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ABSTRACT 
Urbanisation is one of the key factors that contributes to urban flooding, which has 

caused major destruction to the environment and the human race. In particular, the 

increase in population and building density influence the change in hydrological 

characteristics in urban areas. Conversion of pervious areas into impervious areas 

increases the stormwater runoff quantity dramatically. 

One way of minirnising urban flooding is to convey stormwater to receiving waters 

through stormwater drainage systems, which has been practised in the past. This practice 

is currently changing and the current stormwater management deals with the holistic 

management of the urban water cycle, which includes stormwater drainage, improvement 

of stormwater quality and use of stormwater as an alternative supply source (to meet 

increasing urban water demand). 

The most practical and economical way of designing the urban stormwater drainage 

systems is by the application of computer based mathematical software tools. These tools 

can be used to identify flood prone areas by modelling the catchment. Currently, there are 

several software tools available to develop urban drainage models, and to design and 

analyse stormwater drainage systems in urban areas. The widely used tools in Australia 

are S W M M , M O U S E , D R A I N S and X P - U D D . 

The accuracy of these models depends on the correct selection of model parameter values. 

Some of these parameters can be physically measured, whereas the other parameters are 

impossible or difficult to measure. Therefore, these parameter values, which are 

impossible or difficult to measure physically, have to be estimated through model 

calibration. Model calibration is done through an iterative process by comparing model 

predictions with observations, until the two sets match with each other within a 

reasonable accuracy. 

There are several methods available to calibrate mathematical models ranging from trial 

and error to optimisation methods. Traditionally, model calibration is done through trial 

and error. With this method, the experienced modellers estimate the model parameter 
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values starting with educated guesses and refining these guesses by comparing 

observations and predictions (due to these parameter values). However, this method is 

subjective, time consuming and can also miss the optimum parameter set. O n the other 

hand, computer based automatic optimisation methods have proven to be robust and 

efficient. In this project, one of the most popular automatic calibration optimisation 

method known as genetic algorithms (GAs) are used to calibrate the urban drainage 

models. 

Recently, GAs have proven to be successful and efficient in identifying the optimal 

solution for water resource modelling applications. These applications include rainfall-

runoff modelling, river water quality modelling, pipe system optimisation and reservoir 

optimisation. However, in order to produce efficient and robust solutions, proper selection 

of G A s operators is necessary for the application, before conducting the optimisation. 

These G A operators include population size, number of simulations, selection method, 

and crossover and mutation rates. 

There are some general guidelines available to choose GAs operators for standard GAs 

optimisation applications. However, there are no specific guidelines available for 

selecting G A s operators for urban drainage model parameter optimisation. Therefore, the 

sensitivity of these operators were analysed in this study through numerical experiments 

by repetitive simulation considering one G A s operator at a time, by integrating G A s and 

urban drainage modelling software tools. This produced appropriate G A s operators for 

use in urban drainage model parameter optimisation. 

XP-UDD urban stormwater drainage software and GENESIS GAs software tools were 

used in this study to model the urban drainage catchment(s) and model parameter 

optimisation. These two software tools were linked through their input and output files to 

conduct the model parameter optimisation. T w o typical urban catchments in Victoria 

(Australia) were used in selecting the appropriate G A s operators. For each catchment, two 

design storm events (i.e. small and large) were considered. The small storm considered 

runoff only from the impervious areas, while the large storm produced runoff from both 

impervious and pervious areas. Seven parameters were identified in the urban drainage 

model (which required calibration), two related to impervious area and the other five 

related to pervious area. Typical parameter values were assumed and used in X P - U D D 
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models of the study catchments to produce the hydrographs corresponding to these two 

design storms and these hydrographs were then considered in the integrated 

G E N E S I S / X P - U D D as observed hydrographs in optimising G A s operators. Numerical 

experiments produced consistent and robust G A s operators for parameter optimisation of 

urban drainage models. Although there is no mathematical basis for optimising parameter 

values through repetitive simulation, this is an acceptable practice for complex systems. 

Model calibration was carried out only for one ofthe two study catchments used for GAs 

operator study, because of the time constraints. Furthermore, one catchment was 

considered sufficient, since the purpose of this part of the study was to investigate and 

demonstrate the use of G A s for optimising parameter values of urban drainage models. 

Observed rainfall/runoff data were available for this catchment only for small storms, 

which produced runoff only from impervious areas. Therefore, only the impervious area 

parameter values were estimated. The results obtained from G A s optimisation were 

compared with previous studies and found to be satisfactory. 

The soil infiltration parameters, which represent a sub-set of pervious area parameters, 

were determined through soil infiitrometer tests, which were conducted at several sites in 

the study catchment, which was used for model calibration. Soil infiltration tests were 

conducted, because the soil infiltration parameter values could not be estimated through 

model calibration, due to unavailability of observed data related to large storms. A 

standard double-ring infiitrometer was used to estimate these parameter values through 

field measurements and these measurements were taken over a period of six hours. 

Rainfall was measured for five days prior to the field test using a pluviometer, to 

determine the antecedent rainfall depths at the study sites. Soil infiltration parameter 

values were estimated by fitting soil infiitrometer test data to Horton's infiltration 

equation, since the Horton's infiltration equation is built into X P - U D D and is widely used 

in urban drainage modelling applications in Australia. Soil samples were also tested and 

analysed to determine the soil particle size distribution of each site to determine the soil 

type. In order to understand different soil types and to determine the soil infiltration rates 

in different urban catchments, these soil infiitrometer tests were conducted at another 

nineteen sites of seven urban drainage catchments in four city councils in Victoria. The 

infiltration parameter values found in this study were in general significantly different to 

the values given in D R A I N S and X P - U D D software user manuals. 
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CHAPTER 1 | 

INTRODUCTION 

Ll Background 

Hydrological events such as rainfall, runoff, droughts and floods have played an 

important role in the history of mankind and they are still important in the modern world. 

Therefore, accurate prediction of such events is necessary for the well being ofthe human 

society. Flooding has become a major catastrophe all around the world including 

Australia. A s indicated in a study conducted by the Department of Primary Industries and 

Energy (1992), flood damage costs Australia around 300 million dollars per year with 

about 200,000 urban properties prone to flooding due to a 100-year flood. Flooding not 

only causes direct accountable property damage, but also creates major social problems 

due to relocation, emotional disturbances, loss of important records/articles and in some 

cases loss of human life. Furthermore, flooding has caused environmental problems such 

as the destruction of native vegetation and extinction of some wildlife species. 

The balance of the natural hydrological cycle is greatly disturbed by urban development, 

in terms of stormwater volume and quality, as urban development reduces the percolation 

of rainwater to the soil due to replacement of large pervious areas of land by impervious 

areas (such as buildings, paved roads, walkways and car parks). As cited in 

http://www.catcriment.crc.org.au/ordresearch/urban.htrnl. a study conducted by the 

University of Melbourne during 1993-1999 indicated that urbanisation of a catchment 

brought in dramatic changes in hydrology. It also indicated that the runoff volume was 

typically doubled or tripled, and storm flow rates increased up to 20 times higher than in 

the pre-urban condition. These increase of flow rates obviously result in more flash floods 

and higher peak flow rates. 

http://www.catcriment.crc.org.au/ordresearch/urban.htrnl


Introduction Chapter 1 

Although stormwater was considered as a nuisance prior to 1980s, with increasing 

awareness of stormwater quality issues, a new approach to stormwater management has 

emerged throughout Australia as well as overseas. These new stormwater management 

concepts include land-use planning and management, use of natural stormwater treatment 

processes and managing pollution at source through grass swales, soakage trenches, etc. 

In recent times, there has also been interest in the use of stormwater as an alternative 

supply source due to limited availability of fresh water sources and also due to increasing 

awareness on the concept of sustainability. Therefore, the management of stormwater 

runoff from urban catchments has changed over the recent past to include the 

management of the complete urban water cycle and dealt with stormwater quantity, 

quality and (re)use. The stormwater drainage is still a major and important part of this 

overall stormwater management process, and stormwater drainage systems are still 

necessary due to continuing urban development, to manage urban flooding. 

Mathematical computer software tools are widely used to develop urban stormwater 

drainage system models, and to design and analyse complex urban stormwater drainage 

systems. These software tools allow modelling of hydrological (eg. rainfall, infiltration 

overland flow, evaporation) and hydraulic (eg. pipe and open channel flow) processes of 

urban catchments. Some ofthe urban drainage software tools widely used in Australia are 

S W M M (USEPA 1992), M O U S E (Danish Hydraulic Institute 1993), X P - U D D (XP-

Software 1997) and D R A I N S (O'Loughlin and Stack 1998). Flood hydrographs and peak 

flow runoff can be computed by using these software tools, which are required to design 

or upgrade the drainage systems to minimize flood damage. However the reliability of 

these models depends on the accuracy in choosing the model parameter values of the 

catchments being modelled. Some of these parameter values can be physically measured, 

where as the other parameter values (such as depression storage and flow roughness) are 

impossible or difficult to measure. However, these parameter values, which are 

impossible or difficult to measure physically, can be estimated through model calibration 

by using good quality rainfall/runoff data, if they are available. 

Model calibration is done through an iterative process by comparing model predictions 

with observations, until the two sets match with a reasonable accuracy. Traditionally, 

urban drainage model calibration was done through a manual trial and error process. With 
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this method, the estimation of model parameter values are carried out by experienced 

modelers providing educated guesses and refining these guesses by comparing observed 

and modeled hydrographs. However, this method is subjective, time consuming and can 

also miss the optimum parameter set. In an effort to improve this process, optimisation 

methods have been developed to automatically calibrate these models. 

Recently, an automatic optimisation technique called genetic algorithms - GAs (Goldberg 

1989a) have proven to be successful and efficient in identifying the optimal solution for 

water resource applications. Even though G A s have been recognized as a robust 

optimisation method for estimating model parameter values in many fields, it has not 

been widely used for urban drainage models. Furthermore, many researchers have put 

forward different formulations and refinements to the G A s method, which has become 

one ofthe difficulties facing potential users of genetic algorithms, since it is hard to judge 

a priori which variation might be the best for a particular application (Cui 2003). 

Therefore, an investigation was carried out in this study to demonstrate the use of the 

G A s optimisation method in optimising the model parameter values of drainage model of 

an urban catchment. 

GAs operators (i.e. parameter representation, population size, selection method, crossover 

and mutation rates) play an important role in the convergence to the optimum model 

parameter values in G A s optimisation process. However, there are no clear guidelines 

available to select appropriate G A s operators for urban drainage model parameter 

optimisation. Schaffer et al. (1989) reported that the theory behind the G A has given little 

guidance for selecting proper G A operators, even though these operators have a 

significance impact on G A s performance. Therefore a detailed investigation was 

conducted in this study to select the appropriate G A s operators (or optimum G A s 

operators) for use in urban drainage model parameter optimisation before attempting the 

model parameter optimisation. 

The XP-UDD software tool was selected for this study to model urban stormwater 

drainage systems, since it is an enhanced and user-friendly version of S W M M and its 

input and output files are in ASCII format, which can be accessed by the G A s software 

tool. The access to input and output files of the urban stormwater drainage software is 
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necessary to optimise the urban drainage parameter values through the optimisation 

method such as GAs. G E N E S I S was used as the G A s software tool, since it has been 

successfully used in water resource applications in the past. 

Two urban drainage catchments in Victoria (Australia) were considered as case studies in 

optimising G A s operators and one of these catchments was used for the model calibration 

using G A s in this study. In both these studies, attention was given to the different runoff 

generation mechanisms in impervious and pervious areas of urban catchments with 

respect to the magnitude of storm events. That is in general, small storms produce runoff 

only from the impervious areas and large storms generate runoff from both impervious 

and pervious areas. T w o design storms (small and large) were considered in optimising 

G A s operators, while observed storm data was used for model calibration. Unfortunately, 

observed rainfall and runoff data of the study catchment were available only for small 

events and therefore only the impervious area parameter values were calibrated using the 

available observed small storms. However, the three Horton's infiltration parameter 

values of pervious areas were determined through soil infiitrometer tests, since the soil 

infiltration parameter values could not be estimated through model calibration, due to 

unavailabUity of observed data related to large storms. 

1.2 Significance of the Project 

Flooding can be devastating for communities and industry, as stated in Section 1.1. 

Lately, this problem has been aggravated due to continued urban development. However, 

flooding is one of the most manageable of the natural disasters and can be managed by 

identifying flood prone areas and implementing suitable flood mitigation strategies. The 

most practical way of identifying flood prone areas is by the application of mathematical 

models, which consider complex hydrological and hydraulic processes of these areas. 

These models can also be used to develop stormwater infrastructure management plans to 

reduce flood damage. The alternative to use of mathematical models is to conduct 

experimental studies on these areas, which in general is not economically and technically 

feasible because ofthe large inundation areas. 
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As part of the infrastructure management plans, local government authorities spend 

millions of dollars on planning, design, installation, upgrade and maintenance of urban 

stormwater drainage systems. For example, Cullino (1995) reported that the drainage 

network in Waverly, Victoria (Australia) was significantly under capacity due to recent 

greater building densities, and an expenditure of about $200 million as at 1995 was 

required for the existing underground network to be replaced or augmented to cope with a 

five-year storm event. Therefore, it is necessary to adopt appropriate design standards 

dealing with major and minor storms, to achieve the best practice in design and whole-life 

cycle management of stormwater infrastructure. 

The planning and designing phases of the urban stormwater drainage systems are 

extremely important, since they affect the other phases and more importantly the overall 

cost of such works. Comprehensive predictive computer software models, which consider 

the physical processes of urban drainage systems, are widely used in such studies. 

However, they require calibration or estimation of model parameter values. This was 

addressed in this project by using a recent optimisation technique called genetic 

algorithms (GAs) and field soil infiitrometer tests. 

The results of this research project enable to use GAs optimisation technique for 

calibration of urban drainage models by selecting the appropriate G A s operators for urban 

drainage models. These will encourage the users to employ G A s technique in model 

parameter calibration in urban drainage modelling, which had already been proved to be 

successful and effective in identifying the optimal solutions for other water resource 

applications. Furthermore, methodologies were developed to estimate the soil infiltration 

parameter values (which are also model parameter values of urban drainage models) 

through soil infiitrometer tests. The above methods will assist in the development of well-

calibrated urban drainage models. These well-calibrated models will enable the 

hydrologists, hydraulic engineers and urban planners to calculate floodwater volumes, 

levels and velocities, to plan for flood mitigation strategies to alleviate flooding in urban 

areas, and to assess risks associated with flood hazards. This in turn will produce 

significant economic and social benefits in urban areas. 
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1.3 Aim ofthe Project 

The aims of this project were to investigate the feasibility of using GAs for parameter 

optimisation of urban drainage models and to develop an automatic calibration 

methodology for use of G A s for urban drainage catchment modelling. A further aim was 

to conduct soil infiltration tests to study the soil infiltration parameters of the study 

catchments. The following tasks were completed to achieve the above aims: 

• Literature review of urban drainage processes, modelling and GAs. 

• Linking of G A s and urban drainage modelling software tools. 

• Collection and collation of drainage and storm data for the study catchments. 

• Assembly of urban drainage models ofthe study catchments. 

• Selection of appropriate G A s operators for urban drainage model parameter 

optimisation. 

• Optimisation of impervious area parameter values of urban drainage model of the 

study catchment through GAs. 

• Estimation of soil infiltration parameter values (i.e. sub set of pervious area 

parameters) ofthe study catchment using field infiitrometer tests. 

It should be noted that two catchments were used in the study of selecting the appropriate 

G A s operators, while only one catchment (one of the above two) was used in parameter 

estimation ofthe urban drainage model. 

1.4 Structure ofthe Thesis 

Chapter 2 describes the urban drainage processes, urban drainage modelling software 

tools and GAs. Different methods that can be used for calibration of mathematical 

models, and the literature on G A s including its operators are reviewed in this chapter. 

Chapter 3 describes the XP-UDD and GENESIS software tools and different options 

available in these two software tools to model various processes. Linking of 

G E N E S I S / X P - U D D software tools for the study are also reviewed in this chapter. 
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T w o main studies conducted in estimating model parameter values of X P - U D D urban 

drainage model are presented in Chapter 4. First, the detailed study of selecting 

appropriate G A s operators for urban drainage model calibration is presented. Then, the 

X P - U D D model calibration of the study catchment is presented, which also includes the 

validation of model parameters. 

Chapter 5 describes the soil infiitrometer tests, which were conducted to estimate soil 

infiltration parameter values of pervious areas. The literature on infiitrometer test 

methods and procedures were also reviewed. The details of this part ofthe study and the 

results are discussed in this Chapter. 

A summary, conclusions and recommendations drawn from the study (described in this 

thesis) are presented in Chapter 6. 
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CHAPTER 2 

REVIEW OF URBAN DRAINAGE 
PROCESSES AND MODELLING AND 
GENETIC ALGORITHMS 

2.1 Introduction 

Rain that falls to the earth undergoes through various processes such as evaporation, 

interception by vegetation and structures, retaining in surface storage areas, infiltration 

into the soils, ponding above ground surface and surface runoff. These processes describe 

the hydrological cycle and are shown in Figure 2.1. 

Figure 2.1 Hydrological Cycle (Ref: www.unep.org/vitalwater) 

http://www.unep.org/vitalwater
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The rainfall reaching the soil surface will partly enter the soil through infiltration, where 

it may be retained in the upper layers or percolate to the deeper layers. The rainfall, which 

initially fails to infiltrate remains ponded on the land, mainly filling up depression 

storage. Once the storage potential on the soil surface has been occupied, the water will 

start to move down the slope as overland flow (Smedema and Rycroft 1983). The 

overland flow initially flows over the ground surface in very shallow depths before 

reaching streams, rivers and drains. As flow moves downstream, flows from other sources 

join these streams, rivers and drains. This process increases the flow rates, resulting in 

flooding during heavy storms. 

The urban hydrological cycle is a special case ofthe general hydrological cycle described 

above and the main difference is that most pervious surfaces are replaced by impervious 

surfaces in urban areas. The increase of high proportion of sealed areas greatly reduces 

the amount of water infiltrating to the soil and consequently, most rainfall is converted to 

stormwater runoff in urban areas. Urban stormwater management involves the control and 

management of water that runs off urban surfaces. In traditional stormwater management 

practice, stormwater had been considered as a problem to be managed to protect people 

and properties from the build-up stormwater and from flooding rather than a resource to 

be utilised. Therefore, stormwater had been disposed as quickly and efficiently away 

using stormwater drainage systems, which consist of underground concrete pipes, culverts 

and open drains. In this process no attention was given to the quality of stormwater 

entering creeks, streams and receiving waters. 

With increasing awareness of stormwater quality issues and more demanding water 

resources, a new approach to urban water management has developed throughout 

Australia. Best Management Practice - B M P (Victoria Stormwater Committee 1999), 

Integrated Urban Water Management - I U W M (Speers and Mitchell 2000; Coombes 

2003) and Water Sensitive Urban Design - W S U D (Whelans and Maunsell 1994) are 

some ofthe concepts that are being implemented to deal with the above issues. 

The focus of BMP is on stormwater quality improvement prior to disposal to the 

environment and has been in use around the world including Australia in more recent 

times. In this method several measures have been applied to reduce the impact of 
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stormwater on receiving water bodies that include structural measures to treat the 

stormwater before disposal and public educational programs to raise awareness and 

reduce litter and oil entering to receiving water bodies (Goonrey 2003). 

The IUWM emphasises the need to consider all aspects of the water cycle (i.e. water, 

wastewater and stormwater) together as an interdependent system. Traditional water 

management on the other hand, does not consider interaction among various aspects of 

the water cycle. For example, stormwater management in traditional practice only focuses 

on capacity and transport of stormwater runoff and does not consider its impact on 

receiving waters or the amenity value of retention/detention basins or as a total impact to 

the environment. 

WSUD is a design approach that focuses on implementing the principles of IUWM on a 

site by site basis. However, the Victoria Stormwater Committee (1999) have shown the 

focus for implementation of W S U D in Melbourne on only the stormwater design by 

minimising impervious areas to increase infiltration, maximising local on-site retention, 

efficient stormwater treatment to protect the receiving water bodies, (re)use of stormwater 

and using stormwater beneficially for the environment (Goonrey 2003). The Lynbrook 

Estate, located in the outer eastern suburb of Melbourne is the first residential estate in 

Victoria to incorporate W S U D , including a series of linked gravel-filled, vegetated drains 

along wide strips designed to absorb and filter stormwater, swales and constructed 

wetlands (Wong 2001). 

In recent times, there has been more interest on using of stormwater as an alternative 

supply source due to scarcity of water resources. This approach converts the zero value 

stormwater into a valuable urban water source for the future water needs of growing 

urban population. However, the stormwater drainage systems are still a major and 

important part of this overall stormwater management process to meet the communities 

need to minimise the threat of urban flooding. 

The design methods for stormwater drainage systems include a wide range from manual 

methods to computer models. The most simple and widely used manual method is the 

Statistical Rational Method (SRM), which is commonly known as the Rational Formula. 
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The R a t H G L software tool combines S R M with Hydraulic Grade Line (HGL) analysis in 

an iterative manner to design urban drainage systems and is widely used for small sub

divisions in Australia and elsewhere. In RatHGL, the S R M is used to estimate the peak 

flow rates, and these flow rates are then used in H G L calculations to compute 

pipe/channel sizes and grades. 

The three major assumptions that underline the basis ofthe SRM method are listed below. 

• Rainfall is uniform in intensity on the catchment in both time and space 

• Rainfall duration is equal to the time of concentration ofthe catchment 

• The return period ofthe peak flow rate is equal to that ofthe rainfall intensity 

In practice, uniformly distributed storms are rarely experienced throughout the catchment 

and they would not normally be uniform in intensity. Furthermore the return period of 

runoff and rainfall would rarely agree. In the S R M , all losses are included in the runoff 

coefficient. Because of these limitations of the S R M methods, generally this method is 

applicable only to relatively small catchments. Although urban catchments are relatively 

small, spatial and temporal rainfall variability is a significant problem when modelling 

actual storm events (Pilgrim 1987). 

On the other hand, the computer models are capable of producing continuous 

hydrographs by routing the hyetograph through the catchment by using various advanced 

routing methods. Furthermore, the computer models use separate loss models for 

impervious and pervious areas to handle losses explicitly, and model the unsteady flows 

better than the manual methods. This type of analysis would be virtually impossible to 

carry out manually because of the detailed computations required. Therefore, the use of 

computer based mathematical models in analysing and designing stormwater drainage 

systems in urban catchments has become more and more popular in the recent past. 

This chapter first describes the urban drainage process briefly, followed by the main 

features of urban drainage systems. A brief review of urban drainage computer modelling 

software tools including calibration of these models is then presented. Then, a detailed 

description of genetic algorithms and their operators are presented, followed by the 

schema theorem, which explains the fundamental theory of G A s in producing the optimal 
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solution. Finally, a review of the past applications of G A s (including in water resources 

and urban drainage) and G A s software are discussed. 

2.2 Urban Drainage Process 

Ferguson (1998) defined the stormwater runoff generation as an environmental process, 

combining atmosphere, soil, vegetation, land use and streams. Urban development is 

greatly disturbing the balance of this process due to replacement of large pervious areas 

of land by impervious areas. The impervious areas include road surfaces, roofs and other 

man-made hard surfaces. The pervious area includes bare surfaces, porous pavements, 

grass courts and lawns. Impervious surfaces produce direct runoff, as they prevent water 

absorption to the soil underneath them. As a result more flash floods can be experienced 

in urban areas. Surface runoff in urban areas is termed urban stormwater runoff. The 

Commonwealth Environment Protection Agency (1993) reported that, in a natural 

environment, only 2 % of the rain becomes surface runoff in an area with good ground 

cover. However, in urban areas, 98-100% ofthe rain becomes surface runoff. 

Boyd et al. (1993) reported that urban catchments respond differently to storm events of 

different magnitudes and the impervious surfaces were the major contributors to urban 

stormwater runoff. The knowledge of the contribution to urban stormwater runoff from 

impervious and pervious areas is useful for the design of stormwater drainage systems 

(Boyd et al. 1993). In general, during small storm events, runoff is generated only from 

the impervious areas, since rain falling on the pervious areas is absorbed into the soil 

producing no runoff. However, during large storm events, pervious areas contribute to 

runoff, in addition to the impervious areas. These differences in runoff generation 

mechanisms of impervious and pervious areas were considered in this study. Part of the 

rainfall is lost through evaporation, depression storage in both surfaces before they 

produce runoff. The rainfall loss from pervious areas is more difficult to predict than the 

rainfall loss from impervious areas because the loss from pervious areas depends on soil, 

vegetation types, antecedent wetness condition, storm intensity and duration. 
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2.2.1 Rainfall loss from impervious areas 

The runoff for impervious areas is simply calculated by subtracting depression storage 

from rainfall. Depression storage prevents initial running off of stormwater because of 

surface ponding, surface wetting and interception. Water stored as depression storage on 

impervious areas is depleted by evaporation. Typical values for impervious area 

depression storage are 0 to 2 m m (Dayaratne 2000). 

In XP-UDD (XP-Software 1997) and SWMM (USEPA 1992) software tools, the 

impervious areas are modelled in two ways as follows: 

• Impervious area with depression storage 

• Impervious area without depression storage - This is introduced to promote 

immediate runoff from the catchment. 

In ILSAX (OLoughlin 1993) and DRAINS (OLoughlin and Stack 1998) software tools, 

the impervious areas are considered as: 

• Directly connected impervious areas 

• Supplementary areas 

The directly connected impervious areas are the impervious areas that are directly 

connected to the drainage system. The supplementary areas are the impervious areas that 

are not directly connected to the drainage system, but runoff from these areas flows over 

the pervious areas before reaching the drainage system. 

2.2.2 Rainfall loss from pervious areas 

The pervious area depression storage is similar to the impervious area depression storage, 

but the water stored as depression storage is subject to infiltration and evaporation. 

However, the evaporation loss is small compared to infiltration losses. Typical values for 

pervious area depression storage are 2 to 1 0 m m (OLoughlin 1993). 
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Runoff occurs when the rate of rainfall exceeds the ability ofthe soil to absorb water (i.e. 

infiltration rate). The infiltration process is a complex interaction between rainfall, soil 

type, and surface cover and condition. Infiltration is often treated as a one-dimensional 

flow and there are number of theoretical and empirical methods that have been proposed 

to calculate the infiltration rate. The empirical models are based on observed behavior of 

soil infiltration and therefore, some parameters in empirical models have no physical 

meaning. The Horton's infiltration model (Horton 1940) is one such empirical equation 

and is perhaps the best-known infiltration equation ( U S E P A 1992). The Green-Ampt 

model (Green and Ampt 1911; Mein and Larson 1971) is an example of theoretical 

equations used in urban drainage models. 

Loss of precipitation due to evaporation has negligible effect on single event simulation 

(i.e. flood events) compared to other losses, but it is important for continuous simulations. 

Evaporation is taken into account as an average monthly value (or as a default daily 

evaporation rate of 3 m m per day) in S W M M and X P - U D D urban drainage models. 

2.2.3 Rainfall-runoff depth plots 

A plot of rainfall depth versus runoff depth for storm event is known as rainfall-runoff 

depth plot (i.e. R R plot). The R R plot of a catchment can be used to determine the 

accuracy of observed rainfall/runoff data, to separate small and large storm events and to 

estimate the impervious area percentage (i.e. %A,) and its depression storage (DS,). In 

these plots, the runoff depths are computed as the ratio of runoff volume at the catchment 

outlet to the total area ofthe catchment. Bufill and Boyd (1992) and Boyd et al. (1993) 

conceptualized the R R plots, as shown in Figure 2.2. 

In Figure 2.2, Bufill and Boyd (1992) and Boyd et al. (1993) considered that the urban 

catchment is made up of three types of surfaces namely directly connected impervious 

areas (Ai), additional impervious areas (i.e. supplementary areas - As), which are not 

directly connected to the stormwater drainage system and pervious areas (Ap). 

Furthermore, they assumed that the urban stormwater runoff from directly connected 

impervious area responds first, followed by supplementary areas and finally by pervious 

areas. In Figure 2.2, the segment F G represents runoff contributing from the directly 
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connected impervious areas and slope of F G gives the directly connected impervious area 

percentage. The depression storage of directly connected areas is given by OF. The 

segment G H represents runoff contribution from directly connected impervious areas and 

supplementary areas, and the segment H B represents runoff from all three areas. The 

gradient of G H and H B give percentage of total impervious [i.e. (Ai+As)/A] area and [i.e. 

(Ai+As+Ap)/A] respectively. OJ and O K give the depression storage of supplementary 

and pervious areas respectively. 

0 OS* OS. DS* * 

i 

Figure 2.2 Rainfall-Runoff Plot (Ref: Boyd et al. 1993) 

Although in Figure 2.2 it has been assumed that directly connected impervious areas, 

supplementary areas and pervious areas respond to runoff in that order, it is difficult to 

say which areas respond first, since the response depends on the location of these areas 

with respect to the catchment outlet. For this reason, Bufill and Boyd (1992), Boyd et al. 

(1993), Maheepala (1999) and Dayaratne (2000) used R R plots in their studies to estimate 

parameters related to directly connect impervious areas only. 
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2.3 Urban Stormwater Drainage Systems 

The main purpose of an urban stormwater drainage system is to collect stormwater from 

its catchment and convey it to the receiving waters, with minimum nuisance, damage or 

danger to its operating environment. Traditionally, these systems provide man-made 

impervious pathways for guiding stormwater flow over the land surface and underground. 

Main components of a stormwater drainage system are property drainage, street drainage, 

trunk drainage, retention basins, detention basins and receiving waters, which are 

described briefly below. Both retention and detention basins have been and are being used 

extensively throughout Australia and overseas. 

• Property drainage - The property drainage system collects stormwater from both 

impervious and pervious surfaces of the properties. The roof is the main impervious 

portion ofthe property. The roof drainage system consists of gutters, down pipes and 

receiver boxes (in some cases). Runoff collected through property drainage is 

discharged to the street drainage system. 

• Street drainage - The street drainage system collects runoff from road surfaces and 

land-adjoining streets through gutters, pits and pipes. The street drainage system then 

discharges this runoff to the trunk drainage system. 

• Trunk drainage - The trunk drainage system generally consists of large open channels 

to convey the runoff from street drainage to receiving waters. They are generally 

located in an open area reserved as a drainage easement. 

• Retention basin - The retention basin is a small lake located in or off stream along the 

urban waterways. It is also used as a water quality control pond as it holds the runoff 

water for a considerable period. 

• Detention basin - The detention basin is commonly known as a retarding or 

compensating basin in Australia. It holds runoff for a short time period (especially 

during high runoff period) to reduce peak flow rates. 

• Receiving water - The receiving water consists of large water bodies such as rivers, 

lakes, bays, the sea and groundwater storage. 
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2.4 Urban Drainage Software Tools 

Urban drainage software tool is a computer base representation of the behaviour of 

complex stormwater runoff processes of urban catchment in the form of mathematical 

equations. The roots of modern urban drainage software tools can be located in the late 

1960s, when the Storm Water Management Model - S W M M model was developed 

(Metcalf and Eddy Engineers 1971). 

There are several computer software tools that are currently available for urban catchment 

drainage modelling. Since the urban drainage systems consist of pits, pipes and channels, 

it is necessary to model both hydrology and hydraulics to get a better representation ofthe 

flows in these systems. The widely used models in Australia were/are S W M M (USEPA 

1992), M O U S E (Danish Hydraulic Institute 1993), ILSAX (OLoughlin 1993) , X P - U D D 

(XP-Software 1997) and D R A I N S (OLoughlin and Stack 1998), which model both 

hydrology and hydraulics of urban drainage systems. It should be noted that X P - U D D is 

an enhanced and user-friendly version of S W M M , while D R A I N S is an upgrade of 

ELS A X model. Brief descriptions of these models are given below. 

SWMM 

The S W M M model is probably the most popular of all urban drainage models. It is a 

comprehensive dynamic rainfall-runoff simulation model, capable of simulating the 

runoff quantity and quality in storm and combined sewer systems. The modeller can 

simulate all aspects of the urban hydrologic and quality cycles, including surface runoff, 

transfer through pipe/channel networks and storage/treatment facilities and to receiving 

waters. It can be used to simulate a single storm event or long, continuous storms (Pitt et 

al. 2002). X P - S W M M (WP Software and X P Software 1993), is an enhanced and user-

friendly version of S W M M Version 4 (Huber and Dickinson 1988; Roesner et al. 1988), 

which included a graphical interface for pre and post-processing of input and output data. 

MOUSE 

M O U S E stands for Modelling Of Urban SEwers and can only be applied for modelling of 

hydrology and hydraulics of urban catchments (Dayaratne 2000). M O U S E , like S W M M , 
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is well suited for analyzing the hydraulic performance of complex looped sewer systems 

including overflow, storage basins, pumping stations and water quality modelling. 

XP-UDD 

X P - U D D uses the same engine of X P - S W M M , except the water quality management 

module (http://www.xpsoftware.com.au). In X P - U D D , it is possible to import data from 

ASCII text files in X P X file format. This format allows the creation of new data and 

objects as well as updating and adding to existing X P - U D D networks. Large data sets up 

to 10,000 conduits can be managed easily using X P - U D D . It allows importing existing 

information from ELS A X , XP-RAFTS ( W P Software 1991), and version 3 and 4 S W M M 

data files. Input and output files of X P - U D D can be accessed by other external software 

tools. 

ILLSAX/DRAINS 

DLSAX and D R A I N S simulate the rainfall-runoff processes of urban catchments, 

generating flow hydrographs at each entry point to the pipe or channel system, then 

routing and combining flows through the drainage network. BLSAX contains a 

comprehensive hydrological module for calculating flow rates, and an approximate 

procedure for pipe system hydraulics. D R A I N S software is an upgrade of DLSAX with 

improved procedures for modelling pipe hydraulics. 

Selection of Urban drainage software for the study 

All above software tools use similar equations for modelling hydrological and hydraulic 

processes of urban catchments. The choice of these tools for use in analysing a particular 

problem depends on the design objectives and the available resources. However, to 

properly use these computer software tools, the user is required to have a good knowledge 

of their capabilities. 

Ofthe above software tools, XP-UDD has ASCII (or text) input and output data files. In 

this study, the G A s optimisation algorithm needs to access these files and therefore, XP-

U D D was selected for this study to model and calibrate the study catchments. In addition 
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to this important property, X P - U D D has the following capabilities, which are also 

important in this study. 

• X P - U D D has built-in Australian Rainfall and Runoff (Pilgrim 1987) design storm 

database, which can produce design hyetographs automatically. 

• It has the capability to view output results through its multimedia capabilities. 

• User-friendliness ofthe software 

• Full support by X P Software 

• Licence at Victoria University 

2.5 Calibration of Mathematical Models 

The reliability of urban drainage models (assembled through computer software tools) 

depends on the correct selection of the model parameter values, which are relevant to the 

catchment or the system that is being modelled. Some of these parameters can be 

physically measured, whereas the others are impossible or difficult to measure (eg. 

depression storage, flow roughness etc.). Therefore, these parameters, which are 

impossible or difficult to measure physically, have to be estimated through model 

calibration, before the models can be confidently used as decision-making tools. The 

model calibration is an iterative process where the model parameters are selected by 

comparing model predictions with observations, until the predictions and observations 

match with each other within a reasonable accuracy. Model calibration is also referred to 

as parameter estimation, because the calibration yields the 'best' values for the model 

parameter set. This section reviews the methods available for calibration of mathematical 

models, in which urban drainage models are a sub-set. 

Model calibration techniques can be broadly divided into two categories namely manual 

and automatic methods, as shown in Figure 2.3. The manual method is the traditional trial 

and error approach. With this method, the simulated hydrographs corresponding to 

different parameter values are visually compared with the observed hydrograph (at the 

catchment outlet), and the parameter value set that best match the observed hydrograph is 

selected as the calibrated parameter set. Vale et al. (1986) and Maheepala (1999) used 

this approach for calibration of urban drainage models. This method is subjective, time 

consuming and error prone. It has been reported by Mohan (1997) and Sorooshian and 
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Gupta (1995) that the trial and error method may lead to unrealistic parameter sets in 

water resources applications. 

Parameter Estimation 

Manual 
Calibration 

woopooooowp<»oo«'pe<<<'CPQW 

Automatic Calibration 
- Optimisation 

i = ; 

Local Global 

1 
Figure 2.3 Broad Methods in Model Parameter Estimation 

In the automatic calibration method, an optimisation technique is used to determine the 

optimum parameter set through a user-defined objective function within a defined 

parameter space. However, it has shown in previous studies (Sorooshian and Gupta 1995) 

that the results of the calibration may differ according to the objective function and 

therefore care must be taken to select the most appropriate objective function for the 

particular study (Ng 2001). 

Automatic optimisation methods can be characterised as being either deterministic (local) 

or stochastic (global). Deterministic optimisation methods are designed to locate the 

'optimum' parameter set when the response surface defined by the user-defined function 

is uni-model (i.e. function with a single peak/trough). If the response surface is multi

modal, the parameter set obtained from the deterministic method may not produce the 

global optimum, since the solution can be trapped at a local optimum point. The current 

literature identifies the most familiar two deterministic optimisation methods based on 

calculus as direct and indirect search methods (Ng 2001). The direct search method seeks 

the local optima by hopping on the function and moving in a direction related to the local 
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gradient. The indirect search method seeks the local optima by solving the non-linear set 

of equations resulting from setting the gradient of the objective function value equal to 

zero (Goldberg 1989a). Theoretically, the deterministic optimisation methods can be used 

to determine the global optimum parameter set by considering several optimisations with 

different starting parameters. However,-this requires more computations and still can miss 

the global optimum. Sorooshin and Gupta (1995) and Hendrickson et al. (1998) have 

showed that deterministic optimisation techniques are not appropriate for water resource 

applications due to two main reasons listed below. 

• Many water resource models contain large number of parameters that cannot be 

easily optimised. 

• Parameter search space may contain multiple peaks and the results may trap in 

local maxima. 

Stochastic optimisation methods are capable of handling multi-modal functions. Some 

research works in water resource applications have shown that stochastic optimisation 

techniques have the ability to overcome the problems associated with deterministic 

optimisation techniques discussed above and are more efficient in locating the 'optimum' 

parameter set compared with deterministic methods ( Liong et al. 1995; Franchini and 

Galeati 1997; Savic and Walters 1997; Vasquez et al. 2000; N g 2001; Sen and Oztopal 

2001). The stochastic methods can be divided into two main groups namely random and 

guided random search methods, as shown in Figure 2.3 (Ng 2001). The random search 

method selects the parameter sets randomly from the parameter range and optimises the 

parameter set. The guided random method provides guided information for the next 

search based on history of previously considered possible solutions, and therefore can be 

more efficient than the random search method. 

Several guided random search methods exist, such as simulated annealing, adaptive 

random search, shuffled complex algorithm and evolutionary algorithm (EA) (Duan et al. 

1992). E A was found to be a robust search method that outperforms the traditional 

optimisation methods in many ways, in particular when the response surface is multi

modal (Back and Schwefel 1993; Schwefel 1997; Mulligan and Brown 1998). E A 

utilises the natural process of evolution (De Jong et al. 1997). 
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There are five forms of Evolutionary Algorithms namely, Evolutionary Programming 

(Fogel 1997), Evolutionary Strategies (Schwefel 1981), Genetic Algorithm (Holland 

1975), Classifier Systems and Genetic Prograrnming. Classifier systems and genetic 

programming were originally derived from G A S . All these methods share common 

principles of E A in applying E A operators to evolve new search spaces (Ng 2001). Of 

these five forms, G A s have proven to provide a robust search in complex search spaces 

(Eshelman and Schaffer 1992; Eshelman 1997; Mayer et al. 1999b). G A s have been 

applied successfully in water resource applications in recent past and is discussed in 

Section 2.6.3.2. 

2.6 Genetic Algorithms (GAs) 

Genetic Algorithms are a widely used stochastic search method originally developed by 

Holland (1975), and later refined by Goldberg (1989a), Davis (1991) and many others. 

G A s are theoretically and empirically proven to provide a robust search in complex 

nonlinear problems (Goldberg 1989a). It uses computer based iterative procedures that 

employs the mechanics of natural selection and natural genetics to evolve solution for a 

given problem. Specially, the notion oi survival of the fittest plays a central role in GAs. 

Goldberg showed that G A s contain several properties that differentiate from the 

traditional optimisation techniques as follows: 

• GAs search the optimum solution from a set of possible solutions, rather than one 

solution. 

• Objective function values are used as feedback to guide the search, rather than using 

derivatives or other information. 

• G A s use probabilistic transition rules rather than deterministic rules. 

• G A s work on the encoded parameter set rather than the parameter set itself (except in 

real-value coding, which has been used in recent applications). 

• G A s can provide a number of potential solutions to a given problem and the final 

choice of solution is left to the user. 

Genetic algorithms are rooted in both natural genetics and computer science. Therefore, 

the G A s terminology has a mixture of natural and artificial terms. As stated earlier, G A s 
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search the optimum solution from one set of possible solutions at a time, rather than from 

one solution. This set of possible solutions is named as population. There are several 

populations in a G A s run and each of these populations is called a generation. Generally 

at each new generation, the solutions (i.e. model parameter sets) that are closer to the 

optimum solution are created than in the previous generation. In the G A s context, the 

model parameter set is defined as a chromosome, while each parameter present in the 

chromosome is known as a gene. Population size is the number of chromosomes present 

in a population. The G A s process are briefly described below and the overall G A s process 

are shown in Figure 2.4. 

Figure 2.4 Overall G A s Process 

At the start of the GAs optimisation, the user has to define the GAs operators (such as 

type of model parameter representation, population size, selection type, crossover rate and 

mutation rate), which are described in Section 2.6.1. The initial population is generated 

according to the selected parameter representation at random or using a priori knowledge 

ofthe search space. The initial population provides the set of all possible solutions for the 

first generation, according to the user defined model parameter ranges. A user-defined 

objective function is used to evaluate each chromosome in the population. These 

objective function values of the chromosomes indicate the suitability (or fitness) of the 

parameter set for the given problem. After computing the objective function values for 
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each chromosome of the current population, G A s operators such as selection, crossover 

and mutation are used to generate the population in the next generation. Several 

generations are considered in the G A s process, until the user-defined termination criteria 

are reached. 

2.6.1 Genetic algorithms operators 

The GAs operators, namely parameter representation, population size, selection type, 

crossover and mutation, control the process of GAs. These operators play an important 

role in the efficiency of G A s optimisation in reaching the optimum solution. One of the 

more challenging aspects of using genetic algorithms is to choose the optimum G A s 

operator set for the relevant problem. 

2.6.1.1 Parameter representation 

Parameter representation or encoding is a process of representing the model parameter 

values in G A s such that the computer can interact with these values. Inverse of this 

representation is referred to as decoding. In principle, any character set and coding 

scheme can be used for parameter representation. However, the initial G A s work of 

Holland (1975) was done with binary representation (i.e. binary character set, 0 and 1), as 

it was computationally easy. Furthermore, the binary character set can yield the largest 

number of possible solutions for any given parameter representation (which is described 

in detail under binary coding), thereby giving more information to guide the genetic 

search (Caruana and David 1987). 

In order to estimate the optimum model parameters of mathematical models using GAs, 

model parameters required representing in a suitable form. The G A s operators work 

directly (or optimization is performed) on this representation ofthe parameters. Currently, 

there are two main types of parameter representation methods available, which are bit 

string coding and real value coding (Wright 1991). The bit string coding is the most 

commonly used method by G A s researchers because of its simplicity. Furthermore, the 

conventional G A s operations and theory were developed on the basis of this fundamental 

structure, which was used in many applications (De Jong et al. 1997; Goldberg 1989b). 
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Bit string and real coding differ mainly in how the crossover and mutation operators are 

performed in the G A s process. There are two types of bit string coding methods available, 

namely binary and Gray coding, which use similar concepts. 

(a) Binary coding 

In binary representation in GAs, each parameter (i.e. gene) in the model parameter set 

(i.e. chromosome) is encoded as a binary sub-string. These sub-strings corresponding to 

each parameter are then arranged linearly to form a string to represent the entire model 

parameter set. The length of the binary sub-string (i.e. number of bits) of a model 

parameter depends on the size of the search space and the number of decimal places 

required for accuracy of the decoded model parameter values. The length of the binary 

sub-string of a model parameter can be computed from Inequality (2.1) (Michalewicz 

1996). This means that the search space is divided into 2^ intervals having a width equals 

2L-1^ (2™ -0_»)1O" (2.1) 

where L is the length ofthe binary sub-string 

Qmax is the upper bound ofthe parameter range 

Qrmn is the lower bound ofthe parameter range 

d is the number of decimal places required to define the accuracy of 

decoded values 

The binary numbers are expressed in base 2 form, and use only two characters 0 and 1. A 

binary number N can thus express using Equation (2.2). 

N =an2"+a„_i2"-
1+ +a12

1 + a02° = _>,2
! (2.2) 

; = 0 

where a, is either 0 or 1 

2' represents the power of 2 ofthe digit a,-. 

n number of bits in binary coded parameter, counting from zero 

(i.e. sub-string length - 1) 
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Suppose there is a model parameter with its search space ranging from -1 to 2 requires 

mapping into binary coding. If the accuracy required is one decimal place, the above 

search space can be divided into 30 intervals of 0.1 widths each as shown in Figure 2.5. 

To binary code this precision at least 5 bits are necessary, because 24 < 30 < 25 (Biethahn 

and Nissen 1995). And also Inequality (2.1) gives the length ofthe binary sub-string as 5. 

Real value parameter range -1 to 2 

0 10 20 30 

Binary coding parameter range 0 to 31 

Figure 2.5 Real Value and 2L Intervals of Binary Value Search Space 

The lower bound and upper bound ofthe real value search space (i.e. -1 and 2) can be 

mapped into binary as follows using Equation (2.2) and all the other intermediate values 

(i.e. 1 to 30) can also be easily express in binary using the same equation. 

0 =o*24 +0*23 +0*22 + 0*2* +0*2° *=> 00000 

31 =1 * 2 4 +1 * 2 3 +1 * 2 2 +1 *2l + 1 * 2 ° " = > 11111 

Once the GAs optimisation is completed, the decoding of binary values to real values can 

be done by linearly mapping the binary values in the interval Qmi„ to Qmax , by using 

Equation (2.3). 

- ymim +
 A —J}~\ <2-3) 

where Q is the decoded real value 

X is integer value of binary number 
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For example, the binary numbers lllll(integer value = 31) and 11110 (integer 

value = 30) can be decoded to the real number in its real value parameter range as 

follows: 

Decoded value of 11111 with in the range of-1 to 2 = (-1) + 31 [2.0 - (-1)] = 2 

[25 - 1] 

Decoded value of 11110 with in the range of-1 to 2 = (-1) + 30 [2.0 - (-1)] = 1.9 

[25 - 1] 

Suppose there are three model parameters (i.e. P, Q and R) in the above example having 

the same search space and required the same accuracy. If the binary encoded values of 

these model parameters are P= 11110, Q=l 1111 and R=00000, then the chromosome 

representing all three parameters (i.e. model parameter set) is 111101111100000 (PQR). 

Although the range of values and accuracy are considered the same for each parameter in 

this example, different ranges and accuracies can be considered in G A s through different 

binary sub-string lengths for different parameters. 

(b) Gray coding 

Gray coding (Gray 1953) was named after Frank Gray (http://www.wikipedia.org 

/wiki/Graycoding). Gray coding is an ordering of binary character sets such that all 

adjacent numerical numbers differ by only one bit whereas in binary coding adjacent 

numbers may differ in many bit positions, as explained below. The advantage of Gray 

coding is that random bit flips in mutation (Section 2.6.1.5) are likely to make small 

changes and therefore result in a smooth mapping between real search and the encoded 

parameters. To convert binary coding to Gray coding, truth table conversion is followed, 

which is shown in Table 2.1. 

Table 2.1 Truth Table Conversions 

\ B 

A ^ \ 

1 

0 

1 

0 

1 

0 

1 

0 

Note: A and B are adjacent bits in binary string 
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When converting from binary to Gray, the first bit ofthe binary code remains as it is and 

the remainder follows the truth table conversion, two bits taken sequentially at a time 

giving the next bit in Gray coding. As example of representation of binary and Gray 

coding of numeric numbers of 1-7 are shown in Table 2.2. In Table 2.2, flipping of bits 

was marked in red, when bits changes form one numeric number to another in both binary 

and Gray coding. 

Table 2.2 Representations of Integer Numbers in Binary and Gray Coding 

Numeric number 
* 

Binary code 

Gray code 

1 

001 

001 

2 

010 

011 

3 

011 

010 

4 

100 

110 

5 

101 

111 

6 

110 

101 

7 

111 

100 

The conversion of numeric number 3 from binary to Gray is demonstrated in Table 2.3, 

where the first bit remains as 0. Then (0,1) in binary gives the second bit in Gray coding 

as 1 and finally (1,1) gives the third bit in Gray as 0. 

Table 2.3 Conversion of Binary to Gray 

Binary 

0 
-< 

1 

i 

„ 1 

"1 
Y J 

Gray 

i • 0 

• 1 

b. 0 
w u 

The number of bit positions differ in adjacent two bit strings of equal length is named as 

Hamming distance. For example, the Hamming distance between 011 and 100 is 3, since 

all bit positions differ, when converting numeric number 3 to 4 in binary representation. 

Hamming distance for the binary ad Gray code values in Table 2.2 is plotted in 

Figure 2.6. 

As can be seen from Table 2.2, if the first bit of 011 and 010 (which are corresponding to 

numeric number 3 of binary and Gray coding respectively) changed to 1 during the 

mutation process in GAs, which will mapped to numeric number 7 (i.e. Ill) and 4 
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(i.e. 110) in binary and Gray respectively. Furthermore as increase in Hamming distance 

of adjacent values in the search space necessarily leads to decrease the similarities in 

string templates (i.e. schemata, which described in Section 2.6.2) and this intern can 

reduce the effectiveness of G A s (Caruana and Schaffer 1989). Caruana and David (1987; 

1989) reported that Gray coding can eliminate a hidden bias in binary coding and that the 

large Hamming distances in the binary representation could result in the search process 

being deceived or unable to efficiently locate the global optimum. According to them, the 

first suggestion ofthe superiority of Gray coding was by Hollstien (1971). Gray coding 

was recently selected as the parameter representation method, when applying G A s in 

several water resource applications recently (Mulligan and Brown 1998; Wardlaw and 

Sharif 1999; Ng2001). 

<D 
o 3 -

c ° 
CO 

"S 
=5 2 
O) 

c 
I 1-
CO 

X 0 -
( 

I I 

) 1 2 
i i i 

3 4 5 

Numerical value 

• Binary Coding 

—•— Gray Coding 

I l I 

6 7 8 

Figure 2.6 Numerical Value Vs. Hamming Distance for Binary and Gray 

(c) Real value coding 

Although G A s have shown to be a robust optimisation technique in many applications, it 

has failed to make significant acceptance in artificial intelligence applications, as they 

required immediately expressive parameter representation rather than bit string 

representation (Antonnisse 1989). The real number representation, in which each 

parameter is represented by its real-value, eliminates this drawback. Furthermore, for 

problems with a large number of parameters requiring optimisation within large 

parameter ranges and requiring a higher degree of precision, binary represented genetic 

algorithms had performed poorly (Michalewicz 1996). Anikow and Michalewicz (1991) 
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reported that the real value representation was faster, more consistent from run to run, and 

provided higher precision especially with large domains where binary coding would 

require long string length. 

Another form of real number representation is the integer coding. In integer coding, the 

floating-point value in the real number coding is replaced with an integer, when 

performing mutation. The only practical difference between real number coding and 

integer coding is the operation of mutation. 

2.6.1.2 Population size 

As stated earlier, the population size is the number of chromosomes in the population. 

Selecting a population size is a fundamental decision that has to be made in G A s 

optimization at the start. Larger population sizes increase the amount of variation present 

in the population (or population diversity), but at the expense of requiring more fitness 

evaluations (Goldberg, 1989a). Furthermore, when the population size is too large, there 

is a tendency by the user to reduce the number of generations in order to reduce the 

computing effort, since the computing effort depends on the multiple of population size 

and number of generations. Reduction in the number of generations reduces the overall 

solution quality. O n the other hand, a small population size can cause the G A s to 

converge prematurely to a sub-optimal solution. 

Goldberg (1989a) reported that population size ranging from 30 to 200 were the general 

choice of many G A s researchers. Furthermore, Goldberg pointed out that the population 

size was both application dependent and related to the length of the chromosome (i.e. 

string length). For longer chromosomes and challenging optimization problems, larger 

population sizes were needed to maintain diversity, as it allowed better exploration. 

In GAs optimisation, the population is initially chosen at random or using a heuristic 

technique within a specified range for parameters. The latter method is based on prior 

knowledge ofthe parameters and hence provides a good initial estimate of parameters and 

hence rapid convergence. The advantage of the random method is that it prevents 

premature convergence to an incorrect solution due to insufficient variability in the initial 

population. 
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2.6.1.3 Selection 

The selection process determines which chromosomes participate for reproduction in 

generating the next population (i.e. in the next generation) according to their fitness 

values in the current population. In general, this process takes advantage of the fittest 

solutions by giving them greater weight when selecting the next generation and hence 

leads to better solutions to the problem. There are two common terms related to selection 

process namely generation gap and selection pressure. 

All chromosomes in the population or only a percentage of chromosomes in the 

population can undergo selection process using any selection method. This percentage is 

known as generation gap, which is a user input in GAs. However, Peck and Dhawan 

(1995) reported that the generation gap was not critical. 

When selecting chromosomes for the next generation, selection pressure puts more 

emphasis on the fitter model parameter sets and more copies of fitter parameter sets being 

selected into the next generation than those with less fitness values. This loses the 

population diversity or the variation present in the population and could lead to a 

premature convergence. Whitley (1989) reported that population diversity and selection 

pressure as the two primary factors that influence the G A s search. Whitley pointed out 

that these two factors are inversely related and hence required to have a good balance 

between them. Therefore, he argued that the method used in the selection process need to 

have the ability to account for balance between selection pressure and population 

diversity. 

There are several ways to implement selection in GAs optimisation. Proportionate 

selection (Grefenstette 1997), linear ranking (Baker 1987) and tournament selection 

(Blickle T. and Thiele L. 1997), are commonly used selection methods. They are briefly 

described below. However, Goldberg and Deb (1991) stated that no one selection method 

is superior to the other. 
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(a) Proportionate selection 

The proportional selection method selects chromosomes for reproduction of next 

generation with probability proportional to the fitness of the chromosomes. In this 

method, the probability (P) of selecting a chromosome for reproduction can be expressed 

by Equation (2.4). 

P = ̂ ^ (2.4) 
TotalFit 

where Fitness is the fitness value ofa chromosome 

TotalFit is the sum of the fitness values of all chromosomes 

in the population 

This method provides non-integer copies of chromosomes for reproduction. Therefore, 

various methods have been suggested to select the integer number of copies of selected 

chromosomes for the next generation, including Monte Carlo, roulette wheel and 

stochastic universal selection. Goldberg (1989a) reported that the simplest method among 

them was the roulette wheel method. The roulette wheel method can be considered as 

having slots for each chromosome in the population, where each slot is equivalent to the 

fitness value ofthe chromosome. The higher the value of fitness the larger the area ofthe 

slot for that particular chromosome and vice versa. To determine the integer number of 

chromosome copies, the roulette wheel requires spinning N times, where N is the number 

of chromosomes in the population. The number of copies allocated to each chromosome 

can then be obtained by summing the number of times the spin has landed on respective 

slot. Therefore, there is a probability of fitter chromosomes (i.e. good solutions) 

contributing more times for reproduction. 

(b) Linear ranking selection 

Baker (1987) introduced the linear ranking selection to genetic algorithms practice 

(Goldberg and Deb 1991). In the linear ranking method, the fitness rank of each 

chromosome is used instead of its absolute value of fitness. In other words, the 

population in each generation is sorted in fitness order and selection is done according to 

the ranking, and not according to the fitness value. This reduces the influence on the 

selection of extremely fitter chromosomes for the next generation and thereby reducing 
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selection pressure and increasing population diversity. This method also used the roulette 

wheel sample selection method to select integer number of copies of selected 

chromosomes for the next generation. 

(c) Tournament selection 

In the tournament selection method, chromosomes for reproduction are selected through 

competition. This is performed by randomly selecting 2 chromosomes in the current 

population regardless of their fitness and then the best is selected. With this process, one 

chromosome can win many times, and the process is continued until the required number 

of chromosomes is selected for the reproduction of the next generation. Although in 

general, tournaments are held between pairs, Goldberg and Deb (1991) reported that large 

tournaments between more than two chromosomes can be used as well. The tournament 

selection provides integer copies for reproduction in the next generation. Yang et al. 

(1997) provided a detailed discussion ofthe tournament selection. 

2.6.1.4 Crossover 

The crossover operator is used to create new chromosomes for the next generation by 

combining randomly two selected (Section 2.6.1.3) chromosomes from the current 

generation. However, some algorithms use an elitist selection strategy, which ensures the 

fittest chromosome from one generation is propagated into the next generation without 

any disturbance. The crossover rate is the probability that crossover reproduction will be 

performed and is an input to GAs. For example, a crossover rate of 0.9 means that 9 0 % of 

the population is undergoing the crossover operation. A high crossover rate encourages 

good mixing ofthe chromosomes. 

There are several crossover methods available for reproducing the next generation. In 

general, the crossover methods can be classified under two groups according to their 

parameter representation in G A s optimisation (i.e. bit string coding or real value coding). 

The choice of crossover method is primarily dependent on the application. Back and 

Schwefel (1993) reported that crossover is the dominant genetic operation, consistently 

having high crossover rates of 0.6 - 0.95. 
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(a) Bit string value crossover types (Davis 1991; Goldberg 1989a) 

In bit string coding, crossover is performed by simply swapping bits between the 

crossover points. Different types of bit string crossover methods are discussed below. 

Single-point crossover 

Two parent chromosomes are combined randomly at a randomly selected crossover point 

somewhere along the length of the chromosome, and the sections on either side are 

swapped. For example, consider the following two chromosomes each having 6 binary 

bits. After crossover, the new chromosomes (i.e. referred as offsprings or children) are 

created as follows if the randomly chosen crossover point is 3. 

» ? 4 Crossover point 

Chromosome 1 (parent 1) 

Chromosome 2 (parent 2) 

1 1 1 1 1 1 
^> 

0 00 0 00 

Offspring 1 

Offspring 2 

1 1 1 000 

1 11 

Multi-point crossover 

In multi-point crossover, the number of crossover points are chosen at random with no 

duplicates and sorted in ascending order. Then, the bits between successive crossover 

points are exchanged between the two parents to produce two new chromosomes. The 

section between the first bit and the first crossover point is not exchanged between 

chromosomes. For example, consider the same example of two chromosomes used in 

single crossover. If the randomly chosen crossover points are 2, 4 and 5 (i.e. no duplicates 

and ascending order), the new chromosomes are created as follows. 

Chromosome 1 (parent 1) 

Chromosome 2 (parent 2) 

1 1 

_r^ 

1 1 

& 

1 

^^Crossover points 

1 Offspring 1 1 1 E D l MM 

P P M — g ' " Offspring 1 Ef_j l l H l 

The two-point crossover is a sub-set of multi-point crossover. The disruptive nature of 

multi-point crossover appears to encourage the exploration of the search space, rather 

than favoring the convergence to highly fit chromosomes early in the search, thus making 

the search more robust. 
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Uniform crossover 

Single and multi-point crossover define crossover points between first and last bit of two 

chromosomes to exchange the bits between them. Uniform crossover generalizes this 

scheme to make every bit position a potential crossover point. In uniform crossover, 

string of bits, which has the same length as the chromosome is created at randomly to 

indicate which parent will supply the bits to create offspring. 

As example, consider the same above example of two chromosomes. If the randomly 

generated string for parent 1 is 110011, then the offsprings are created as follows. The bit 

from parent 1 is taken to produce offspring 1, if the corresponding bit ofthe randomly 

generated string is 1. The bit from parent 2 is taken to produce offspring 1, if the 

corresponding bit of the randomly generated string is 0. Offspring 2 is created using the 

inverse ofthe above randomly generated string. 

Chromosome 1 
1 1 1 ll1 , K Offspring 1 1 1 j 11 

Syswerda (1989) reported that uniform crossover is generally the best followed by two-

point and one-point crossover. 

Crossover with reduced surrogate 

Contrary to all above methods, the reduced surrogate crossover is implemented by 

restricting the location of crossover points such that crossover points only occur where 

gene values differ or at gene boundaries. 

(b) Real value crossover types 

In real value coding, simply swapping real values of the genes between the crossover 

points performs the crossover. Different types of real value crossover methods are 

discussed below. 
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Discrete crossover (Wright 1991) 

The discrete crossover performs an exchange of parameter values randomly between the 

chromosomes. Consider the following example of two chromosomes having 3 parameters. 

For each parameter, the parent contributes its values to the offspring randomly with equal 

probability. In this example, this random selection yields offspring 1 generated from 

values of parameter 1 and 2 of parent 2 and parameter 3 of parent 1. Offspring 2 is 

generated from values of parameter 1 and 3 of parent 1 and parameter 2 from parent 2. 

Chromosome 1 12 25 5 \ \ Offspring 1 123 4 5 

Chromosome 2 123 4 34 Offspring 2 12 4 5 

Intermediate/Extended crossover (Michalewicz 1996) 

With these methods, the parameter values of the offsprings are chosen from the parents 

according to Equation (2.5). 

offspring = chromosome 1 + Alpha (chromosome 2 - chromosome 1) (2.5) 

where Alpha is a scaling factor chosen uniformly at random over 

an interval (-d, l+d) 

For intermediate crossover d is 0, while for extended intermediate crossover d is greater 

thanO. 

Line crossover 

The line crossover is similar to the intermediate crossover, except that only one value of 

randomly generated Alpha for all parameters is used to produce one offspring. However, 

different values of Alpha may be used to produce the offspring 2. 

2.6.1.5 Mutation operator 

Mutation introduces innovation into the population by randomly modifying the 

chromosomes. It prevents the population from becoming saturated with chromosomes that 

all look alike and reduces the chance of premature convergence (Hessner and Manner 
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1991). For example, in bit string representation, mutation is done by flipping O's to l's 

and vice versa. Large mutation rates increase the probability of destroying good 

chromosomes, but prevent premature convergence. The mutation rate determines the 

probability that mutation will occur. For example, if the population size is 100, string 

length is 20 and mutation rate is 0.001, only two bit positions will alter in the whole 

population (i.e. 100 x 20 x 0.001 = 2). As in crossover methods, mutation methods can be 

classified according to G A s parameter representation (i.e. bit string coding or real value 

coding). 

(a) Bit string mutation 

For binary and Gray coding systems, mutation is done by flipping bits O's to l's and vice 

versa at randomly chosen locations. Consider the following example of a bit string 

mutation for a chromosome with 11 bits, in which bit 4 is randomly mutated. 

Before mutation j 

After mutation 

1 | 

1 j 

1 \ 
: 

1 

1 

1 

1 j 

o 

11 
i 

1 

1 

1 

1 

1 

1 

1 

1 

1 

M 
1 

o 

0 

(b) Real value mutation 

To achieve real value mutation, either disarrange the gene values or randomly select new 

values. Mutation for integer coding is performed analogous to real value coding except 

that after mutation the value for that gene is rounded to the nearest integer. Some research 

findings and proposed methods for the real value mutation are displayed in the web site 

http.7/www.geatbx.com/docu/algmutat.html. 

2.6.2 Schema theorem 

The Holland's schema theorem provides the theory on how GAs find the shortest path to 

the fittest chromosome (Goldberg 1989a). This theorem was developed using the binary 

representation, although the recent G A s work has n o w extended to include real and 

integer number representations. A schema is defined as a set of genes (i.e. chromosome), 

which can be built by introducing the asterisk (*) symbol into the binary alphabet (0,1). 

The asterisk is known as don't care symbol, which means that it can be a 0 or a 1. 
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Schemata (i.e. plural of schema) are similarity templates of a set of chromosomes with 

common binary bits at certain positions (Holland 1975). These templates are a powerful 

way of describing similarities among patterns in the chromosomes. 

For example, the schema Hi= 011** describes a set oi genes of a chromosome in binary, 

where the first three position are fixed as 011, and last two positions can take on a value 

of either 0 or 1. Therefore, the schema Hi can represent four chromosomes, namely 

01111, OHIO, 01101 and 01100. All these chromosomes are instances ofthe schema Hi. 

However, they are also instances of other schema such as Ho = *1***, which is more 

general than Hi, since it contains fewer fixed bits (Biethahn and Nissen 1995). This is 

explained in more detail below. 

The two important properties of a schema are the order-o(H) and the defining 

length-L(H). The order of a schema is the number of fixed symbols (1 or 0) in its 

representation. The order of Hi and Ho are 3 and 1 respectively. The defining length ofa 

schema is the distance between the first and the last non-asterisk bits. It represents the 

compactness of a schema. The defining length of Hi and Ho are 2 and 0 respectively. 

Therefore, Ho is having a low defining length and a low order than Hi. The degree of 

mutation and crossover destroying the existing schemata are dependent upon the order 

and the defining length ofthe schemata. The schema with low order and defining length 

would prevent destruction by mutation and crossover. 

The Holland's schema theorem states that low defining length (i.e. short), low order 

schemata with above average fitness values will be allocated exponentially increasing 

trials in subsequent generations (Biethahn and Nissen 1995). The following explanation 

of schema theorem follows the example used in Goldberg (1989a), which is shown in 

Table 2.4. 

In this example, Goldberg considered the problem of maximising function f(x) =X2 , 

where X is in the binary parameter range of 0 to 31(example in Section 2.6.1.1-a). For 

simplicity, Goldberg selected a population size of four randomly in this example. These 

selected values are shown in column (1) in Table 2.4. Furthermore, Goldberg assumed 

that chromosome 1 in the initial population was in schema Hi = 011** and chromosome 2 

and 4 were in schema H 2 =1****. Corresponding integer values of the binary 
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chromosomes are tabulated in column (2). The fitness value or objective function was 

assumed as same as the maximising function value (i.e. X 2 ) , which was tabulated in 

column (3). The Proportionate selection method and the roulette wheel method were used 

to select the parent copies for the reproduction (i.e. mating) pool and the results are 

tabulated in column (4) and (5) respectively. To perform crossover, parents and crossover 

points were randomly selected as shown in column (6) and (7) respectively to produce the 

new population. There was no mutation effect on population, since the mutation rate 

considered was 0.001. The new population and its fitness vales are tabulated in column 

(8) and (9) respectively. 

Table 2.4 Example of Schema Theorem (Goldberg 1989a) 

Initial 

population 

(D 

01101 (HO 

11000 (H2) 

01000 

10011 (H2) 

Sum 

Ave. 

Max 

Integer 

value of 

binary 

no. (X) 

(2) 

13 

24 

8 

19 

Fitness 

value 

= X 2 

(3) 

169 

576 

64 

361 

1170 

293 

576 

Selected 

copies 

(4) 

0.58 

1.97 

0.22 

1.23 

Actual 

copies 

(5) 

1 

2 

0 

1 

Mating 

pool 

(6) 

0110(1 (H,) 

IK 

11 

10 

)0(0 (Hz) 

000 (H2) 

011 (Ha) 

Cros 

sover 

point 

(7) 

4 

4 

2 

2 

New 

population 

(8) 

01100 (H,) 

11001 (H2) 

11011 (H2) 

10000 (H2) 

Fitness 

value 

(9) 

144 

625 

729 

256 

1754 

439 

729 

As can be seen from Table 2.4, the average fitness value of H 2 (i.e. (576 +361)/2 = 468.5) 

is greater than the average population fitness value (i.e. 293) and H 2 has low order and 

low defining length compared to Hi. Therefore, H 2 contributed more copies (i.e. 3 copies) 

to the reproduction pool as well as for the new population than in the initial population. 

Holland derived an equation to express the schema theorem in mathematical form. This 

equation can be used to predict the number of times a particular schema, would have in 

2-32 



Review of urban drainage processes, modelling and Genetic Algorithms Chapter 2 

the next generation after undergoing selection, crossover and mutation. This expression is 

shown in Equation (2.6). 

m(H,t + \)>m(H,t) JW) 
f 

m L^) 
l-Pc-pf-o(H)pn 

(2.6) 

where H 

t 

m(H,t) 

m (H,t+1) 

f(H) 

f 
I 

Po 

Pm 

L(H) 

o(H) 

is a particular schema 

is the generation 

is the number of times the schema is in the current generation 

is the number of times a particular schema is expected in the next 

generation 

is the average fitness of all chromosomes that contain schema H 

is the average fitness for all chromosomes 

is the string length 

is the crossover rate 

is the mutation rate 

is the defining length oi schema 

is the order ofthe schema 

If Equation (2.6) is applied to schema H 2 in the above example: 

Expected Schemata H 2 in next generation = 2 x (576 +361V2 x [1- 0 - 0.001] = 3.2 
293 

= 3 

(L(H) = 0, o(H) =1 and mutation rate (pc) was considered as 0.001). 

In the above example, it was shown only the propagation of one schema, which was 

having short, low order and above average fitness of the population. In reality, there can 

be several schemata having short, low order and above average fitness ofthe population 

in a given generation. Since the GAs has the ability to process many schemata in a given 

generation, G A s are said to have the property of implicit parallelism, thereby making 

them an efficient optimization algorithm. 
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2.6.3 Previous G A s applications 

During the past 30 years, many researchers have applied the genetic algorithm technique 

to various applications. Also several studies can be found in literature, which dealt with 

the optimum G A s operators for various applications. 

2.6.3.1 GAs non-water resources applications 

De Jong (1975) used empirical studies to find the optimum GAs operators for a number 

of function optimisation problems. The conclusions from these studies are shown in Table 

2.5. D e Jong reported that good performance could be achieved from G A s using high 

crossover rates and low mutation rates. A similar approach was used by Grefenstette 

(1986) to find the optimum G A s operators for function optimisation problems and 

recommended different optimum G A s operators values as shown in Table 2.5. 

Table 2.5 Optimum G A s Operators from the Previous Studies 

G A s operators 

Population size 

Crossover rate 

Mutation rate 

De Jong 

(1975) 

50 

0.6 

0.001 

Grefenstette 

(1986) 

30 

0.95 

0.01 

Goldberg 

(1989a) 

30 -200 

0.6-0.9 

0.01 or less 

Schaffer et al. 

(1989) 

20-30 

0.75-0.95 

0.005-0.01 

A theoretical investigation of optimal population size was conducted by Goldberg (1985) 

and derived an approximate equation to calculate the population size. This equation is 

given below. 

Pop = 1.65 x2°-2lxSL (2.7) 

where Pop is population size 

SL is string length 

This equation gives population sizes of 30, 130, 557, 2389 and 10244 for binary string 

lengths of 20, 30, 40, 50 and 60 respectively. However, for a wide range of problems, 

Goldberg (1989a) suggested the values in Table 2.5, as good estimates for an initial run. 
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Furthermore, Goldberg reported that the proper choice of G A s operators is problem 

dependent. 

Schaffer et al. (1989) spent considerable effort in their empirical studies to find the 

optimum G A s operators for function optimisation problems. They adopted the Gray 

coding parameter representation claiming that it was superior to the traditional binary 

coding and recommended the G A s parameter values given in Table 2.5. They also 

reported that the G A s performance was sensitive to the population size, crossover rate, 

mutation rate and crossover method used. Furthermore, they argued that large populations 

impose a large computational time per generation and therefore Equation (2.7) derived by 

Goldberg (1985) was too conservative, as it leads to very large populations for large 

string lengths. Syswerda (1989) compared crossover types both theoretically and 

empirically, and reported that the uniform crossover was superior to others, followed by 

two-point and one-point crossover. However, Syswerda was reluctant to nominate the 

best crossover type in general, claiming that there was no best function-independent 

crossover operator. / 

Janikow and Michalewicz (1991) empirically studied the real value coding and binary 

coding of G A s for a dynamic control problem and reported that the real value 

representation was faster and provided higher precision compared to the binary 

representation, especially for problems with large parameter range, where binary coding 

required long string lengths. 

Goldberg and Deb (1991) compared the expected behaviour of selection types 

theoretically and reported that the proportionate selection was significantly slower in 

converging to the optimum solution than the linear ranking and tournament selection 

method. Furthermore, they found that linear ranking and tournament selection methods 

have identical performance. However, Goldberg and Deb (1991) stated that no one 

selection method was superior to the other. D e Jong and Sarma (1995) and Blickle and 

Thiele (1997) also found that the variety of selection types (proportionate or linear 

ranking methods with roulette wheel, tournament selection) did not produce a great 

difference in performance (Mayer et al. 1999b). 
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Mayer et al. (1999a) compared and reviewed the available optimisation methods and 

found that the evolutionary algorithms including G A s performed superior for their 

agricultural system model optimisation. Mayer et al. (1999b) compared binary and real-

value representations in G A s with the use of G E N E S I S (Grefenstette 1987; Grefenstette 

1995) and G E N I A L (Widell 1997) G A s software tools respectively for the optimisation 

of agricultural system models. They selected G A s operators from the literature for their 

study. It was found that there were no difference between binary and real value 

representations in the G A s optimisation studies, although the real value representation 

was expected to be superior to binary coding (Back et al. 1997). 

2.6.3.2 GAs water resources applications 

The literature describing G A s applications in water resources is not extensive. Goldberg 

and Guo (1987) were the first to use G A s to a water resource application, which involved 

a pipe network optimisation problem (Cui 2003). Since then, there have been several 

applications of G A s to pipe network problems and they all found that G A s were effective 

in finding global optimum or near-optimum solutions for their applications (Simpson et 

al. 1994; Dandy et al. 1996). 

Wang (1991) applied GAs to the calibration of a conceptual rainfall-runoff model 

successfully. Nine model parameters were optimised by niinimising the sum of squares of 

differences between computed and observed daily discharge volumes. Wang used binary 

coding with sub-string length of 7 for each parameter, a population size of 100 and a 

mutation rate of 0.01, which were selected from previous literature. Franchini (1996) used 

G A s combined with of Sequential Quadratic Programming (SQP) to calibrate a 

conceptual rainfall-runoff model and reported that GAs-SQP was an efficient and robust 

calibration method. Franchini and Galeati (1997) studied the sensitivity of G A s operators 

and then applied G A s to calibrate 11 parameters of a conceptual rainfall-runoff model. 

They found that the best performance was achieved with a population size of 100-200 and 

a mutation rate equal to \ln, where n is the number of model parameters. 

GAs have been successfully applied to calibration of water quality models (Mulligan 

1995; Mulligan and Brown 1998; N g 2001). Mulligan and Brown (1998) used the 

G E N E S I S G A s software with Gray coding, population sizes of 25 and 100, linear 
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ranking selection, two-point crossover, crossover rate of 0.6 and mutation rate of 0.03. N o 

attempt was made to optimise G A s operators, although they reported that the G A 

operators may affect the overall G A s performance. The results from G A s were compared 

with a calculus-based calibration method known as the Marquardt algorithm (Marquardt 

1963) and found that both methods produced comparable results for the optimum 

parameter set. N g (2001) carried out a detailed study on selecting the optimum G A 

operators using G E N E S I S G A software for river water quality models. The conclusion 

from this study was that G A operators have not played a significant role in predicting the 

water quality in that particular application and a robust G A operator set from literature 

can be used. Mohan and Loucks (1995) studied the sensitivity of G A s operators and 

found that the population size of 100-250, the crossover rate of 0.6-0.9 and the mutation 

rate of 0.02-0.1 were the best for their water quality prediction models. 

Mohan (1997) applied GAs for the estimation of non-linear Muskingum model 

parameters and compared the results with those from previous studies of Yoon and 

Padmanabdan (1993). The results of G A s have proven to be efficient and accurate, 

compared to the Yoon and Padmanabdan (1993) study. Mohan studied the sensitivity of 

G A s operators and found that the population size of 100, the crossover rate of 0.9 and the 

mutation rate of 0.001 as the optimum G A s operators for his application. 

Wardlaw and Sharif (1999) performed a compressive study on GAs operators in their 

optimal reservoir system operation study. They studied the effect of crossover rate for 

binary, Gray and real value coding representations for their problem. They used a 

population size of 100, the tournament section, the uniform crossover type and the 

mutation rate as inverse of the number of parameters, and reported that the real value 

coding clearly provided the best performance. They found that the optimum crossover 

rate was 0.7-0.75 for real value coding and the optimum crossover rate was 0.8 for Gray 

coding. Ndiritu and Daniell (2001) compared G A s and shuffled complex evolution for 

rainfall-runoff model calibration and function optimisation. They reported that the 

shuffled complex evolution method performed better than the standard G A s algorithm. 

It can be seen from the above studies that there are no clear guidelines available to choose 

optimum G A s operators, although the significance ofthe G A s operators has been studied 
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to a certain extent in above water resources applications. However, most of the studies 

proved that G A s were a robust optimisation method in locating optimum model parameter 

set in their applications. Similar findings were seen in the review of non-water resource 

applications described in Section 2.6.3.1. 

2.6.3.3 GAs urban drainage modelling applications 

Liong et al. (1995) applied GAs successfully to calibrate the SWMM model using 

GENESIS G A s software. They calibrated eight S W M M model parameters by minimising 

the sum of square ofthe peak flow prediction error. They used a population size of 100 

and the default values of G E N E S I S as the other G A s operators, which were the 

proportionate selection, a crossover rate of 0.6 and a mutation rate of 0.001. Furthermore, 

they used the binary representation with the sub-string length of 5 for each parameter, 

resulting in a total string length of 40. However, they did not attempt to optimise the G A s 

operators. 

Balascio et al. (1998) used micro-GAs (with a small population size of 5) to calibrate the 

runoff component of the S W M M model. They used multi-objective functions combining 

three hydrograph features, namely peak flow rate, runoff volume and time to peak. Four 

storm events used out of five, showed a perfect match with the observations during 

calibration. However, they did not comment on why they had used micro-GAs instead of 

the traditional GAs. 

Based on the above studies, it is difficult to borrow suitable GAs operators for the urban 

drainage model calibration in this study. Therefore, it was decided to conduct a detailed 

study to determine the optimum G A s operators before attempting the model parameter 

optimisation in urban drainage modelling. 

2.6.4 Selection of GAs software for the study 

There are several GAs software tools available, which have been developed using 

Fortran, C/C++, Java and other (matlab etc.) prograrnming languages. The web site 

http://www.aic.nrl.navy.mi1/galist/src/#C provides links to some of the public domain 
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G A s software tools. Although these software tools use the same G A s theory, each 

software tool is designed and implemented in a slightly different way, using the various 

G A s operator options and various compilers. For example, as reported by Mardle and 

Pascoe (1999) only one selection method and only one crossover type are implemented in 

the Standard Genetic Algorithms-SGA (Goldberg 1989a) G A s software tool, whereas 

seven selection methods, four crossover types and two mutation procedures are 

implemented in the G E N E s Y s (Back 1992) G A software tool. 

One ofthe first publicly available GAs software tool was GENESIS (Grefenstette 1987), 

which has since improved and used as a guide for many other G A tools such as the 

GENEsYs. GENESIS stands for GENEtic Search Implementation System and is 

probably the most widely used public domain software available (Hunt 2000). GENESIS 

version 5.0 (Grefenstette 1995) was selected for this study, since it has been used 

successfully for various water resource applications in the past. Liong et al. (1995) used 

GENESIS for calibrating the S W M M model, Mulligan and Brown (1998) and N g (2001) 

coupled GENESIS with the river water quality models to optimise the model parameters. 

GENESIS was written in C language, and was written to promote the study of G A s and is 

available in public domain. 

2.7 Summary 

Management of stormwater runoff from urban catchments has become an increasingly 

important environmental issue and stormwater drainage is a major part of this overall 

stormwater management. Runoff in urban areas has increased rapidly in recent times due 

to urbanization and hence it is required to design stormwater drainage systems, as part of 

the overall stormwater management. 

The use of computer based mathematical models has become more and more popular in 

the recent past for design and analysis of urban stormwater drainage systems. There are 

several urban drainage software tools that have been developed to simulate the rainfall-

runoff process of these systems. In order to use these software tools effectively, it is 

necessary to estimate the model parameters accurately for the relevant catchment. Some 
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of these parameters can be physically measured, whereas the parameters that are 

impossible or difficult to measure physically need to be estimated through model 

calibration. 

Various model calibration methods from trial and error to optimisation methods were 

reviewed in this chapter. Generally, the automatic stochastic optimisation methods are 

preferred to the traditional trial and error methods or deterministic methods, since these 

stochastic methods have proved to produce the global optimum parameter set. 

Genetic Algorithms (GAs) is one such stochastic optimisation methods, which is gaining 

popularity in water resource applications. Even though G A s has been recognized as a 

robust optimisation method for estimating model parameters in many fields including 

water resources, it has not been used widely for urban drainage model parameter 

optimisation. This method will be used in this study and discussed in Chapter 4. 

The GAs operators, such as parameter representation, population size, selection methods, 

crossover methods and crossover and mutation rates play an important role on the 

convergence ofthe optimum model parameter set. The review ofthe past studies showed 

that there were no clear conclusions regarding the optimum G A s operators to be used in 

parameter optimisation of urban drainage models. Therefore, before attempting to 

calibrate the urban drainage models using GAs, it is necessary to investigate the optimum 

G A s operators for the study, since there is no guidance available for G A s operators to be 

used in urban drainage model calibration. 
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CHAPTER 3 

XP-UDD AND GENESIS SOFTWARE 
TOOLS 

3.1 Introduction 

As stated in Sections 2.4 and 2.6.4, XP-UDD and GENESIS computer software tools 

were selected for urban drainage modelling and facilitating G A optimisation of urban 

drainage model parameters respectively in this study. A n overview of these software tools 

including capabilities is described in this Chapter. The Chapter also describes how the 

two software tools were linked to perform the automatic calibration of urban drainage 

model parameters using GA. 

3.2 Overview of XP-UDD Software 

As outlined in Section 2.4, XP-UDD simulates the complete rainfall-runoff cycle, 

including overland flow and pipe/channel flow except water quality. It uses links and 

nodes to represent the stormwater drainage network. A link represents a hydraulic 

element of some kind for flow transport down the system (eg. pipes, channels, weirs, 

etc.). A node represents the junction of two or more hydraulic elements, the location for 

input of flow into the drainage system (eg. inlet pits) or a storage device such as a pond 

(or lake). In general, nodes receive stormwater from its sub catchments and distribute 

them to the catchment outlets via the links of the drainage system. The basic modelling 

element in X P - U D D can be considered as the inlet pits (i.e. nodes) with its sub 

catchments and the outlet pipes (i.e. links), as shown in Figure 3.1. The X P - U D D 

hydrologic module interface allows up to five-sub catchment runoff at each node. 
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Runoff from sub 
catchments (allowed up 
to 5 sub catchments) y 

Inlet Pit 
(node) 

Overflow 

/ 

Z 
Pipe or Channel (link) 

1 

Figure 3.1 Basic X P - U D D Modelling Elements 

X P - U D D can be used as a planning and design tool to predict runoff in an urban 

catchment. It is capable of performing continuous simulations over a long period to do the 

overall assessment of the urban drainage system as a planning model. It is also capable of 

performing detailed simulation of single storm events to provide complete design 

hydrographs. X P - U D D provides all major hydrological methods to estimate stormwater 

inflows, wastewater dry weather flows and infiltration flows. The software can be used to 

automatically design the pipes ofthe entire system or ofa portion ofthe network. 

Recently, XP-UDD has been used for hydraulic modelling in Bayside council area ofthe 

Melbourne Metropolitan area (Australia) for its planning scheme (Melbourne Water 

2000). It was also utilized to calculate the peak discharges of runoff events of Annual 

Recurrence Intervals of 20 and 50 years to improve surface water management in the 

upper north Moore river catchment of Australia (www.calci.org/Downloads). It was also 

used for flood studies on Sungai Tutong and Sungai Brunei rivers on the island of Borneo 

(www.yce.com.au). 

X P - U D D contains two basic modules namely hydrologic and hydraulic. The hydrologic 

module is used to simulate overland flow, whereas the hydraulic module routes flow 

through the open and closed conduits of the drainage system. The user has an option to 

select either of these modules or both for analysis of the drainage system depending on 
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the problem. These two modules are connected to the global database of the XP-UDD, 

which contains design storm events, infiltration data and other required data for 

simulation. 

3.2.1 Hydrologic module 

The hydrologic module of XP-UDD generates stormwater runoff hydrographs using 

catchment conditions and design or measured hyetographs. Like all other urban drainage 

software tools, X P - U D D is required to have the urban catchment to be divided into a 

number of sub catchments. As shown in Figure 3.1, the sub catchment stormwater runoffs 

will be the input to the node, which represents the inlet pit. As stated earlier, the X P - U D D 

hydrologic module interface allows up to five-sub catchment data inputs at each node. 

The input data related to the sub catchments include the sub catchment area, percentage 

of impervious areas, surface slope and width of the sub catchments. Each sub catchment 

is modelled in X P - U D D based on three surfaces namely the impervious area with and 

without depression storage, and pervious area with depression storage. These surfaces of 

a sub catchment are shown in Figure.3.2. The impervious area includes road surfaces, 

roofs and other man-made hard surfaces. The pervious area includes bare surfaces, porous 

pavements, grass courts and lawns. 

-Width. 

Pervious 

area flow 

Slope 

Impervious area flow 

Total sub catchment 

J- flow to inlet 

Note: A Impervious areas with depression storage 

B Impervious areas without depression storage 

C Pervious areas with depression storage and infiltration 

Figure 3.2 Three Surfaces of a Sub Catchment in X P - U D D (USEPA 1992) 
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The width of the sub catchment is an important variable in X P - U D D and S W M M 

modelling. If overland flow is running off down-slope as in an idealized rectangular 

catchment as shown in Figure 3.2, then the width is the physical width ofthe overland 

flow. However, most real sub catchments will be irregular in shape and have drainage 

channels, which are off-centered as shown in Figure 3.3. A good estimate ofthe width for 

these cases is the ratio ofthe area ofthe sub catchment to the average path ofthe overland 

flow (XP-Software 1997). 

Figure 3.3 Irregular Sub Catchment Shape for Width Calculation (USEPA 1992) 

The SWMM manual (USEPA 1992; XP-Software 1997) presents a relationship to obtain 

the width of irregular shaped sub catchments with drainage channels off-centered, by 

comparing a skew factor as in Equation (3.1). It can be seen from Equation (3.1), if the 

two sides ofthe sub catchment are symmetrical then the total width is twice the length of 

the drainage channel. 

W = (2-SK)*L (3.1) 

where W is sub catchment width 

SK is skew factor, SAT = (Aj - A2)/A 

Aj is area to one side ofthe channel 

A2 is area to the other side of channel 
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A is total area of sub catchment 

L is length of main drainage channel 

There are several options available in XP-UDD for stormwater runoff routing over the 

sub catchments namely, non-linear reservoir routing, Laurenson non-linear [as in 

R A F T S ( W P Software 1991) and R O R B (Laurenson and Mein 1995) software tools], 

time/area [as in BLSAX (OLoughlin 1993) and D R A I N S (OLoughlin and Stack 1998) 

software tools], SCS unit hydrograph and kinematic wave methods. The stormwater 

runoff hydrographs can be obtained quite simply by using the non-linear reservoir 

routing method. Therefore, the non-linear reservoir routing was selected as the routing 

method for this study because of its simplicity. The symbolic representation of the 

catchment in this method is shown in Figure 3.4. 

Figure 3.4 Non-Linear Reservoir Representation of Sub Catchment (Huber and 

Dickinson 1988) 

In non-linear reservoir routing method, the sub catchment is modelled as an idealized 

rectangular area with the slope of the catchment perpendicular to the width. Each sub 

catchment is treated as a spatially lumped non-linear reservoir with a single inflow-

rainfall. The non-linear reservoir is established by combining the Manning's equation and 

lumped continuity equation. Flow from one surface of sub catchment is not routed over 
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another surface. The capacity of this reservoir is the maximum depression storage (i.e. 

dp), which is the maximum surface storage provided by ponding, surface wetting, and 

interception. The water storage in the reservoir is reduced (or lost) by infiltration and 

evaporation. The surface runoff occurs only when the depth of water in the reservoir (i.e. 

dp) exceeds the maximum depression storage. 

3.2.1.1 Rainfall loss models 

The rainfall loss (i.e. the component of rainfall which does not produce runoff) includes 

evaporation, infiltration and depression storage. In X P - U D D , depression storage and 

evaporation losses are modelled separately for the impervious and pervious areas through 

user inputs. There are two options available in X P - U D D software for computing 

infiltration losses from pervious areas, namely the Green-Ampt (Green and Ampt 1911) 

model or the Horton (Horton 1940) model. These two infiltration loss models are 

described below. 

(a) Green-Ampt 

The Green-Ampt infiltration model is a physically based model and uses measurable 

parameters to determine the losses due to infiltration. Mein and Larson (1971) modified 

the original Green-Ampt model (Green and Ampt 1911) and showed that it could be 

presented as a two-stage model, which computes infiltration before and after the surface 

is saturated. The mathematical details of the Green-Ampt infiltration model can be found 

in Green and Ampt (1911) and Mein and Larson (1971). 

Both SWMM and XP-UDD facilitate modelling of infiltration through the Green-Ampt 

model. Tsihrintzis and Hamid (1998) used the Green-Ampt model to calculate the 

infiltration losses in calibrating the S W M M model for small urban catchments. Deletic 

(2001) used the Green-Ampt model to study water and sediment transport over grassed 

areas in an urban catchment. After comparing the Green-Ampt and Spatially Variable 

Infiltration Model (SVIM), Y u (1999) reported that the Green-Ampt model 

underestimated the infiltration rate (and hence overestimated the rainfall excess) in 

comparison to S V I M at high rainfall intensities. 

3-6 



X P - U D D and G E N E S I S Software Tools Chapter 3 

(b) Horton Model 

Horton (1940) suggested that the infiltration begins at some maximum or initial 

infiltration capacity (f0) and exponentially decreases until it reaches a rninimum or 

ultimate soil infiltration capacity (fc), as the storm continues and the soil saturation 

increases. The value of fQ depends on the surface condition of the soil as well as on the 

initial soil moisture content, and therefore varies with time since the last rain. 

Urban drainage computer software tools such as SWMM, XP-UDD and DRAINS allow 

modelling of infiltration through the Horton model. The Horton's equation describes the 

familiar exponential decay of infiltration capacity evident during heavy storms. However, 

the X P - U D D program uses the integrated form to avoid an unwanted reduction in 

infiltration capacity during periods of light rainfall (XP-Software 1997). 

Ishaq and Khan (1999) used the Horton model to derive the infiltration curves for all 

types of soils in Saudi Arabia. They used standard laboratory infiitrometer to determine 

the infiltration rates. Skukla et al. (2003) analysed ten infiltration models including 

Green-Ampt and Horton models, using double-ring infiitrometer tests and reported that 

overall the Horton model had given the best results for most land use conditions. The 

Horton model was used in this study to estimate infiltration in pervious areas ofthe study 

catchments, since it had been used successfully in the past and parameters can be easily 

obtained through field infiitrometer tests. The Horton model is defined by Equation (3.2). 

-kt 

ft=fc+(fo-fc)e (3-2) 

where ft is the infiltration capacity (cm/h) 

fc is the minimum or ultimate value of/f (cm/h) 

/0 is the maximum or initial value of/t (cm/h) 

k is a decay coefficient (h") 

t is the time from beginning of storm (h) 

Since the actual values of/o,/c and k depend on the soil, vegetation and initial moisture 

content, the S W M M user manual (USEPA 1992) recommends that these parameters 

should be estimated through field infiitrometer tests at number of sites in the catchment. 
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Furthermore, the user manual gives guidelines to estimate these parameters if it is not 

possible to conduct field tests in the study catchments. 

3.2.1.2 Selected parameters for calibration 

As stated earlier, XP-UDD has several options available to compute flow routing over sub 

catchments and two options available for computing infiltration losses from pervious 

surfaces of sub catchments. O f these options, the non-linear reservoir routing method and 

the Horton infiltration model were selected in this study. 

These methods and other processes in the hydrologic module require the estimation of 

model parameters for the study catchment, which are user inputs. O f all the user input 

parameters, only seven parameters of the hydrologic module were identified for 

calibration, because of their difficulty in measuring them physically. T w o of them are 

related to the impervious areas namely the percentage of the impervious area (i.e. %A) 

and the depression storage (i.e. DS,). Other five are related to the pervious areas namely 

depression storage (i.e. DSP) overland flow roughness of the pervious areas (i.e. np) and 

the three Horton's soil infiltration parameters (i.e./c fc andk). 

The model parameter %A can be approximately estimated using aerial photographs or 

rainfall-runoff depth plots (Section 2.2.3). However, it is difficult to estimate %A 

accurately, as it requires the identification of individual properties that are connected to 

the drainage system. Therefore, %A model parameter was selected for calibration in this 

study, with initial values obtained from aerial photographs. Basically the calibration 

refines the values obtained from aerial photographs. 

Sub catchment width was not considered as a calibrating parameter, since it increase the 

number of parameters to be calibrate immensely, as each sub catchment has a different 

width. Sub catchment width was estimated as the ratio ofthe area ofthe sub catchment to 

the average path ofthe overland flow in this study (XP-Software 1997). 
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3.2.2 Hydraulic module 

The hydraulic module routes stormwater runoff entered into inlet pits through open 

channels and close conduits (i.e. links in X P - U D D ) in the drainage network. In X P - U D D , 

the hydraulic module receives hydrograph input at specific nodal locations (i.e. inlet pits) 

through the interface file generated by the hydrologic module and/or by direct input by 

the user. The hydraulic module is capable of simulating backwater conditions and special 

flow devices such as weirs, orifices, pumps, storage basins and tidal gates, where these 

conditions occur in the lower reaches ofthe drainage system when pipe diameters exceed 

roughly 500 m m . It is capable of performing dynamic routing of stormwater throughout 

the drainage system to the outfall points of the receiving water system (XP-Software 

1997). 

Links in XP-UDD transmit flow from node to node. The primary dependant variable in 

the links is the discharge, which is computed at the center ofthe link. Inflows such as inlet 

hydrographs and outflows such as weir diversions, take place at the nodes ofthe network. 

The node volume changes over time due to inflow and the balance of flow entering and 

leaving the conduit. This change in nodal volume during a given time step within the 

simulation, forms the basic head and discharge calculations in the hydraulic module. The 

hydraulic module uses the momentum equation in the links and a special lumped 

continuity equation for the nodes to model these flows. These two equations are 

connected by solving the Kinematics wave portion of the St. Venant (Dynamic flow) 

equation to route stormwater runoff throughout the drainage network in hydraulic 

module. 

There are over 30 different hydraulic conduits (i.e. links - circular pipes, rectangular pipes 

etc.) available for hydraulic routing within X P - U D D . Several user inputs are required to 

model each link in the catchment model. Upstream and downstream levels, Manning's 

friction coefficient, length and cross-sectional area of the conduits are the some of the 

user inputs associated with links. Conduit data such as pipe/channel shape and their 

dimensions can be input or can be designed according to the problem. The Manning's 

friction coefficient value of conduits often iŝ a constant or at least, can be extracted from 

literature and less sensitive to the output responses compared to the hydrologic data 
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(Dayaratne 2000). Therefore, the hydraulic model parameters were not selected for 

calibration. 

3.3 Overview of GENESIS Software 

As stated in Section 2.6.4, GENESIS (GENEtic Search Implementation System) is the 

mostly used public domain software tool available (Hunt 2000). This software can be run 

on Unix and M S - D O S operating systems. G E N E S I S is a collection of function source 

codes written in C programming language, which are connected to construct the GAs. 

Therefore, the user can add or modify the code according to their application. The user 

needs to provide an objective function (which is also called the fitness function) of the 

problem as a separate source code, to use GENESIS. This function returns the fitness 

values ofthe population as a floating-point number to GAs. 

3.3.1 Capabilities of GENESIS 

GENESIS version 5.0 offers several enhancements over previous versions that makes the 

system much more user-friendly. The major improvement was that the user-level 

parameter representation (called floating-point representation) that allows the user to 

think about the chromosomes as real numbers, though the G A s operate in bit string 

representation. A number of new options have also been added in version 5.0 including a 

display mode, which uses an interactive user interface, the option to maximize or 

minimize the objective function, the choice of rank-based or proportional selection 

algorithm and an option to use Gray code for parameter representation. The maximum 

limit of simulations in G E N E S I S is 32,000. Several options are available in G E N E S I S for 

parameter representation, population intialisation, selection, crossover and mutation. They 

are described below. 

Parameter representation 

There are two options available for parameter representation namely binary and Gray 

coding, where binary representation is the default parameter representation. Within these 

two options, the user has the flexibility to select floating-point representation, as stated 
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above. For floating-point representation, the user needs to input only the parameter 

ranges in real numbers and the number of divisions required in search space. G E N E S I S 

automatically lays out the string representation according to the binary or Gray option 

selected. Therefore, the user does not need to decide how to encode parameter values in 

bit strings. 

Based on GAs theory, the real value coding is not necessarily required for optimisation 

problem with small number of parameters. Mayer et al. (1999b) found that there were no 

difference between binary and real value representations for their study. Furthermore, 

only bit string coding is available in GENESIS. It also can be seen from the G A s theory 

and some of the above studies (Caruana and Schaffer 1989) that Gray coding was 

superior to binary coding. Therefore, Gray coding was selected for this study. 

Population initialisation 

There are two options available to obtain the initial population, namely the random 

method and the heuristic method. The default method is the random method, which 

generates the initial population randomly. This method was used in this study, as it will 

prevent premature convergence (Section 2.6.1.2). If the heuristic option is selected, the 

user has to specify the parameter values ofthe initial population. W h e n both the floating

point representation and heuristic method are selected, the use has to specify the 

parameter values in the population as real numbers. The user has an option to input any 

population size according to the optimisation problem. 

Selection 

There are two selection methods available namely proportionate selection and linear 

ranking selection in GENESIS. The default selection method is the proportionate 

selection method. As reviewed in Section 2.6.3, there is no clear guidance available to 

select one of these options for the urban drainage modelling. Therefore, investigations 

were conducted to select an optimum selection method through the G A s operator 

optimisation study, which is described in Chapter 4. 
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Crossover and mutation 

There is only two-point crossover method available in GENESIS. However, the user can 

input any crossover or mutation rate relevant to the application. As reviewed in Section 

2.6.3, various researchers reported different optimum values for crossover and mutation 

rates. Therefore, the optimum crossover and mutation rates were selected through the 

GAs operator optimisation study, which is described in Chapter 4. 

3.4 Linking of XP-UDD and GENESIS 

It is necessary to develop a computer program to link the operation of XP-UDD and 

GENESIS, to obtain optimum GAs operators and then to perform automatic calibration of 

model parameters of the selected study catchment, since these are two separate software 

tools. A program was developed in C programming language by the candidate to link the 

operations of X P - U D D and GENESIS. This computer program is shown as MY 

PROGRAM in Figure 3.5. The linked overall program is called GENESIS/XP-UDD. 
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Figure 3.5 Linking of X P - U D D and GENESIS (GENESIS/XP-UDD) 
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GENESIS/XP-UDD is executed through a program called setup in GENESIS, which 

prompts for the user inputs such as number of parameters to be calibrated, their parameter 

ranges, population size, G A s operator options, termination criteria (i.e. number of 

simulations required) etc. It will then generate the initial population consisting of model 

parameter sets, according to the given user inputs. Then MY PROGRAM will interact 

automatically with the generated population, X P - U D D and GENESIS to continue the 

generation of new populations, as specified by the user. User intervention is required only 

at the start ofthe GENESIS/XP-UDD run. In summary, MY PROGRAMwas written to 

perform the following tasks: 

• Modify the XP-UDD input file by extracting one parameter set from GAs generated 

population. 

• Run the X P - U D D model for the particular model parameter set. 

• Extract the resultant hydrograph ordinates from the X P - U D D output file, relevant to 

the above model parameter set. 

• Interact with the relevant observed hydrograph ordinates (stored in a file) to compute 

the objective function values for the above model parameter set. 

• Repeat the above steps for the entire G A s population. 

• Feed all objective function values ofthe population to GENESIS 

• Capture and write the results of the G A s process at the end of each generation for 

detailed analysis ofthe results. Note: GENESIS gives only the final results, when the 

termination criteria are met. 

• Continue above steps for all generated populations, until the termination criteria are 

met. 

In order to execute GENESIS/XP-UDD, it is necessary to create two data files, before the 

execution of GENESIS/XP-UDD. The first data file is the X P - U D D input file, which has 

drainage network details and model parameter values. The second file is the ordinates of 

the observed hydrograph, which is used for calibration. 
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3.5 Summary 

The XP-UDD software tool simulates the rainfall-runoff cycle, including surface runoff 

and flow routing in conduits except modeling of water quality. It uses nodes and links to 

represent the stormwater drainage network. The X P - U D D software tool can be used as a 

planning and design tool to predict the runoff in urban stormwater drainage systems (or 

urban catchment). As with other urban drainage software tools, X P - U D D requires the 

catchment to be subdivided into number of sub catchments. It has two modules namely 

hydrologic and hydraulic. 

The hydrologic module is capable of generating stormwater runoff hydrographs using 

catchment conditions and design or measured hyetographs. In this module, several 

options are available for flow routing. The non-linear reservoir routing method was used 

in this study, because of its simplicity. There are two options available for pervious area 

infiltration loss modelling. The Horton model was selected in this study, since it had been 

used successfully in the past and parameters can be easily obtained through field 

infiitrometer tests. Seven parameters of the hydrologic module were identified for 

calibration, because of their difficulty in measuring them physically. T w o of them are 

related to the impervious areas (i.e. percentage of the impervious area - %A and 

depression storage - DS,) and the other five are related to the pervious areas (i.e. 

depression storage - DSP, overland flow roughness ofthe pervious areas - np and the three 

Horton's soil infiltration parameters -/0, fc and k). The hydraulic module is capable of 

routing pipe/channel flow. Since the hydraulic model parameters are less sensitive to the 

output response, they were not selected for calibration in this study. 

GENESIS version 5.0 is more user-friendly GAs software compared to its earlier 

versions. G E N E S I S has two options for parameter representations (i.e. binary and Gray). 

The Gray coding parameter representation was selected for this study, as it was found 

superior to binary coding according to the literature. Although some ofthe G A s operator 

options can be selected from the literature, there are no clear guidance available to select 

the other operators such as population size, selection method, crossover and mutation 

rates for urban drainage modelling. 
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A program (called MY PROGRAM) was developed to link XP-UDD and GENESIS. MY 

PROGRAM is mainly used to modify the XP-UDD input file with the GAs generated 

parameter sets, compute the objective function values for each parameter set and feed it 

into the GENESIS. 
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CHAPTER 4 

CALIBRATION AND VALIDATION OF 
URBAN DRAINAGE CATCHMENT 
MODEL USING GAs 
4.1 Introduction 

As reviewed in Section 2.1, management of stormwater runoff from urban catchments has 

become an increasingly important environmental issue, as the urban development causes 

significant changes in volume and quality of stormwater runoff. Stormwater drainage is a 

major part of this overall stormwater management, as it helps to reduce local flooding. As 

stated in Sections 2.1, the most practical way of designing stormwater drainage systems is 

by the application of mathematical models, which consider complex hydrological and 

hydraulic processes of urban areas. However, the accuracy of these models depends on 

the correct selection of the model parameter values (Section 2.5), as it provides 

confidence in applying these models for planning and management of stormwater 

drainage systems. 

The model calibration is done through an iterative process by comparing model 

predictions with observations, until the two sets match with each other within a 

reasonable accuracy. Section 2.5 reviewed the methods available to calibrate 

mathematical models (ranging from trial and error to optimisation methods), showing 

their attributes, weaknesses and applications in water resources. In this project, one ofthe 

most popular optimisation methods known as genetic algorithms (GAs) were used to 

calibrate the urban drainage models. Even though the G A s have been recognized as a 

robust optimisation method for estimating model parameters in many fields, it has not 

been used widely for urban drainage models (Section 2.6.3.3). 
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G A s operators, such as parameter representation, population size, selection methods, and 

crossover and mutation rates play an important role on the convergence of the optimum 

model parameter set. Several researchers (Davis 1991; Franchini 1996; Franchini and 

Galeati 1997; N g 2001; Wardlaw and Sharif 1999) investigated the effect of G A 

operators on the convergence of optimum model parameters, as reviewed in Section 2.6.3. 

This review showed that there were no clear conclusions regarding the optimum G A 

operators to be used in model parameter optimisation in urban drainage applications. 

Therefore, a detailed study was conducted to determine the optimum G A operators before 

attempting the model parameter optimisation in urban drainage modelling. 

As stated in Section 2.4, XP-UDD (XP-Software 1997) was used to model the urban 

drainage catchments in this study. Seven model parameters were identified for calibration 

of these models (Section 3.2.1), two related to the impervious areas (i.e. percentage ofthe 

impervious area - %A and the depression storage - DS,) and the other five related to the 

pervious areas (i.e. depression storage - DSP, overland flow roughness of the pervious 

areas - np and the three Horton's soil infiltration parameters -fo, fc and k). 

The optimum GAs operator investigation was conducted as separate studies, one for 

impervious area parameters and the other for pervious area parameters. T w o urban 

catchments, representing a typical small catchment and a typical medium catchment are 

also used. However, only one catchment (i.e. the small catchment) was used in urban 

drainage model calibration using GAs, since the purpose of this part ofthe study was to 

demonstrate the use of G A s in calibrating the urban drainage models. 

This chapter first describes the study catchments used in this study for investigation of 

optimum G A s operators and calibration/validation of urban drainage models. 

Investigation/validation procedures adopted to find the optimum G A s operators were then 

presented followed by the results obtained for each G A s operator. The methodology used 

for model parameter estimation is presented, followed by the calibrations results and 

comparison of the model results with a previous study. Finally, the methodology and 

results of validation ofthe model parameters are presented. 
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4.2 Study Catchments 

Victoria University, in collaboration with ten city/shire councils in Victoria (Australia) 

conducted a major data acquisition program for 26 urban catchments during 1996-1999, 

collecting data on rainfall and runoff (Maheepala and Perera 1999; Maheepala et al. 

2001). T w o of these urban drainage catchments namely, Kew and Warringal catchments, 

in the Melbourne metropolitan area were used in this study for investigating the optimum 

GAs operator set for use in G A s optimisation of urban drainage models. The Kew 

catchment was also used for calibration and validation of the X P - U D D model of the 

catchment. The Kew catchment is in the City of Boroondara, while the Warringal 

catchment is in the City of Banyule. The locations of these City Councils are shown in 

Figure 4.1. The drainage system details of Kew and Warringal study catchments are 

shown in Figures 4.2 and 4.3 respectively. 

Figure 4.1 Locations of the City of Boroondara and the City of Banyule 
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Figure 4.2 K e w Catchment in City of Boroondara 
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Key 
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Figure 4.3 Warringal Catchment in City of Banyule 

Figures 4.2 and 4.3 show the catchment boundaries, flowmeter and pluviometer locations 

and main and secondary drainage paths. The Kew catchment has a catchment area of 18 
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ha and 34 inlet pits, while the Warringal catchment has a catchment area of 29 ha and 71 

inlet pits. Soil type and land use characteristics of both catchments are similar. The 

maximum pipe diameter sizes in Kew and Warringal catchments are 750 m m and 1200 

m m respectively. Some details of these study catchments are given in Table 4.1. 

Table4.1 Details of Study Catchments 

Council 

name 

Baroondara 

Banyule 

Catchment 

name 

Kew 

Warringal 

Area 

(ha) 

18 

29 

Pipe 

diameters 

used (mm) 

300 

375 

450 

525 

600 

750 

300 

375 

450 

525 

600 

900 

1050 

1200 

No. 

of 

pits 

34 

71 

Soil type 

Poorly 

graded 

gravel and 

gravel sand 

mixtures, 

little or no 

fine 

Well or 

poorly 

graded 

gravel and 

gravel sand 

mixtures, 

little or no 

fine 

Land use 

Fully 

residential, 

flat terrain, 

house block 

size are 

fairly large 

Fully 

residential, 

single house 

properties, 

few units 

development 

4.3 Investigation of Optim u m GAs Operators 

As described in Section 2.6.1, G A s operators control the process of GAs. These operators 

are responsible for the efficiency in achieving the optimum model parameter set of the 

urban drainage model. However, there is limited guidance available currently on selecting 

the appropriate G A s operators for use in urban drainage model calibration. Therefore, 
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numerical experiments were conducted to find the optimum GAs operator set before 

attempting model parameter calibration using G A s for the urban drainage application. 

4.3.1 Methodology 

The study was conducted in two stages as follows: 

(a) Investigation of G A s operators using the K e w catchment model 

(b) Validation ofthe above results using the Warringal catchment model 

This approach was used to reduce the computational time associated with large number of 

simulations ofthe linked GENESISS/XP-UDD model. In general, it took about 7 seconds 

for X P - U D D run of the K e w catchment model and about 35 seconds for the Warringal 

catchment model on a 312 M B R A M Pentium 4 computer. Therefore, the K e w catchment 

model was used to study the optimum G A s operators extensively, and the Warringal 

catchment model was used only to validate the results obtained from the K e w catchment. 

Two studies were conducted separately for impervious and pervious area parameters, as 

the runoff generation mechanism is different in these two areas. In general, during small 

rainfall events, runoff is generated only from impervious areas, while during large rainfall 

events, both impervious and pervious areas contribute to runoff. 

(a) Investigation of GAs operators using Kew catchment model 

The X P - U D D model of the K e w stormwater drainage network was assembled using 

information on existing pits and pipes of the network. The catchment was divided into a 

number of sub catchments considering all drains and their inlets of the existing 

stormwater drainage network. As stated in Section 3.2.1, the X P - U D D hydrologic module 

interface allows up to five-sub catchment data inputs for each inlet (i.e. nodes). All 

existing drainage pipes that are equal or greater than 300 m m were assembled as links. 

Some of the sub catchment input data were estimated from the catchment contour maps 

and aerial photographs. These data includes total sub catchment area and slope ofthe sub 

catchments, which were entered to each node in assembling the X P - U D D network. The 

drainage system input data, such as conduit shape, size, length, slope, conduit invert level 

and ground level etc., were obtained from the drainage plans of the catchment. The 
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catchment width was estimated by dividing the area of sub catchment by the average path 

of the overland flow, as specified in the X P software manual (1997), since there was 

insufficient information to use other methods. The X P - U D D model of the K e w 

stormwater drainage networks is shown in Figure 4.4. 
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Figure 4.4 X P - U D D Model of K e w Stormwater Drainage Network 

Two design storms (one small and the other large) were considered in the model. The 

small storm had an Annual Recurrence Interval (ART) of 1 year and storm duration of 30 

minutes. This storm produced runoff only from the impervious areas of the K e w 

catchment, as evident from the X P - U D D model output results and was used to calibrate 

the two impervious area parameters. The storm duration of 30 minutes was selected, since 

it was found from the X P - U D D output results that the time of concentration was less than 

30 minutes, which indicated that the whole catchment was continuing to the runoff at the 

outlet. This effectively means that it is not necessary to consider any storm durations 

longer than 30 minutes. The large storm, which had an ARI of 100 years and 30 minutes 

duration, generated runoff from both impervious and pervious areas of the K e w 

catchment, as evident from the model output results and was used to calibrate the 

remaining five pervious area parameters after fixing the two impervious area parameters 

obtained from the impervious area study. 

Typical values were assumed for the model parameters (i.e. two impervious area 

parameters and five pervious area parameters) to generate the two hydrographs due to the 

1 
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above small and large storm events. These parameter values were considered as the 

actual values of the model parameters for the catchment and hydrographs were 

considered as the observed hydrographs corresponding to small and large storm events, in 

optimising G A s operators. The objective function used in this study was the minimisation 

ofthe sum of square of difference of computed (due to different model parameter values 

generated by GAs) and observed hydrograph ordinates, as it has been widely used in 

many previous studies (eg. Liong et al. 1995) and implicitly allows for the other 

important features of the hydrographs such as peak, time to peak and volume to be 

matched. 

Table 4.2 shows the typical model parameter values, the parameter ranges, precision 

required (i.e. number of decimal places) and string length [i.e. computed using Equation 

(2.2) considering the number of decimal places required and the parameter range of the 

model parameter] used for the G A s operator study. As can be seen from Table 4.2, the 

string lengths ofthe chromosomes in G A s process were 10 (i.e. adding sub-string lengths 

of impervious area parameters) and 38 (i.e. adding sub-string lengths of pervious area 

parameters) for impervious and pervious area parameter studies respectively. 

Table4.2 Model Parameter Details 

Group 

Impervious Area 

(small storm event) 

Pervious Area 

(large storm event) 

Parameter 

symbol 

%A 

DSt 

n
P 

DSP 

fo 

L 
k 

Actual 

parameter value 

40 

1 

0.03 

3 

100 

10 

0.001 

Parameter 

range 

30-50 

0-2 

0.001-0.1 

1-4 

75 - 125 

5-15 

0.0001-0.01 

Precision 

required 

0 

1 

3 

1 

0 

0 

4 

String 

length 

5 

5 

10 

6 

8 

4 

10 

The following options in X P - U D D software were used in the investigation of G A s 

operator study, as discussed in Section 3.2.1. 

• Non-linear routing method 
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• Horton's infiltration equation for modelling infiltration in pervious areas 

The following options in G E N E S I S software were used for this study, as discussed in 

Section 3.3.1. 

• Gray coding 

• Two-point crossover type 

• Crossover and mutation rates were considered as 0.6 and 0.001 respectively and 

proportionate selection method was used, until these were optimised (These are 

the default values in GENESIS). 

The linked GENESIS/XP-UDD model (Section 3.4) was used to study the effects of GAs 

operators. The G A s operators (i.e. population size, selection type and crossover and 

mutation rates) were varied one at a time, keeping all other operators constant in studying 

the effect of these operators. Each of these G A s operator studies and their results were 

discussed under their name heading below. The overall process of this study described 

above is shown in Figure 4.5. 

r Known model parameter values i 
Impervious area 

Pervious area 

Design storms 

1) Small events (study 1) 

2) Large events (study 2) 

User Inputs 

f 
eg. No. parameters to be calibrated 

Parameter range 

Population size 

Crossover & mutation rate 

Termination criteria, etc. 

Optimisation by trial 
and error one G A 
parameter at a time 

Optimum G A Operators 

Figure 4.5 Investigation Processes of GAs Operators Using Kew Catchment Model 
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(b) Validation of G A operators using Warringal catchment model 

Similar to the Kew catchment, the XP-UDD model was assembled first and the network 

is shown in Figure 4.6. The methodology of the validation study is similar to the Kew 

catchment and the overall process is shown in Figure 4.7 
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Figure 4.6 XP-UDD Model of Warringal Stormwater Drainage Network 
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Figure 4.7 Validation Processes of G A Operators Using Warringal Catchment Model 
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4.3.2 Population size and associated issues 

In this section, several issues related to population size were studied as follows: 

• Selecting the optimum population size and number of simulations 

• Number of optimum model parameter sets to be considered from the final 

generation (ofthe selected optimum population size) 

• Impact of string length on population size 

4.3.2.1 Population size and number of simulations 

As stated in Section 2.6.1.2, the selection of population size is the fundamental decision 

that has to be made at the start of a G A s optimisation. As reviewed in Section 2.6.3, 

various researchers found different optimum population sizes for their applications. 

Franchini and Geleati (1997) compared the objective function values with population 

sizes of 100, 125, 250, 500 and 1000, and reported that the best performance was with the 

population size of 100 - 200. They further reported that with the population size of 1000, 

the number of simulations had to be increased to 20,000 to reach the convergence. N g 

(2001) also performed similar experiment with a river water quality model and found that 

the population size of 125 converged with 15,000 simulations and the population size of 

1000 did not converge at all even after the 32,000 simulations (which is the maximum 

limit in GENESIS). 

Based on the previous work of Franchini and Geleati (1997), population sizes of 75, 100, 

125 and 200 were initially investigated for both impervious and pervious area studies 

with 7,500 simulations. Based on these results, further investigations were conducted for 

population sizes of 10, 25 and 50 for the impervious area study, and 50, 150, 300 and 500 

for the pervious area study. The optimum population size and the number of generations 

were then selected from these G A s runs. The total number of simulations in one G A s run 

is the multiplication of the population size and the number of generations, and therefore 

these two were studied together. 
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Impervious area study results (study 1) 

(a) Kew catchment model 

It was observed that the two model parameters (i.e. %A and DSt) converge to the actual 

values easily achieving zero objective function values. Figure 4.8 shows the plot of 

number of simulations Vs. the number of zero objective functions expressed as a 

percentage ofthe population size for population sizes of 25, 50, 75, 100, 125 and 200 

with 7500 simulations. As can be seen from Figure 4.8, the convergence rate decreases 

with the increase of the population size, which is due to increase of redundant solutions 

with increase in population size. The population size of 10 is not shown in Figure 4.8, 

since it did not converge to the actual model parameters at all. This is due to not having 

enough variation in parameters in the population. 

Figure 4.8 No. of Simulations Vs. No. of Zero Objective Functions % for K e w 

Catchment 

As can be seen from Figure 4.8, all parameter sets converged very quickly with a 

population size of 25 within 1125 simulations (45 generations). However, the other 

population sizes were not able to give similar results with the same number of 

generations. 
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(b) Warringal catchment model 

As stated in Section 4.3.1, the XP-UDD model ofthe Warringal catchment required large 

computer time to run 7500 simulations, compared to the K e w catchment. Therefore, the 

number of simulations was reduced with the Warringal catchment model, by judging the 

Kew catchment model investigation results. Hence, this study was conducted only with 

2000 simulations to confirm the K e w catchment results. 

Figure 4.9 shows the plot of number of simulation Vs. the number of zero objective 

functions expressed as a percentage of the population size for population sizes of 25, 50, 

75 and 100 with 2000 simulations. As can be seen from Figure 4.9, all parameter sets 

converged very quickly with a population size of 25 and the other population sizes were 

not able to give similar results with the same number of generations. This result is similar 

to the K e w catchment model result. 

250 500 750 1000 1250 

No. of simulations 

1500 1750 2000 

Figure 4.9 No. of Simulations Vs. No. of Zero Objective Functions % for Warringal 

Catchment 

Based on these results, the population size of 25 with 1,200 simulations was identified as 

the optimum population size and the number of simulations respectively for optimising 

impervious area parameters in this study. This was used in the rest of the G A operator 
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study, except in string length study, where the investigations were conducted to find the 

effect of string lengths on population size. 

Pervious area study results (study 2) 

(a) Kew catchment Model 

Five pervious area parameters did not easily converge to the zero objective function 

values, as in the impervious area study. Therefore, Figure 4.10 was produced to illustrate 

the results in terms of minimum objective function, mean of minimum five objective 

functions and mean of minimum ten objective functions in the final generation (i.e. after 

7500 simulations). 

Figure 4.10 Population Size Vs. Objective Function Value for K e w Catchment 

Although it can be seen from Figure 4.10 that the population sizes of 50, 75 and 100 were 

equally good in terms ofthe objective function, only the population size of 100 converged 

all five-model parameters accurately. This can be seen from Figure 4.11, which shows the 

variations of model parameter values with the population sizes. Minimum objective 

function values are not shown in Figure 4.11, since it gave similar results to the mean of 

minimum five objective function values. 
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Figure 4.11 Variation of Model Parameter Values Vs. Population Sizes 
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(b) Warringal catchment model 

The Warringal catchment model was used with population sizes of 50, 75, 100 and 125 

with 7500 simulations to validate the results obtained from the K e w catchment model. As 

with the K e w catchment study, pervious area parameters did not converge to zero 

objective function values. Therefore, Figure 4.12 was produced to illustrate the results of 

minimum objective functions, mean of minimum five objective functions and mean of 

minimum ten objective functions in the final generation. As can be seen from Figure 4.12, 

population size of 100 gave the best results. It was also observed that the population size 

of 100 converged all five-model parameters accurately. 
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Figure 4.12 Population Size Vs. Objective Function Value for Warringal catchment 

Based on the above results, the population size of 100 with 7500 simulations (i.e. 75 

generations) was identified as the optimum population size and the number of simulations 

respectively for optimising pervious area parameters. Therefore, the population size of 

100 with 7500 simulations was used in the rest ofthe study, except in the string length 

study. 
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4.3.2.2 Number of optimum model parameter sets to be considered 
from the final generation 

There could be several equally good parameter sets giving the best objective function in 

the final generation. The objective functions of these sets may differ only by a small 

margin, though there could be significant differences in their parameters. Therefore, it is 

not appropriate to select a single parameter set from the final generation. However, W a n g 

(1991) and Liong et al. (1995) selected a single parameter set based on objective 

functions, Franchini and Galeati (1997) determined the mean value of the best 20-

parameter sets based on objective functions in their rainfall runoff model. N g (2001) 

selected the mean value ofthe best 10 parameter sets based on objective function in her 

river water quality modelling application. 

An investigation was conducted in this study to determine how many parameter sets need 

to be considered from the final generation to determine the optimum parameter set in 

urban drainage modelling. This was conducted by analysing the converged final G A s 

generation results ofthe K e w catchment model of previous study (Section 4.3.2.1). 

Impervious area study results (study 1) 

As stated in Section 4.3.2.1, all parameter sets with a population size of 25 reached the 

actual values in the final generation for the impervious area parameter study, and 

therefore need not be studied any further. 

Pervious area study results (study 2) 

(a) Kew catchment model 

The values ofthe pervious area parameters and their objective function values ofthe final 

generation for a population size of 100 were studied in detail, and plots (i.e. Figures 

4.13-4.17) were made of these parameters to show their mean, minimum and maximum 

with respect to a number of parameter sets taken from the final generation. The actual 

parameter value is also shown as a horizontal dashed line in these plots. As can be seen 

from these figures, in general the number of parameter sets beyond six deviated from the 

actual parameter values. Therefore, the mean of the best five parameter sets based on 
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sets based on objective function from the final generation was considered as the value of 

the optimum parameter set. 
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4.3.2.3 String length 

Goldberg (1985) reported that the selection of population size depends on the string 

length of the model parameter set. In the bit string representation of GAs, the string 

length of each parameter is computed based on parameter range and required precision 

(i.e. number of decimal places) of the parameter value, as stated in Section 2.6.1.1 

Several population sizes were considered with different parameter ranges and precisions, 

to investigate the impact of string length on parameter convergence only with the Kew 

catchment model. The population sizes of 25, 50, 75 and 100 were used for the 

impervious area parameter study and 100, 125, 150 and 200 for the pervious area study. 

The parameter ranges and precision used are tabulated in Tables 4.3 and 4.4 for 

impervious and pervious area parameter studies respectively. These tables also show the 

computed string lengths oi chromosomes (i.e. model parameter set) using Equation (2.2). 

As can be seen from Table 4.3 computed string lengths were 10, 16 and 20 for the 

impervious area parameter study. They were 38 and 48 for the pervious area study (Table 

4.4). Note that the parameter ranges and number of decimal paces were varied to get 

different string lengths. 

Table 4.3 Parameter Ranges and Precision Used in Impervious Area Study 

Model 

parameter 

%A 

DSt 

Number of 

decimals for 

all ranges 

0 

1 

Total string length 
_, 

Range 

1 

30-50 

0-2 

String 

length 1 

5 

5 

10 

Range 

2 

20-70 

0-5 

String 

length 2 

8 

8 

16 

Range 

3 

0-100 

0-10 

String 

length 3 

10 

10 

20 
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Table 4.4 Parameter Ranges and Precision Used in Pervious Area Study 

Model 

parameter 

n, 

™P 
fo 

L 

k 

Total string 

length 

Range 1 

0.001-0.1 

1-4 

75-125 

5-15 

0.0001-0.01 

Number 

of 

decimals 

- range 1 

3 

1 

0 

0 

4 

String 

length 1 

10 

6 

8 

4 

10 

38 

Range 2 

0.001-0.1 

0-10 

50-155 

0-20 

0.0001-0.01 

Number 

of 

decimals 

- range 2 

3 

2 

0 

1 

4 

String 

length 2 

10 

10 

10 

8 

10 

48 

Impervious area study results (study 1) 

(a) Kew catchment model 

Figures 4.18-4.21 show the plots of number of simulations versus number of zero 

objective function values expressed as a percentage of population size for the population 

size of 25, 50, 75 and 100. It can be seen from these figures that the number of 

simulations required for convergence was increased with increase of string length. 

Therefore, G A s efficiency can be achieved with reduced string lengths by limiting 

parameter range and the accuracy ofthe model parameters (i.e. number of decimal places 

required) to the required level only. 
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Pervious area study results (study 2) 

(a) Kew catchment model 

Figure 4.22 shows the plot of number of simulations versus minimum objective function 

values for the population size of 100. This was plotted to study the efficiency ofa G A run 

with different string lengths. Similar to the impervious area results, a larger number of 

simulations were required for convergence with the population size of 100 with the 

increase of string length. It was also noted that converging to the actual parameter values 

were difficult with increase of string length for population size 100. Similar results were 

found with other population sizes (i.e. 125,150 and 200). 
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Figure 4.22 Effect of String Length on Parameter Convergence with Population of 100 

for Pervious Area Study 

Figures 4.23 and 4.24 show the plots of minimum objective function value versus number 

of simulations for the population sizes of 100, 125, 150 and 200 with string lengths 38 

and 48 respectively. Population size of 100 with string length 38 gave the best results in 

Figure 4.23. As can be seen from Figure 4.24 population size 125, 150 and 200 with 

string length of 48 converged to objective function values faster than population size 100. 
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Based on above results, it can be confirmed that the optimum population size depends on 

the string length ofthe model parameter set, as reported by Goldberg (1985). However, 

further investigations are required to build a relationship between population size, string 

length and the number of simulations, as it could not be completed in this study due to 

time constraints. 

Similar to the impervious area study, it was observed in this study that the GAs efficiency 

can be achieved with reduced string lengths by limiting parameter range and accuracy of 

the model parameters (i.e. number of decimal places required) to the required level only. 

4.3.3 Selection Type 

The proportionate selection and the linear ranking selection method are the only options 

available in GENESIS. Therefore, the effect of these two methods on the convergence to 

the optimum model parameter set was investigated for impervious and pervious area 

studies with the K e w catchment model. Each selection method was studied with 

crossover rates of 0.6 and 0.9, and mutation rates of 0.001 and 0.01. These values are the 

boundaries of robust crossover and mutation rate ranges defined in the literature. The 

Warringal catchment model was used to validate the results obtained from the K e w 

catchment model. 

Impervious area study results (study 1) 

As stated in Section 4.3.2.1, all parameter sets in population size 25 reached the actual 

values in the final generation (i.e. 1200 simulations) with the proportionate selection 

method in the impervious area parameter studies for both the K e w and Warringal 

catchment models. Similar results were observed with the linear ranking selection 

method for K e w and Warringal catchment models. Therefore, the proportionate or the 

linear ranking selection method can be used to optimise the two impervious area model 

parameters, without affecting the rate of convergence. 
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Pervious area study results (study 2) 

(a) Kew catchment model 

It was observed that convergence for the pervious area studies was slightly faster with the 

linear ranking method compared to the proportionate selection method. However, the 

pervious area model parameters converged to the actual values more accurately with the 

proportionate selection method than the linear ranking method as shown in Table 4.5. The 

population size of 100 was used in this study, as suggested in Section 4.3.2.1. Actual 

parameter values are shown in bold type under each parameter. 

Table 4.5 Results of Selection Methods with K e w Catchment Model 

Crossover and 
mutation rates 

Crossover - 0.6 

Mutation - 0.001 

Crossover - 0.6 

Mutation -0.01 

Crossover - 0.9 

Mutation -0.001 

Crossover - 0.9 

Mutation -0.01 

Selection 
method 

Proportionate 

Linear 
ranking 

Proportionate 

Linear 
ranking 
Proportionate 

Linear 
ranking 
Proportionate 

Linear 
ranking 

Mean of 5 
objective 
functions 

4.52 

3.14 

13.79 

10.5 

4.03 

3.24 

9.75 

5.99 

nP 

0.03 

0.029 

0.028 

0.032 

0.036 

0.028 

0.025 

0.03 

0.028 

™P 
3 
mm 
3.1 

2.93 

2.72 

2.5 

3.02 

3.5 

2.96 

2.92 

fo 

100 
mm/h 

99.4 

97 

107 

107 

103 

105 

102 

105 

L 
10 

mm/h 

10 

12 

11.6 

12 

13.4 

14 

10.4 

12 

k 

0.001 
1/sec 

0.001 

0.0011 

0.001 

0.0011 

0.0011 

0.0012 

0.0011 

0.0012 

(b) Warringal Catchment model 

Only crossover rates of 0.6 and mutation rates of 0.001 were used to validate the above 

results with Warringal catchment, since all above results showed a similar pattern (i.e. 

more accurate parameter values with the proportionate selection method compared to the 

linear ranking method, but with relatively higher objective function values). Results 
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obtained from this study were similar to the K e w catchment as shown in Table 4.6. 

Therefore, the proportionate selection method was used for the rest ofthe study. 

Table 4.6 Results of Selection Methods with Warringal Catchment Model 

Item 

Mean objective Function value of 

5 

np (actual value - 0.03) 

DSp (actual value - 3) 

/0 (actual value -100) 

fe (actual value -10) 

k (actual value- 0.001) 

Crossover rate = 0.6 & Mutation rate = 0.001 

Proportionate selection 

10.88 

0.033 

2.8 

98.5 

10 

0.001 

Linear ranking 

8.55 

0.02 

3.9 

94 

10 

0.002 

4.3.4 Crossover and Mutation Rate 

In this part ofthe study, the effects of crossover rate (XOR) were first investigated for the 

impervious and pervious area parameter studies with the K e w and Warringal catchment 

models. For both studies, crossover rates ranging from 0.1 to 1, with steps of 0.1 (i.e. 10 

crossover rates), were initially investigated, keeping the mutation rate at 0.001, which is 

the default value in GENESIS. Then, these results were analysed to produce a narrow 

range of crossover rates. This narrow range was then used with different mutation rates 

(MR), to produce suitable crossover and mutation rates for urban drainage model 

calibration. This procedure was adopted, since the mutation rate has less (or no depending 

on the population size) effect on convergence compared to crossover rate. In this study, 

crossover and mutation rates were studied together, as they (together) determine the 

convergence. 
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Impervious area study results (study 1) 

(a) Kew catchment model 

Table 4.7 shows the results obtained with crossover rate ranging from 0.1 to 1 for the 

population size of 25 with 1200 simulations and mutation rate of 0.001. All ten runs with 

the 1200 simulations converged to the actual parameter set. 

Table 4.7 No. of Zero Objective Function Values Achieved for Different 
Crossover Rates in Impervious Area Study - K e w Catchment Model 

\Crossover 

No.N. rates 

of ^ v 

simulations N. 

25 

325 

500 

750 

900 

950 

1000 

1050 

1100 

1200 

0.1 

0 

0 

1 

17 

19 

19 

25 

25 

25 

25 

0.2 

0 

1 

2 

9 

25 

25 

25 

25 

25 

25 

0.3 

0 

2 

5 

24 

25 

25 

25 

25 

25 

25 

0.4 

0 

0 

0 

4 

6 

10 

18 

23 

24 

25 

0.5 

0 

2 

4 

3 

4 

7 

10 

13 

19 

24 

0.6 

0 

1 

6 

10 

13 

12 

14 

18 

23 

25 

0.7 

0 

2 

10 

22 

25 

25 

25 

25 

25 

25 

0.8 

0 

0 

2 

9 

9 

16 

20 

23 

24 

25 

0.9 

0 

4 

5 

14 

24 

24 

24 

25 

25 

25 

1 

0 

0 

2 

7 

23 

24 

24 

25 

25 

25 

As can be seen from Table 4.7, any crossover rate can be used for small number of model 

parameter estimation. Therefore only the crossover rate of 0.6 (which is the default value 

of GENESIS) was studied with different mutation rates. Table 4.8 shows the results 

obtained for the mutation variation with crossover rate of 0.6 for population size of 25. As 

can be seen from Table 4.8, mutation rates of 0.05, 0.01, 0.005 and 0.001 were equally 

good in achieving the zero objective function values, and therefore no further mutation 

rate investigations were conducted. 
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Table 4.8 Impervious Area Study Results for Different Mutation Rates with 
Crossover Rate of 0.6 - K e w Catchment Model 

Mutation 

Rate 

0.05 

0.01 

0.005 

0.001 

Minimum objective 

function 

0 

0 

0 

0 

Mean of 5 objective 

function 

0 

0 

0 

0 

Mean of 5 

%A 

40 

40 

40 

40 

Mean of 5 

DSi 

1 

1 

1 

1 

(b) Warringal catchment model 

Table 4.9 shows the results obtained for the crossover rates of 0.2, 0.4, 0.6, 0.8, 0.9 and 1 

for the population size of 25 with 1200 simulations and mutation rate of 0.001. At least 5 

parameter sets were converged to the actual parameter set in all six runs with 1200 

simulations. Similar to the K e w catchment model, the crossover rate of 0.6 was then 

studied with different mutation rates and the results were tabulated in Table 4.10. 

Table 4.9 Impervious Area Study Results for Different Crossover Rates -
Warringal Catchment Model 

Crossover 
rate 

0.2 

0.4 

0.6 

0.8 

0.9 

1 

Minimum 
objective 
function 

0 

0 

0 

0 

0 

0 

Mean of 5 
objective 
functions 

0 

0 

0 

0 

0 

0 

Average of 
objective 
functions in 
total 
population 

230.45 

59.48 

0 

12.58 

29.43 

196.01 

N o of zero 
objective 
function 
values 

20 

10 

25 

24 

24 

6 

No of zero 
objective 
function as a 
percentage of 
population 

80 

40 

100 

96 

96 

24 
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Table 4.10 Impervious Area Study Results for Different Mutation Rates with 
Crossover Rate of 0.6 - Warringal Catchment Model 

Mutation rate 

0.05 

0.01 

0.005 

0.001 

Minimum objective 

function 

0 

0 

0 

0 

Mean of 5 objective 

function 

0 

0 

0 

0 

Mean 

of 5 

%Ai 

40 

40 

40 

40 

Mean 

of 5 

DSi 

1 

1 

1 

1 

Based on these results, it can be concluded that the crossover and mutation rates do not 

significantly affect the convergence to the actual values of the two parameters in this 

study. 

Pervious area study results (study 2) 

(a) Kew catchment model 

Figure 4.25 shows the plot of crossover rates versus objective function values with 

mutation rate of 0.001 for population size of 100 after 7500 simulations. As can be seen 

from Figure 4.25, the crossover rate of 0.2, 0.3 and 0.5 to 1 only gave the best results in 

the pervious area study. The five model parameter values (based on 5 minimum objective 

functions) obtained from each run were tabulated in Table 4.11. Actual parameter values 

are shown in bold type under each parameter. W h e n the model parameters obtained from 

these G A s runs and the actual values were compared, it was found that they were closely 

matched with each other only with the crossover rates between 0.6 - 0.9. Therefore, the 

conclusion was made that the crossover rates between 0.6 - 0.9 need to be considered for 

further study with mutation rates varying from 0.001 to 0.1. The results of this study are 

discussed in the next paragraph. 

4 32 



Calibration and Validation of Urban Drainage Catchment Model Using G A Chapter 4 

Minimum O.F. values 

Average of 10 O.F. values 
Average of 5 O.F. values 

Average of all O.F. values 

0.4 0.6 

Crossover rate 

0.8 

Figure 4.25 Different Crossover Rate Vs. Objective Function Values 

Table 4.11 Model Parameters in pervious Area Study for Different Crossover Rates 

Crossover 

rate 

0.2 

0.3 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

0.03 

0.036 

0.035 

0.038 

0.029 

0.029 

0.031 

0.028 

0.03 

DSP 

3 mm 

2.7 

2.9 

2.82 

3.1 

2.2 

3.12 

3.02 

2.8 

fo 

100 mm/h 

110 

107 

106 

99.4 

120 

97.8 

103 

105 

fc 

10 mm/h 

12.8 

14.2 

14.4 

10 

13 

10.6 

11.4 

13.6 

k 

0.001 1/sec 

0.0012 

0.0013 

0.0011 

0.001 

0.0014 

0.001 

0.0011 

0.0012 

Mean of 5 

objective 

functions 

29.3 

30.4 

15.8 

4.52 

13.9 

13.7 

4.03 

7.88 

The five model parameter values based on mean of 5 minimum objective functions 

obtained for these crossover and mutation rates are tabulated in Table 4.12. Actual 

parameter values are shown in bold type under each parameter. It can be seen from Table 

4.12 that the crossover rate of 0.6 with 0.001 mutation rate gave the best result based on 

convergence to the actual parameter values for this application. The other acceptable 

crossover and mutation rates are shown in bold type in Table 4.12. 
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Table 4.12 Model Parameter values in Pervious Area study for Different 
Crossover and Mutation Rates - Kew Catchment Model 

Crossover 

rate 

0.6 

0.7 

0.8 

0.9 

Mutation 

rate 

0.001 

0.002 

0.004 

0.006 

0.008 

0.01 

0.05 

0.1 

0.001 

0.002 

0.004 

0.007 

0.008 

0.01 

0.05 

0.1 

0.001 

0.002 

0.004 

0.006 

0.008 

0.01 

0.05 

0.1 

0.001 

0.002 

0.005 

0.008 

0.01 

0.05 

0.1 

0.03 

0.029 

0.034 

0.026 

0.028 

0.030 

0.032 

0.023 

0.039 

0.029 

0.024 

0.060 

0.034 

0.029 

0.029 

0.039 

0.034 

0.031 

0.028 

0.034 

0.027 

0.033 

0.035 

0.027 

0.050 

0.028 

0.031 

0.038 

0.030 

0.030 

0.033 

0.031 

3 mm 

3.1 

2.68 

2.76 

3.18 

3.02 

2.72 

2.7 

2.52 

2.2 

3.1 

2.42 

2.32 

2.84 

3.02 

2.52 

2.98 

3.12 

3 

1.98 

2.86 

2.96 

2.78 

2.34 

2.46 

3.02 

2.84 

3.1 

3.26 

2.96 

3.6 

2.92 

fo 

100 mm/h 

99.4 

107 

112 

99.4 

104 

107 

109 

106 

120 

111 

107 

115 

110 

102 

113 

95.8 

97.8 

102 

121 

107 

100 

101 

120 

107 

103 

104 

98.2 

99.4 

102 

92.6 

105 

10 mm/h 

10.0 

11.8 

13.6 

13.2 

13.4 

11.6 

12.6 

10.2 

14.0 

12.8 

11.8 

14.0 

13.2 

13.2 

9.6 

11.2 

10.6 

12.4 

14.8 

12.6 

12.3 

13.0 

13.6 

12.8 

13.4 

12.8 

11.8 

12.4 

10.4 

10.2 

9.8 

k 

0.001 

1/sec 

0.001 

0.0012 

0.0013 

0.0011 

0.0012 

0.001 

0.001 

0.0011 

0.0014 

0.0013 

0.0012 

0.0013 

0.0013 

0.0012 

0.0012 

0.001 

0.001 

0.0011 

0.0014 

0.0012 

0.0011 

0.0011 

0.001 

0.0013 

0.0011 

0.001 

0.0011 

0.0011 

0.0011 

0.0009 

0.001 

Mean of 5 

objective 

functions 

4.52 

16.56 

8.33 

18.42 

24.34 

13.79 

40.39 

42.49 

13.9 

18.01 

75.31 

23.44 

24.59 

15.92 

53.41 

22.83 

13.7 

14.22 

10.69 

28.10 

20.42 

39.03 

39.23 

94.77 

4.03 

6.06 

29.36 

18.98 

9.75 

28.51 

64.48 

Note: Acceptable crossover and mutation rates (i.e. based on convergence to the actual parameter values) 

are shown in bold type. 
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(b) Warringal Catchment model 

Crossover rate of 0.6 with mutation rates of 0.01 and 0.001 and crossover rate of 0.9 with 

mutation rates of 0.01 and 0.001 were studied using the Warringal catchment model, after 

reviewing the K e w catchment model results and since these are the robust boundaries 

recommended in Literature (Section 4.3.3). The results are tabulated in Table 4.13 for 

population size of 100 after 7500 simulations. 

It can be seen from Table 4.13 that the crossover rate of 0.6 with 0.001 mutation rate gave 

the best result based on convergence to the actual parameter values for the Warringal 

catchment, similar to the K e w catchment. It should be noted that these are also the default 

values of G E N E S I S and therefore are recommended for use in X P - U D D model parameter 

calibration. 

Table 4.13 Model Parameter Values in Pervious Area study for Different 
Crossover and Mutation Rates - Warringal Catchment Model 

Crossover 

rate 

0.6 

0.9 

Mutation 

rate 

0.001 

0.01 

0.001 

0.01 

np 

0.03 

0.033 

0.02 

0.03 

0.03 

DSP 

3 mm 

2.8 

3.8 

3.82 

2.7 

100 mm/h 

98.5 

112 

119.6 

106 

10 mm/h 

10 

13 

14.8 

11.6 

k 

0.001 

1/sec 

0.001 

0.002 

0.002 

0.001 

M e a n of 

five 

objective 

functions 

10.88 

16.36 

10.23 

15.77 

Note: Acceptable crossover and mutation rates (i.e. based on convergence to the actual parameter values) 

are shown in bold type. 

4.3.5 Conclusions of GAs operator study 

Following conclusions were made based on the results of Sections 4.3.1-4.3.4 

• GAs operators are sensitive to the number of model parameters that needs to be 

optimised in the application. 
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• If the number of parameters to be optimised is small (i.e. 2 or less), G A s operators did 

not play an important role in converging to the optimum model parameter set and 

therefore G A s operators recommended in the literature can be used. 

• Small population sizes (i.e. between 25 - 50) are very efficient to use for optimisation 

of urban drainage models with a small number of parameters (i.e. 2 or less). 

• For models with large number of parameters (5 or more), G A s operators play an 

important role in converging to the optimum parameter set. 

• In this study, population size of 100, proportionate selection method, crossover rate of 

0.6 and mutation rate of 0.001 gave the best results for pervious area parameters, and 

therefore they are recommended for optimisation of urban drainage models with large 

number of parameters (i.e. 5 or more). 

• Furthermore, the efficiency of the parameter convergence can be improved by 

limiting the parameter range and accuracies of model parameters to the required level. 

• Further studies are required to study the behaviour of population size and number of 

simulations with string length. 

4.4 Estimation of Impervious Area Model Parameters 

Using GAs 

4.4.1 Overview 

As stated in Section 4.2, genetic algorithms (GAs) optimisation technique was used for 

calibration of the X P - U D D model of the K e w catchment, using available rainfall/runoff 

data. Then the model was validated using different data sets of rainfall/runoff events of 

the catchment, which were not used in calibration. Seven model parameters were 

identified for calibration ofthe X P - U D D model, two related to the impervious areas and 

the other five related to the pervious areas. These seven parameters were the percentage 

ofthe impervious area (%A), depression storage ofthe impervious area (DS,), overland 

flow roughness ofthe pervious area (np), depression storage ofthe pervious area (DSP), 

and the three Horton's soil infiltration parameters (fo, f and k). These parameters were 

also considered in the G A s operator study of Section 4.3. 
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As stated in Section 2.2, different areas (i.e. impervious and pervious areas) of urban 

catchments respond differently to storm events of different magnitudes, and therefore it is 

necessary to consider the magnitude of storm events in calibration of urban drainage 

models. Hence, the observed small storm events ofthe catchment can be used to estimate 

the impervious area parameters, as they (generally) produce runoff only from impervious 

areas. However, the large storm events produce runoff from both impervious and 

pervious areas. Therefore, the observed large storm events can be used to estimate the 

pervious area parameters, keeping the impervious area parameters obtained from 

calibration using the small storm events constant. 

The Kew catchment was continuously monitored for rainfall and runoff as part ofthe data 

acquisition program conducted by Victoria University during 1996-1999 (Section 4.2). 

However, it was found that no significant large storms were recorded during the 

monitoring period for this catchment, which were large enough to produce pervious area 

runoff (Dayaratne 2000). Therefore, only the impervious area parameters were estimated 

using the available observed small storm events. The magnitude and the temporal partem 

of storms were measured using automatic electronic tipping bucket type pluviometers 

with 0.2 m m accuracy. Ultrasonic Doppler type flow meters were used to monitor the 

stormwater runoff at the catchment outlet and one other location ofthe catchment (Figure 

4.2), continuously at two-minute intervals. The details ofthe data acquisition program can 

be found in Maheepala (1999), Maheepala and Perera (1999) and Maheepala et al. (2001) 

Dayaratne (2000) used several Melbourne metropolitan area catchments (including the 

K e w catchment used in this study), which were monitored under the above data 

acquisition program to calibrate the I L S A X (O'Loughlin 1993) models of these 

catchments. H e used several methods to check the consistency and accuracy of the 

observed data, before using them for model calibration. These methods are described in 

detailed in Maheepala et al. (1999), Dayaratne (2000) and Maheepala et al. (2001) and 

they are listed briefly below. 

• Graphical time series plots of measured runoff depth and velocity with rainfall for 

storm events - These plots should match the flow and velocity patterns and should be 

consistent with rainfall (i.e. plot should show runoff peak sometime after the rainfall 
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peak). Similarly, as the runoff velocity increases, these plots should show an increase 

in the runoff depth and vice versa. 

• Use of plots showing flow at the catchment outlet and upstream monitoring points 

when there were several monitoring stations within the catchment - These plots in 

general can be used to detect timing errors, as the runoff peak occurs sometime after 

the rainfall peak. Furthermore, the time of concentration of internal sub catchments 

represented by upstream flow monitoring sites should be smaller than that of the 

whole catchment. 

• Use of Rainfall-runoff depth plots (Section 2.2.3) - The consistency of the observed 

data can be checked for each storm event, by computing and comparing the rainfall 

and runoff depths. The total runoff depth should be always less than the total rainfall 

depth for each storm event. 

Based on above data consistency and accuracy checks, Dayaratne (2000) identified five 

storm events for calibration ofthe K e w catchment, as listed in Table 4.14. However, as 

stated earlier they were all small storm events and have low runoff coefficients because of 

the high initial losses. Of these five small storm events, three storm events were 

considered for calibration and the other two were considered for validation in this study 

(Table 4.14). It should be noted that only total catchment was considered in this study, as 

the aim of this study was to demonstrate the capability of using G A s for urban drainage 

model calibration. 

4.4.2 Model calibration 

First, it was necessary to prepare the XP-UDD model of the Kew catchment for model 

calibration. This model has already been assembled for the G A s operator study (Section 

4.3), except that the design storms were replaced with calibration storm events showing 

details of both rainfall hyetograph and runoff hydrograph. Detail descriptions of the 

preparation of X P - U D D and GENESIS input data files were given in Section 4.4.2.1. 

Once these data files were prepared for each calibration storm event, the integrated 

GENESIS/XP-UDD (Section 3.4) was run and the results analysed to yield the calibration 

model parameters. 
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Table 4.14 Details of the Selected Storm Events for K e w Catchment (Dayaratne 

2000) 

Event properties 

Event number 

Date of occurrence 

Total rainfall duration (min) 

Total rainfall depth (mm) 

Maximum 2 min. intensity (mm/h) 

ARI of storm event (year) 

Average intensity of most severe 

burst (mm/h) 

Stormwater runoff volume (m ) 

Maximum discharge (m3/s) 

Calibration events 

1 

29/05/97 

130 

5.7 

30 

<1 

24 

131 

0.101 

2 

25/01/98 

192 

4.8 

12 

<1 

6.5 

154 

0.032 

3 

20/04/98 

298 

6.0 

8 

<1 

6.5 

228 

0.050 

Validation events 

4 

31/10/97 

148 

4.8 

12 

<1 

18 

137 

0.097 

5 

12/04/98 

136 

2.4 

3 

<1 

2.3 

82 

0.020 

4.4.2.1 Input data files 

(a) XP-UDD 

As described in Section 4.3.1(a), the X P - U D D model ofthe K e w stormwater drainage 

network was assembled using the information on existing pits and pipes on the network, 

as shown in Figure 4.4. In addition, the two impervious area parameters that require 

calibration and the five pervious area parameters were also entered into the data file. T w o 

impervious area parameters were refined in the G A s calibration process. The pervious 

area parameters were not considered in calibration, since it was considered that there was 

no pervious area runoff contribution from these small events. This was checked for 

calibration and validation storm events and found that there was no pervious area runoff 

contribution. Therefore, reasonable values from literature were used for pervious area 

parameters. The value of %A was estimated from drainage plans and contour maps. Even 

though %A was initially estimated from the drainage plans and contour maps for each sub 

catchment area separately and entered them in the input data files, when calibrating it was 

assumed %Aasn single value for the whole catchment to avoid the increase of number of 

parameters to be calibrated. During calibration, GENESIS generated a single value of 

4 39 



Calibration and Validation of Urban Drainage Catchment Model Using G A s Chapter 4 

%A, according to the user specified parameter range. A reasonable value from literature 

was used for DSi since there was no other guidance available to obtain this parameter, and 

again DSt was optimised during calibration. The above X P - U D D data file was prepared 

for each calibration storm event by entering relevant rainfall/runoff data. 

(b) GENESIS 

The results ofthe optimum G A s operator set investigations carried out in Section 4.3 were 

used in preparing the G E N E S I S input data file. These results were: 

• Any GAs operator set could be used for estimating urban stormwater drainage model 

parameters with two or less model parameters. Therefore, the default values of 

GENESIS, which include proportionate selection, two-point crossover, crossover rate 

of 0.6 and mutation rate of 0.001 can be used. 

• A population size of 25 with 1200 simulations was found to be adequate. 

• Gray coding was found to be superior to binary coding from literature. 

4.4.2.2 Results of calibration 

The impervious area parameters of %A and DSt were calibrated for the Kew catchment 

with the selected three observed rainfall/runoff storm events (Table 4.13). All parameter 

sets converged to one single set in the final generation, which was considered as the 

optimum parameter set for each of these storm events. The X P - U D D model was then run 

with this parameter set to obtain the modelled hydrograph. The modelled hydrograph was 

compared with the corresponding observed hydrograph, as shown in Figures 4.26 to 4.28. 

All events produced reasonable calibration results and a reasonable match was seen 

between modelled and observed hydrographs, which was considered to be satisfactory. 

All three events had multi peaks, and calibration showed that the shape, peak discharge, 

time to peak and multi peaks were modelled for events 1 and 3 with good accuracy 

(Figures 4.26 and 4.28). However, there were some differences in the shapes of the 

modelled and observed hydrographs for event 2 (Figure 4.27). The differences in all these 

events could be due to following reasons (Maheepala 1999). 

• Inaccuracy of measured rainfall and runoff that was used in the modelling 
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• Non-uniform rainfall distribution over the study catchment - Since the catchment is 

relatively small, the distribution of rainfall was assumed uniform in the models. 

However, if the actual rainfall that occurred were not uniformly distributed over the 

entire catchment, the peaks and the shapes ofthe modelled and observed hydrographs 

would be different. 

• Leakage of groundwater into the drainage system through pipes joints or pipes cracks. 

This was not modelled in this study. 

The optimum parameter set obtained for each calibration event was tabulated in Table 

4.15. As can be seen from this table, there is a fair amount of scatter in the model 

parameters obtained from different storm events. This scatter could be due to the 

deficiency in the model structure (i.e. model does not simulate all processes of the 

drainage system adequately), and inaccuracies in rainfall/runoff and other data used. In 

addition, when two (or more) parameters have to be calibrated simultaneously, there may 

be different combinations of parameters that yield the same output response (Dayaratne 

2000). 
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Figure 4.26 Calibration Results of Event 1 
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Figure 4.28 Calibration Results of Event 3 
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Table 4.15 Calibration Results 

Event number 

Event 1 

Event 2 

Event 3 

%A 

55 

49 

70 

DSi (mm) 

0.3 

0 

0 

It is not appropriate to average the above three parameter sets to obtain the optimum 

parameter set, because of interaction between these parameters. Therefore, the selection 

of single optimum parameter set from these results requires some judgment. A n attempt 

was then made to select the single optimum parameter set, which best models all 

calibration events simultaneously. 

The three optimum parameter sets in Table 4.16 and the mean parameter set of the 

optimised sets (i.e. %A = 58, DSt = 0.1) were used in X P - U D D to simulate the three 

events used for calibration. All data of the X P - U D D data file except %A and DSt were 

same as for calibration in these simulations. The predicted hydrographs obtained for 

events 1, 2 and 3 with these different %A and DSt were shown in Figures 4.29, 4.30 and 

4.31 respectively. Only four hydrographs ofthe best match were shown in these figures 

for clarity. As can be seen from these figures, the modelled hydrographs using the 

calibrated parameters corresponding to the calibrated event produce the best match for 

that event, but may not be for the other events. The closest match between observed and 

modelled hydrographs for all calibrated events was found with 58 of %A and 0.1 of DSU 

Therefore, these parameter values were considered as optimised parameters for the K e w 

catchment. 
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Figure 4.30 Selection of Single Parameter Set - Event 2 
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Figure 4.31 Selection of Single Parameter Set - Event 3 

As stated in Section 4.4.1, Dayaratne (2000) used the above calibration events for ILSAX 

model calibrations of the K e w catchment using the P E S T computer software program 

(Watermark National Computing 1998), which uses a non-linear optimisation technique. 

It was observed that the shapes of the predicted hydrographs obtained from this study 

were similar to those of Dayaratne (2000). The plots obtained by Dayaratne (2000) are 

shown in Figure 4.32. Again similar to the study reported here, Dayaratne selected the 

best set of parameters, which were equally good for all three events. The hydrograph due 

to this best parameter set is also shown in Figure 4.32. 

The optimum parameter sets obtained for %A and DSt from this study using G A s and 

Dayaratne (2000) study using P E S T and R R plots (Dayaratne 2000) are tabulated in 

Table 4.16. It can be seen from Table 4.16 that the optimum parameter sets are different. 

However, it should be noted that in R R plots only the runoff volume is considered, 

whereas in model calibration using both G A s and P E S T all hydrograph attributes such as 

runoff volume, peak discharge, time to peak discharge and hydrograph shape are 

considered and therefore model calibration values can be considered as more realistic 

than the values from the R R plots. 
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Figure 4.32 Calibration Results of Eventl, 2 and 3 of Dayaratne (2000) Study 
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Table 4.16 Impervious Area Parameter Sets Obtained from GAs, PEST and R R 
Plots 

Different model parameter estimation 

studies 

GAs study 

PEST study 

RRplot 

%A 

58 

62 

40 

DSi (mm) 

0.1 

0.5 

0.5 

4.4.3 Model validation 

Model validation was done to test the performance of the calibrated optimum model 

parameter set on independent storm events, which were not used in the calibration. All 

data of the XP-UDD data file except the information on validation storm events and the 

calibration impervious area parameter set were same as for calibration. The two observed 

validation storm events in Table 4.14 were used to validate the optimum parameter set 

obtained from calibration (i.e. %A and DSjOi 5 8 % and 0.1 mm). The XP-UDD model was 

run only once for each validation event with these values to check the validity of the 

optimum parameter set obtained from the calibration. The modelled hydrographs using 

the calibration parameter set and the observed hydrographs for event 4 and 5 (i.e. 

validation events) are shown in Figures 4.33 and 4.34 respectively. 

The two observed storm events used for validation also had multipeaks, as shown in 

Figures 4.33 and 4.34. As can be seen from these figures, a reasonable match was 

obtained between modelled and observed hydrographs in terms of shape, peak discharge 

and time to peak discharge for storm event 4. However, the storm event 5 did not produce 

a good match between modelled and observed hydrographs. A similar result was 

observed with this storm event in Dayaratne (2000). This may be due to the errors listed 

in Section 4.4.2.2. Therefore, it was assumed that the observed data for event 5 was in 

error. 
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4.5 Summary 

Genetic Algorithms (GAs) was used in this study to calibrate the XP-UDD model of the 

study catchment (i.e. K e w catchment). GENESIS computer software tool was used for 

G A s optimisation. A n integrated GENESIS/XP-UDD was developed by linking 

GENESIS and X P - U D D through their input and output data files to optimise the model 

parameters. However, before attempting this model calibration, it was necessary to obtain 

the appropriate G A s operators for the study, since there was no guidance available for 

GAs operators to be used in urban drainage modelling. 

A systematic trial and error procedure was used to investigate the optimum GAs operators 

for this study. The study was conducted as two investigations to estimate impervious and 

pervious area parameters, as the runoff generation mechanism is different in these two 

areas, which vary according to the magnitude of the rainfall intensity. T w o design storm 

events of duration 30 minutes were considered as input rainfall in the study. The small 

storm, which had an Annual Recurrence Interval (ART) of 1 year produced runoff only 

from the impervious areas, was used to calibrate the two impervious area parameters (i.e. 

%A and DS\). The large storm, which had an ARI of 100 years generated runoff from 

both impervious and pervious areas, was used to calibrate the remaining five pervious 

area parameters (i.e. np, DSP> fc. fo and k) after fixing the two impervious area parameters 

obtained from the small storm event. The K e w urban drainage catchment was used 

extensively to study the G A operators. The Warringal urban drainage catchment was used 

to validate the results obtained from the K e w catchment. 

It was found that the GAs operators were sensitive to the number of model parameters 

that needs to be optimised in the application. If the number of parameters to be optimised 

was small as in the case of estimating impervious area parameters (i.e. only 2 parameters 

considered), G A s operators did not play an important role in converging to the optimum 

model parameter set, and therefore general G A s operators recommended in literature can 

be used. Furthermore, the small population sizes (i.e. between 25-50) were very efficient 

for use in model parameter optimisation of urban drainage models with two or less 

parameters. 
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For models with large number of parameters (5 or more), G A s operators played an 

important role in converging to the optimum parameter set. It was observed that the string 

length of the chromosome had an impact on the selection of the size of the population. 

However, further investigations need to be carried out to define a relationship between 

string length and population size for urban stormwater drainage model parameter 

optimisation. Furthermore, the efficiency of the parameter convergence can be improved 

by mmimising the parameter range and precision of the coding (i.e. reducing the string 

length). In this study with five parameters, population size of 100, proportionate selection, 

crossover rate of 0.6 and mutation rate of 0.001 gave the best results, and therefore they 

are recommended for optimisation in urban drainage models with large number of 

parameters (i.e. more than 5). 

After selecting the optimum GAs operator set, the XP-UDD model calibration ofthe Kew 

catchment was conducted using GAs. Rainfall/runoff data available for this catchment at 

Victoria University during the period of 1996-1999 had been analysed to select storm 

events for use in calibration in a previous study. It was found that the catchments had 

reliable data only for small storms during this period, where the runoff was generated 

only from the impervious areas. These events were not large enough to produce pervious 

area runoff. Therefore, only the two impervious area parameters (i.e. %A and DS,) were 

estimated using small storm events in this study. Five observed storm events were 

selected from the previous study to use in this study. O f these five events, three were used 

for calibration of model parameters, while the other two were used for validation of the 

results obtained from the calibration. 

The results of the calibration showed that the shape, peak discharge, time to peak and 

multi peaks were modelled with a reasonable accuracy. However, it was observed that 

there was a fair amount of scatter in the model parameters obtained from different 

calibration storm events. Therefore, to obtain a single optimum parameters set, the three 

optimum parameter sets and the mean parameter set ofthe optimised parameter sets were 

used in X P - U D D to simulate the three events used for calibration. The single optimum 

parameter set was then selected as the parameter set, which best modelled all three 

calibration events. This parameter set was then validated using the two validation storm 

events and found a reasonable comparison between modelled and observed hydrographs. 
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The percentage of impervious area and the impervious area depression storage (i.e. %A 

and DSi) for the K e w catchment had also computed using rainfall-runoff depth plots (i.e. 

R R plots) and using a non-linear parameter optimisation method (but with a different 

urban stormwater drainage model) in a previous study. It was found that the results 

obtained from G A were different to those of the R R plot, but reasonably close with the 

other study. It should be noted that only the runoff volume is considered in R R plots, 

whereas model calibration using G A and the non-linear parameter optimisation method 

used all hydrograph attributes such as runoff volume, peak discharge, time to peak 

discharge and hydrograph shape. Therefore, the parameters produced from calibration 

using hydrograph modelling (i.e. using G A and non-linear parameter optimisation) can be 

considered more realistic compared to those from the R R plot. It was found in this study 

that G A could be used to estimate the model parameter values successfully in urban 

stormwater drainage models. 
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CHAPTER 5 

ESTIMATION OF SOIL INFILTRATION 
PARAMETERS 

5.1 Introduction 

As reviewed in previous chapters, management of stormwater runoff from urban 

catchments is a complex task. The stormwater drainage software tools are being 

commonly used to design and analyse stormwater drainage systems in managing 

stormwater. However, the reliability of these models depends on the correct selection of 

the model parameter values. In order to reduce the uncertainty and errors in the model 

prediction, the model parameter values that can be effectively measured by field 

measurements should be determined through such measurements. If the measurable 

parameters are estimated through field tests or other means, then the other parameters can 

be effectively obtained through model calibration, which reduces uncertainty in overall 

calibration and model prediction. 

Infiltration plays an important role in runoff generation in pervious areas of urban 

catchments. It is a complex process that can be defined, as vertical movement of water 

through the soil surface and into the soil profile in pervious areas. Water infiltrated 

through the soil m a y be retained in the upper soil layers or percolated through to the 

deeper layers eventually reaching groundwater. The m a x i m u m rate at which water can 

enter the soil at a particular point under a given set of conditions is known as the 

infiltration capacity (fi). The actual infiltration rate equals the infiltration capacity only 

when the rainfall intensity equals or exceeds infiltration capacity. Otherwise, it is equal to 

the rainfall intensity. The infiltration rate of a soil profile approaches to a minimum 

constant rate as the storm continues and the soil profile becomes saturated. This 

infiltration rate is known as the saturated infiltration capacity (fc). 
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Estimation of infiltration parameters, which represent the whole catchment, is a difficult 

task because of the presence of significant variability with respect to soil type and land 

use in the catchment. There are different types of infiltration measuring instruments 

available such as single-ring, double-ring, basin, furrow and sprinkler infiltrometers. 

M b a g w u (1997) carried out the double-ring infiitrometer tests to study the influence of 

soil physical properties on Philip (1957) and Kostiakov (1932) infiltration models in a 

farm area in Nigeria. Al-Qinna and A b u - A w w a d (1998) compared the infiitrometer rates 

measured using different infiltrometers (sprinkler, furrow and basin) with the rates 

measured by single and double-ring infiltrometers. They reported that sprinkler and 

furrow infiltrometers gave similar infiltration rates to the double-ring infiitrometer, while 

the basin infiitrometer gave rates similar to the single-ring infiitrometer. Furthermore, 

they reported that increase in the initial moisture content decreased the initial infiltration 

rate by about 4-11% regardless ofthe infiitrometer type used. 

As described in Chapter 3, the XP-UDD urban drainage software was selected to model 

the K e w catchments. X P - U D D has the option of using Green-Ampt (1973) or Horton 

(1940) models to model infiltration. The Horton's model was proposed to use in this 

study to model infiltration in pervious areas ofthe K e w catchment, since it had been used 

successfully in the past and the parameters can be easily obtained through field 

infiitrometer tests (Section 3.2.1). 

The soil parameters that are responsible for infiltration in pervious areas of the Kew 

catchment were determined by conducting field infiitrometer tests. Three tests were 

conducted on three sites to allow for heterogeneity ofthe soil in the catchment. These test 

measurements were used to estimate Horton's infiltration parameters. These measured 

soil infiltration parameters can provide a reasonable parameter range for G A optimisation 

and can be then fine-tuned during the calibration process (through G A optimisation) to 

allow for heterogeneity of the soil characteristics, if sufficiently large observed 

rainfall/runoff data are available for the catchment. However, this was not done for the 

K e w catchment, since large storm events, which produce pervious area runoff were not 

available for the catchment. In order to understand different soil types and to determine 

the soil infiltration rates in different urban catchments, further nineteen soil infiitrometer 

field tests were conducted at several selected urban catchments in Victoria in this study. 
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This chapter begins with a description of the factors affecting infiltration, followed by the 

description of the double-ring infiitrometer apparatus. The aim and methodology 

including the details of installation and test procedures, and data analysis are then 

described. The detailed description of calculations and results ofthe K e w catchment tests 

are presented then, followed by the other Victoria-wide infiltration test results. Finally, 

the conclusions drawn from the study are presented. 

5.2 Factors Affecting Infiltration 

The process of water infiltrating through the soil is a complex interaction between rainfall 

intensity, soil type, surface cover conditions and many other factors. The main factors 

affecting the soil infiltration process are described below. 

(a) Soil properties 

The soil infiltration depends to a great extent on the soil type. In general, coarse-textured 

gravels and sands have higher infiltration capacities than fine-textured clays. Although 

the particle size and distribution have a major influence on infiltration rates, organic 

matter content, aggregation, tillage and compaction often modify the soil characteristics. 

Akram and Kemper (1979) reported that compaction from trucks being driven over a 

sandy loam soil just after a rain, reduced infiltration rates from 15 to 0.3 cm/h. 

(b) Antecedent moisture conditions 

The soil moisture content plays an important role since it determines h o w m u c h storage is 

available for infiltration. If the soil is dry, the initial rate of infiltration is higher compared 

to the soil with high moisture content. If the water table is close to the soil surface, the 

soil will become quickly saturated and consequently less infiltration. 

(c) Layered soils 

In general, any profile discontinuity such as change in texture, pore size distribution will 

result in change in the rate of water movement through the soil. A course-textured 

material (eg. sand) overlies a fine textured material (eg. loam), the course layer controls 
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the infiltration rate until the wetting front reaches the fine layer. Then the rate of 

infiltration depends upon the fine layer and water will accumulate in the surface layer 

(sand). If a finer textured material overlies a coarse material, the fine surface layer will 

govern the initial rate of infiltration. Water will not enter through the surface until it has 

accumulated in the fine layer to a point, where it can overcome the adhesive and cohesive 

forces of the pores in the fine layer. Then only, flow can take place into the larger pores 

ofthe underlying coarse layer (Gardner 1979). 

(d) Rainfall intensity and surface sealing 

Extremely high rainfall rates may cause destruction of the soil surface leading to surface 

sealing or the formation of soil crusts as the aggregates break down. This greatly reduces 

infiltration capacity and increases the potential for runoff and erosion. If rainfall occurs 

over a long period of time, the rate of infiltration decreases due to the high moisture 

condition of soil. 

(e) Vegetation cover and entrapment of air 

Vegetation cover can increase the infiltration rates through modification of the soil 

porosity and pore size distribution, and through interception ofthe raindrops by the plant 

canopy. 

If air is trapped in the soil, the hydraulic conductivity is reduced, which reduces the rate 

of infiltration. 

(f) Soil slope and land use 

The soil surfaces with steeper gradients allow water to runoff quickly and therefore would 

have less infiltration, and vice versa. 

The infiltration process varies according to the land use. As an example, the forest area 

has soil surface covered with mulch, which helps to retain more water for a long time, and 

therefore more infiltration in a forest area compared to an urban area (which has more 

impermeable surfaces). 
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5.3 Double-Ring Infiltration Test Apparatus 

The standard double-ring infiitrometer (ASTM, 1994) was used in this study to measure 

the pervious area soil infiltration parameters of the study catchment (i.e. the K e w 

catchment). The apparatus consists ofthe following components, as shown in Figure 5.1. 

- «%' 

. v 

Figure 5.1 Double-Ring Infiitrometer 
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• T w o concentric rings (i.e. open cylinders) made of 3 m m hard alloy aluminum sheet 

approximately 500 m m high and having diameters of about 300 and 600 m m - These 

two rings are used to retain water above the ground surface. The outer ring acts as a 

barrier to encourage only vertical flow from the inner ring. 

o Two calibrated Mariotte tubes (or graduated cylinders) having minimum volume 

capacity of 3000 ml - These tubes have closed-airtight tops designed to maintain a 

constant water head in the rings by delivering water, as water is lost through 

infiltration. 

o Driving cap made of hard alloy aluminum (13 mm thick), diameter larger than that of 

the outer infiitrometer ring - This is to cover the rings to minimize evaporation of 

water during the test. 

• Splash guards of 150 mm square rubber sheets - They are placed inside the rings to 

prevent erosion when water is poured at the start ofthe experiment. 

• Driving equipment having a 5.5 kg mall and 50 mm x 100 mm x 900 mm wood or 

jack - This is used to drive the two rings into the ground. 

5.4 Aim and Methodology 

5.4.1 Aim 

As stated earlier, the main aim of this part ofthe study was to measure the soil infiltration 

parameters of the K e w catchment. Soil infiitrometer field tests were conducted at three 

sites of the K e w catchment, which were selected after consultation with City of 

Boroondara officers to adequately represent the different soil conditions ofthe catchment. 

The study sites ofthe K e w catchment are shown in Figure 5.2. 
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Key 
— — » Catchment boundary 

— — Main drainage system 

— — Secondary drainage system 

Figure 5.2 Study Sites in K e w Catchment 

5.4.2 Methodology 

Rainfall was measured during 5 days prior to the field test using a pluviometer, to 

determine the antecedent rainfall depths at the study sites. The double-ring infiitrometer 

was then installed at the site and the measurements were taken over approximately 6 

hours, since the soils at the sites were of coarse grains. All three sites were in residential 

areas, installation and testing were carried out according to A S T M (1994) standards. The 

tests in the K e w catchment were conducted during May in 2002. Furthermore, soil 

Flowmeter 

Pluviometer 
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samples at a depth between 30-45 c m were taken at each site to determine the particle size 

distribution using sieve analysis, as the grading of a soil can give a good indication of its 

conductivity. 

5.4.2.1 Installation process 

The double-ring infiitrometer was installed in an undisturbed and flat area of the site. 

First, the outer ring was driven to the ground by hammering the wooden block, which was 

placed on top ofthe outer ring. The wooden block was moved around the edge ofthe ring 

while hammering, to make the ring penetrated uniformly into the ground. After the outer 

ring was leveled and driven 150 m m to the ground, the inner ring was placed inside it and 

was driven to a depth of 50 m m , similar to the outer ring. The disturbed soils around the 

rings were tamped, until the soil inside the rings was firm as prior to driving the rings. 

Then, the Mariotte tubes were placed near the rings, ensuring that they were leveled. 

Large tube and small tube were connected to the large and small ring respectively. The 

valves ofthe tubes were closed before poring water into the tubes. 

5.4.2.2 Testing procedure 

First, the Mariotte tubes were filled with water. Then the splashguards were placed inside 

both rings to cover the soil to prevent erosion and water poured into the rings. Once both 

rings were filled with water to approximately the same desired depth (30 cm), 

splashguards were removed. Then the valves ofthe Mariotte tubes were opened to get the 

flow from the tubes to the rings. The water depth in both rings were then measured using 

the attached measuring tapes on the sides of the rings, as soon as the water level of the 

tubes became constant and the two rings having an equal water depth. If the depth 

between the rings varied more than 5 m m , then the water level was adjusted by adding 

water. This water level was maintained for both rings at the start of each observation. The 

depth of water decreased in tubes and rings were recorded at intervals of 15 min for the 

first hour, 30 min. for the second hour and 60 min. during the remainder ofthe period at 

least for 6 hours or until after a relatively constant rate was obtained. The driving cap was 

placed over the rings during the intervals between measurements to minimize 

evaporation. 
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5.4.2.3 D a t a analysis 

Soil Infiltration parameters (i.e. f0, fc and k) were estimated using the re-arranged form of 

the Horton's Equation [i.e. Equation (3.2)], as given in Equation (5.1). 

ln(/,-/J=-& + ln(/0-/c) (5.1) 

Data obtained from the experiment were used to compute the infiltration rate if) at 

different times (t). A trial and error process was used first to estimate fc and k. Several 

values oifc were considered and ln(/J -fc) were plotted against t for each fi The straight 

line that best fitted the data, produced/I for the site and the gradient of this line gave the 

parameter k. These fc and k values were then substituted in Equation (5.1) to produce f0 

corresponding each data point. The average value of these f0 values was taken as the/, at 

the site. However, it should be noted that/0 depends on the soil moisture conditions at the 

time ofthe field experiment and will be different at other times. 

In order to find the soil type ofthe site, sieve analysis was conducted in the laboratory for 

the soil samples collected from each site. Stack of sieves from 75 //mto 19 m m were 

used for this test by placing them vertically, with the mesh size decreasing downwards 

and the pan at the bottom. Each sieve was weighed before poured oven dried soil sample 

into the top sieve. Then the sieve stack was shaken using the mechanical sieve shaker and 

the each sieve was weighed together with the soil samples. The percentage by weight of 

the whole sample passing each sieve was calculated and particle size distribution was 

plotted on standard semi-log paper. The coefficients of uniformity (Cu) and curvature 

(Cc) (which are defined in Equations 5.2 and 5.2 - Craig, 1975) were determined based 

on percentage passing of soil particles to determine the soil type using the unified soil 

classification chart (Wagner 1957). A part of this chart is shown in Table 5.1. 

Ao (5.2) 

(Ao)2 (5.3) 

AoAo 

c„ = 

Q. = 
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where D10 is the particle size corresponding to 1 0 % passing percentage 

D30 is the particle size corresponding to 3 0 % passing percentage 

D M is the particle size corresponding to 6 0 % passing percentage 

Table 5.1 Part of Unified Soil Classification Chart (Wagner 1957) 

Group 

symbols 

GW 

GP 

SW 

SP 

Soil type 

Well graded gravels and gravel sand 

mixtures, little or no fines 

Poorly graded gravels and gravel sand 

mixtures, little or no fines 

Well graded sand and gravelly sands, little 

or no fines 

Poorly graded sands and gravelly sands, 

little or no fines 

% Less 

than 0.06 

m m 

0-5 

0-5 

0-5 

0-5 

Cv 

>4 

Cc 

Between 

1-3 

Fail to comply 

with the above 

>6 
Between 

1-3 

Fail to comply 

with the above 

5.5 Calculations and Results 

Although three sites (i.e. Ki, K2 and K3) were selected for soil infiltration tests in the Kew 

catchment, the test at site K3 could not be completed, where clay soil was found and water 

barely penetrated through the soil. This observation is consistent with A S T M (1994), 

which states that the double-ring infiitrometer test is not suitable for clay soil. The soil 

infiltration parameters ofthe Horton's infiltration equation were then estimated for sites 

Kj and K2. Furthermore, the particle size distribution, the coefficients of Cu and Cc and 

the soil type were also determined at these sites. As an example, detail calculations are 

demonstrated below for site KI and only a summary of results is given for site K2. 
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5.5.1 Site K, 

The measurements obtained for the double-ring infiitrometer test at site KI are tabulated 

in columns 2, 4, 5, 8 and 9 in Table 5.2. Infiltration rates (f) given in column (7) in Table 

5.2 were computed for the inner ring by computing the volume of water lost in inner tube 

and ring, and then dividing it by the surface area ofthe inner ring and the time interval. 

Similar calculations were carried out for the outer ring [columns (10) and (11)]. 

Figure 5.3 illustrates the infiltration capacity (f) Vs. time for site KI. This figure shows 

an exponential curve, shape being similar to the curve defined by the Horton's infiltration 

model. The infiltration capacities computed based on water flow in both rings (i.e. inner 

and outer) is presented in Figure 5.3. However, only the inner ring measurements were 

used in subsequent calculations, as there was no lateral movement of water in the inner 

ring (and therefore only vertical flow) due to the presence of the outer ring. The 

infiltration is better represented by ft values corresponding to the inner ring, since 

infiltration is defined as vertical movement of water through the soil surface and into the 

soil profile. A s expected, the outer ring infiltration rates were higher than the inner ring 

rates due to the lateral movement of water from the outer ring, in addition to vertical 

downward flow. 

As outlined in Section 5.4.2.3, fc was obtained from trial and error, by plotting the 

relationship of \n(ft -fc) Vs. time and finding the best fit straight line for the field data set. 

Figure 5.4 shows the above relationship that fitted the best straight line, which produced 

fc =12.51 cm/h. The gradient of this line was computed and converted to represent the 

units of hour. This value was the parameter k and was 0.86 h" for site Ki. 

Once/c and k were found, f0 was calculated from Equation (5.1) for each observation. 

Theoretically, calculated f0 values should be the same. However, due to experimental 

errors and the infiltration process was modeled by a theoretical curve, it varies from 19.21 

to 27.10 cm/h. 
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Table 5.2 Observations and Calculation sheet for Site Ki 

5 Days Rainfall Day -1 -2 -3 -4 -5 

Rainfall ( m m ) 3.2 0.2 0 1 0 

Mariotte tube details: Ring details: 

Large Tube: Diameter 16.2 cm, Area 206.12 cm 2 Outer Ring Area 2073.5 cm 2 

Small Tube: Diameter 9 cm, Area 63.62 cm 2 Inner Ring Area 730.91 cm2 

Time record (min) 

(1) 

Start 

End 

Start 

End 

Start 

End 

Start 

End 

Start 

End 

Start 

End 

Start 

End 

Start 

End 

Start 

End 

Start 

End 

(2) 

Time 

interval 

(min) 

5 

5 

5 

15 

15 

30 

60 

60 

60 

60 

(3) 

Total 

time 

(min) 

5 

10 

15 

30 

45 

75 

135 

195 

255 

315 

Inner ring reading 

(4) 

Tube 

(cm) 

10.5 

8.5 

10.0 

8.9 

10.0 

8.9 

8.9 

6.4 

9.0 

6.5 

6.5 

3.0 

10.6 

1.5 

4.2 

1.9 

1.9 

2.3 

2.3 

2.3 

(5) 

Ring 

(cm) 

12.0 

14.0 

12.0 

13.7 

12.0 

13.5 

12.1 

16.1 

12.0 

15.8 

12.0 

19.4 

12.0 

25.2 

12.0 

25.0 

12.0 

24.8 

12.0 

24.6 

(6) 

Volume 

cm3 

1589.06 

1312.53 

1166.35 

3082.69 

2936.50 

5631.40 

10226.9 

9648.16 

9330.21 

9209.48 

(7) 

ft 

cm/h 

26.09 

21.55 

19.15 

16.87 

16.07 

15.41 

13.99 

13.20 

12.77 

12.60 

Outer ring reading 

(8) 

Tube 

(cm) 

14.0 

13.7 

13.8 

13.5 

13.6 

13.5 

13.5 

12.8 

12.9 

12.4 

12.4 

10.2 

10.5 

-2.0 

13.2 

-2.5 

-2.5 

-2.5 

-2.5 

-2.5 

(9) 

Ring 

(cm) 

12.0 

14.0 

12.0 

14.0 

12.0 

13.8 

12.1 

16.6 

12.0 

16.2 

12.0 

19.7 

12.0 

25.4 

12.0 

25.2 

12.0 

26.0 

12.0 

25.9 

(10) 

Volume 

cm3 

4208.8 

4208.8 

3752.9 

9475.0 

8811.8 

16419.4 

30361.4 

30606.3 

29029.0 

28821.7 

(H) 

ft 

cm/h 

24.36 

24.36 

21.72 

18.28 

17.00 

15.84 

14.64 

14.76 

14.0 

13.9 
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Therefore, the mean oif0 was considered as>f0 for this site at the time of field experiment. 

Infiltration capacity (fi) was then computed for each observation using these values of fo, 

fe and k in Equation (5.1). Figure 5.5 shows the plot of observed and re-calculated 

infiltration capacity Vs. time. The two curves are similar except for the values at the start. 
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— — — A a 
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Figure 5.5 Re-calculated Infiltration Capacity (fi) Vs. Time for Site Ki 

The measurements obtained for the sieve analysis test for site Ki are tabulated in columns 

2 and 3 in Table 5.3. The mass retained per sieve [i.e. column (4)] was calculated by 

subtracting column (3) from column (2). The soil passing through each sieve [i.e. column 

(6)] was calculated by subtracting the cumulative mass [i.e. column (5)] from the total 

soil mass (which is 201.34 g). The percentage of soil passing [i.e. column (7)] through 

each sieve was calculated using the column (6) values. Figure 5.6 shows the plot of % of 

soil passing versus particle sizes, which is known as the particle size distribution curve. 

The values of A o , D30 and A o were read from Figure 5.6 and were 0.4, 0.65 and 0.9 

respectively for site Kj. The values of Cu and C c were then computed using Equations 

(5.2) and (5.3) respectively and these values are tabulated in Table 5.4 for site Ki. The 

soil type of site Ki was identified as G P from Table 5.1 and included in Table 5.4. In 

addition,/* f0 and A: values for site Ki are tabulated in Table 5.4. 
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Table 5.3 Observations and Calculation of Particle Size Distribution for Site Ki 

Sieve size 
(mm) 

(1) 

19 

9.5 

4.75 

2.36 

1.18 

0.6 

0.425 

0.3 

0.15 

0.075 

0.01 

Sieve 
mass (g) 

(2) 

535.97 

505.16 

560.73 

482.57 

434.49 

407.60 

389.29 

377.09 

353.86 

292.66 

279.42 

Mass of 
sieve and 
retained 
soil (g) 

(3) 

535.97 

505.16 

560.73 

502.91 

463.01 

507.66 

420.55 

394.23 

357.76 

292.71 

279.49 

Mass 
retained 
per sieve 

(4) 

0.00 

0.00 

0.00 

20.34 

28.52 

100.06 

31.26 

17.14 

3.90 

0.05 

0.07 

Cumulative 
mass (g) 

(5) 

0.00 

0.00 

0.00 

20.34 

48.86 

148.92 

180.18 

197.32 

201.22 

201.27 

201.34 

Mass 
passing 

(g) 

(6) 

201.34 

201.34 

201.34 

181.00 

152.48 

52.42 

21.16 

4.02 

0.12 

0.07 

0.00 

% 
Passing 

(7) 

100% 

100% 

100% 

90% 

76% 

26% 

11% 

2% 

0% 

0% 

0% 

<\ nno/ 
TUU /o 

o) 80% 
c 
« 
(0 

* 60% 
0) 
O) 
(TJ A no/ 

*i 4U /o 
C 
0) 
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m ono/ 

O £M /o 

0. 
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0. 31 0.1 D 10 
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Figure 5.6 Particle Size Distribution Curve for Site Ki 
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Site code 

Ki 

T a b l e 5.4 Infiltration Parameters for Site K i 

5-day 

rainfall 

(mm) 

4.4 

Cu 

2.25 

Cc 

1.17 

Soil type 

GP 

fc (cm/h) 

12.5 

f0 (cm/h) 

22.0 

k (h1) 

0.86 

Note: Fine particles were less than 5 % 

G P is poorly graded gravels and gravel sand mixtures, little or no fine 

5.5.2 Site K 2 

The measurements obtained from the double-ring infiitrometer test and calculations for 

site K 2 are given Table 5.5. Similarly, the plots in relation to the estimation of infiltration 

parameters (similar to Section 5.5.1) are s h o w n in Figures 5.7, 5.8 and 5.9. T h e study 

results for site K 2 are tabulated in Table 5.6. 
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300 360 420 

Figure 5.7 Infiltration Capacity (fi) Vs. Time for Site K 2 
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Table 5.5 Observations and Calculation Sheet for Site K 2 

5 Days Rainfall Day -1 -2 -3 - 4 -5 

Rainfall (mm) 0.04 0.04 0.04 0.04 0.04 
Mariotte tube details: Ring details: 

Large Tube: Diameter 16.2 cm, Area 206.12 cm2 Outer Ring Area 2073.5 cm2 

Small Tube: Diameter 9 cm, Area 63.62 cm2 Inner Ring Area 730.91 cm2 

Time record (min) 

(D 

Start 

End 
Start 

End 
Start 

End 
Start 

End 
Start 
End 
Start 
End 
Start 

End 
Start 
End 
Start 

End 
Start 

End 
Start 

End 
Start 
End 
Start 
End 
Start 

End 

(2) 
Time 
interva 
1 (min) 

6 

5 

5 

14 

15 

15 

30 

30 

60 

30 

75 

15 

30 

20 

(3) 
Total 
time 
(min) 

6 

11 

16 

30 

45 

60 

90 

120 

180 

210 

285 

300 

330 

350 

Inner ring reading 

(4) 
Tube 
(cm) 

17.4 
13.5 
13.5 

15.5 
15.5 
15.2 
15.2 
12.1 

12.1 
12.2 

12.2 
12.6 
12.6 

9.6 
9.6 
10.0 
10.0 

8.6 
8.6 
10.3 

10.3 

8.7 
17.2 

14.2 
14.2 

11.2 

11.2 

13.3 

(5) 
Ring 
(cm) 

12.0 
16.0 
12.0 
14.5 

12.0 
14.4 
12.1 

17.6 
12.0 
17.2 

12.0 
16.9 
12.0 

20.3 

12.1 
19.9 
12.0 

26.0 

12.0 

19.5 

12.0 
29.1 

12.1 
15.3 
12.0 

18.6 

12.0 
16.6 

(6) 

Volume 
cm3 

3171.75 

1700.04 

1773.27 

4217.22 

3794.37 

3556.02 

6257.41 

5675.66 

10321.8 
1 

5373.68 

12600.3 
6 

2529.77 

5014.86 

3228.59 

(7) 
ft 
cm/ 
h 

43.3 
9 

27.9 
1 

29.1 
1 

24.7 
3 

20.7 
7 

19.4 
6 

17.1 
2 

15.5 
3 

14.1 
2 

14.7 
0 

13.7 
9 

13.8 
4 

13.7 
2 

13.2 
5 

Outer ring reading 

(8) 
Tube 
(cm) 

28.0 
15.5 
15.5 
15.2 

15.2 
15.2 
15.2 

12.1 
12.1 
12.2 

12.2 
12.5 
12.5 

9.5 
9.5 
9.6 
9.6 
7.5 
7.5 
9.9 
9.9 
7.6 
10.6 
13.3 
13.3 

10.9 
10.9 

12.5 

(9) 
Ring 
(cm) 

12.0 
14.0 
12.1 

14.3 
12.0 
14.2 
12.0 
17.3 
12.0 
17.3 

12.0 
17.0 
12.0 

20.6 
12.0 
20.4 
12.0 

26.3 
12.0 

19.9 
12.0 
29.1 
12.2 
16.5 
12.0 

18.7 
12.0 

17.1 

(10) 

Volume 
cm3 

6723.50 

4623.54 

4561.70 

11628.5 
2 

10968.9 
4 

10305.6 
6 

18450.4 
6 

17396.7 
9 

30083.9 
0 

15885.9 
6 

35930.9 
3 

8359.53 

14387.1 
4 

10245.0 
6 

(H) 

cm/ 
h 

32.4 
3 

26.7 
6 

26.4 
0 

24.0 
3 

21.1 
6 

19.8 
8 

17.8 
0 

16.7 
8 

14.5 
1 

15.3 
2 

13.8 
6 

16.1 
3 

13.8 
8 

14.8 
2 
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Figure 5.9 Re-calculated Infiltration Capacity (fi) Vs.Time for Site K 2 
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Table 5.6 Infiltration Parameters for Site K 2 

Site code 

K2 

5-day 

rainfall 

(mm) 

4.2 

Cu 

2.50 

Cc 

1.04 

Soil type 

GP 

fc ( cm/h) 

13.0 

f0 (cm/h) 

29.4 

k (h-1) 

0.65 

Note: Fine particles were less than 5 % 
G P is poorly graded gravels and gravel sand mixtures, little or no fine 

5.6 Soil Infiltration Tests in Other Urban Catchments 

It is understood that soils are different in different areas. In order to understand different 

soil types and to determine the soil infiltration rates in different urban catchments, soil 

infiitrometer field tests were conducted at several selected urban catchments within City 

Councils of Banyule, Boroondara, Melbourne and Warrnambool in Victoria (Australia). 

Figure 5.10 shows the City Council areas and the locations of these study sites. The study 

sites are marked in red dots in Figure 5.10. These study catchments were selected, since 

they had been monitored for rainfall and runoff by Victoria University during 1996-1999 

(Maheepala et al. 2001). Soil infiitrometer field tests were conducted at two or three sites 

in these catchments to adequately represent the different soil conditions of the 

catchments. The City Council name, catchment name, site code and catchment area ofthe 

study catchments are tabulated in Table 5.7. 

Similar to the methodology described in Section 5.4, installation and testing were carried 

out according to A S T M (1994) standards. For high permeability soils, more frequent 

readings were taken by reducing the time intervals. These tests were conducted during the 

period M a y to December in 2002. All sites in city councils of Melbourne and 

Warrnambool and G 2 and G 3 of Banyule city council were in park areas, while the rest 

were in residentional areas. Calculations were carried out similar to the procedures 

described in Section 5.5. The results of (i.e. Ca Cc,fc, f0 and k) of all sites ofthe study 

catchments are tabulated in Table 5.8. Also shown in the table is the soil type classified 

according to unified soil classification system (Wagner 1957). 
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Figure 5.10 Location of Study Sites 

Table 5.7 Details of Study Catchments 

Council name 

Banyule 

Boroondara 

Melbourne 

Warrnambool 

Catchment name and site codes 

Heidelberg 
H1,H2,H3 

Warringal 

Wl, W2 
Greensborough 
G1,G2,G3 
North Balwyn 
NB1,NB2,NB3 
Kew 
K1,K2,K3 
Carlton 
CA1,CA2 
North Melbourne 
NM1,NM2 
Warrnambool 
WB1, WB2, WB3 

Area (ha) 

45 

29 

43 

16 

18 

60 

24 

105 
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Table 5.8 Results of all Study Catchments 

Site code 

HI 
H2 
H3 
Wl 
W2 
Gl 
G2 
G3 
G3 
NBI 
N B 2 
NB3 

KI 
K2 
K3 
CAI 
CA2 
NM1 
NM2 
WM1 
WM2 
WM3 

Cu 

9.33 

9.33 

9.33 
2.29 

1.70 
12.0 
8.75 
17.7 

17.7 

20.6 
10.7 

Cc 

1.19 

0.96 

0.83 
0.89 

0.97 
0.48 
0.40 
1.64 

1.64 

1.08 
0.75 

Soil type 

SW 
SP 
SP 
GP 
GW 
SP 
SP 
SW 
SW 
SW 
SP 

fc (cm/h) 

6.5 
9.0 
10.5 
4.5 
7.9 
13.5 
5.0 
0.8 
0.4 
16.2 

11.4 

fo (cm/h) 

16.9 

15.8 
34.7 
14.7 
15.1 
48.3 

21.1 
5.7 
2.8 
50.3 
22.9 

k (h1) 

0.59 

0.29 
0.76 
0.97 
0.82 
0.72 
0.90 
0.83 
1.41 

0.79 
0.74 

Clay soil 
2.25 

2.50 
1.17 
1.04 

GP 
GP 

12.5 
13.0 

22.0 
29.4 

0.86 
0.65 

Clay soil 
4.00 
17.7 

5.50 

13.0 
2.43 

12.6 
3.4 

1.00 

0.71 
1.64 
0.94 
0.94 

0.98 
0.93 

GW 
SP 
GW 
SP 
GP 
G W 
GP 

12.6 
1.9 
13.3 
6.4 
2.9 
13.1 
3.9 

30.2 

6.1 
38.2 
14.3 
9.5 
30.1 
24.6 

0.90 
0.78 

1.08 
0.60 
1.08 
1.02 
1.20 

Note: Fine particles were less than 5 % at all sites 
G W is well-graded gravels and gravel sand mixtures, little or no fines 
G P is poorly graded gravels and gravel sand mixtures, little or no fine 
S W is well graded sands and gravely sands, little or fines 
SP is poorly graded sands and gravely sands, little or no fines 

The five-day rainfall recorded at the study sites were less than 5 m m (and greater than 

zero), except at the sites HI, Wl and W2. The recorded five-day rainfall at sites HI, Wl 

and W2 were 25.4, 26.67 and 26.67 mm respectively. 

The tests made at different times at the same site (eg. G3) did not give similar results, as 

infiltration depends on many factors. Furthermore, field tests could not be completed at 

NB3 (similar to K3) sites, where water barely penetrated through the clay soils. These 

observations are consistent with ASTM (1994). 

There were some problems in using the double-ring infiitrometer at certain sites such as 

difficulty in setting up in hard soils, requirement of undisturbed flat surface to perform 
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the test and the length of time required for the test. Furthermore, it was necessary to refill 

the rings to maintain the constant water level at the start of each observation, which 

disturbed the experiment, as it required time to fill water. 

The ranges of/1 and/, values found in this study were 0.4-16.2 cm/h (with a mean of 8.3) 

and 2.8-50.3 cm/h respectively. The average value of £ was found to be 0.85 h'1. Since 

most soils of the study sites were observed to be of course grains, the above parameter 

values were compared against the published values in D R A I N S (O'Loughlin and Stack 

1998) and X P - U D D (XP-Software 1997) user manuals. 

According to DRAINS user manual, the soil types given in Table 5.8 can be classified as 

Type B soil (which has moderate infiltration rates and moderately well-drained). This 

type of soil is assigned a single value of 1.3 cm/h for/ and depending on the initial soil 

moisture conditions,/, can have any value between 1.3-20 cm/h. The parameter k is listed 

as2h-\ 

Similarly, XP-UDD manual suggests the values of fc between 0.38 and 0.76 cm/h for 

Type B soil. Furthermore, it states that most reported values for k were in the range of 3-

6 h"1 and if no field data are available, an approximate value of 4.14 h"1 could be used. 

The range of/0 has given in X P - U D D user manual can be considered as 3.3-20 cm/h. 

As can be seen from above comparisons, fc and f0 obtained from the field studies are 

higher than the published values in D R A I N S and X P - U D D user manuals. Also, k 

obtained from field studies is lower than the above published values. 

5.7 Summary and Conclusions 

Urban drainage models are widely used in urban stormwater planning and management, 

especially in design and analysis of urban drainage systems. In order to use these models 

effectively, it is necessary to input accurate parameter values. The soil infiltration 

parameters can be estimated through field experiments. With these parameters estimated 

external to the model calibration, the other parameters ofthe urban drainage model can be 

estimated through model calibration reasonably well, since there are less parameters to be 

5-22 



Estimation of Soil Infiltration Parameters Chapter 5 

estimated. Thus, this process will improve the reliability of the model. If necessary, the 

values obtained from field experiments can also be refined through calibration, since the 

calibration can n o w consider only a narrow band of values for these parameters obtained 

from field measurements. 

Field infiitrometer tests were conducted at two sites of the Kew catchment, in order to 

estimate the infiltration parameters related to Horton's infiltration model. Double-ring 

infiitrometer was used for this purpose and the tests were conducted for approximately 6 

hours. Double-ring infiitrometer test encourages only vertical flow in the inner ring due 

to the presence ofthe outer ring, thus not overestimating the infiltration rate. 

In order to understand different soil types and to determine the soil infiltration rates in 

different urban catchments, double-ring infiitrometer tests were conducted at another 

nineteen sites of seven urban catchments in four city councils in Victoria. Most oif0 and 

fc values found in this study were significantly different to the values published in XP-

U D D and D R A I N S urban drainage software user manuals. Therefore, it is recommended 

that care should be exercised in using the values published in these user manuals for 

Victorian urban catchments. 
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CHAPTER 6 

SUMMARY, CONCLUSIONS AND 
RECOMMENDATIONS 

6.1 Aims and Tasks 

The basic objective of this research study was to estimate the model parameter values of 

urban drainage catchment models. This was done through the use of genetic algorithms 

(GAs) and soil infiltration tests. The methods were used to estimate the model parameters 

related to the K e w urban drainage catchment in Victoria (Australia). The following 

studies and tasks were carried out to achieve the above objective in this research study. 

• Review of literature related to urban drainage processes and modelling, and selection 

of an urban stormwater drainage software tool for the study. 

• Literature review of currently available optimisation methods and a detailed review of 

G A s optimisation method, its operators and the use of G A s for various applications. 

Available G E N E S I S G A software tools were also reviewed. 

• Development of a computer program to link urban stormwater drainage and G A s 

software tools. 

• Selection of optimum G A s operator set for urban stormwater drainage model 

calibration using two urban catchments including the K e w catchment. 

• Calibration of impervious area model parameters of the K e w urban drainage model 

using GAs, and validation. 

• Estimation of infiltration parameter values of pervious areas of the K e w urban 

drainage catchment using soil infiitrometer tests. This study was extended to 

determine infiltration characteristic of several other urban drainage catchments in 

Victoria. 
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6.2 Summary and Conclusions 

The summary and conclusions made under literature review, XP-UDD and GENESIS, 

G A s operator study, calibration and validation of impervious area parameters ofthe K e w 

urban drainage catchment and estimation of pervious area parameters of the K e w 

catchment using double-ring infiitrometer tests are presented below. 

6.2.1 Literature review 

In the literature review, the differences of non-urban and urban drainage processes were 

studied. The past and current practices of stormwater management in urban areas were 

also investigated. The currently available design methods of stormwater drainage systems 

were reviewed and identified the merits of using computer software tools for urban 

drainage design and analysis. Even though the current stormwater management considers 

the urban water cycle holistically, still urban drainage is an important component of urban 

stormwater management. 

Methods available for model calibration ranging from trial and error method to automatic 

methods were reviewed. The automatic optimisation methods can be divided into two 

main methods, namely deterministic and stochastic optimisation methods. It was found 

from the literature that the stochastic optimisation methods were more superior to other 

optimisation methods for water resource applications. Genetic algorithms (GAs) are one 

ofthe stochastic optimisation methods, which have proven to be successful in optimising 

model parameters in the water resource applications, and therefore considered in this 

study. 

The following conclusions were drawn from the literature review conducted in this study. 

• Continual urban development is contributing more runoff mainly due to the increase 

of impervious areas. Stormwater management practices have changed over time to 

reduce the environment impacts in disposing stormwater and to (re)use of stormwater 

as an alternative water supply source. 
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• Stormwater drainage systems are required to minimise urban flooding. The most 

practical and efficient way of designing and analysing these systems is by the use of 

urban drainage software tools. However, they need to be calibrated for the urban 

drainage system under consideration. Therefore, genetic algorithms optimisation 

technique was selected for the study, as it is a robust and automatic stochastic 

optimisation methods. 

• The literature reviewed also showed that there is no optimum G A s operator set for 

urban drainage model applications or other water resource applications. It also 

revealed that optimum G A s operator set depend on the application. 

6.2.2 XP-UDD and GENESIS 

The XP-UDD stormwater drainage software tool is an enhanced and user-friendly version 

of S W M M and its input and output files are in ASCII format, which can be accessed by 

the external software tools, which was necessary in this study, and therefore it was used 

in this study. Seven model parameters of the X P - U D D software were identified for 

calibration, two related to the impervious areas (i.e. percentage ofthe impervious area -

%A and the depression storage - DS,) and the other five related to the pervious areas (i.e. 

depression storage - DSP, overland flow roughness ofthe pervious areas - np and the three 

Horton's soil infiltration parameters -fo, fc and k). 

The GENESIS GAs software was used for this study, since has been successfully used in 

the past by many researchers. Since X P - U D D and G E N E S I S are two separate software 

tools, a computer program was developed by the candidate to link the two software tools, 

to obtain optimum G A s operators and then to perform automatic calibration of model 

parameters ofthe study catchment. 

6.2.3 GAs operator study 

In GAs, several operators are available, which required to be selected prior to optimise 

model parameters in any application. These G A s operators include parameter 
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representation, population size, selection, crossover and mutation. Each G A s operator has 

many options (or methods) and therefore, it was required to select the proper G A s 

operators for the application to achieve the G A s efficiency. The literature review revealed 

that there is no specific study conducted for selecting G A s operators for urban drainage 

models, as G A s have not been widely used for these applications. Although several 

researchers studied the effect of G A s operators for other applications these findings are 

inconclusive. Therefore, a detailed study was conducted in investigating the optimum 

GAs operator set for urban stormwater drainage models. 

The optimum GAs operator investigation was conducted considering two urban 

catchments, representing a small (i.e. K e w urban drainage catchment) and a medium 

catchment for investigation of G A s operators and validation of the study results 

respectively. The existing stormwater drainage networks of these two catchments were 

assembled in X P - U D D urban drainage software. T w o separate studies were conducted 

with each catchment to determine the appropriate G A s operators related to impervious 

and pervious area model parameters, as the runoff generation mechanism is deferent in 

these two areas. T w o design storms (i.e. small and large) were modelled in these different 

runoff mechanisms. The small design storm with Annual Recurrence Interval (ART) of 1 

year and storm duration of 30 minutes (which produced runoff only from the impervious 

areas) was considered for the impervious area model parameter study. The large design 

storm with an A R I of 100 years and 30 minutes duration (which generated runoff from 

both impervious and pervious areas) were used for the pervious area study. Typical 

parameter values were assumed to produce the hydrographs corresponding to these two 

design storms and these hydrographs were considered in the integrated 

GENESIS/XP-UDD as the observed hydrographs in optimising G A s operators, and the 

above typical parameter values as the actual parameter values for these catchments. To 

study the effects of G A operators in the X P - U D D drainage model, population size, 

selection type, crossover and mutation rates were varied one at a time, keeping all other 

operators constant. 

It was found in this study that GA operators were sensitive to the number of model 

parameters that needs to be optimised in the urban drainage model. If the number of 
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parameters to be optimised was small (i.e. less than or equal to 2), G A s operators did not 

play an important role in converging to the optimum model parameter set and therefore 

general G A s operators recommended in literature can be used. Furthermore, it was 

observed that small population sizes (eg. between 25 - 50) were efficient in converging to 

the optimum model parameter values for urban drainage modelling with a small number 

of model parameters. 

For models with large number of parameters (experimented with 5 parameters), GAs 

operators played an important role in converging to the optimum parameter set. In this 

study, Gray coding, a population size of 100, proportionate selection method, a crossover 

rate of 0.6 and a mutation rate of 0.001 had given the best results and therefore they are 

recommended for urban drainage models with a large number model parameters. 

Furthermore, it was found that the efficiency of the parameter convergence could be 

improved by limiting the parameter range and precision of the coding to the required 

level. 

6.2.4 Calibration of impervious area parameters of Kew 
catchment 

Model calibration ofthe Kew urban drainage catchment was conducted using the selected 

optimum G A s operators. For model calibration, observed small and large flow events are 

required. However, large flow events, which are large enough to produce pervious area 

runoff, were not available for this catchment and therefore only the impervious area 

parameter values were calibrated using G A s with the available observed small storms. 

Five observed small rainfall/runoff events were used in this study. Of these five events, 

three were used for calibration and the other two were used for validation ofthe results 

obtained from the calibration study. 

Results of the calibration and validation showed that the shape, peak discharge, time to 

peak and multi peaks were modelled with a reasonable accuracy. It was found in this 
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study that G A s could be used to estimate the model parameter values successfully in 

urban stormwater models. 

6.2.5 Estimation of pervious area parameters of Kew 
catchment 

Field infiitrometer tests were conducted at two sites of the Kew catchment in order to 

estimate the infiltration parameters related to the Horton's infiltration model of pervious 

areas, since they could not be estimated through model calibration, due to unavailability 

of observed data related to large storms. Double-ring infiitrometer was used for this 

purpose and the each test was conducted for approximately 6 hours. Furthermore, soil 

samples at a depth between 30-45 cm were taken to determine the particle size 

distribution at each site using sieve analysis, and then the soil type. 

In order to understand different soil types and to determine the soil infiltration rates in 

different urban catchments, soil infiitrometer field tests were conducted at another 

nineteen sites at several selected urban catchments (which were monitored for 

rainfall/runoff data) within in Victoria. The rninimum infiltration rate (i.e. fc) and the 

initial infiltration rate (i.e. f0) values found in this study were significantly different to the 

values in X P - U D D and D R A I N S urban drainage software user manuals. Therefore, care 

should be exercised in using the values published in these user manuals for Victorian 

urban catchments. 

6.2.6 Additional remark 

Most urban drainage models adopt similar methods for modelling hydrologic and 

hydraulic processes such as modelling rainfall losses, runoff routing, pit inlet modelling 

and catchment sub division. Although the X P - U D D software tool was used to 

demonstrate the use of G A s for urban drainage model calibration, the results obtained 

from this study can be considered as valid for other urban drainage models, which use the 
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similar methods to model hydrologic and hydraulic process. However this needs to be 

tested. 

6.3 Recommendations 

Based on the findings of this research project, several recommendations are made for 

future studies, as listed below. 

• The investigation of optimum GAs operator set was conducted in this study using 

limited numerical experiments with two catchments. It is recommended that further 

studies should be conducted with several other urban catchments to generalise the 

findings of the G A s operators study of this thesis, and also to study the effect of 

scaling (preferably by applying the model to catchments of at least a couple of orders 

of magnitudes larger). 

• It is also recommended that further studies of model calibration using G A s should be 

conducted using different urban drainage modelling software. 

» Furthermore, further studies should be conducted to establish a relationship with 

string length and population size in bit string representation to use the genetic 

algorithm efficiently for the large parameter optimisation problems in urban drainage 

modelling. 

• It is also recommended to study the effect of other G A s operators (i.e. real value 

representation, tournament selection method and single or uniform crossover 

methods) on convergence of urban stormwater drainage model parameters, as these 

operators were not investigated in this study due to the limited capability of G E N E S I S 

software. 

• The objective function used in this study was the minimization of sum of the squares 

of flow residuals between observed and computed hydrographs. However, it may be 

worthwhile to consider the other forms of objective functions to assess their 

appropriateness and also to include constraints that force the maximum deviation 
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between observed and simulated flow values to be within a pre-specified (acceptable) 

tolerance. 

• It is also suggested to establish a database of soil infiltration rates for Melbourne 

Metropolitan area urban catchments, since the standard infiltration rates published in 

D R A I N S and X P - U D D urban drainage software manuals are significantly different to 

the values found in this research. Soil infiitrometer tests can be used for this purpose. 

6-8 



REFERENCES 

1. Akram M. and Kemper W. D. (1979), Infiltration of soils as affected by the 

pressure and water content at the time of compaction, Journal of Soil Science 

Society of America, 43, pp. 1080-1086. 

2. Al-Qinna M. I. and Abu-Awwad A. M. (1998), Infiltration rate measurements in 

arid soils with surface crust, Journal of Irrigation Science, 18(2), pp. 83-89. 

3. American Society for Testing and Materials - ASTM (1994), Standard test 

methods for infiltration rate of soils in field using double-ring infiitrometer, 

A S T M Subcommittee D-18.04 on Hydrologic Properties of Soil and Rock. 

4. Anikow C. Z. and Michalewicz Z. (1991), Comparison of real and binary 

codings, Proceedings of the Fourth International Conference on Genetic 

Algorithms, University of California, San Diego, California, 13-16 July, 

pp. 31 -36. 

5. Antonisse H. J. (1989), Theory of real coded GAs, Proceedings of the Third 

International Conference on Genetic Algorithms, George Mason University, 

California, 4-7 June, pp. 86-91. 

6. Back T. (1992), A User's Guide to GENEsYs 1.0, Department of Computer 

Science, University of Dortmund, USA. 

7. Back T., Hammel U. and Schwefel H. (1997), Evolutionary computation: 

comments on the history and current state, IEEE Transaction on Evolutionary 

Computation, pp. 3-17. 

8. Back T. and Schwefel H. (1993), An overview of evolutionary algorithms for 

parameter optimisation, Journal of Evolutionary Computation, 1(1), pp. 1-23. 

R-l 



9. Baker J. E (1987), Reducing bias and inefficiency in the selection algorithm, 

Proceedings of the Second International Conference on Genetic Algorithm, 

Massachusetts Institute of Technology, Massachusetts, USA, pp. 14-21. 

10. Balascio C. C, Palmeri D. J. and Gao H. (1998), Use of genetic algorithm and 

multi-objective programming for calibration of a hydrologic model, Journal of 

American Society of Agricultural Engineers, 41(3), pp. 615-619. 

11. Biethahn J. and Nissen V. (1995), Evolutionary algorithms in management 

applications, Springer-Verlag Berlin Heidelberg, Germany. 

12. Blickle T. and Thiele L. (1997), A comparison of selection schemes used in 

evolutionary algorithms- Book Section, Evolutionary Computation, pp. 361-394. 

13. Boyd M. J., Bufill M. C. and Knee R. M. (1993), Pervious and impervious runoff 

in urban catchments, Journal of Hydrological Sciences, 38(6), pp. 463-478. 

14. Bufill M. C. and Boyd M. J. (1992), A sample flood hydrograph model for urban 

catchment, Proceedings of the International Symposium on Urban Management, 

Sydney, Australia, pp. 98.103. 

15. Caruana R. and David S. J. (1987), Gray vs. binary coding for genetic algorithm 

function optimizers, Philips Laboratories, North American Philips Corporation, 

N e w York, USA. 

16. Caruana R. A. and Schaffer J. D. (1989), Using Multiple Representations to 

Control Inductive Bias: Gray and Binary Codes for Genetic Algorithms, 

Proceedings ofthe 6th International Conference on Machine Learning. 

17. Commonwealth Environment Protection Agency (1993), Urban Stormwater: A 

resource too valuable to waste, Discussion paper, Canberra, Australia. 

R-2 



18. Coombes P. (2003), Integrated urban water management, Proceedings of I U W M 

and W S U D Conference, Lismore City Council, N S W , Australia. 

19. Craig R. F. (1975), Soil Mechanics, Van Nostrand Reinhold Company, Australia. 

20. Cui L. (2003), Optimisation of urban water supply head works systems using 

probabilistic search methods and parallel computing, PhD Thesis, University of 

Newcastle, Australia. 

21. Cullino C. (1995), Urban stormwater management in search of best practice, The 

Second International Symposium on Urban Stormwater Management, Melbourne, 

Australia, pp. 49-53. 

22. Dandy G. C, Simpson A. R. and Murphy L. J. (1996), An improved genetic 

algorithm for pipe network optimisation, Water Resources Research, 32(2), 

pp. 449-458. 

23. Danish Hydraulic Institute (1993), Modelling of urban sewer systems on 

microcomputers, M O U S E V3.0, User's Guide and Technical Reference, Lawson 

and Treloar Pty Ltd, Australia. 

24. Davis L. (1991), Handbook of genetic algorithms, Van Nostrand Reinhold, New 

York, USA. 

25. Dayaratne S. T. (2000), Modelling of urban stormwater drainage system using 

ILSAX, PhD Thesis, Victoria University of Technology, Australia. 

26. De Jong K. A. (1975), Analysis ofthe behaviour of a class of genetic adaptive 

systems, PhD Thesis, University of Michigan, Ann Arbor, Michigan, USA. 

R-3 



27. De Jong K. A., Fogel D. and Schwefel H. (1997), A history of computation- Book 

Section, Handbook on Evolutionary computation, Institute of Physics Publishing, 

Oxford University Press, N e w York, USA. pp. 1-12. 

28. De Jong K. A. and Sarma J. (1995), On decentralizing selection algorithms, 

Proceedings of the 6th International Conference on Genetic Algorithms, 

pp. 17-23. 

29. Deletic A. (2001), Modelling of water and sediment transport over grassed areas. 

Journal of Hydrology, 248(4), pp. 168-182. 

30. Department of Primary Industries and Energy (1992), Floodplain management in 

Australia, Australian Water Resources Council, Water Management Series No.21, 

Australia. 

31. Duan Q., Sorooshian S. and Gupta V. (1992), Effective and efficient global 

optimisation for conceptual rainfall-runoff models, Water Resources Research, 

28(4), pp. 1015-1031. 

32. Eshelman L. J. (1997), Genetic algorithm- Book Section, Handbook on 

evolutionary computation, Institute of Physics Publishing, Oxford University, 

N e w York, USA, pp. 1-11. 

33. Eshelman L. J. and Schaffer J. D. (1992), Foundations of Genetic Algorithms 2-

Book Section, Morgan Kaufman Publishers, San Mateo, California, USA. 

pp. 5-17. 

34. Ferguson B. K. (1998), Introduction to stormwater, John Wiley & Sons Inc., 

USA. 

35. Fogel D. B. (1997), Real valued vectors- Book Section, Handbook on evolutionary 

computation, Institute of Physics Publishing, Oxford University, N e w York, USA, 

pp. 1-2. 

R-4 



36. Franchini M . (1996), Use ofa genetic algorithm combined with a local search 

method for the automatic calibration of conceptual rainfall-runoff models, Journal 

of Hydrological Sciences, 41(1), pp. 21-39. 

37. Franchini M. and Galeati M. (1997), Comparing several genetic algorithm scheme 

for the calibration of conceptual rainfall-runoff models, Journal of Hydrological 

Sciences, 42(3), pp. 357-379. 

38. Gardner W. H. (1979), How water moves in the soils, Journal of Crops and Soils, 

32, pp. 13-18. 

39. Goldberg D. E. (1985), Optimal initial population size for binary-coded genetic 

algorithms, Department of Engineering Mechanics, University of Alabama, USA. 

40. Goldberg D. E. (1989a), Genetic algorithm in search, optimization and machine 

learning, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 

USA. 

41. Goldberg D. E. (1989b), Sizing population for serial and parallel genetic 

algorithms, Proceedings of the Third International Conference on Genetic 

Algorithms, George Mason University, California, 4-7 June, pp. 70-79. 

42. Goldberg D. E. and Deb K. (1991), A Comparative analysis of selection schemes 

used in genetic algorithms- Book Section, Foundations of Genetic Algorithms, 

Morgan Kaufman Publishers, San Mateo, California, pp. 69-93. 

43. Goldberg D. E. and Guo C. H. (1987), Genetic algorithm in pipe optimisation, 

Journal of Computing in Civil Engineering, 1(2). 

44. Goonrey C. (2003), Use of stormwater as an alternative supply source, Internal 

Report, School of Architectural, Civil and Mechanical Engineering, Victoria 

University of Technology, Australia. 

R-5 



45. Gray F. (1953), Pulse code communication, U.S Patent 2, March 17. 

46. Green W. H. and Ampt G. A. (1911), The flow of air and water through soils, 

Journal of Agriculture Science, 4, pp. 1-24. 

47. Grefenstette J. J. (1986), Optimisation of control parameter for Genetic 

algorithms, IEEE Transaction on Systems, M a n and Cybernetics S M C , 16 (1), 

pp. 122-128. 

48. Grefenstette J. J. (1987), A user's guide to GENESIS, Technical Report, Navy 

Center for Applied Research in Artificial Intelligence, Navy Research Laboratory, 

Washington D C , USA. 

49. Grefenstette J. J. (1995), A users guide to GENESIS (Version 5.0), 

htip^/www.aicjfwljni^ 

50. Grefenstette J. J (1997), Proportional selection and sampling algorithms-Book 

section- Book Section, Handbook of Evolutionary Computation (Part C, Section 

2.2), Institute of Physics Publishing, Oxford University Press, N e w York, USA, 

pp. 1-6. 

51. Hendrickson J. D., Sorooshian S. and Brazil L. E. (1998), Comparison of Newton-

type and direct search algorithms for calibration of conceptual rainfall-runoff 

models, Water Resources Research, 24, pp. 691-700. 

52. Hessner J. and Manner R. (1991), Choosing optimal mutation rates, Proceedings 

of the First Workshop on Parallel Problem Solving from Nature, Berlin, 

pp. 23-31. 

53. Holland J. (1975), Adaptation in natural and artificial systems, The University of 

Michigan Press, Ann Arbor, Michigan, USA. 

R-6 

http://www.aicjfwljni%5e


54. Hollstien R. B. (1971), Artificial genetic adaptation in computer control systems, 

PhD Thesis, University of Michigan, Ann Arbor, Michigan, USA. 

55. Horton R. E. (1940), An approach towards a physical interpretation of infiltration 

capacity, Journal of Soil Science Society of America 5, pp. 399-417. 

56. Huber W. C. and Dickinson R. E. (1988), SWMM user's manual version 4. U.S 

Environmental Protection Agency, Environmental Research Laboratory, Athens, 

Georgia, USA. 

57. Hunt J. (2000), Learning Classifier Systems, JayDee Technology Ltd, 

http^/w^w^y^^^to^^W"^0^ • 

58. Ishaq M. and Khan A. A. (1999), Modeling infiltration for an urban runoff model 

in Saudi Arabia, The Arabian Journal for Science and Engineering, 24(2b), 

pp. 203-216. 

59. Janikow C. Z. and Michalewicz Z. (1991), An experimental comparison of binary 

and floating point representations in genetic algorithms, Proceedings of the 

Fourth international conference on genetic algorithms, University of California, 

San Diego, California, 13-16 July, pp. 31-36. 

60. Kostiakov, A.N. (1932), On the dynamics ofthe coefficient of water percolation in 

soils and on the necessity of studying it from a dynamic point of view fro purposes 

of amelioration. Transaction of 6th Congress of International Soil Science Society, 

Moscow, Part A, pp. 17-21. 

61. Laurenson E. M. and Mein R. G. (1995), RORB-Version 4, Runoff Routing 

Program User Manual, Department of Civil Engineering, Monash University, 

Australia. 

R-7 



62. Liong S. Y., Chan W . T. and Shreeram J. (1995), Peak-flow forecasting with 

genetic algorithm and SWMM, Journal of Hydrologic Engineering, 121(8), 

pp. 613-617. 

63. Maheepala U. K. (1999), Data acquisition and modelling of urban drainage 

catchments in the City of Knox, Masters Thesis, Monash University, Australia. 

64. Maheepala U. K. and Perera B., J. C. (1999), Quality assurance checks for a 

hydrologic data acquisition program for urban stormwater drainage systems, 

Proceedings of the 8th International Conference on Urban Stormwater Drainage, 

Australia, pp. 2115-2122. 

65. Maheepala U. K., Perera B., J. C. and Dayaratne S. T. (1999), Diagnostic 

checking and analysis of hydrological data of urban drainage systems, 

Proceedings of the 25th Hydrology and Water Resource Symposium and 2nd 

International Conference on Water Resource and Environment Research, 

Queensland, Australia, pp. 813-818. 

66. Maheepala U.K., A.K. Takyi and B.J.C. Perera (2001), "Hydrological Data 

Monitoring for Urban Stormwater Drainage Systems", Journal of Hydrology, 245, 

pp. 32-47. 

67. Mardle S. and Pascoe S. (1999), An overview of genetic algorithms for the 

solution of optimisation problems, Computers in Higher Education Economics 

Review, 13 (1). 

68. Marquardt D. W. (1963), An algorithm for least-squares estimation of nonlinear 

parameters, Journal of Social Industrial and Applied Mathematics, 11(2), 

pp. 431-441. 

69. Mayer D. G., Belward J. A. and Burrage K. (1999a), Robust parameter settings of 

evolutionary algorithms for the optimisation of agricultural system models, 

Journal of Agricultural systems, 69(3), pp. 199-213. 

R-8 



70. Mayer D. G., Belward J. A., Widell H. and Burrage K. (1999b), Survival ofthe 

fittes- genetic algorithms versus evolution strategies in the optimisation of system 

models, Journal of Agricultural Systems, 60(2), pp. 113-122. 

71. Mbagwu J. S. C. (1997), Soil physical properties influencing the fitting 

parameters in Philip and Kostiakov infiltration models, Journal of Discovery and 

Innovation, 9(4), pp. 179-187. 

72. Mein R. G. and Larson C. L. (1971), Modelling infiltration during steady rain, 

Water Resources Research, 9(2), pp. 384-394. 

73. Melbourne Water (2000), Amendment Cl Bayside planning, Melbourne Water 

Waterways and Drainage, East Richmond, Victoria, Australia. 

74. Metcalf and Eddy Engineers (1971), Inc. Storm Water Management Model, 

volume 1, final report, U.S. Environmental Protection Agency, Washington DC, 

USA. 

75. Michalewicz Z. (1996), Genetic Algorithm + Data Structures = Evolution 

Programs, 3rd Edition, Springer- Verlag Berlin Heidelberg, Germany. 

76. Mohan S. (1997), Parameter estimation of non-linear muskingum models using 

genetic algorithm, Journal of Hydraulic Engineering ASCE, 123(2), pp. 137-142. 

77. Mohan S. and Loucks D. P. (1995), Genetic algorithms for estimating model 

parameters, Proceedings of the 22nd Annual Conference, Cambridge, 

Massachusetts, USA. 

78. Mulligan A. E. (1995), Genetic algorithms for calibrating water quality models, 

Masters Thesis, Tufts University, Medford, Massachusetts, USA. 

R-9 



Mulligan A. E. and Brown L. C. (1998), Genetic algorithm for calibrating water 

quality models, Journal of Environmental Engineering, 124(2), pp. 104-110. 

Ndiritu J. G. and Daniell T. M. (2001), An improved genetic algorithm for 

rainfall-runoff model calibration and function optimization, Journal of 

Mathematical and Computer Modelling, 33(6), pp. 695-706. 

Ng A. W. (2001), Parameter optimisation of river water quality models using 

genetic algorithms, PhD Thesis, Victoria University of Technology, Australia. 

O'Loughlin G. (1993), The ILSAX program for urban storm water drainage and 

analysis, User's Manual for Microcomputers, Version 2.13, School of Civil 

Engineering, University of Technology, Sydney, Australia. 

O'Loughlin G. and Stack B. (1998), DRAINS User's Manual, Watercom Pty Ltd, 

Sydney, Australia. 

Peck C. C. and Dhawan A. P. (1995), Genetic algorithms as global random 

search methods, Evolutionary Computation 3, pp. 39-80. 

Philip J. R. (1957), The theory of infiltration, Journal of Soil Sciences, 83, 

pp. 435-448. 

Pilgrim D. H. (1987), Australian rainfall and runoff- A guide to flood estimation, 

The Institution of Engineers, Australia. 

Pitt R., Lilburn M., Durrans S. R., Burian S., Nix S., Voorhees J. and Martinson J. 

(2002), Guidance Manual for Integrated Wet Weather Flow (WWF) Collection 

and Treatment Systems for Newly Urbanized Areas (New WWF Systems), 

http://eMLej*g^ed^^ 

R-10 

http://eMLej*g%5eed%5e%5e


88. Roesner L. A., Aldrich J. S. and Dickinson R. E., (1988), SWMM User's manual, 

Version 4.EXTRAN, U. S. Environmental Protection Agency, Athens, Georgia, 

USA. 

89. Savic D. and Walters G. A. (1997), Genetic algorithms for least-cost design of 

water distribution networks, Journal of Water Resources Planning and 

Management ASCE, 123(3), pp. 67-77. 

90. Schaffer J. D., Caruana R. A., Eshelamn L. J. and Das R. (1989), A study of 

control parameter affecting online performance of genetic algorithms for function 

optimisation, Proceedings of the Third International Conference on Genetic 

Algorithms, George Mason University, California, 4-7 June, pp. 51-60. 

91. Schwefel H. (1981), Numerical optimisation of computer models, Wiley, 

Chichester, UK. 

92. Schwefel H. (1997), Advantages and disadvantages of evolutionary computation 

over other approaches- Book Section, Handbook on evolutionary computation, 

Institute of Physics Publishing, Oxford University Press, New York, USA, 

pp. 1-2. 

93. Sen Z. and Oztopal A. (2001), Genetic algorithms for the classification and 

prediction of precipitation occurrence, Journal of Hydrological Sciences, 46(2), 

pp. 255-265. 

94. Simpson A. R., Dandy G. C. and Murphy L. J. (1994), Genetic algorithms 

compared to other techniques for pipe optimisation, Journal of Water Resources 

Planning and Management ASCE, 120(4), pp. 423-443. 

95. Skukla M. K., Lai R. and Unkefer P. (2003), Experimental evaluation of 

infiltration models for different land use and soil management systems, Journal of 

Soil Science Society of America, 168(3), pp. 178-191. 

R-ll 



Smedema L. K. and Rycroft D. W . (1983), Land Drainage, Cornell University 

Press, N e w York, USA. 

97. Sorooshian V. and Gupta K. (1995), Model calibration- Book Section, Computer 

models of watershed hydrology, Water Resources Publications, Colorado, 

pp. 26-68. 

98. Speers A. and Mitchell G. (2000), Integrated urban water cycle, Proceedings of 

the National conference on Water Sensitivity Urban Design - Sustainable 

Drainage Systems for Urban Areas, Melbourne, Australia. 

99. Syswerda G. (1989), Uniform crossover in genetic algorithms, Proceedings ofthe 

Third International Conference on Genetic Algorithms and Applications, George 

Mason University, California, 4-7 June, pp. 2 -9. 

100. Tsihrintzis V. A. and Hamid R. (1998), Runoff quality prediction from small 

urban catchments using SWMM, Journal of Hydrological Processes, 12(2), 

pp. 311-329. 

101. USEPA (1992), Stormwater management model (Version 4), User's Manual, U.S. 

Environmental Protection Agency, Environmental Research Laboratory, Office of 

Research and Development, Athens, Georgia, USA. 

102. Vale D. R., Attwater K. B. and O'Loughlin G. G. (1986), Application of SWMM to 

two urban catchment in Sydney, Proceedings of Hydrology and Water Resources 

Symposium, The Institution of Engineers, Brisbane, Australia, pp. 268-272. 

103. Vasquez J. A., Maier H. R., Lence B. J., Tolson B. A. and Foschi R. O. (2000), 

Achieving water quality system reliability using genetic algorithm, Journal of 

Environmental Engineering ASCE, 126(10), pp. 954-962. 

R-12 



104. Victoria Stormwater Committee (1999), Urban stormwater: best practice 

environmental management guidelines, CSIRO Publishing, Melbourne, Australia. 

105. Wagner A. A. (1957), The use of the unified soil classification system by the 

Bureau of reclamation, Proceedings of Fourth international conference SMFE, 

London. 

106. Wang Q. J. (1991), The Genetic algorithms and its application to calibrating 

conceptual rainfall-runoff models, Water Resources Research, 27(9), 

pp. 2467-2471. 

107. Wang Q. J. (1996), Using genetic algorithms to optimise model parameters, 

Environmental Modelling and Software, 12, pp. 27-34. 

108. Wardlaw R. and Sharif M. (1999), Evaluation of genetic algorithms for optimum 

reservoir system operation, Journal of Water Resources Planning and 

Management ASCE, 125(1), pp. 25-33. 

109. Watermark National Computing (1998), PEST (Parameter ESTimation), User's 

Manual, Australia. 

110. Whelans and Maunsell H. G. (1994), Planning and management guidelines for 

water sensitivity urban (Residential) design, Consultant Report, Department of 

Planning and Urban Development, Western Australia, Australia. 

111. Whitley D. (1989), The GENITOR algorithm and selection pressure, Proceedings 

of the Third International Conference on Genetic Algorithms, George Mason 

University, California, 4-7 June, pp. 116-121. 

112. Widell H. (1997), GENIAL 1.1 - A function optimizer based on evolutionary 

algorithms- Use Manual, www»njejra.get2netdk/widell/genialvhtm. 

R-13 



113. Wong T. H. F. (2001), A changing paradigm in Australian urban stormwater 

management, Keynote Address, Second South Pacific Stormwater Conference, 

Auckland, N e w Zealand, 27-29 June. 

114. W P Software and X P Software (1993), Inc. XP-SWMM model with XP graphical 

interface, User's Manual, Tampa, Florida, USA. 

115. Wright A. H. (1991), Foundations of Genetic Algorithms- Book Section, Theory 

of real coded GAs, Morgan Kaufman Publishers, San Mateo, California, 

pp. 205-219. 

116. XP-Software (1997), XP-UDD32 getting started manual, PO Box 3064, Purdue 

Street, Belconnnen, ACT, Australia. 

117. WP Software (1991), RAFT-XP (Runoff Analysis and Flow Training simulation), 

Version 2.7, User Manual, Australia. 

118. Yang M., Merry C. and Sykes R. (1999), Integration of water quality modeling, 

Remote sensing and GIS, Journal of the American Water Resources Association, 

35(2), pp. 253-263. 

119. Yoon J. and Padmanabdan G. (1993), Parameter estimation of linear and non

linear Muskingum models, Journal of Water Resources Planning and Management 

ASCE, 119(5), pp. 600-610. 

120. Yu B. (1999), A comparison of the Green-Ampt and a spatially variable 

infiltration model for natural storm events, Journal of the American Society of 

Agricultural Engineers, 42(1), pp. 89-97. 

R-14 




