

where H is the overall height of the building from foundation level. In general, 

the lateral deflection of a building is caused by two contributing factors as in a 

cantilever beam. One factor is the bending deflection and the other is the shear 

deflection. They are referred to as the cantilever bending and shear racking 

deflections. In a rigid frame, the lateral load resistance is provided by the 

strength and stiffness from the non-deformability of the joints at the 

intersection of columns and girders. However, a rigid frame system may not be 

efficient for multi-storey buildings because the deflection produced by the 

bending of the columns and girders causes the building to drift too much. A 

braced frame attempts to improve upon the efficiency of a rigid frame action by 

virtually eliminating the column and girder bending factor. This is achieved by 

adding truss members such as diagonals between the floor systems. 

The extended ESO method for displacement constraints has been presented in 

Chapter 5. Based on the procedures outlined in Chapter 5, a multi-storey steel 

frame will be designed to support lateral load cases in this chapter. It is 

modelled by using 2D plane stress finite elements. The structural optimization 
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purpose is to determine the optimal pattern of the bracing system and the size 

transition locations of the columns subject to deflection constraints at the top of 

the building. 

6.2 OPTIMIZATION PROCEDURE 

The optimization procedure of the multi-storey buildings subject to 

displacement constraints is illustrated in Figure 6.1 and can be explained as 

follows. 

Step 1: Design the pure rigid frame for gravity load cases based on strength 

criteria. 

Step 2: Model the unbraced framework by using beam finite elements 

representing columns and girders. These beam elements will not be removed 

during the optimization process, and will be referred to as the non-design 

domain. Lateral load cases and support conditions are also assigned to the 

model. 

Step 3: The bracing system of the multi-storey building is modelled by using 

a fine mesh of finite continuum elements. These continuum elements will be 

gradually removed during the optimization process to find the optimal 

topology for the bracing system. 

Step 4: Assign the virtual unit load at the top of the multi-storey building. 
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Step 5: Carry out finite element analysis to compute the deflection at the top 

of the building. 

Step 6; Calculate the virtual strain energy density of each continuum element 

in the design domain by using equation (5.5). 

Step 7: If there is a sharp change in the top deflection values, temporarily fix 

the elements removed at the previous iteration. Return the thickness of 

continuum elements to the thickness value of the previous iteration. Repeat 

from Step 5. 

Step 8: If the number of temporarily fixed elements is greater than or equal to 

a prescribed fixed ratio, release all the temporarily fixed elements. Repeat 

from Step 5. 

Step 9: Remove the continuum elements which have the lowest virtual strain 

energy density from the structure. The number of removed elements is equal 

to the removal ratio (RR) multiplied by the number of elements of the current 

structure. 

Step 10: If the current structure becomes unsymmetrical, temporarily fix the 

elements removed at the previous iteration. Return the thickness of continuum 

elements to the thickness value of the previous iteration. Repeat from Step 5. 

Step 11: If there is no sharp change in the top deflection values at previous 

iteration, release all the temporarily fixed elements. 
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Step 12: Uniformly increase the thickness of continuum elements in the 

design domain using equation (3.24). 

Step 13: Save the current structure. 

Step 14: Repeat from Step 5 to Step 13 until the termination condition 

described in section 5.6 is met. 

Step 15: Plot the deflection history of the optimization process from the saved 

database and select the optimal topology for the bracing system. 
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( Start) 

Design the pure rigid frame for gravity 

load cases based on strength criteria. 
Model the unbraced framework 
and assign lateral load cases. 

Carry out finite element analysis for the current structure, 

Calculate the strain energy density of each continuum 
element in the continuum design domain using equation 
(5.5). 

Y 

N 

Release all the temporarily fixed elements. 

Model the bracing system by 
using finite continuum elements. 

Apply virtual unit loads. 

I 
Return the thickness of continuum elements to the 

thickness value of the previous iteration. 

Temporarily fix elements, which have been 
removed at the previous iteration. 

Remove RR,{%) elements with the lowest 
virtual strain energy density. 

Release all the temporarily fixed elements. 

Save the current structure 
Uniformly increase the thickness of 
continuum elements by equation (3.24) 

Plot the top deflection value history and 
select the optimal bracing system. 

N I 
End 

Fig.6.1 Procedure for topological optimization subject to displacement constraints of 

multi-storey buildings 
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6.3 2D PLANE STRESS MULTI-STOREY STEEL FRAME 

The three-bay twelve-storey plane stress multi-storey steel framework, which 

has been given in Figure 4.4, is considered in this section. The structural 

optimization purpose is to find an efficient bracing system to resist lateral load 

cases subject to top deflection constraint. To ensure the optimal topology of the 

bracing system is included in the optimization process, the limit of top 

deflection of the multi-storey framework is set to a high value. The finite 

element analysis input and optimization parameters are given in Table 6.1 

below. 

Table 6.1 Finite element input and optimization parameters of plane stress multi­
storey framework. 

Finite element analysis input 

• Continuum design domain: 
108x48 four-node plane stress 
elements 

• Modulus of elasticity: 
£=200GPa 

• Poisson's ratio: v=0.3 

• Plate thickness: t= 25 m m 

• Plane stress static analysis. 

Optimization parameters 

• Removal ratio: RR=\% of the total 
number of continuum elements of the 
current structure. 

• Topological structural optimization 
(cavities allowed). 

• M a x i m u m number of temporarily fixed 
elements, fixed ratio=20%. 

• Difference in the change of top 
deflection values that will be considered 
as sharp change, sharp change ratio=5% 
between two adjacent iterations. 

The history of the deflection at the top of the multi-storey framework is showntu 

in Figure 6.2. It can be seen that the top deflection of the frame decreases as 

inefficient materials are removed from the design domain. The minimum top 

119 



CHAPTER 6: THE EXTENDED ESO METHOD FOR MULTI-STOREY BUILDINGS SUBJECT TO 
_ TOP DEFLECTION CONSTRAINTS 

deflection value occurs at iteration 320 which corresponds to the optimal 

topology at that iteration. 

0 40 80 120 160 200 240 280 320 360 

Iteration 

Fig. 6.2 Top deflection history of the plane stress multi-storey framework 

The topological history of the multi-storey framework is shown in Figure 6.3. It 

is seen that a discrete-like bracing system is obtained by removing inefficient 

elements during the optimization process. Figures 6.3 (c) and (f) are typical 

examples where a sharp change occurs in the top deflection due to 

discontinuity of the bracing at the top floor. The optimal topology and its 

interpreted structure are shown in Figure 6.4. Note that the column sizes at the 

ground levels need to be increased. The thickness of continuum elements in the 

design domain is increased during the optimization process to make the weight 

of the current structure equal to that of the initial structure (see Figure 6.5). The 

performance of equally weighted topologies is evaluated by their top deflection 

values. 
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(a) Topology at iteration 50 (b) Topology at iteration 100 
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(c) Topology at iteration 150 

MULTI-STOREY BUILDINGS SUBJECT TO 
TOP DEFLECTION CONSTRAINTS 

(d) Topology at iteration 200 
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(e) Optimal topology at iteration 320 (f) Topology at iteration 350 

Fig. 6.3 Topology history of plane stress framework optimization subject to 
top deflection constraint. 
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(a) Optimal topology of the (b) Interpreted structure for 
bracing system the optimal topology 

Fig.6.4 Optimal topology for the plane stress multi-storey framework 
subject to top deflection constraint 
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Fig. 6.5 History of the continuum element thickness 

6.4 SUMMARY 

Traditionally, the bracing system is used to control drift of a frame building and 

is determined based on the experience and intuition of the engineers. By using 

the extended ESO method, the optimal topology of the bracing system subject 

to top deflection constraints can be determined for a multi-storey building. It 

can be seen that a discrete-like bracing system emerges from upper levels to 

lower levels. After obtaining the optimal topology of the bracing system, which 

contains continuum elements, the structural designers can translate it into a 

discrete structure basing on the construction and architectural requirements. 
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CHAPTER 7: CONCLUSIONS AND RECOMMENDATIONS 

7.1 CONCLUSIONS 

This thesis has developed an extended ESO method for continuum topological 

structural optimization subject to overall stiffness or displacement constraints. 

The achievements of this thesis are summarized as follows: 

1. For topological structural optimization subject to overall stiffness 

constraints, this thesis has introduced a technique to deal with the sharp 

change in the mean compliance of the whole structure so that the 

improved topologies can be obtained. 

2. A technique has been developed to select the optimal topology from 

among a series of topologies, which were generated during the ESO 

procedure. This technique has been applied successfully to plane stress 

problems, plate bending elements and 3D structural optimization 

problems. 

3. Using the extended ESO method, an efficient bracing system for a 

multi-storey frame subject to overall stiffness constraints has been 

found. 

4. The extended ESO method has been developed for topological structural 

optimization for displacement constraints. 

5. By using the technique of "fix and release elements", the ESO method 

for displacement constraints has been implemented to take into account 
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the sharp change in the constrained displacement values. This new 

feature can improve the topology result. 

6. This thesis has incorporated the scaling technique into the ESO method 

to choose the optimal topology. The scaling technique is used on 

uniformly changing the continuum element thickness at the end of each 

iteration. This new feature enables the ESO users to monitor the 

evolutionary procedure and choose the optimal topology from among a 

series of generated topologies. 

7. The extended ESO method for displacement constraints has been 

applied to a multi-storey steel frame. The proposed method can find an 

optimal topology for the bracing system of the building subject to top 

displacements. 

7.2 LIMITATIONS OF THIS RESEARCH 

Most of the difficulties encountered in this research come from the numerical 

accuracy related to large-scale structures and floating-point numbers. 

Additionally, due to the limited access to the source code of the finite element 

package used, especially the beam elements and the solution module, therefore 

the size and number of degrees of freedom of the structures in this thesis have 

been significantly limited? The limitations of this research are pointed out as 

follows: 
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1. The optimization process depends on many parameters which are 

determined by the experience of the users. These parameters are: 

removal ratio, sharp change ratio and fixed ratio. Further investigation is 

required to determine these parameters so that the optimization 

procedure will be carried out automatically. 

2. The solution time depends on the FEA method. As ESO method requires 

hundreds of FEA run times, the time solution of the whole procedure 

will increase significantly with the increasing size of the models. 

Furthermore, for large-scale 3D structures, the number of the degree of 

freedom of the finite element model is very large which makes the 

solution time very high. 

3. For structures containing beam and continuum elements, only the 

stiffnesses of the continuum elements have been counted for, although, 

theoretically, the stiffness of the whole structure (beam and continuum 

elements) must be included to select to optimal topology. This is 

because the author, at this stage, does not have access to the source code 

of the beam elements. 

4. Only top deflection constraint has been considered for multi-storey 

buildings. In tall building design, the inter-storey drifts and acceleration 

(perception of motion) are more likely the governing serviceability 

criteria. Therefore, to achieve a more optimal topology, the optimization 
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method should include inter-storey drifts and acceleration criteria in the 

constraints. 

5. The bracing system of the frame is allowed to freely occupy the 

building's facades. Because of the lack of information and for the sake 

of simplicity, architectural and constructional requirements have not 

been considered in this thesis. 

7.3 RECOMMENDATIONS FOR FURTHER RESEARCH 

Further research should aim at making the proposed method more general and 

of practical use for engineers. Recommendations for further research include 

the following. 

1. Automatically generate optimization parameters based on FEA output. 

This would make the whole process of FEA and optimization automatic. 

2. Automatically generate the mesh of continuum finite elements for 

continuum design domain and further eliminate the effects of finite 

element mesh and checker board pattern. 

3. Complement the proposed method with sizing optimization. After 

obtaining the optimal topology, it is more efficient if the optimization 

program can provide the structural designers with the size of each 

structural component. 
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4. For tall building structures, limitation of inter-storey drift is an 

important criterion in structural design. Therefore, a technique to 

consider inter-storey drift constraint needs to be developed. 

5. Extend the proposed method to dynamic problems. 

130 



REFERENCES 

R E F E R E N C E S 

Baker, W. (1990). "Sizing technique for lateral systems in multi-story steel 

building." Proc ., 4th World Congr. on Tall Build., Coucil on Tall Building and 

Urban Habitat, Hong Kong, 868-875. 

Balling, R. (1992). A closer look at practical optimization via virtual work. 

Proceedings of the 1992 Structural Congress, ASCE, San Antonio, Texas, pp 

603-606. 

Baumgartner, A., Harzheim, L., and Mattheck, C. (1992). "SKO (soft kill 

option): the biological way to find an optimum structure topology." 

International Journal of Fatigue, 14, No 16 (1992), pp 387-393. 

Bendsoe, M. P. (1989). "Optimal shape design as a material distribution 

problem." Structural Optimization, 1, 193-202. 

Bendsoe, M. P. and Kikuchi, N. (1988). "Generating optimal topologies in 

structural design using a homogenization method." Computer Methods in 

Applied Mechanics and Engineering, 71, 197-224. 

Bendsoe, M. P., Diaz, A. and Kikuchi, N. (1993), Topology and Generalized 

Layout Optimization of Elastic Structures, Proceedings of the Nato Advanced 

Research Workshop on Topology Design of Structures, edited by Bendsoe, 

M.P. and Mota Soares, C.A, Sesimbra, Portugal, June 20-26, 1992, pp 159-205. 

136 



REFERENCES 

REFERENCES 

Baker, W. (1990). "Sizing technique for lateral systems in multi-story steel 

building." Proc ., 4th World Congr. on Tall Build., Coucil on Tall Building and 

Urban Habitat, Hong Kong, 868-875. 

Balling, R. (1992). A closer look at practical optimization via virtual work. 

Proceedings of the 1992 Structural Congress, ASCE, San Antonio, Texas, pp 

603-606. 

Baumgartner, A., Harzheim, L., and Mattheck, C. (1992). "SKO (soft kill 

option): the biological way to find an optimum structure topology." 

International Journal of Fatigue, 14, No 16 (1992), pp 387-393. 

Bendsoe, M. P. (1989). "Optimal shape design as a material distribution 

problem." Structural Optimization, 1, 193-202. 

Bendsoe, M. P. and Kikuchi, N. (1988). "Generating optimal topologies in 

structural design using a homogenization method." Computer Methods in 

Applied Mechanics and Engineering, 71, 197-224. 

Bendsoe, M. P., Diaz, A. and Kikuchi, N. (1993), Topology and Generalized 

Layout Optimization of Elastic Structures, Proceedings of the Nato Advanced 

Research Workshop on Topology Design of Structures, edited by Bendsoe, 

M.P. and Mota Soares, C.A, Sesimbra, Portugal, June 20-26, 1992, pp 159-205. 

136 



REFERENCES 

Bendsoe, M.P.; Ben-Tal, A.; Haftka, R.T. (1991), "New Displacement - Based 

Methods for Optimal Truss Topology Design". Proceedings. 

AIAA/ASME/ASCE/AHS/ASC 32nd. Structures, Structural Dynamics and 

Materials Conference, Baltimore, MD, USA, April 8-10, 1991. 

Bong, B. G. (1998), Optimal Applications of High-Strength Concrete in 

Structural Walls of Tall Buildings. Master thesis, Victoria University of 

Technology, Melbourne, Australia. 

Chan, C. M. 1994. Computer-aided optimal design of tall steel buildings. 

Proceedings of the 3r International Kerensky Conference on Global Trends in 

Structural Engineering, Singapore, pp. 101-108. 

Chan, C. M. 1994. Computer-aided optimal design of tall steel buildings. 

Proceedings of the 3rd International Kerensky Conference on Global Trends in 

Structural Engineering, Singapore, pp 101-108. 

Charney, F. A. (1990). Sources of elastic deformations in laterally loaded steel 

frame and tube structures. Proceedings of the Fourth World congress, Tall 

Buildings: 2000 and Beyond, Council on Tall Buildings and Urban Habitat, 

Los Angeles, pp. 893-915. 

Charney, F. A. (1990). Sources of elastic deformations in laterally loaded steel 

frame and tube structures. Proceedings of the Fourth World congress, Tall 

Buildings: 2000 and Beyond, Council on Tall Buildings and Urban Habitat, 

Los Angeles, pp 893-915. 

137 



REFERENCES 

Charney, F. A. (1993). Economy of steel frame buildings through identification 

of structural behavior. Proceedings of the National Steel Construction 

Conference, ASCI, Orlando, Florida. 

Charney, F. A. (1993). Economy of steel frame buildings through identification 

of structural behaviour. Proceedings of the National Steel Construction 

Conference, ASCI, Orlando, Florida. 

Charney, F. A. 1994. DISPARfor ETABS, Structural Engineering Software for 

Enhanced Production. Advanced Structural Concepts Division, J. R. Harris & 

Company Denver, Colorado. 

Charney, F. A. 1994. DISPARfor ETABS, Structural Engineering Software for 

Enhanced Production. Advanced Structural Concepts Division, J. R. Harris & 

Company Denver, Colorado. 

Charney, F.A. (1991). The use of displacement participation factors in the 

optimization of the wind drift controlled buildings. Proceeding of the Second 

Conference on Tall Buildings in Seismic Regions, Council on Tall Buildings 

and Urban Habitat, Los Angeles. 

Charney, F.A. (1991). The use of displacement participation factors in the 

optimization of the wind drift controlled buildings. Proceeding of the Second 

Conference on Tall Buildings in Seismic Regions, Council on Tall Buildings 

and Urban Habitat, Los Angeles. 

138 



REFERENCES 

Chu, D.N., Xie, Y.M., Hira, A. and Steven, G.P. (1996). "Evolutionary 

structural optimization for problems with stiffness constraints." Finite Element 

in Analysis and Design, 21, 239-251. 

Diaz, A. R. and Bendsoe, M. P. (1992). "Shape optimization of structures for 

multiple loading condition using a homogenization method." Structural 

Optimization, 4, 17-22. 

Diaz, A. R. and Kikuchi, N. (1992). "Solution to shape and topology 

eigenvalue optimization problem using a homogenization method." 

International Journal of Numerical Methods in Engineering, 25, 1487-1502. 

Don, W. S., Gomory, R.E., Greenberg, H.J. (1964). Automatic Design of 

Optimal Structures. J. de Mecanique, 3(Mars). 

Forwood (1975), A System Approach to the Design of Tall Buildings. 

Grierson, D. E. & Chan C. -M. 1993. An optimality criteria design method for 

tall steel buildings. Advances in Engineering Software. Vol 16, pp 119-125. 

Grierson, D. E. and Pak, W. H. (1993), Discrete Optimal Design Using a 

Genetic Algorithm, Proceedings of the Nato Advanced Research Workshop on 

Topology Design of Structures, edited by Bendsoe, M.P. and Mota Soares, C.A, 

Sesimbra, Portugal, June 20-26,1992, pp 89-102. 

Hassani, B. and Hinton, E. (1999), Homogenization and Structural Topology 

Optimization, Springer-Verlag, London 

139 



REFERENCES 

Horvilleur, J. & Charney, F. A. 1993. __ technique for evaluating the effect of 

beam-column joint deformation on the lateral flexibility of the steel frame 

building structures. Ill Simposia International Y VI Simposia Nacional de 

Estructeral de Acero, Mexico. 

Kim, C. K., Kim, H. S., Hwang, J. S, and Hong, S. M. (1998). "Stiffness-based 

optimal design of tall steel frameworks subject to lateral loads." Struct. 

Optimization, 15, 180-186. 

Kirsch, U. (1993), Fundametal Properties of Optimal Topologies, Proceedings 

of the Nato Advanced Research Workshop on Topology Design of Structures, 

edited by Bendsoe, M.P. and Mota Soares, C.A, Sesimbra, Portugal, June 20-

26, 1992, pp. 3-18. 

Krog, L. A. and Olhoff, N. (1999). "Optimum topology and reinforcement 

design of disk and plate structures with multiple stiffness and eigenfrequency 

objectives." Computers and Structures, 72, 535-563, 

Liang, Q. Q. (2001), Performance-Based Optimization Method for Structural 

Topology and Shape Design, Ph.D. thesis, Victoria University of Technology, 

Melbourne, Australia. 

Liang, Q.Q., Xie, Y.M. and Steven, G.P. (2000c). "Optimal topology design of 

bracing systems for multistorey steel frames," Journal of Structural 

Engineering, ASCE, 216(7), 823-829. 



. REFERENCES 

Liang, Q.Q., Xie, Y.M. and Steven, G.P. (2000d). "Topology optimization of 

strut-and-tie models in reinforced concrete structures using an evolutionary 

procedure," ACI Structural Journal, 97(2), 322-330. 

Liang, Q.Q., Xie, Y.M. and Steven, Q.P. (2000a). "Optimal topology selection 

of continuum structures with displacement constraints," Computers and 

Structures, 77(6), 635-644. 

Liang, Q.Q., Xie, Y.M. and Steven, Q.P. (2000b). "A performance index for 

topology and shape optimization of plate bending problems with displacement 

constraints," Structural and Multidisciplinary Optimization, 2000. 

Mattheck, C. and Burkhardt, S. (1989). "Computer aided shape optimization 

based on biological growth." Proceedings of the Structural Optimization 

Conference, Paris, 1989 ed A. Niku-Lari. 

Mattheck, C. and Burkhardt, S. (1990). "A new method of structural shape 

optimization based on biological growth." International Journal of Fatigue, 

May 1990. 

Mijar, A. R., Swan, C. C, Arora, J. S., and Kosaka, I. (1998). "Continuum 

topology optimization for concept design of frame bracing systems." J. Struct. 

Engrg, ASCE, 124(5), 541-550. 

Monograph on Planning and Design of Tall Buildings, Structural Design of 

Tall Concrete and Masonry Buildings, (1978), edited by McGregor, J.G. and 

Lyse. I., Chapter CB-4, vol.CB, pp 111-144, ASCE, N.Y., USA. 

141 



REFERENCES 

Prager, W . (1974). "A note on discretized Michell structures." Computer 

Methods in Applied Mechanics and Engineering, 3, 349-355. 

Prager, W. (1974). Introduction to Structural Optimization. Springer-Verlag, 

Vienna. 

Prager, W. and Rozvany, G.I.N. (1977). "Optimal layout of grillages." Journal 

of Structural Mechanics. ASCE, 5, 1-18. 

Prager, W. and Shield, R.T. (1967). "A general theory of optimal plastic 

design." Journal of Applied Mechanics. 34,184-186. 

Prager, W.(1978). "Nearly optimal design of trusses." Computer & Structures, 

8,451-454. 

Rozvany, G.I.N.; Zhou, M. (1991a): "Applications of the COC Algorithm in 

Layout Optimization". In Eschenauer, H.A, Matheck, C, Olhoff, N., (Eds.) 

Proceedings of the International Conference of Engineering Optimization in 

Design Processes, Karlsruhe, 1990; Lecture Notes in Engineering, 63, 1991, 

Springer Verlag, pp. 59-70. 

Rozvany, G.I.N.; Zhou, M. (1991b): "Layout and Generalized Shape 

Optimization by Iterative COC Methods". In.: Rozvany, G.I.N (Eds.) 

Optimization of Large Structural Systems, Lecture Notes, NATO-ASI, 

Berchtesgaden, FRG, 1991, Vol. 3., pp. 81-95. 



_____ REFERENCES 

Schmidt, L. A. (1960). Structural design by systematic synthesis. In Proc. of 

the 2nd National Conference on Electronic Computation, ASCE, Pittsburgh, 79-

126. 

Smith, B. S. and Coull, A. (1991), Tall Building Structures: Analysis and 

Design. John Willey and Sons, INC. 

Suzuki, K. and Kikuchi, N. (1991). "A homogenization method for shape and 

topology optimization." Computer Methods in Applied Mechanics and 

Engineering, 93, 291-318. 

Taranath, B.S. (1988). Structural Analysis and Design of Tall Buildings. 

McGraw-Hill, NewYork. 

Tenek, L. H. and Hagiwara, I. (1993). "Static and vibrational shape and 

topology optimization using homogenization and mathematical programming." 

Computer Methods in Applied Mechanics and Engineering, 109, 143-154. 

Thomsen, J. (1991). "Optimization of composite disc." Structural Optimization, 

3, 89-98. 

Velivasakis, E. & DeScenza, R. (1983). Design optimization of lateral load 

resisting frameworks. Proceedings of the Eighth conference of the Electronic 

Computation, ASCE, Houston, Texas, pp 130-143. * ;> 

143 



REFERENCES 

Walther, F., and Mattheck, C. (1993). "Local stiffening and sustaining of shell 

and plate structures by SKO and CAO." Proc, Int. Conf. on Struct. 

Optimization, Computational Mechanics, Southampton, U.K., 181-188. 

Xie, Y. M. and Steven, G. P. (1997), Evolutionary Structural Optimization, 

Springer-Verlag, London. 

Yang, X. Y. (1999), Bi-directional Evolutionary Structural Optimization, 

Master thesis, Victoria University of Technology, Melbourne, Australia. 




