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SUMMARY 

This thesis presents a method for structural optimisation called bi-directional 

evolutionary structural optimisation (BESO). It is an extension of the systematic 

research on the evolutionary method. The basic concept of evolutionary structural 

optimisation (ESO) is that by slowly removing the inefficient material, the structure 

evolves towards an optimum. B E S O extends the concept by allowing for the efficient 

material to be added while the inefficient material is removed. The formulation of 

B E S O is motivated to improve the reliability and efficiency of the E S O method. 

The BESO method for topological optimisation of 2D continua subject to stiffness and 

displacement constraints is the major task of this thesis. The theoretical aspects are 

explored by following the optimality criteria algorithm for problems of discrete design 

variables. These aspects include the optimality criteria, sensitivity analysis, 

displacement extrapolation and evolutionary procedure. The bi-directional evolutionary 

procedure is incorporated with the finite element analysis to realise an automatic 

optimisation process. 

A wide range of examples are tested by using the proposed BESO procedure. Different 

design conditions are considered including stiffness optimisation and single or multiple 

displacement optimisation under single and multiple loading conditions. The solution 

reliability and parametric effect are further studied to improve the B E S O performance. 

The comparison of results by B E S O and E S O are attempted and the satisfactory 

agreement demonstrates the validity of the proposed procedure. T w o major conclusions 

are derived from the work in this thesis. The first one is that B E S O is as effective as 

E S O , and the second one is that B E S O can be computationally more efficient in most 

cases. 
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/. Introduction 

Chapter 1 

Introduction 

1.1 Structural Optimisation 

Structural optimisation aims at finding the best design of a structure with the minimum 

weight or cost while satisfying requirements on strength, stiffness, reliability or 

functionality. It is motivated by the quest to make the most of material available to 

produce structures of high performance and low cost. Optimal designs can bring 

significant economic and ecological benefits, particularly in the present context of 

growing manufacturing or construction demand based on scarce funds and resources. 

The history of optimisation theory could be dated back centuries. Focusing on the 

mathematical aspects of the concept, the original theoretical framework has been 

elegantly established using analytical approaches. Since then, though the development is 

more engineering-orientated, the coverage is yet limited to very idealised cases, e.g. the 

fully stressed design of some simple structural components. Due to the associated 

mathematical complexities, the topic of structural optimisation has remained academic 

interest rather than a practical design technique for quite a long period. 
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/. Introduction 

Significant advancement in structural optimisation has been made in the last three 

decades. This may be mainly attributed to three factors. First, various numerical 

methods based on the analytical principles have been proposed. These methods are free 

from the sophisticated mathematical derivation and emphasise more on the aspect of 

efficient algorithms. Second, structural discretising techniques provide the numerical 

basis for the algorithms. Among those techniques, the finite element method (FEM) is 

the most popularly used tool for structural analysis. Third, the availability of powerful 

digital computers has facilitated the combination of optimisation algorithms and 

structural analysis techniques to create automated design capabilities. In contrast to the 

traditional trial-and-error design routine, it was recognised during this period that 

structural optimisation can be effectively included in the design process. Its applications 

have been extended to a wide range of fields such as civil, marine, mechanical, 

automobile and aerospace engineering. 

Despite the increasing application of structural optimisation, it has not enjoyed the same 

level of popularity as the finite element method. This may be due to the variety of 

optimisation problems in terms of structural system and design constraint. Unlike the 

finite element method, there is no set procedure in structural optimisation that can be 

followed for different kinds of problems. Furthermore, as most optimisation methods 

involve repeated structural analysis and sensitivity calculation, the computational cost 

can be prohibitively high, particularly for large size structures. 

The formulation of the evolutionary structural optimisation (ESO) method has 

effectively reduced the gap between structural optimisation and finite element analysis. 

Compared to traditional methods, ESO is characterised by its simple concept and easy 
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/. Introduction 

adaptability. The basic idea is that by slowly removing inefficient material from a 

structure, the residual shape evolves towards an optimum. The integration of this idea 

with the finite element analysis has resulted in a powerful design tool able to address a 

wide range of optimisation problems. At this stage, ESO has been applied to optimal 

designs with constraints on stress, stiffness, frequency and buckling load under 

conventional loading or thermal conditions. The structural systems under consideration 

include plane and spatial trusses, frames and 2D and 3D continua. 

Further advancement was made when the concept of bi-directional evolution was 

introduced in ESO. While based on the same idea of gradual evolution of the structure, 

bi-directional evolutionary structural optimisation (BESO) differs from the classical 

ESO in two ways. First, the efficient material can be added to the structure while the 

inefficient material is removed to modify the structure. Second, the initial design can be 

of any size which defines loading and boundary conditions instead of an over-sized 

domain. Attempts have been made to apply BESO to stress optimisation. The results are 

in good agreement with those of ESO. Furthermore, BESO has shown great potential 

for reducing the solution effort. 

The work conducted in this thesis involved formulating BESO for stiffness and 

displacement optimisation. The mathematical aspects were first addressed and the 

optimisation procedure presented. When combined with finite element analysis, the 

procedure was programmed and run on digital computers, thus the optimisation 

proceeded automatically. Computer code was developed to solve various topology 

optimisations with stiffness and displacement constraints. Comparison of results 
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1. Introduction 

obtained by BESO and other alternative methods are presented. As two closely related 

evolutionary techniques, ESO and BESO are further compared in terms of design 

performance and computational efficiency. 

1.2 Aims and Scope of the Research 

The aim of the thesis is to investigate the theory and application of BESO for 2D 

continuous structural systems with stiffness and displacement constraints. The specific 

objectives are to: 

• Explore the general mathematical representation of the evolutionary concept for 

structural optimisation. 

• Investigate topology optimisation subject to stiffness and displacement constraints. 

Formulate optimisation algorithms using optimality criteria techniques, accounting 

for different load cases as well as multiple displacement constraints. 

• Propose procedures for stiffness and displacement optimisation and develop the 

computer code linked to the finite element analysis software. 

• Conduct numerical tests and compare the results to those obtained by alternative 

methods. 

1.3 Significance of the Research 

There is a need to deepen our understanding of the bi-directional evolutionary 
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/. Introduction 

technique. This will contribute to the improvement and maturity of the evolutionary 

method in particular, and the advancement of structural optimisation synthesis in 

general. The techniques tested in the thesis can also provide engineers with a valuable 

design tool of benefit to the relevant engineering and industrial communities. 

1.4 Layout of the Thesis 

The thesis consists of seven chapters: 

Chapter 1 outlines the general background of structural optimisation and the basic 

concept of ESO as well as aims and significance of the thesis. 

Chapter 2 reviews the history and status of structural optimisation. Different 

optimisation methods are described and their advantages and limitations are discussed. 

Among those discussions, approaches to the topology optimisation of 2D and 3D 

continua are emphasised. The latest development in stiffness and displacement 

optimisation techniques will be reviewed in detail. 

Chapter 3 describes the state-of-the-art of the evolutionary structural optimisation 

(ESO) method. Basic concepts and procedures for stress and sensitivities approaches are 

briefly outlined. The background and current results of the bi-directional evolutionary 

structural optimisation (BESO) method are presented in more detail. The BESO 

procedure for stress optimisation is described. 
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Chapter 4 presents the theoretical basis of stiffness and displacement optimisation. The 

mathematical aspects of BESO are explored by following the optimality criteria 

procedure. These aspects include the sensitivity analysis, optimality criteria and scaling 

of design. They are investigated for various cases where alternative loading conditions 

and multiple displacement constraints are considered. Calculation of the sensitivity 

number and displacement extrapolation are two major focuses. The procedure of BESO 

for stiffness and displacement optimisation is proposed for the computer 

implementation. 

Chapter 5 conducts numerical tests conducted on the basis of chapter 4. It is organised 

according to the design objective (stiffness and displacement) and thus includes two 

major parts. Examples of stiffness optimisation under single and multiple loading 

conditions are presented in the first part. Displacement optimisation under the same 

conditions is set out in the second part, with single and multiple displacement 

constraints included. Each example is studied by both BESO and ESO. Their results and 

solution times are compared and the advantages and disadvantages of the two methods 

are summarised. 

Chapter 6 investigates various numerical aspects of BESO method. Measures for 

improving the reliability of results are first proposed. They include solving problems 

concerned with sharp changes in structural behaviour, singularity in stiffness matrix and 

maintenance of design symmetry. Parametric studies on the effect of the initial design, 

modification ratio and addition ratio are conducted with several examples. Guidelines 

for parameter selection are given towards the end. 
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Chapter 7 summarises the results of BESO and reaches general conclusions regarding 

the effectiveness and efficiency of BESO. Further investigations of the BESO method 

are recommended. 
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2. Overview of Structural Optimisation 

Chapter 2 

Overview of Structural Optimisation 

This chapter reviews the development of the theory and application of structural 

optimisation. The mathematical background is first described, followed by classic 

methods using the differential calculus and calculus of variations. Numerical methods 

are reviewed and their algorithms and features are briefly presented. Topology 

optimisation is introduced in more detail and stiffness and displacement optimisation 

techniques are highlighted . The chapter concludes by summarising the present situation 

and future direction of structural optimisation. 

2.1 Mathematical Statement 

The mathematical interpretation of structural optimisation is related to solving the 

function extremum. Optimisation involvs with determining the extremum (most often, 

the minimum) of functions subject to certain constraints (Haftka and Giirdal 1992), i.e. 

Minimise /(x). 

Such that gj(x) = 0,j = \,...,ne, 

hj(x)>0,j = ne + \,...,n 

X < X < X, 

(2.1a) 

(2.1b) 

(2.1c) 

(2. Id) 
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2. Overview of Structural Optimisation 

where x is the vector of design variables and/(x) is the objective function. gj(x) and 

hj(x) are equality and inequality constraints, thus the problem is called constrained 

optimisation. In contrast, those problems without constraints are called unconstrained 

optimisation. Equation (2.Id) is the side constraint where x and x are the lower and 

upper bounds of design variables. Design variables, objective functions and constraints 

constitute the fundamental concepts of structural optimisation. 

From the engineering point of view, the objective function /(x) is usually chosen to be 

the criterion/criteria representing the structural volume, weight, cost, performance, 

serviceability or their combination. 

Constraints gj(x) or hj(x) can be divided into behavioural constraints and geometrical 

constraints. 

Behavioural constraints imposed on the structural response include: 

• Static behaviour: maximum stress, maximum displacement or mean compliance. 

• Dynamic behaviour: natural frequency or dynamic response. 

• Stability behaviour: buckling load . 

Geometrical constraints are related to the non-structural aspects, such as functionality 

or fabrication. They can be: 

• Requirements of the number of structural components. 

• Restriction on cross-sectional dimensions. 
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2. Overview of Structural Optimisation 

• Limitation of structural boundaries or holes. 

Design variables are independent quantities which define a structure system and can be 

modified during the optimisation process. They can assume continuous or discrete 

values. According to the physical significance and the type of design variables, 

structural optimisation can be divided into three broad categories (Kirsch 1989): 

Size optimisation: the design variables can be the thickness of plates or shells, cross 

sectional properties of bars, beams or columns, either being the section area or the 

moment of inertia, etc. 

Shape optimisation: mainly deals with modification of structural geometry. 

Geometrical variables can be the coordinates of member joints in discrete structures, the 

length and location of supports of beam structures or the height of shell structures. 

They can be either continuous or discrete quantities. 

Topology optimisation: for discrete skeletal structures such as trusses, frames or 

honeycombs, topology optimisation is also known as layout optimisation. It is used to 

determine the pattern of member connection as well as the number and spatial sequence 

of nodes and elements. Both size and geometrical variables may be involved. For 

continuous structures, the optimal topology design is concerned with finding the 

optimum profile of external and internal boundaries. Topology optimisation is usually 

accompanied by size and shape optimisations and is the most difficult and challenging 

task among the three, as will be discussed in later sections. 

10 



2. Overview of Structural Optimisation 

Many researches have reviewed the development of structural optimisation (Schmit 

1981; Vanderplaats 1982). We shall start with classic methods and their significance in 

mathematical exploration of this field. 

2.2 Classic Methods 

2.2.1 Differential Calculus 

The optimisation problem was noticed as early as several centuries ago. Systematic 

investigations started when the differential calculus was introduced in the 17th century. 

Conditions for existence of extreme values are stated as that the first order of derivative 

of objective functions with respect to the design variable is equal to zero , i.e. 

V/;(x) = 0, i = l,2,...,n. (2.2) 

The solution vector {xx,x2,...,xn} to the system of equations constitutes the extreme 

points. 

The above situation can only be applied to very simple cases of unconstrained 

optimisation. However, constrained problems are most often encountered in practice. 

For equality constrained optimisation, there are two techniques for deriving the 

necessary conditions. First, if the constraint equation can be solved to obtain the 

relationship between dependent design variables, the constrained problems are 

transformed into unconstrained ones. Second, in cases where constraints are implicit 

functions of design variables, a general method called Lagrangian multiplier technique 
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2. Overview of Structural Optimisation 

can be used. Employing the same denotations as in equations (2.1), an auxiliary function 

making use of the Lagrangian multiplier ^ is formulated as follows: 

£ ( M ) = /(x) + 2>,g, (2.3) 

with the necessary conditions of an extremum expressed as 

dL 

cxi 
= 0, i = \,...,n, 

= 0, j = l,...,ne. 

(2.4) 

Optimisation is to solve the above system of equations with altogether n+ ne 

unknowns. The number of Lagrangian multipliers ne is equal to that of constraints. The 

purpose of the multiplier is to link the objective functions and the constraints and to 

determine the relative weight of each constraint. 

For a general class of problems with both equality and inequality constraints, the 

necessary condition for an extremum is summarised as the Kuhn-Tucker conditions. 

They can be simply expressed as follows: 

V/;(x) + 2>,Vgj(x)+ 2>,V/z,(x) = 0, i = \,2,-.,n, (2.5) 
7=1 j=nt+\ 

The complementary slackness conditions are needed to considered in the above 

equation and the Lagrangian multipliers for inequality constraints Ay (j = ne +1,..., ng) 

are required to be greater than zero. 

12 



2. Overview of Structural Optimisation 

2.2.2 Calculus of Variations 

Calculus of variations is a generalisation of the differentiation theory. It deals with 

optimisation problems having an objective function /expressed as a definite integral of 

a functional F defined by an unknown function y and some of its derivatives (Haftka 

and Gurdal 1992). 

The objective function can be defined as 

/-fa*,*f ....,£)*. (2-6) 

where y is directly related to the design variable x. Optimisation is to find the form of 

function y = y(x) instead of individual extreme points. 

Analogous to the case of differential calculus, the necessary condition for an extremum 

is the vanish of the first order of variation: 

*-4f-f-J*-* 
Apply boundary conditions, after arrangement, equation (2.7) can be finally expressed 

in form of Euler-Lagrange Equation as follows: 

13 



2. Overview of Structural Optimisation 

(2.8a) 

with the natural boundary conditions (x=a and x=b): 

'dF' 
= 0,and 

x=a 

'dF' 

_dy'_ 

The differential calculus and calculus of variations emphasise the analytical exploration 

of optimisation problems. Their earliest application to structural design might be due to 

Maxwell (1895) in designing the least weight layout of frameworks. The later research 

on the optimal topology of trusses by Michell (1904) was well known as Michell type 

structures. Except for those results, the application of classical analytical methods is 

very limited because of the mathematical complexity and impractical idealisations, 

which may lead to meaningless solution in some cases. Nonetheless, analytical methods 

are of fundamental importance in that they explore the mathematical nature of 

optimisation and provide the lower bound optimum against which the results by 

alternative methods can be checked. 

2.3 Main Approaches to Structural Optimisation 

2.3.1 Mathematical Programming 

Mathematical programming (MP) was one of the most popular optimum search 

techniques which was formulated in 1950s (Heyman 1951). It is a step-by-step search 

approach involving repeated processes. It starts from an initial design defined by a 

dF d (cW^ 

dy dx\dy') 
= 0. 
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2. Overview of Structural Optimisation 

selected set of design variables. A better design is searched in the direction of gradient 

of behaviour functions, which is in the form of Lagrangian auxiliary functions as given 

in equation (2.3). At each step, the value of behaviour function of a new structural 

design is evaluated. Design variables are modified gradually until the objective function 

achieves convergence. 

At the earlier stage, the mathematical programming method is limited to linear problems 

where the objective functions and constraints are linear functions of design variables. In 

1960s, nonlinear programming (NLP) was integrated with finite element analysis as 

first suggested by Schmit (1960). Since then, numerous algorithms of nonlinear 

programming techniques have appeared such as feasible direction (Zoutendijk 1960), 

gradient projection (Rosen 1961) and penalty function methods (Fiacco and McCormick 

1968). On the other hand, approximation techniques have also been studied to use the 

standard linear programming to address nonlinear problems, such as sequential linear 

programming (Arora 1993). 

2.3.2 Optimality Criteria 

Optimality criteria (OC) method was analytically formulated by Prager and co-workers 

in 1960s (Prager and Shield 1968; Prager and Taylor 1968). It is later developed 

numerically and become a wide accepted structural optimisation method (Venkayya et 

al. 1968). It also adopts concepts of objective functions and constraints but differs from 

MP in the redesign steps. While the optimum is searched gradually by using direct 

numerical algorithms in MP, OC method defines a prior criterion and the optimum is 

achieved when the criterion is satisfied. Defining such a criterion may take advantage 

15 



2. Overview of Structural Optimisation 

of the special design condition and structural behaviour. 

In general, most of OC algorithms consist of four fundamental steps: structural 

analysis, stating criteria, scaling and resizing. 

The Kuhn-Tucker condition constitutes the optimality criteria: 

ZM = 1' ' = 1,2,...,", (2.9) 

where ei}
 =~^~ / ~~^~- ^ is m e Lagrangian multiplier, which is usually set as unity in 

the case of single constraint. For multiple constraints, Lagrangian multipliers need to be 

solved to identify the active constraints as well as speed up the convergence. ei} , 

defined as the ratio between the sensitivity of constraints and that of objective functions, 

is known as Lagrangian energy density. Equation (2.9) provides the physical insight of 

the OC method that in an optimal design, the weighted sum of Lagrangian energy 

density is the same for all structural elements. 

The optimal criterion of equation (2.9) can be transferred to a recurrence formula to 

develop an iteration algorithm as follows: 

L>1 

1/a 

(2.10) 
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2. Overview of Structural Optimisation 

where h and h+\ represent the design cycles, a in the exponent is the over-relaxation 

factor which controls the step size. 

While resizing can proceed without the scaling step (Khan and Willmert 1981; 

Zacharopoulos et al. 1984), some improvement on OC algorithm such as generalised 

compound scaling method proves to be very effective (Grandhi et al. 1992). 

A special form of OC method is the fully stressed design (FSD) technique for truss 

structures (Gellatly and Berke 1971). The basic idea behind FSD is that the structure 

where each member sustains its allowable stress of under at least one loading condition 

has the minimum or near minimum weight. It is a rather intuitive approach as the 

recurrence formula for updating the design variable is derived from some approximated 

physical relationships, e.g. 

which is known as stress-ratio approximation. 

The mathematical programming and optimal criteria methods are the two best 

established and widely accepted optimisation techniques. They are equivalent in 

problem formulations but different in solution algorithms. Mathematical programming 

is featured by its mathematical elegance and generality. It is less problem specific and is 

particularly suitable for problems of multiple constraints problem. However, the 

computational cost increases dramatically when a large number of constraints or design 
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2. Overview of Structural Optimisation 

variables are considered. This limits its application to large size structures. In contrast, 

optimality criteria method is less size dependent and offers a high convergence speed. 

Though the convergence may become unstable, especially in the case of inappropriately 

defined initial designs, the relatively low computational cost of OC makes it particularly 

appealing for large structural systems. 

It is worth noting that these two methods are reconciled, to a large extent, by 

formulating dual MP methods (Fleury 1979), which can be interpreted as generalised 

OC methods. In dual methods, the constrained primary minimisation problem is 

transformed into the maximisation of a quasi-unconstrained dual function which is only 

related to the Lagrangian multipliers. When the primal problem is convex, explicit and 

mathematically separable, use of dual methods is very effective by introducing some 

intermediate design variables. Based on the use of reciprocal design variable, the 

convex linearisation method (CONLIN) (Fleury and Braibant 1986) was well 

developed and was later generalised as the method of moving asymptotes (MMA) 

(Svanberg 1987). As dual methods search the optimum direction in the space of 

Lagrangian multipliers instead of that of the primal design variables, it can save 

considerable computing efforts when the number of constraints is smaller than that of 

design variables. 

2.3.3 Genetic Algorithms 

Genetic algorithms (GA) were originally developed in 1970s (Holland 1975). In recent 

years, it has been extended to the field of structural optimisation (Goldberg 1989). The 

principle of genetic algorithms uses Darwinian's theory of survival of the fittest. The 
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2. Overview of Structural Optimisation 

procedure consists of reproduction, crossover and mutation. In the beginning, an initial 

population of designs (individuals) is randomly created, with design variables 

represented by a code of bit strings. The fitness of each individual is evaluated 

according to a fitness function. Those fittest members are allowed to reproduce and 

cross among themselves, resulting in a new generation with member having higher 

degree of most favourable characteristics than the parent generation. This process 

repeats iteratively until the best individual of the population reaches a near-optimum 

solution. 

Genetic algorithms may not be as efficient as traditional MP or OC methods because 

they are quite computationally intensive. Nonetheless, they still serve as reliable and 

robust techniques for their merits. Compared to the gradient-based search methods, 

genetic algorithms search the solution more extensively in that in involves a set of a 

candidate solutions (individuals). They work on the objective function itself rather than 

its derivatives and are more likely to converge to a global optimum instead of a local 

one. Furthermore, genetic algorithms transfer design variables into a code 

representation, typically, into a binary bit-string, which is integer in nature. Therefore, it 

is highly potential for problems involving a mix of continuous, discrete and integer 

design variables. This makes genetic algorithms very suitable for composite structures 

(Nagendra et al. 1993; Le Riche and Haftka 1994; Kogiso et al. 1994). 

2.4 Topology Optimisation 

Most of the previous work is limited to size optimisation where the structural layout is 
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2. Overview of Structural Optimisation 

not allowed to change during optimisation. Shape and topology optimisations have 

attracted increasing interests recently. Compared to the fixed-layout optimisation, the 

optimal topology design can result in far more significant improvement on structure 

performance and bring substantial savings in material costs. 

The earlier efforts are devoted to the optimal layout design of discrete structures. The 

topic has its origin in Michell's least weight design of truss structures (Michell 1904). 

His work has been further developed later by Prager and Rozvany and the results are 

well known as layout theory (Prager and Rozvany 1977; Rozvany 1989). In recent 

years, more work has been done on topology optimisation of 2D and 3D continua with 

the emergence of many efficient and robust algorithms. The following sections are to 

introduce different methods in each structure subdivision. 

2.4.1 Discrete Structures 

There are many publications reviewing the history and advancement in this field. 

According to the survey by Topping (1993), methods for the optimal layout design can 

be grouped into three categories according to the choice of design variables: 

Geometric approach 

Both the coordinates of joints and cross-sectional properties are taken as design 

variables in this approach. The earliest work might be due to Schmit in optimising a 

three-bar truss using a steepest descent-alternative mode nonlinear algorithm (Schmit 

1960). In this approach, the number of joints and connecting members is fixed unless 
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some joints coalesce during optimisation, which changes the structural configuration. 

One major problem associated with the geometric approach is the inclusion of mixed 

design variables. Size and geometrical variables can be of different order in magnitude, 

which adds difficulties to the overall convergence. This leads to the formulation of the 

hybrid approach. 

Hybrid approach 

The hybrid approach divides size and geometrical variables into two design spaces. 

Accordingly, there are two steps in updating design variables. For example, in studying 

a truss structure subject to multiple load cases (Vanderplaats and Moses 1972), first, the 

element is resized by stress-ratio methods while the topology keeps unchanged. Then 

the optimal position of element nodes is determined next. 

Ground structure approach 

In contrast to the foregoing two methods, the ground structure approach only deals with 

size variables. A ground structure consists of a dense set of nodes and a large number 

of potential connections between those nodes. The number and position of the nodes 

are fixed while the number and size of connecting elements are altered. Size variables 

are still continuous, but if the section area of some elements reduces to zero during 

optimisation, these elements are deleted from the structure and the topology image 

changes accordingly. 
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Combined with the mathematical programming and optimality criteria algorithms, the 

ground structure approach is now widely used in layout optimisation. The effect of the 

initial grid definition on the final optimum has also been studied (Dorn et al. 1964). 

2.4.2 Continuous Structures 

The traditional method for topology optimisation of 2D and 3D continua can be the 

boundary variation approach. A great deal of literature has appeared regarding the 

mathematical model, description of boundary shapes, generation of finite element mesh 

and solution strategies (Bennett and Botkin 1986; Haftka and Grandhi 1986). 

The description of boundary shapes is essential to the boundary variation approach. 

There are three ways to represent the boundary, namely, the boundary nodes, 

polynomials and splines. In the survey by Ding (1986), different ways are compared in 

respects of design variable selection, numerical accuracy and optimal shape. For the 

numerical implementation of the boundary variation approach, a capability of 

automated mesh refinement is indispensable. The refinement can be undertaken either 

globally by re-dividing the whole structure or locally by introducing additional elements 

or increasing the order of finite elements. On the basis of the above boundary 

description and mesh regeneration techniques, some conventional solution strategies 

such as mathematical programming, optimality criteria and genetic algorithms (Yang 

1988; Kita and Tanie 1997) are used to solve the optimum problem. 

In comparison to the boundary variation method, there is another class of methods using 
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the ground structure approach. As also discussed in the last sub-section, a ground 

structure is an over-populated structure universe consisting of a large number of 

potential structural elements. The optimisation is to determine the elements occupied by 

the material, i.e. the density distribution. A remarkable advantage of the ground 

structure approach is that the design domain is fixed thus the problem of the mesh re­

generation can be avoided. Using the ground structure description, there have appeared 

three kinds of methods for the continuum topology optimisation, namely, the 

homogenisation method, density function method and heuristic methods. 

Homogenisation Method 

This method is featured by the composite material representation of structure and 

equivalent homogenisation coefficients (Bends0e and Kikuchi 1989). 

First, the element of a discretised structure is modelled as porous media composed of 

solid materials and voids at the microscopic level. Take a square element with a 

rectangular cavity for example, as shown in Fig. 2.1. The characteristics of the cell can 

be represented by the spatial coordinates a,b. In the case where the hole is allowed to 

rotate, the rotation 6 is also taken as a design variable. The states of the porous media 

can be described as follows: 
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a = b = 0, void. 

0 < a < 1, 
» , . composite material with void. 

a = b = 1, solid. 

The equivalent properties of the porous media are computed using the homogenisation 

theory (Babuska 1976 and 1977). Those properties, namely, the elastic modulus and 

mass density, are discontinuous within the cell. However, their equivalence can be 

derived as functions of spatial coordinates a, b. Then the constitutive relationship can 

be determined from the equivalent elastic coefficients together with a matrix of rotation 

related to 0. By this means, these three spatial coordinates are updated gradually to find 

the optimal material distribution. 

The homogenisation method has been successfully applied to 2D and 3D continua for 

both static and dynamic problems with weight constraint (Tenek and Hagiwara 1993; 

Ma et al. 1995). The effect of different cell models on computing results has also been 

examined. In algorithm aspects, the homogenisation method employs traditional 

mathematical programming or optimality criteria as search techniques. On one hand, it 

carries on their advantages such as the rigorous theoretical basis and good convergence 

behaviour. On the other hand, difficulties associated with those traditional methods are 

magnified in the homogenisation method. As shown in Fig 2.1, each element has three 

design variables and their sensitivity analysis can be very time-consuming for large size 
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structural systems. 

Density Function Method 

This method was proposed for stiffness and frequency optimisations of continuous 

structures (Yang and Chuang 1994). The design objective is to minimise the mean 

compliance subject to the weight constraint. The essence of the method is an empirical 

relationship between the elasticity modulus and mass density with the latter used as 

design variables. The density function method has yielded similar results to those of the 

homogenisation method. However, it is strongly dependent on the empirical relationship 

assumption. 

Heuristic Methods 

The term 'heuristic methods' refers to those addressing structural optimisation problems 

in a less mathematical but more intuitive way. It is proposed in comparison to those 

conventional methods where either mathematical programming or optimality criteria 

algorithm is followed as a solution routine. As the name suggests, heuristic methods do 

not involve much complex mathematical formulation. Instead, they are derived from 

simple concepts or natural laws. Those methods fall into two categories, as discussed 

below. 

Adaptive biological growth method was first formulated by Mattheck (1997). This 

technique has its philosophical origin in nature. It is motivated to simulate the growth 

process of biological species that adapt themselves to the environment. The simple and 
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natural principle of this method is that in optimisation, the shape of structure evolves to 

reach a uniform stress state. This is easily achieved by adding material in over-stressed 

areas and removing in under-stressed areas. Two strategies have been suggested for 

changing the material distribution. 

The first one is called soft kill option (SKO). The structure is first analysed by the finite 

element method to obtain the element stress. Then the Young's modulus E is adjusted 

and set the value of the stress. This means that the stronger areas will sustain more 

load than the weaker areas in an updated structure. The new structure represented by 

non-homogenous material (different modulus) is re-analysed and stress is redistributed. 

This process repeats until there is not much change in Young's modulus. During this 

course, the less loaded area becomes softer and softer until the modulus reduces to near-

zero, then the element is 'killed' and removed from the structure. 

The second technique is related to some fictitious temperature fields. The element stress 

is transformed into nodal temperatures. The finite element analysis is then performed to 

find the nodal thermal displacement, which represents the expansion or shrinkage of the 

element. By this means, the structure shape changes and grows to an optimum design. 

Evolutionary structural method (ESO) is based on the simple idea that by slowly 

removing inefficient material from a structure, the residual shape evolves towards an 

optimum (Xie and Steven 1993). It shares similarities with SKO in principles. While the 

SKO method kills a low-stress element softly by gradually changing the Young's 

modulus, the evolutionary method removes this element immediately at one step. At 

each single iteration, only a small number of elements are removed in order to ensure a 
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smooth transient between generations. 

The research on ESO is quite extensive and covers problems with stress, 

stiffness/displacement, frequency and buckling load constraints (Xie and Steven 1997; 

Chu 1997; Manickarajah 1998). In these cases, the material efficiency is measured by 

the element stress as well as sensitivity number. The calculation of sensitivity numbers 

and evolutionary procedure will be detailed in the next chapter. 

It is natural to extend the theoretical basis of ESO by allowing material to be added as 

well as removed. This new approach is called bi-directional evolutionary structural 

optimisation (BESO) (Querin 1997). An attractive characteristic of BESO is that the 

evolution can start from a very simple initial design instead of an over-populated 

domain. BESO with the stress constraint has been investigated for 2D and 3D continua 

(Young ef a/. 1998). 

As discussed above, heuristic methods are simple in concept and flexible in 

implementation. They are easily programmed on computers. This is particularly true 

when the finite element analysis software has become a common design tool. 

In order to have a clear view of the recently developed methods for topology 

optimisation and allow a quick comparison, Table 2.1 summarises the main 

characteristics of some techniques presented in the previous sections: 
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Table 2.1: Comparison of methods for topology optimisation. 

Items 

Constraints 

Structural 

System 

Loading 

Conditions 

Algorithms 

Methods 

Uniform Stress 

Stress 

Concentration 

Displacement 

Compliance 

Frequency 

Buckling Load 

ID Discrete 

Structure 

2D Continuum 

3D Continuum 

Plate in 

Bending 

Single 

Multiple 

FEM 

MP/OC 

Homogenisation 
Method 

V 

V 

S 

S 

V 

• 

• 

• 

V 

Density 
Function 
Method 

• 

• 

• 

• 

• / 

•/ 

SKO 

V 

V 

S 

V 

V 

ESO 

• 

V 

V 

S 

V 

S 

V 

V 

• / 

V 

• 

V 

s 

2.5 Stiffness and Displacement Optimisation Techniques 

Stiffness and displacement requirements can be due to the consideration of structural 

serviceability. For example, the lateral displacement of a high rise building or the 

deflection of a bridge has to be within a prescribed limit. Most of optimisation methods 

discussed in the last two sections can be applied to stiffness and displacement 

optimisation. To some extent, investigations on the optimal design with stiffness and 

displacement constraints have been the starting point of other more complicated 
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problems such as the system stability and dynamic response. This is due to that the 

displacement is the basic form of structure response in finite element analysis, which is 

fundamentally formulated by using the displacement method. Further, the virtual load 

method allows for the expression of displacement in form of the structural strain energy. 

This greatly facilitates the generation of algorithms for stiffness optimisation, 

displacement optimisation and even stress optimisation. In optimising some truss 

structures, it is a common practice to convert stress constraints to displacement 

constraints by introducing a pair of virtual loads on the concerned structural component. 

Most often, the stiffness and displacement optimisation can be treated as a linear 

problem if the design variable is appropriately selected. The use of reciprocal variables 

greatly simplifies the mathematical formulation and helps to develop a highly effective 

algorithm (Berke 1970). Nonetheless, complexities are added when the structure is 

imposed on multiple displacement constraints. It is normally unlikely that all constraints 

are active at an optimum. While the presumption of each constraint as active one makes 

the algorithm inefficient, failure to include all potential active constraints may influence 

the function convergence. For this reason, considerable efforts have been devoted to the 

determination of active constraints as well as estimation of Lagrangian multipliers, and 

many methods have been suggested such as the recurrence relations, linear equations 

and Newton-Raphson methods (Taig and Kerr 1973; Rizzi 1976; Austin 1977). 

While most earlier investigations concentrate on the design of continuous variables, the 

optimisation involving discrete design variables has seen significant progress recently. 

This is driven by the engineering design practice where the structural component can be 

selected from a set of sizes. Discrete problems can be solved in two steps. First, the 

problem is treated as a continuous variable optimisation and the solution is found; 
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Second, the discrete solution is proposed on the basis of the continuous solution. Many 

techniques have been suggested for the second step, such as rounding-up, Lagrangian 

relaxation, pseudo-discrete section selection and branch and bound methods (Ringerts 

1988; Sandgren 1990; Chan et al. 1994). Huang and Arora (1995) have provided a 

comparison of different methods and pointed out that the computation of mixed 

variable problems can be substantially higher than that of continuous problems. 

More recent development in stiffness and displacement optimisation may be the 

topology design of compliant mechanisms (Ananthasuresh 1994). Compliant 

mechanisms are widely used for transferring the force or motion thus may have 

requirements both on stiffness and flexibility. The optimisation aims at designing a 

mechanism so that the output displacement at a certain node is maximised and at the 

same time the global stiffness is ensured. Two forms of objective functions are 

proposed to account for the above two contradicting design requirements, namely, the 

weighted linear combination (Ananthasuresh 1994) and ratio of displacement to mean 

compliance (Frecker et al). It is found that the optimality criteria derived from these 

two objective functions take the same form, which states that the ratio of virtual 

potential energy to the strain energy is equal for each element. Saxena and 

Ananthasuresh (1998) have investigated the convergence behaviour of the objective 

function and proposed an algorithm based on the combination of optimality criteria and 

mathematical programming. 
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2.6 Summary 

Over the past several decades, structural optimisation has grown from an abstract 

mathematical concept to a practical engineering design tool. It has become a fusion of 

multi-disciplinary subjects covering mathematics, mechanics, engineering, structural 

analysis and computer graphics. During this course, its applications have been extended 

to various fields such as aeronautical, mechanical, automobile, civil and marine 

engineering. 

As far as the algorithm is concerned, mathematical programming (MP) and optimality 

criteria (OC) seem to have reached their mature stage. Most of the recent work is the 

refinement of these methods, with focus put on special considerations arising from 

different problems such as structural stability and dynamic behaviour. Along with the 

extension of traditional techniques, heuristic methods play an increasingly important 

role particularly for topology optimisation. These methods are simple in concept and 

easy for computer implementation. They are able to deal with almost all of the 

corresponding problems solved by traditional methods. 

A most significant factor contributing to the advancement of structural optimisation can 

be the availability of high capacity digital computers. From the historical point of view, 

the progress in the field of structural optimisation was relatively slow before 1950s. The 

development has accelerated in 1960s when a variety of numerical algorithms were 

implemented on powerful yet inexpensive computers. Computer aided design has 

become an indispensable feature of structural optimisation. Researches have been 
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conducted world-wide to develop the optimisation software tailored to different fields of 

industries, such as TSO (Lynch et al. 1977) developed by Air Force Wright 

Aeronautical Laboratories, STARS (Wellen and Bartholomew 1990) by Royal 

Aerospace Establishment and CAOS (Rasmussen 1990) by Technical University of 

Denmark. This process is still under way and points the trend of future exploration, 

especially those in shape and topology optimisation. 
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Chapter 3 

State-of-the-Art of Evolutionary Structural 
Optimisation 

3.1 Introduction 

The concept of evolution adopted in structural optimisation has been suggested 

frequently during the past 15 years. The synthesis of evolutionary structural 

optimisation (ESO) method has been developed since it is first used for the optimal 

design of uniform stress structures (Xie and Steven 1993). ESO is based on the idea that 

by systematically removing the inefficient material, a structure can evolve towards an 

optimum. 

This concept is clearly reflected in the fully stressed design (FSD). A fully stressed 

design is a highly idealised optimum where every part of the structure sustains its 

allowable stress so as to make the best use of material strength. The optimum can be 

obtained from an initial design by repeatedly removing the inefficient, i.e. low-stressed 

material. Such a technique can be called stress approach as it uses the element stress, 

e.g. von Mises stress, as the driving criterion in the evolution process. 

In comparison to the stress approach, there is another kind of optimisation problems 

using the sensitivity number as the driving criterion. Stiffness/displacement, frequency 
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and buckling load optimisation can be grouped into this category. The ESO method for 

these problems is called sensitivity approach. We shall introduce in this chapter these 

two approaches, followed by an new technique called bi-directional evolutionary 

structural optimisation (BESO). The chapter concludes with a summary of features of 

the evolutionary method. 

3.2 Stress Approach 

ESO is a numerical method combined with the finite element analysis (FEA). It 

progresses in an iterative manner. The procedure of stress approach can be outlined as 

follows: 

1. Define the design domain which the structure is allowed to occupy. Set up a finite 

element mesh to fully cover the domain. 

2. Perform finite element analysis to obtain the stress distribution. 

3. As the design is over-sized and far from an optimum, the element stress level cre can 

be quite different within the design domain. The lightly stressed elements are not 

efficiently used and can be removed. An inequality is defined to identify those 

inefficient elements as follows: 

o-.-c^o^, (3-1) 
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where <Tmax is the maximum element stress and RRj is the current rejection rate. 

Remove elements satisfying the inequality and the structure is updated. 

4. Repeat steps 2 and 3 using the same value of RRi until no elements satisfy the 

inequality. This means that the structure has reached a steady state corresponding to 

the current RRr To proceed the evolution, the rejection rate is assigned a new value 

by the following recurrence equation: 

RRi+=RR,+ER, i = 0,l,...,n, (3 2) 

where ER is the evolutionary rate. 

5. Steps 2 to 4 are repeated and steady states corresponding increasing rejection rates 

are obtained progressively. 

6. The evolution terminates when the stress limit is exceeded or a prescribed amount of 

material is reached. 

On the basis of the original formulation, many forms of variations of ESO have been 

proposed for different problems using the stress approach. 

• Uniform surface stress: elements can only be removed from the structural boundary 

and no inner cavity is produced. The structure evolves to a shape where the surface 

stress is uniformly distributed. This technique is called nibbling ESO (Xie and 
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Steven 1997). 

• Reduction of stress concentration: shapes of cut-out, hole, joint, etc. are optimised in 

order to reduce the maximum stress. Nibbling ESO techniques are also adopted (Xie 

and Steven 1997). 

• fntelligent cavity creation (ICC): non-structure constraints are imposed apart from 

the uniform stress requirement. The optimum has a prescribed number of cavities 

(Kim 1998). 

• Thermal stress optimisation: to obtain the optimum design of uniform stress under 

the thermal load conditions (Li et al. 1997). 

• Elastic contact: the contacting profile of several separate bodies is optimised to 

reduce the maximum contact stress (Li et al. 1998). 

• Nonlinear problems: structures with material and geometric nonlinearities are 

investigated where the strain energy density is used as the evolution criterion 

(Querin et al. 1996). 

3.3 Sensitivity Approach 

3.3.1 Sensitivity Analysis 

Apart from the strength requirement, a structure may also needs to comply with 

requirements on displacement/stiffness, frequency or buckling load. The sensitivity 

analysis is to study the effect of material elimination on the above structural behaviour. 

Derivations in this section are based on the work by Chu (1997), Manickarajah (1998) 

and Xie and Steven (1996). 
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The static behaviour of a discretised structure is governed by the following equilibrium 

equation: 

Ku = P, (3.3) 

where K is the global stiffness matrix, u is the displacement vector and P is the load 

vector. 

Suppose that the rth element is removed from a structure, the mean compliance, defined 

by C = — Pru, will have a change equal to 

a, = A C = ui
TKiui, (3.4) 

where K; is the element stiffness matrix and us is the element displacement vector. 

at is called stiffness sensitivity number. 

For dynamic problems, the equation for free vibration is 

(K-tf>7
2M)ua)=0, (3-5) 

where M is the global mass matrix, CDj is the circular frequency of the/th mode shape 

and ua) is the corresponding eigenvector. 
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The eigenvalue sensitivity due to an element removal is 

a™ = A(cvj) = uf^M, -KJu®, (3-6) 

where M, is the element mass matrix and u?> is the element eigenvector. It is assumed 

in equations (3.5) and (3.6) that the eigenvector ua) has been normalised with respect to 

the global mass matrix M. 

The buckling behaviour of a structure is represented by the following eigenvalue 

problem: 

(K + ^Kg)u
a)=0, (3.7) 

where Kg is the geometric stiffness matrix, Xj is they'th the eigenvalue and u
a) is the 

corresponding eigenvector. 

In the case of size optimisation, suppose that the z'th element has a stiffness change 

AKj due to resizing. Perform the similar mathematical derivations to those in 

frequency sensitivity, the sensitivity of the fundamental eigenvalue is found to be 

a/ = A^I=ui
7'AKiui, (3.8) 

where the effect of size modification on the geometric stiffness matrix has been ignored. 
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The sensitivity number represents the contribution of element modification to the 

concerned structural behaviour. In stiffness optimisation, for example, we usually want 

to reduce the mean compliance. Therefore, eliminating the elements with the smallest 

absolute value of sensitivity number will be the most effective. Similarly, in buckling 

or frequency optimisation, if we want to increase the frequency or buckling load (a 

common situation), elements with the largest sensitivity number can be removed. 

3.3.2 Evolution Procedure 

1. Construct a finite element model considering all supports and loads. 

2. Conduct the finite element analysis to obtain the structural response. They can be 

the displacement in static problems and eigenvalue and eigenvector in eigenvalue 

problems. 

3. Calculate the sensitivity number a, for each element using equation (3.4), (3,6) or 

(3.8). 

4. Remove elements according to the sensitivity number and the optimisation 

requirement so that the structure evolves towards a desired direction. 

5. Repeat steps 2-4 until the structure reaches the prescribed weight or the change in 

structure behaviour becomes negligible. 
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3.4 Aspects in Computer Implementation 

Software Interface 

As discussed above, the structural optimisation task is usually divided into two parts, 

namely, the structural analysis and design modification. For most of optimisation 

techniques, the first part utilises numerical methods such as the finite element or 

boundary element method. The second part is fulfilled by using algorithms based on 

mathematical programming or optimality criteria. 

There are two ways in implementing the optimisation task as a whole design process on 

computers. The first is that the designer writes a program that includes both parts. This 

is impractical and unnecessary because many structural analysis software packages have 

been developed and become easily accessible. Most often, the designer is provided with 

both analysis and optimisation modules and the task is reduced to develop the interface 

between them. However, this is not so easy a task. Most optimisation algorithms need to 

repeatedly evaluate the derivatives of objective functions and constraints using the 

structural analysis results. At this point, it is very difficult to transform the structural 

analysis package into a subroutine called by the design updating program. 

The interface between structural analysis and optimisation is relatively simple in ESO 

as the two modules are physically independent. For sensitivity approaches, for example, 

the input to the optimisation code can be either displacements or mode shapes as the 

output of the finite element analysis. The FEA is performed by using a standard 
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commercial software STRAND6 (G+D Computing 1993) in which the output is 

identical in form thus can be processed similarly in the optimisation code. 

Element Status 

As far as the structural description is concerned, ESO can be interpreted as a ground 

structure approach because if defines an over-populated structural universe. As 

discussed in Chapter 2, in a ground structure the position of nodes and elements are 

fixed and only the number of elements is changing in optimisation. In ESO, The initial 

finite element mesh is used throughout the evolution and the element property number is 

used to declare the existence and absence of an element. For example, in the beginning, 

each element within the design domain is assigned a non-zero property number 

according to its physical material properties such as the Young's modulus, Poisson's 

ratio and plate thickness. If an element is eliminated during the process, its property 

number is switch to zero. This means that in the current structure, this element does not 

physically exist thus is ignored in assembling the global stiffness and/or mass matrices. 

3.5 Bi-directional Evolutionary Structural Optimisation (BESO) 

3.5.1 Background 

ESO is an iterative method and hundreds of runs of finite element analysis may be 

needed before the optimum is reached. For this reason, the size of the finite element 

model becomes an important factor which can heavily affect the solution time. To 
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ensure that there are adequate elements left after repetitive structural modifications, an 

over-sized initial FE model is required in ESO. For some structures divided by a fine FE 

mesh, or 3D problems, the computational cost of ESO can be very high. Another 

concern of ESO is that elements removed in previous iterations cannot be recovered 

later. This requires that the number of elements removed at each iteration should be very 

small. Otherwise, elements can be deleted prematurely and the evolution may be misled. 

The bi-directional evolutionary structural optimisation (BESO) method provides an 

answer to the above two problems. BESO allows for removing inefficient elements as 

well as adding efficient ones. Therefore, it is more flexible in choosing the initial design 

and recovering the inappropriately removed element. By defining a small and simple 

initial design, BESO can significantly reduce the size of the finite element model thus 

improve the computing efficiency. 

3.5.2 Procedure 

The implementation of BESO for stress optimisation is straightforward as the element 

stress is used to determine the material efficiency and inefficiency. The procedure is 

outlined as follows: 

1. Specify the maximum allowable physical domain and discretise it with a finite 

element mesh. 

2. Specify the initial design which contains the connecting elements defining the 

loading and supporting conditions. Elements other than connecting elements are 
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assigned a property number 0. There are many initial designs satisfying the 

boundary conditions and it is natural to use the simplest one with the smallest 

number of elements. Variations of initial designs have effect on the final solution 

and this point will be investigated in Chapter 6. 

3. Carry out the finite element analysis and calculate the element stress. The element 

removal or addition is determined by the following two inequalities: 

o-.^o-- and (3.9a) 

^ > ^ ^ » (3-9b) 

where IR is called inclusion rate. All elements are checked against expression 

(3.9a) to decide if it is under-stressed. The element is removed on satisfaction of 

this expression. Additionally, the boundary elements are checked against (3.9b). 

Take a 4-node square element for example, the boundary elements are featured by 

at least one free edge and can be easily tracked during optimisation. If a boundary 

element satisfies expression (3.9b), it means that the element is over-loaded and is 

strengthened by adding elements around its free edges. 

4. Repeat step 3 until a steady state is reached. Update the removal rate and inclusion 

rate by the following recurrence formulas: 

RRM=RRt+ER, * = 0,1,...,K, (3.10a) 

IRM=IR,-ER, / = 0,1,...,«. (3.10b) 

5. Repeat steps 2-4 until the rejection rate becomes, say, as large as 25%, or some 

prescribed perform index (Querin 1997) reaches the minimum. 
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The extension of BESO to other categories using the sensitivity approach is the main 

task of this thesis. Stiffness optimisation using the BESO procedure will be explored in 

length in subsequent chapters. 

3.6 Summary 

The strength of evolutionary method lies in its simplicity and generality, which can be 

attributed to two factors. Firstly, it employs the finite element method as the structural 

analysis tool, so a wide range of structural systems can be covered. Secondly, it uses the 

element stress or sensitivity number to drive the evolution. Those driving criteria are 

similar in form thus the evolution procedure can be also similar. In fact, a common 

procedure exists for different kinds of problems and only the calculation of driving 

criteria is different. In cases where the solution cost and robustness become a concern 

for large scale structures, the bi-directional ESO (BESO) serves as an alternative 

technique. 
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Chapter 4 

BESO for Stiffness and Displacement Optimisation-
Theory 

This chapter deals with the theoretical basis of B E S O method. Principles of optimality 

criteria are followed to explore the mathematical interpretation of stiffness and 

displacement optimisation including the optimality condition, sensitivity analysis and 

scaling techniques. The bi-directional evolutionary algorithm is proposed and 

programmed to the computer code which contains displacement extrapolation, 

sensitivity calculation and element modification. The code is linked to the finite element 

analysis software to realize a computer-aided-design process. 

The term 'design variable' will be frequently used in this chapter. For simplicity in 

description, the design variable x, is chosen as a non-dimensional quantity. For truss 

structures, it is defined as x, = A)/ Aoi where A0j is the bar area. For 2D continua under 

plane stress or plate bending conditions, xt - t, I toi is assumed where t0i represents 

the plate thickness. 

Stiffness optimisation is first studied, followed by the more complex displacement 

optimisation where problems of single and multiple constraints are addressed. 

Optimisation under single and multiple loading conditions is investigated. 
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4.1. Stiffness Optimisation 

For a system modeled by finite elements, the static behavior is represented by the 

following equilibrium equation: 

Ku = P, (4.1) 

where K is the global stiffness matrix, u is the displacement vector and P is the load 

vector. 

The overall stiffness of a structure can be indirectly evaluated by the mean compliance, 

which is defined as 

C= Vu = VKU = £(^u,rKiul) = EC,. , (4.2) 

where Kj and Uj are the stiffness matrix and displacement vector of the rth element. 

C, = — u^K^U; , is the element strain energy. Based on such a definition, designing the 

stiffest structure is equivalent to minimising the mean compliance C . 

4.1.1 Sensitivity Analysis 

A typical optimality criterion includes two components, namely, sensitivity of objective 

function and constraint, and Lagrangian multipliers. Therefore, before formulating the 
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criteria, we shall first investigate the derivatives of the mean compliance and structural 

weight, i.e. sensitivity analysis. 

Differentiating equation (4.2) with respect to the rth design variable results in 

cKL da ft 
^c~U + Kdc~=dc~i' (

4-3) 

Assume that the load vector does not change with the design variable, thus 

da xac 

Referring to equation (4.2), the derivative of the mean compliance is 

dC 1 T da 1 T , cK. 1 T <3C 
^T = ̂ Y ^T = ~ T P K _ 1—u = -~ur—u. (45) 
ax, 2 dx, 2 ax, 2 ac, v ' 

Suppose the design variable has a small change and becomes x- . Using the first order 

Taylor series, the mean compliance will change as follows: 

A C = J ^ ( x / - x / ) = -^u
rlj^(j:/-x/)li. (4.6) 

M ac, 2 i.\\act ) 

Assume that the stiffness matrix is a linear function of the zth order of the design 

variable, i.e. 
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K(cxz) = cK(xz), (4.7) 

where c is an arbitrary constant. 

If one element is removed from the structure, making use of equations (4.6) and (4.7), 

the change in the mean compliance due to such a removal is 

4C = -iu,r^u,(0-l) = £„/^u1. (4.8) 
2 ac. 2 x, 

The change due to an element addition is similar to equation (4.8) but different in sign. 

Therefore, 

AC = — U^KJUJ = zCi. (for element removal) (4.9a) 

AC = -1 u/KjU; = -zCt. (for element addition) (4.9b) 

It is noted that AC is always positive for removed elements and negative for added 

elements. 

The above sensitivity analysis is based on the first order derivative. For structures of 

z=\ such as trusses and 2D continua under plane stress conditions, the first order 

approximation is sufficiently accurate. In the case of z >1 which occurs to plate bending 

problem (z=3), it is desirable to employ higher order derivatives. However, those 

derivatives are complicated in form and its computing cost can be unnecessarily high 

(Haftka and Giirdal 1992). As far as ESO and BESO are concerned, it is found from the 
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numerical experience that the first order derivative is also reliable for plate bending 

elements (Chu 1997). For this reason, the sensitivity analysis in this thesis employs the 

linear approximation. 

As for the weight constraint, it changes as follows: 

AW = -Wi (for element removal) (4.1 Oa) 

AW=Wi (for element addition) (4.1 Ob) 

4.1.2 Optimality Criteria 

For optimisation using the sensitivity approach, the evolutionary method is a gradient 

based search technique. BESO for stiffness optimisation can be mathematically 

formulated by following the optimality criteria procedure. 

The problem of stiffness optimisation with a prescribed weight W* can be stated as 

1 . 
Minimise / = C(x) = - u K u (4.11 a) 

n 

Subject to g = W*-Y, W,x, = 0, (4.11b) 

x,. e{0,l}. (4.11c) 

The design variable is chosen from a set {0,1}, which declares the absence or presence 

of an element. 
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The Lagrangian function is 

L(x,X) = f-Ag 

= C(x)-MW*-YJWixi), (
4-12) 

where X is the Lagrangian multiplier. 

In conventional OC method, the optimality criterion for problem of continuous design 

variables is 

dL df dg 

a r ^ &,=0' lssl""'n- (4-13) 

However, the design variable is discrete in the evolutionary method. So it is necessary 

to replace the derivative in equation (4.13) with the function increment, i.e. 

dL df dg 
AL-, = -^~Axi= "^"^ " ; l^A x'= °' * = 1'-'w' (4-14) 

where AL; denotes the increment in the Lagrangian function due to the change in the 

rth design variable. 

Recalling equations (4.9) and (4.10), for a removed element: 

— Axi = AC = zCi, (4.15a) 

^Ax/=-A^=^, i = \,...,n, (4.15b) 
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and for an added element: 

Ax,-AC = -zC„ (4.16a) 

—Axi=-AW = -Wi, i = !,...,«. (416b) 

Substituting equations (4.15) and (4.16) into equation (4.14) results in 

zC,-AW, =0, oi 

X~W (4-17) 

The constant z can be omitted as it is the same for all structural elements, therefore, 

9L 
w, 

A = z±>0. (4.18) 

Equation (4.18) represents the optimality criterion of the evolutionary algorithm. It is 

consistent with the well known condition regarding the overall stuffiness optimisation. 

That is, at an optimum the ratio of element strain energy to its weight is the same for all 

structural elements (Venkayya et al. 1973; Morris 1982). 

Equation (4.18) can also be interpreted as an effectiveness parameter of the z'th element. 

For continuous problems, such a parameter is defined as the ratio of derivatives of the 

objective function and that of the constraint. The resizing is conducted so as to 

"increase the utilisation of the more effective variables and decrease that of the less 

effective ones" (Haftka and Gurdal 1992). BESO does not involve the resizing 
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procedure. Instead, it employs element removal and addition to modify the structure. 

Similar to the principle adopted in resizing techniques, the structure is updated in such 

a way that the most effective elements are added and the least effective ones are 

removed. 

At this point, equation (4.18) serves as an indicator of element efficiency. Introducing 

1 _ 
C,. =T"Ui KjU; to equation (4,18), adding a negative sign for added elements and 

omitting the coefficient '1/2', one obtains that 

a, = ———L. (for element Removal) (4.19a) 

urKu. 
a, = - ' ' '. (for element addition) (4.19b) 

a, is called the sensitive number. To minimise the compliance it will be most effective 

to remove and add elements with the smallest sensitivity number. 

Equation (4.18) can be re-written as 

q = AW,, then 

ZQ=AZW,. (4.20) 
/=i t=\ 

Therefore, at the optimum, the Lagrangian multiplier is 

C 
A= , (4.21) 
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which is identical to the conclusion obtained by Morris (1982). 

Substitute equation (4.21) into the Lagrangian function equation (4.12), it is found that 

WxC 

4.1.3 Scaling of Design 

4.1.3.1 Objective Compliance 

Most of optimality criteria algorithms involve scaling procedure. It is to move an 

intermediate design to the constraint boundary and to help to trace the change in 

objective function. For exterior approximation problems where the solution is searched 

out of the feasible region, scaling technique is also used to convert an infeasible design 

to the feasible region. 

Scaling techniques in stiffness/displacement constraint have been proposed by many 

researchers (Kirsch 1993; Morris 1982). For the problem as stated in equation (4.11), 

scaling is performed so that the structure can satisfy the weight specification. Based on 

the previous definition of design variables, the structure weight is proportional to the 

design variable. Therefore, a scaling parameter can be easily defined as 

W* x' 
// = — = ̂ -, / = l,2,.-,« (4.23) 
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where x, and x,' denote the design variables before and after scaling, respectively. 

All the design variables are scaled equally by the same parameter ju . Therefore, the 

stiffness matrix of a scaled design is 

K(x'z) = K((//xn=/^K, (4.24) 

where we assume that the stiffness matrix is the linear function of the zth order of design 

variables. 

The displacement vector is 

u(x') = K-!(x'z )P = ju'K1? = /Tzu(x) (4.25) 

and the objective function is 

i i (w Y 
C(x') = -Pru(x') = M-*(-T>

Ta(x)) = ri-2C = [—J C. (4.26) 

Equation (4.26) represents the compliance of a feasible design which possesses the 

current topology while having the target weight W * . This is defined as the objective 

compliance: 

M^Jc (4.27) 

It is worth noting that equation (4.27) reduces to equation (4.22) when z=\ is assumed. 

54 



4. BESO for Stiffness and Displacement Optimisation-Theory 

Equation (4.23) is not valid if the structural weight is not proportional to the design 

variable, e.g. a frame structure where the moment of inertia is taken as the design 

variable. In such a case, an iterative procedure is required to approximate the scaling 

parameter ju and the subsequent objective compliance. This problem has been discussed 

by Morris (1982). 

4.1.3.2 Generalised Sensitivity Number 

In stiffness optimisation, the structural weight and mean compliance are always 

changing in opposite directions, i.e. increasing weight will cause decrease in structural 

strain energy and vice versa. Their overall effect can be combined in equation (4.27), 

which can serve two purposes. First, it evaluates the extent of optimisation of a 

candidate design. A smaller value means a better solution. Secondly, it transfers the 

constrained optimisation problem in form of (4.11) to an equivalent unconstrained one 

where only the objective compliance Cobj is to be minimised. 

For simplicity, assume that z =1 in the objective compliance. Suppose an element is 

modified in the structure, either being removed or added, differentiating equation (4.27) 

and omitting the effect of W * yields: 

ACobJ = W(AQ + (AW)C. (4.28) 

Define 

ACobi AC AW 
— ° J L = + (4.29) 

'• CW C W v ' 
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At the optimum where CobJ assumes the minimum, each element should have rj, = 0. 

When the design is away from the optimum, however, it is to find the element with the 

minimum of rj, ( n, <0) so that its removal or addition will cause the largest decrease in 

the objective compliance. In this sense, tj, serves as a generalised sensitivity number. 

As derived before, using the sensitivity numbers a, defined in equations (4.19a) and 

(4.19b), the structural elements are divided into two groups as potentially added and 

removed elements. Sensitivity numbers are compared in each group separately. In 

contrast, the generalised sensitivity number rj, make the effect of element removal and 

addition comparable. It is a common indicator for all elements. 

At this point, rj, is more suitable for locating modified elements. However, numerical 

accuracy problems may arise in the practical implementation. As shown in equation 

(4.9), computing C, requires information on the element displacement. For potentially 

added elements, the displacement is undefined and can only be calculated 

approximately. C, based on the approximated displacement is considerably larger than 

that of existing elements. For this reason, the generalised sensitivity number rj, is only 

of theoretical significance. In implementation of BESO, a, is used and removed and 

added elements are compared separately. This point will be further discussed in later 

sections on displacement approximation. 
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4.1.4 Multiple Loading Conditions 

In previous sections, some basic concepts in BESO such as optimality criterion, 

sensitivity number and objective compliance are presented. They are used for problems 

of single loading condition. A structure may be subject to different environments and 

support several load cases. The above derivation can be extended to multiple load cases 

with only minor changes. 

Assume there are / load cases applied independently. Re-define the objective function 

in equation (4.1 la) as 

f = £akC
K(x). (4.30) 

A=l 

Where C* (x) is the mean compliance associated with the kth load case and ak is the 

weighting coefficient. As a special case, / is defined as the average compliance, i.e. 

assuming ak= Ml. 

Accordingly, the sensitivity number for multiple loading conditions becomes 

/ 

W, *=i 

which is the weighted sum of individual sensitivity numbers, where the positive and 

negative signs are for removed and added elements, respectively. 
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Likewise, the objective compliance is 

\llakC
k(x) = Y,akC

k
obj (4.32) 

A=l k=\ 

4.2 Displacement Optimisation 

In many situations, it is required that the displacement at a particular location of a 

structure is within an allowable limit. Displacement optimisation can be approached in a 

similar way as stiffness optimisation. 

Optimisation with a single displacement constraint is first investigated in this section, 

followed by multiple constraint problems including multiple load cases and multiple 

displacement constraints. 

4.2.1 Sensitivity Analysis 

A usual approach to dealing with an individual displacement is to use a virtual load 

vector Z(!) , which has all its components being equal to zero except the one 

corresponding to the constrained displacement component. The non-zero component is 

given a unit value and the unit virtual load is of the same direction as the displacement 

constraint. The superscript in Z(1) means the first displacement constraint. 
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The constrained displacement can be expressed as 

uw= Z(1)7u = Z^K-'P = u(1)rKu , (4-33) 

where u(1) is the displacement response to the virtual load, defined by: 

Ku(1)=Z(1). (4.34) 

Equation (4.33) can be re-written as 

«<'> = E u ^ . u , = ±C", (4.35) 
r'=l ; = 1 

where u[1} is the element displacement vector due to the virtual load. C-1] is known 

as the element virtual strain energy. 

Suppose that an element is removed from the structure. For simplicity, z=\ in equation 

(4.7 ) and the linear approximation of displacement are assumed. Using equation (4.4), 

the displacement will change as follows: 

Aw(0 = Z < ^ f-Ax, = Z ^ I C
1 f-(0- l)u = u^K,". = C?> . (4.36) 

Similarly, an added element will cause changes in displacement as 

A"0) = ̂  f~ *' = -U^K^ = ~C'l) • (4-37) 
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4.2.2 Single Displacement Constraint 

4.2.2.1 Optimality Criteria 

The optimisation problem with a single displacement constraint u * can be stated as 

n 

Minimise / = W = 2 , W,x, 
i=\ 

Subject to g = u*-u>0 , 
x,e{0,l}. 

The Lagrangian function is 

L(x,A) = W-A(u*-u). 

The optimality criterion is 

1 (cg/dx,)Ax, -Auw 

A~ (cf/dx,)Ax, ~ AW ' 

Substituting equations (4.10) and (4.37) into equation (4.40) leads to 

1 C(1) 

- = ̂ - (4.41) 

AW, 

which is similar to equation (4.18). In fact, they are equivalent as dual problems. Like in 

stiffness optimisation, the sensitivity number is defined as 

(4.38a) 

(4.38b) 
(4.38c) 

(4-39) 

(4.40) 
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uj1>rKiui 
a, = =—-1-. (for element Removal) (4.42a) 

i 

uJ1)rK.u. 
a, = - —~. (for element addition) (4.42b) 

a, ' can be either positive or negative. 

The Lagrangian multiplier can be calculated at the optimum as 

1 u* 

Substituting it to equation (4.39) results in the following Lagrangian function 

uxW 
L(x) = — . (4.44) 

4.2.2.2 Scaling of Design 

The scaling technique used here is to scale the whole structure so that it maintains the 

current topology and at the same time the constrained displacement is equal to the limit. 

Based on the same assumption as in stiffness optimisation, it is found that 

W(? )=nW = (^j w = wobj,
 (4-45) 

where Wobj is called objective weight. 
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4.2.3 Multiple Constraints 

4.2.3.1 Optimality Criteria 

The multiple constraint optimisation is much more difficult than single optimisation. 

Firstly, the active constraint is to be identified out of a series of constraints. This is 

usually conducted by using design scaling techniques. Secondly, in single constraint 

problems, it is possible to use a relative value for the Lagrangian multiplier, which is 

often set to unity. This is not the case for multiple constraints. In fact, the calculation of 

Lagrangian multiplier is an important task of optimisation involving multiple 

constraints. 

The Lagrangian function of multiple constraint problems can be expressed as 

m 

L(x, X) = W- 2 A j (uU) - uU) *). (4.46) 
>i 

Where uu) * is the displacement limit of the y'th constraint and A, is the 

corresponding Lagrangian multiplier. 

The optimality criterion can be derived as 

m in 

£40%,/A,)AX, HA^ 
iJzl _ > ! 

(cf/dx,)Ax, W, 

(4.47) 
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where C/
c/) is the virtual energy of the rth element associated with they'th displacement 

constraint. Equation (4.47) is the same as the result based on the reciprocal approach 

(Morris 1982). It states that at the optimum, the weighted sum of the ratio of virtual 

strain energy to the element weight is equal to unity. Lagrangian multipliers are the 

weighing factors. 

From equation (4.47), the sensitivity number of multiple constraint problems is derived 

as 

m 

"i 7=1 

where a}j) is the individual sensitivity number calculated from equation (4.42). 

4.2.3.2 Calculation of Lagrangian Multipliers 

Computing the Lagrangian multiplier plays a key role in the multiple constraint 

optimisation. In conventional optimality criteria algorithms, Lagrangian multipliers are 

required for recurrence relations to resize the design variable. In BESO, as stated in 

equation (4.48), Lagrangian multipliers are weighting factors of the sensitivity number 

of an individual load case. 

Different methods for calculating the Lagrangian multiplier have been surveyed by 

Morris (1982). Improvement on these conventional methods is suggested by Chu (1997) 

for the use of ESO. In summary, there are three types of approaches: 

63 



4. BESO for Stiffness and Displacement Optimisation-Theory 

1. Recurrence relations 

\\lb 
U 

<" = %-. . (4-49) J J V u * , 

where h represents the iteration cycle. 

It is necessary to re-write the optimality criterion equation (4.47) as follows in order to 

discuss the features of the above recurrence relation: 

m m 

1 = izl >' (4.50) 
W W, 

As shown in equation (4.50), once the Lagrangian multiplier is available, the sum of 

element virtual energy as the numerator can be computed easily. The individual strain 

energy of a single constraint needs not to be computed. Instead, a unit virtual load 

vector weighted by the Lagrangian multiplier F - LtAfL® is applied to determine the 
7=1 

overall virtual displacement. Furthermore, the recurrence relation can gradually reduce 

the Lagrangian multiplier of a passive constraint. Therefore, it is not necessary to 

differentiate between the active and passive constraints at one iteration. However, this 

may cause problems when a passive constraint become potentially active in later stage. 

A remedy to this drawback is to define a ratio relation, as discussed below. 

2. Ratio relation 
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( u Y" 
J \u*JL • 

(4.51) 

in which the Lagrangian multiplier is only related to the current displacement. This 

makes sense as the effect of displacement greater than the constraint will dominate and 

the contribution of those far below the limit can be very small. Also, once their 

contribution becomes more significant, such a change can be easily picked up and 

reflected in the Lagrangian multiplier. 

The exponent b is a step size parameter. When a design is in the feasible region 

( uU) < uU) *), a value of b > 1 can be used to decrease the difference between 

contributions of constraints and b < 1 will magnify the difference. The converse is valid 

when the design is in the infeasible region. 

3. Linear equations 

The following linear equations have been proposed by Chu (1997): 

^ f (alj) signnC0X_a,(/') signw(/V 

,=i M V W, 

where 

£ ^ ( ^ s l g n ^ X < ' s l g n ^ ) = M O ) t u__^m)> ( 4 H ) 

signM(7) = 1 when uU) > 0 and 

sign«0)= -1 when uU) < 0. 

The Lagrangian multiplier can be calculated by solving a system of equations as given 

above. The major advantage of this method is that it takes account of the 
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interdependence among constraints. However, the computational cost is much higher 

than that of the other two relations. 

In this thesis, Lagrangian multipliers are calculated according to the ratio relation of 

equation (4.51) and b =1 is assumed. 

4.2.3.3 Scaling of Design 

The scaling factor is defined as 

( uu) V 
ju = max 

j=l,m 
KUU) *j 

(4.53) 

The objective weight is 

Wobj = nW . (4.54) 

That is, the design is scaled according to the most critical constraint. 

4.2.3.4 Multiple Loading Conditions 

The Lagrangian function for multiple loading conditions is 

L(x,X) = W-YJA
k
j(u

U)k -uU)*) k = \,..„l, (4.55) 
7=1 

where uU)k is the displacement under the Ath loading condition. 
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From equation (4.48), the sensitivity number for multiple loading conditions becomes 

/ m 

±L^cr , 
A-1>1 ' 

a,.= k=\ j=\ 

where C\j)k is the virtual strain energy associated with they'th constraint due to the jfcth 

load case. A* is the corresponding Lagrangian multiplier which is calculated 

u(j)k 

from fc = 
i ' U<J) * • 

The scaling factor // is defined as 

(uu»\ 
Id = m a x 
7=1 .w 

k=\,l 

j=\,m\UU) *J 

(4.57) 

A n alternative approach to the multiple constraint problem is to consider the most 

critical loading condition. Out of / load cases, there exists one case where the concerned 

displacement is closest to the given limit and this load case is identified as the most 

critical one for a certain constraint j. Evidently, if a scaled design satisfies the y'th 

displacement constraint, the constraint can be automatically satisfied by the other less 

critical load cases. At an iteration, the most critical cases are determined for each 

constraint and the subsequent analysis is based on these cases. The problem can be 

greatly simplified by this means. 
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4.3 Calculation of Sensitivity Number 

4.3.1 Displacement Extrapolation 

A basic concept in sensitivity number a, is the element strain energy, as given in 

equations (4.19) and (4.42). The utilisation of the virtual load method generalises the 

calculation of these two kinds of sensitivities. They can be computed at element level 

as only the information of the concerned element is needed. This makes computation 

very economical and efficient. Also, in the case of multiple loading conditions, 

multiple displacement constraints or their combination, the overall sensitivity is the 

weighed sum of sensitive numbers of individual constraints. The weighting coefficients 

can be Lagrangian multipliers in equations (4.48) and (4.56) or some preset values in 

equation (4.32), depending on the nature of the problem. 

The sensitivity analysis is performed after the finite element analysis. For existing 

elements, the sensitivity can be calculated readily as the information on both stiffness 

matrix and displacement is available. For those potentially added elements, extra work 

is needed as some of the nodal displacements are undefined. 

First, though the term 'potentially added elements' has already been used occasionally 

in previous sections, it is necessary to give it a clear definition here. Take a plane stress 

problem for example, where four-node rectangular elements are adopted, as shown in 

Fig. 4.1. The shaded area represents the current structure with the boundary depicted by 

darker lines. Elements can be added along the structural boundary, either internal or 
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external one. Those elements, partly drawn by dashed lines, are called 'potentially 

added elements'. 

Fig. 4.1: Potentially added elements. 

The potentially added elements can be divided into three types according to the number 

of undefined nodal displacements. 

A2: connected with one boundary element and having two undefined nodal 

displacements. 

A3: connected with two boundary elements and having one undefined nodal 
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displacements. 

A4: connected with three or four elements and all nodal displacements are known. 

The undefined displacements can be approximated by extrapolation. The displacement 

field of a four-node element can be represented by the following bi-linear polynomial 

(Zienkiewicz 1977): 

u = a0 + axx + a2y + a3xy 

v = b0+bxx + b2y + bzxy, 

where u and v are horizontal and vertical displacements, as shown in Fig. 4.2(a). 

(4.58) 

v« 
1 x 

I4 t V3 

0 

3' 

vB 
3 

, Y 
A2 

' \ 2 

\ • Boundary Element 

B 

* 

v4 

V1 

4' 

4 

1' 

v3 

A3 
____ — — 
v2 

(a) Element type A2 (b) Element type A3 

Fig. 4.2: Displacement extrapolation. 

The two displacement components vary linearly along the element edge, as illustrated 

by line 4'3'. Extending such a linear distribution to the adjacent element A2, the 

displacement of node B is easily found to be 
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v B = 2 v 3 - v 4 . (4.59) 

The displacement of node 2 is calculated in the same way. 

For element of type A3 with one nodal displacement unknown, it is assumed that the 

element is shaped as a parallelogram after deformation, as shown in Fig. 4.2(b). 

Therefore, 

V3 = V2 + V4 ~ vi • (4-60) 

The above graphical demonstration of displacement extrapolation is consistent with 

more rigorous mathematical derivations. Without losing generality, we briefly discuss 

here the shape function approach. More details on this topic can be found in the work 

by Zienkiewicz (1977). 

For a four-node isoparametric element, displacement within the element can be 

expressed as 

" = i>,w;., v = 2>,v„ (4-61) 

where «=4 , and u, and v,. are displacements of nodes 1, 2, 3 and 4, as shown in Fig. 

4.3. N, is the shape function, defined with respect to the local coordinate system <%Orf. 

The shape function is expressed as the following equations: 
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^ 1 = ^ ( 1 - ^ X 1 - 7 ) 

N2 =^(1 + ^X1-7) 

^=^(1 + ^X1 + 7) (4-62) 

^4=^(l-^)(l + 7). 

The displacement extrapolation is based on the assumption that a point outside a 

reference element is defined using the same coordinate system as this element. 

Therefore, as shown in Fig. 4.3, nodes A and B have coordinates (3,-1) and (3,1) 

respectively, in the gOrj system defined for the boundary element. Substituting the 

coordinates (£,77) of nodes A and B to equation (4.62) leads to: 

Node A: Nx = -1, N2 = 2 and yV3 = N4 = 0. (4.63a) 

Node B: N3 = 2, #4 = -1 and Nx = N2 = 0. (4.63b) 

Substituting the above values into equation (4.61). The same expression as equation 

(4.59) is obtained. 

It is worth noting that the above derivation based on shape functions is also applicable 

for four-node elements under plate bending conditions. The displacements in xy 

plane u and v are simply replaced by the deflection w and rotations with respects to 

the two axes 0X and 9y . 
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Further, it is also noted that the shape function approach can be applied to any type of 

finite element. Though the final displacements may not assume such simple forms as 

equations (4.59) and (4.60), the concept and procedure of the displacement extrapolation 

are applicable in general. 

The underlying principle of the displacement extrapolation is that a potentially added 

element is to comply with the compatibility condition. However, the static equilibrium 

condition is not satisfied within the concerned element. For this reason, the element 

strain energy is over-estimated based on the fictitious displacement field. This point is 

reflected in the value of the sensitivity number. Take the respective maxima of 

sensitivity numbers of existing elements and potentially added elements for example. 

The difference between them can be as large as one order. This makes it necessary to 

group these two kinds of elements separately, as discussed in section 4.1.3.2 about the 

generalised sensitivity number n, . 

4.3.2 Modified Sensitivity Number for Eliminating Checkerboard Patterns 

In optimising 2D continua, the checkerboard pattern is often observed where the solid 

and void elements distribute in an alternative manner similar to a checkerboard. Designs 

with checkerboard patterns are not desired in practice because of the highly unsmooth 

internal profile. 

The reason due to the checkerboard pattern can be the numerical instability. Sigmund 

and Petersson (1998) has discussed the methods for preventing the formation of 
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checkerboard patterns. The simplest one uses some post-processing techniques to 

smooth the resulted topology. Also, some techniques are suggested to suppers the 

appearance of checkerboard right in the solution process, such as the patch and filter 

techniques introduced to the homogenisation method (Bendsee et al. 1993, Diaz and 

Bends0e 1992). In the evolutionary method, it is found that checkerboard pattern is 

more likely to occur to four-node elements. Use of higher order element like eight-node 

isoparametric elements can avoid this problem. However, a higher order element means 

much higher more computational cost. Therefore, some alternative methods based on 

four-node element have been proposed. 

The first one can be grouped into the post-processing techniques. First, some 

appropriate elements are recovered to the structure so that the checkerboard pattern can 

be eliminated temporarily. This will usually affect the objective function in a negative 

way. Therefore, the second step is to perform shape optimisation on the newly defined 

design. Elements are only removed from the boundary so that no further holes are 

produced. This strategy has been used for stiffness optimisation in ESO (Chu 1997). 

Another strategy is similar to the filter technique used in the homogenisation method 

and the effect of the neighbor elements on the specific element sensitivity is accounted 

for, as suggested by Manickarajah (1998). The extra work needed is to calculated an 

average sensitivity number. The steps are outlined briefly as follows: 

1. The element sensitivity number is calculated using equation (4.19) or its variations. 

This is referred to as the initial sensitivity number. 
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2. This initial sensitivity number is assigned to the four nodes of the element and is 

called 'nodal sensitivity number'. A node adjoined by several elements has the 

same number of nodal sensitivity numbers. The nodal sensitivity numbers are 

summed up and an average is worked out. 

3. Then an element has four average nodal sensitivity numbers. Again, they are 

summed up and the resulting average is called the modified sensitivity number. It is 

this number rather than the initial one that is used to decide the element modification 

in subsequent procedures. 

Fig. 4.4: Nodal sensitivity number. 

The above pre-processing strategy is used in this thesis due to its simplicity and 

computing efficiency. When it is applied, the existing element and potentially added 

element are treated separately. For example, we shall calculate the sensitivity number 

for elements A and B in Fig. 4.4. The letter beside each node, e.g. Al(2) means the 

nodal sensitivity of the first node of an additional element B and the node connects two 
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additional elements. There are two common nodes Nl and N 2 in these two elements. 

For N2, it has two nodal sensitivities, R2(2) and A3(2). R2(2) is calculated by taking 

average of two existing elements A and C, whereas A3 (2) is obtained as an average of 

two additional elements B and D. These two numbers are later assigned to their 

corresponding existing and potentially added elements. 

4.4 Procedure of BESO 

4.4.1 Basic Concepts 

Like most of numerical methods, BESO carries out optimisation in an iterative and 

progressive manner. In each iteration, BESO is made up of three parts, namely, 

structural analysis, sensitivity number calculation and element modification. The 

procedure is very general in that only the second part varies with the nature and property 

of constraints. 

We shall start with some basic concepts necessary for the further discussion of the 

BESO procedure. 

1. Full design 

The full design is a design domain that the structure is allowed to occupy, which is 

normally an over-sized area. This is a common feature of the ground structure approach. 

The reason is that there should be adequate elements remaining to represent the final 
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optimum after repeated element elimination. The weight of the full design is denoted by 

W 

2. Initial design 

The initial design is the one from which the evolution starts with. BESO can start 

optimisation from an arbitrary design within the full design. Preferably, it uses the 

simplest one connecting the loads and supports. An initial design can be specified either 

manually or automatically. The former is adopted in this thesis. 

3. Maximum design 

A maximum design is relevant to the objective compliance Cobj or objective weight 

WobJ . A structure grows from an initial design gradually. During this course, the 

objective compliance or objective weight decreases, which means the structure is 

evolving towards a better solution. There is a certain point at which CobJ or Wobj starts 

increasing. This means that the growth in structural weight on longer makes a better 

design. Therefore, it is possible to make CobJ or WobJ decrease again by reducing the 

structural weight. The design corresponding to this changing point is referred to as the 

maximum design and it has the largest weight Wmax out of the whole evolution. 

At this point, it is noted that Cobj or Wobj is not always decreasing smoothly. It keeps a 

decreasing trend but some small increase may happen occasionally. So a maximum 

design is not decided immediately after an increase is seen in CobJ or Wobj . Instead, if 
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they have increased for, say, 10 continuous iterations, it is assumed that the maximum 

design has reached. 

4. Modification ratio, addition ratio and removal ratio 

As an iterative method, it is important to maintain a smooth change between designs of 

consecutive iterations. At a single iteration, the number of modified elements can be 

decided by the modification ratio and the reference structure. A reference structure can 

be the full design or the current structure. For example, if the current design with, say, 

1000 elements is chosen as the reference design and modification ratio MR =1% is 

used, there will be 1000 xl%, namely, ten elements modified at that iteration. In 

BESO, there are another two parameters, namely, addition ratio (AR) and removal ratio 

(RR). If, say, AR=0.6 and MR =1-0.6=0.4 are assumed, among the ten modified 

elements, six are added, four are removed and the net increase in the element number is 

two. 

4.4.2 Evolutionary Procedure 

For stiffness (case 1) and displacement optimisation (case 2), BESO is carried out in 

the following steps. 

1. Construct a finite element mesh in the full design. Apply boundary and loading 

conditions. All elements are assigned a property number 0. 
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2. Specify the initial design within the full design. Elements in the initial design 

change their property numbers from 0 to 1. This means that in the current structure, 

only these elements physically exist and are used for the structural analysis. 

Elements with a property number 0 are absent. They will be ignored when the global 

stiffness matrix is assembled. 

3. Perform the finite element analysis on the current structure to obtain the 

displacement response. 

4. Identify the potentially added elements, namely, A2, A3 and A4 in Fig. 4.1. Assign 

different property numbers, say, 2, 3 and 4 to corresponding elements. Computer the 

nodal displacement by equations (4.59) and (4.60) in the case of four-node elements 

of plane stress problem. 

5. Calculate the initial sensitivity number by using equation (4.19) or its variations for 

all existing and potentially added elements. Further calculate the modified 

sensitivity number by the procedure outlined in section 4.3.2. 

6. Decide the number of modified elements according to the modification ratio MR, 

addition ratio AR and reference structure. Compare sensitivity numbers for existing 

and potentially added elements respectively. Remove elements with the smallest 

values of a, and change their property numbers from 1 to 0. At the same time, add 

those elements with the smallest a, and their property numbers change from 2,3 or 
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4 to 1. Change the property numbers of all the rest potentially added elements to 0. 

AR > 05 is used so that the structural weight increases. 

7. Repeat steps 3 to 6 until a maximum design with W= Wmax is reached. Set AR < 05 

so that removed elements outnumber added ones thus the structure reduces its 

weight. 

8. Repeat steps 3 to 7 until certain conditions are satisfied. For stiffness optimisation 

(case 1), the iteration stops when the prescribed weight is reached. For displacement 

optimisation (case 2), the evolution terminate when all the displacement constraints 

are satisfied. 

Further, in stiffness optimisation, it may happen that the weight of the maximum design 

WmSK is smaller than the prescribed weight W * . In this situation (referred to as case 

1 A), steps 7 and 8 are changed as follows: 

7. Repeat steps 3 to 6 until the structure arrives at the prescribed weight W* . Set 

AR = 05 so that the weight keeps constant. During this course, the objective weight 

Wobj may decrease slightly. The program terminates when Wobj begins increasing 

for, say, 5 consecutive iterations. If there is no clear increasing trend, the program 

terminates when Wobj becomes oscillating. The design with the minimum Wobj is 

chosen as the optimum. 
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It is seen that the change of structural weight is divided into two stages: before the 

maximum design is reached, the weight increases and after the maximum design it 

decreases (or keeps constant). These two stages are referred to as ascending and 

descending stages, respectively. Different values of AR are assigned in these two 

stages. 

For the clarity of description, it is assumed that all elements are of the same size and the 

material has homogenous density. If these assumptions do not hold true in some cases, 

only the value of addition ratio needs to be adjusted to accommodate factors of the 

element size and density whereas the procedure is the same. 

The above procedure has been programmed into a computer code called BESODSP, 

which is link to the FEA software STRAND6. The flowchart of BESODSP is given at 

the end of this chapter as Fig 4.5. 

The input of STRAND6 includes all physical, geometrical and load properties. The 

constrained displacement is treated as a load case where a unity load in the same 

direction as the constraint is imposed on the concerned node. Suppose that there are 

altogether NTOT load cases, the number of real load cases NREAL is entered into the 

input of BESODSP. Then the rest NTOT-NREAL (NTOT>NREAL) cases will be 

automatically identified as the virtual loads, i.e. constrained displacements. In the case 

of NTOT=REAL (no constrained displacement), the code processes the problem as a 

stiffness optimisation. 
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Both E S O and B E S O can be performed by running the code B E S O D S P . A variable 

IBESO is set aside to identify the method to be used, with IBESO=l representing BESO 

and IBESO=0 representing ESO. 

4.4.3 Discussions on Different Structural Systems 

There are three points worth noting regarding the topology optimisation of different 

types of structures using BESO procedure. 

First, the potentially added element is a key point of BESO. It would be advantageous 

if there are plenty of potentially added elements available to choose from in a structure. 

At this point, continuous structures (2D or 3D) can be more suitable for BESO than 

truss or frame structures. Further, the latter has relatively larger size of elements, which 

may lead to inaccurate results in the displacement extrapolation. For this reason, the 

application of BESO focuses on 2D continua structures at this stage. 

Second, BESO procedure involves the concept of objective compliance or objective 

weight, which is used to determine the maximum design. Its definition is based on 

scaling techniques as discussed in section 4.1.3. For 2D problems such as plane stress, 

thin plate bending, the scaling parameter can be calculated very easily. In cases where 

the definition of objective compliance or objective weight is not available, the 

maximum design can be specified before hand as a structure of a relatively large weight, 

say, 60%. This is to ensure a large design variable space. 
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Thirdly, though the procedure of B E S O is discussed for structure of plane stress 

conditions in this thesis, it is not restricted to this kind of problem. In fact, BESO can be 

equally applied to other 2D or 3D elements. Only the modification on displacement 

extrapolation is needed. 

4.5 Summary 

The theory of topology optimisation with stiffness and displacement constraints using 

the BESO method is presented in this chapter. Though BESO is most suitable for 

continuous structures, its concept and procedure are general regardless of the type of 

structural systems. Compared to ESO, BESO is still in its initial developing stage, so the 

work is first conducted on simple cases, e.g. 2D plane stress problems. The next chapter 

will investigate the capability of BESO through some numerical examples. 
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START 

Inputs: 

CASE, MR, AR,W* or u* 
stage='ASCEND'. 

Define full design. 

Define initial design. 

Finite element analysis 

1 
• Identify potential added elements. 

• Calculated sensitivity number a,. 

• Calculate x = W., or x = C „ . 
obj obj 

CASE, stage, x 

Determine Stage ,AR 

stage, AR 

Determine the number of added and removed elements. 
Modify the design. 
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Chapter 5 

BESO for Stiffness and Displacement Problems-
Applications 

5.1. Introduction 

The previous chapter has explored the mathematical formulation and basic procedure of 

the bi-directional evolutionary structural optimisation (BESO) method. In this chapter 

we shall investigate its application to the topology optimisation of 2D continua through 

some numerical examples. Stiffness and displacement optimisations are conducted 

under multiple load and multiple constraint conditions in these examples. Most of the 

examples are chosen from the literature of ESO and other alternative methods. 

Comparisons of different methods are attempted and ESO severs as the major 

benchmark. Results are discussed in terms of structural response (compliance or 

displacement), optimal topology and computational efficiency. Conclusions regarding 

the performance of BESO and ESO are given towards the end of the chapter. 

First of all, it is necessary to clarify a few points. All examples are tested by running the 

computer code BESODSP together with the FEA software STRAND6 on a Pentium 200 

PC with 32 MB of RAM. The same denotations and parameters are used as those in 

Chapter 4. The 2D continua are under plane stress conditions and the four-node linear 
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square element is used to discretise the structure. In interpreting the results, the terms 

'structural weight', 'constrained displacement', 'objective compliance' and 'objective 

weight' will appear frequently. For simplicity, they are used as relative quantities, which 

have been scaled with respect to corresponding values of the full design, W0 , u^ , C°obj 

and W"obj . 

As for the reference structure and two parameters, namely, the modification ration MR 

and addition ration AR, they are chosen from Table 5.1. 

Table 5.1: Parameters and factors in ESO and BESO. 

ESO 

BESO Ascending 

Descending 

MR 

1.0% 

1.5% 

1.5% 

AR 

— 

0.66 

0.25 

Reference Structure 

Current structure 

Full design 

Current structure 

The following aspects are considered in choosing the above parameters and reference: 

Firstly, in ESO and the descending stage of BESO, we relate the number of modified 

elements to the current structure rather than the full design. This is more viable as it 

takes account of changes in the space of design variables. 

Secondly, as BESO starts from a very small structure, the evolution may be 

unnecessarily slow if the number of modified element is related to the current structure. 

For this reason, we use the full design as reference in the ascending stage. Additionally, 

we may have chosen the addition ratio ^/?=(l-0.25)=0.75 for this stage. However, the 

design in the ascending stage has shorter boundary line and there are not sufficient 
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elements available to be add, so a smaller addition ratio AR =0.66 is assumed instead. 

Thirdly, MK=1.0% and MR=l.5% are assumed for ESO and BESO respectively. We 

may have used the same modification ratio for both methods to allow for the same or 

similar level of accuracy in the sensitivity analysis. However, unlike the case of ESO 

where the evolution speed is only controlled by MR, the speed of BESO is determined 

by MR as well as AR. For this reason, we increase the modification ratio slightly for 

BESO so that the speed of two methods can be comparable. The performance of BESO 

is affected by the selection of modification ratios. This aspect will be investigated in the 

next chapter. 

Finally, there are another two 'rules' used for BESO: 

• During the first 15 iterations, only element addition is allowed to avoid the 

disconnection of structure due to the element removal. 

• Suppose there are totally Ne elements and Np potential added elements in the 

current structure, the number of actually added elements Nadd is finally decided by 

the following equation: 

Nadd = min(/Ve x MR, Np x 0.75) (5.1) 

The reason is quite simple. If we allowed too high a proportion of potential added 

elements to be introduced, it would be meaningless to use the sensitivity number to 

compare their efficiency. The two parameters, namely 15 iterations and 0.75, are 

decided according to the numerical experience. 
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5.2 Stiffness Optimisation 

5.2.1 Single Loading Condition 

Example 1: three-point loaded beam 

The structure studied here was a simply supported beam as shown in Fig. 5.1. Three 

concentrated loads were applied downward simultaneously at points of 1/4, 1/2, 3/4 of 

the beam span. The Young's modulus £=207 GPa and the Poisson's ratio v=0.3 were 

assumed. 

K 
IfT 

0.1 m 

t=0.005 m 

0.2 m 

Initial design 

3 
P * H VH 

P=10kN 

M 

| Full design 

%. 

Fig. 5.1: Three-point loaded beam. 

The full design was a rectangle which was divided into 100x50, totalling 5000 square 

elements. The initial design for BESO consisted of two rows of elements between the 

supports, as shown in Fig. 5.2. The bottom row was treated as a non-design area, that is, 

elements in this area were not allowed to change during optimisation. The dots in the 

background represented the finite element mesh. The design objective was to minimise 
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the compliance with three weight limits: W* = 5 0 % , 4 0 % and 3 0 % , respectively. 

Fig. 5.2: FE model and initial design 
(example 1). 

Following the BESO procedure outlined in Chapter 4, the structure grows from the 

initial design to the desired optima. The objective compliance Cobj decreases sharply 

from an initial value of 108.11 to 1.03 at the 30th iteration. Fig. 5.3 illustrates the 

history of the objective compliance and structural weight from the 30th iteration 

onward. It can be seen that a decreasing tendency is kept in the objective compliance 

throughout out the evolution. A slight local increase is seen from point A to B, which 

corresponds to a peak (point C) in the weight diagram. The weight history is thus 

divided into ascending and descending stages at point C. 

Fig. 5.4 displays changes of structural topologies. Fig. 5.4(d) is the maximum design at 

point C. Final optimal topologies of prescribed weights are shown through (e) to (g). 

Their corresponding topologies during the ascending stage are given as (a)~(c). Optimal 

topologies obtained by ESO are shown in Fig. 5.5. While they are higher than their 

BESO counterparts, the overall shapes are similar. 
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Objective 
Compliance C^ 

Weight W 

60 90 120 150 

Number of Iterations 

180 

Fig. 5.3: Evolutionary history of objective compliance 
and structural weight. 

(a)W=03,Cobj=l.2\2. (b)W= 0.4, C0bj = 0.749. 
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(c) W= 0.5, C0bj = 0.706. (d) W= Wmctx = 0.55, Cobj = 0.706. 
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(e) W* = 0.5, CODj = 0.673. (f) W* = 0.4, CQbj = 0.636. 

(g) W * = 30%, C0ty = 0.584. 

Fig. 5.4: Topologies in evolution (BESO). 

(a) 0* = 50%, C0bj = 0.665. (b) r* = 40%, C0bj = 0.623. 

(c) W* = 30%, Q,fy = 0.579. 

Fig. 5.5: Optimal topologies (ESO). 
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Table 5.2 summarises the result of the objective compliance. E S O yielded a better 

solution in this example and required less solution time. The solution time is determined 

by two factors, namely, the time required in one step as well as the total number of 

steps. In one step, the time is allocated to the structural analysis and element 

modification. The computing time in these two parts can be roughly estimated by orders 

of n3 and n2, respectively, where n is the number of finite elements. The structural 

analysis requires more time than the element modification and its proportion increases 

with the dimension of the finite element problem. In this respect, BESO has more 

potential in saving computing effort. On the other hand, BESO usually requires more 

design cycles before it arrives at an optimum than ESO. In this example, the second 

factor dominates and the strength of BESO is offset by a large number of iterations. 

Table 5.2: Results of ESO and BESO (Example 1). 

w* 

50% 

40% 

30% 

ESO 

BESO 

ESO 

BESO 

ESO 

BESO 

c 

0.665 

0.673 

0.623 

0.636 

0.579 

0.584 

Iteration 

68 

86 

85 

112 

115 

149 

Time 

(Hour) 

2.5 

2.5 

3 

3.5 

3.8 

4.5 

This example has been studied by the homogenisation method (Diaz and Bends0e 

1992). Where similar topologies have been obtained. 
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Example 2: angle piece 

The mechanism of an angle piece was represented by the loading and boundary 

conditions shown in Fig. 5.6. Loads on the left-hand hole were to be transmitted to the 

supports located around the two right-hand holes. Physical properties were E = 200 GPa 

and v = 0.3. There was no weight limitation but the optimum with the minimum 

objective compliance was to be sought out of the rectangular area. 

The full design was divided into a mesh of 96x80, as shown in Fig. 5.7, and the dark 

elements made up of the initial design. 

t=0.001 m 

Fig. 5.6: Design domain of an angle piece. 
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Fig. 5.7: FE model and initial design 
(Example 2). 

(a) W= 0.283, C0bj = 0.545, iteration = 97. (b) W= 0.283, C0bj = 0.571, iteration = 70. 

Fig. 5.8: Optimal topologies: (a) BESO; (b) ESO. 

Optimal topologies by ESO and BESO are given in Fig. 5.8. The two designs had the 

same weight 0.283, whereas the one obtained by BESO had a much smaller objective 

compliance. The times required by BESO and ESO were 3 and 4.5 hours, respectively. 

The maximum design had a relatively low weight (0.419), so BESO only needs 

marginally more iterations than ESO and it saved computing time. For such a large 

structure (totally 7416 elements), the savings in solution effort due to BESO were 

significant. 
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Example 3: lever arm 

The shape in Fig. 5.9 models the loading and supporting conditions of a lever arm. The 

structure was fixed in the hole on the left and loads were applied at point A on the right. 

Two load cases were considered to respectively simulate the tension and bending 

conditions. The best optimum under each individual load case was the design objective. 

The full design was discretised by a mesh of 76x38. There are 4776 elements excluding 

those in the two holes. The finite model and initial design are given in Fig. 5.10. The 

optimal topology of each load case is shown in Figs. 5.11 and 5.12. The objective 

compliance is summarised in Table 5.3. 

Case 2 

F2=1 kN A F,=4 kN 

t=0.001 m 

Fig. 5.9: Design domain of a lever arm. 

Fig. 5.10: FE model and initial design (Example 3). 
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(a) ̂ =0.123, Cobj = 0.842. (b) W= 0.112, Cobj= 0.839. 

Fig. 5.11: Optimal topologies for case 1: (a) BESO; (b) ESO. 

(a) W= 0.145, C0bj = 0.366. (b) W= 0.147, C0bj = 0.366. 

Fig. 5.12: Optimal topologies for case 2: (a) BESO; (b) ESO. 

Table 5.3: Best optima by ESO and BESO (Example 3). 

w r 
^obj 

Iteration Time 

(Hour) 

Case 1 

ESO 

BESO 

0.123 

0.112 

0.842 

0.839 

198 

89 

4 

1.2 

Case 2 

ESO 

BESO 

0.145 

0.147 

0.366 

0.366 

184 

126 

3.5 

1.5 
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The values of objective compliance by the two methods were similar. B E S O was by far 

the more efficient solution for this example. This is because the maximum designs only 

occupy a very small proportion of the full design, namely, 29% in case 1 and 36% in 

cases 2. 

Examples 2 and 3 have been solved by Mattheck (1997) using the soft kill option (SKO) 

for uniform stress design. 

5.2.2 Multiple Loading Conditions 

Example 4: three-point loaded beam 

The same full design, initial design and finite element setting as for example 1 were 

used here. However, three loads were applied independently, one at a time. The 

optimisation was to minimise the average compliance with a given weight, namely, 

C=C1 + C2 + C3. The weight limits were prescribed as W* = 50%, 40% and 30%, the 

same as in the single load condition optimisation. 

Fig. 5.13 compares the corresponding optimal topologies for different weights. As also 

shown in example 1, topologies obtained by the two methods share similarities in outer 

shape and some internal configurations. BESO produced designs of smaller height and 

larger size of arches and spokes. 
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(al) W* = 50%, Cobj = 0.725. (a2) W* = 0.5, Cobj = 0.777. 

(bl) W* = 40%, C0bj = 0.696. (b2) JP = 40%, C0bj = 0.765. 

(cl) W* = 30%, C0fy- = 0.696. (c2) W* = 30%, CQbj =0.821. 

Fig 5.13: Optimal topologies: (al)~(cl); ESO: (a2)~(c2). 

As shown in Table 5.4, the objective compliance obtained by BESO are considerably 

smaller than that by ESO. A study of the evolutionary history reveals that the weight of 

the maximum design was relatively small with Wmsx=0562. Its objective 

compliance Cobj = 0.754 , was much lower than that of ESO with the same weight. 

After the maximum design, BESO has a smaller compliance than ESO all along, as 

shown in Fig. 5.14. Also, BESO requires less solution time. The major reason can be 

that the finite element analysis under the three load cases consumed substantially more 
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time in ESO. 

Table 5.4: Results of B E S O and ESO (Example 4). 

w* 

50% 

40% 

30% 

ESO 

BESO 

ESO 

BESO 

ESO 

BESO 

^obj 

0.777 

0.725 

0.765 

0.696 

0.821 

0.696 

Iteration 

65 

91 

85 

119 

110 

155 

Time 

(Hour) 

4.0 

3.3 

4.8 

4.3 

6.0 

5.6 

0.9 

° 0.8 
o 
£ 0.7 

0.6 
Q. 
E 
o 
o 0.5 

0.6 0.5 0.4 0.3 

Weight W 

0.2 

Fig. 5.14: Changes in mean compliance vs. structural weight 
(descending stage). 

Example 5: square plate 

In this example, a full design was given as a square plate in Fig. 5.15. The central hole 

was prevented from all movements. Two load cases, P and Q were applied 

independently at the four corners. The Young's modulus £=200 GPa and the Poisson's 

ratio v=0.3 were assumed. The weight limits *T*=50%, 40%, 30% and 20% were 
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specified. 

Fig. 5.16 gives the finite element setting and the initial design. A mesh of 50x50 was 

used. Final optimal designs by BESO and ESO are given in Fig. 5.17. The 

corresponding shapes are almost identical. They also agree well with the results by the 

homogenisation method (Diaz and Bends0e 1992). BESO results in lower values of 

objective compliance for most of design cases. It also saves solution time, as shown in 

Table 5.5. 

Q 

' 

P 

' 

° '\ P 
P= 

t=0.005 

0.2 m 

m 

0.04 m 

=C 1=100k N 

' 

/ 

i 

P 

\ 
( 

Full de 
/ 

P 

4 

Q 

Fig. 5.15: Design domain. 

Fig. 5.16: FE model and Initial design (Example 5). 
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(al) W* = 50%, C0bj = 0.710. (a2) W* = 50%, Cobj = 0.707. 

(bl) W* = 40%, C0bj = 0.115. (b2) W* = 40%, C0bj = 0.726. 

(cl) W* = 30%, C0ty = 0.760. (c2) W* = 30%, C0bj = 0.756. 

(dl) fP" = 20%, C0bj = 0.882. (d2) W* = 20%, C0i/ = 0.912. 

Fig. 5.17: Optimal topologies: BESO: (alHdl); ESO: (a2)~(d2). 
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Table 5.5: Results of BESO and ESO (Example 5). 

w* 

50% 

40% 

30% 

20% 

ESO 

BESO 

ESO 

BESO 

ESO 

BESO 

ESO 

BESO 

^obj 

0.707 

0.710 

0.726 

0.715 

0.756 

0.760 

0.912 

0.882 

Iteration 

59 

88 

74 

118 

99 

147 

127 

178 

Time 

(Min.) 

100 

50 

120 

60 

150 

80 

160 

90 

5.3 Displacement Optimisation 

5.3.1 Single Displacement Constraint 

Example 6: Michell type structure 

A Michell type structure is shown in Fig. 5.18. We intended to design the lightest 

structure while the displacement at the mid-span (point A) was constrained. The full 

design was a rectangle which had an initial displacement u =0.36 mm at point A. The 

displacement limits were u * =0.6, 0.8 and 1.0 mm, respectively. The Young's modulus 

£=207 GPa and the Poisson's ratio v =0.3 were assumed. 

A finite element mesh of 80x40 was used. The initial design consists of one row of 

elements at the bottom, as shown in Fig. 5.19. Optimal topologies corresponding to each 
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displacement limit are given in Fig. 5.20. 

r*" 
~K~ 

0.1 m 

_̂ _ 

t=0.001 m 

0.2 m 

/ 
Initial design 

-̂s 
k 0.1 m 4 

A 

P=10 kN 

-*l 

/ 
Full design 

Fig. 5.18: Michell type structure. 

Fig. 5.19: F E model and initial design 

(Example 6). 

(al) u* = 0.6 mm, W0bj = 0.576. (a2) u* = 0.6 mm, W0bj = 0.590. 
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(bl) M* = 0.8 m m , W0bj = 0.577. (b2) u* = 0.8 m m , Wobj = 0.551. 

(cl) u* = 1.0 m m , Wobj = 0.548. (c2) u* = 1.0 m m , JT0fy = 0.557. 

Fig. 5.20: Optimal topologies: BESO: (alHd); ESO: (a2)~(c2). 

Table 5.6: Results of BESO and ESO (Example 6). 

u* 

(mm) 

0.6 

0.8 

1.0 

ESO 

BESO 

ESO 

BESO 

ESO 

BESO 

W 

0.358 

0.345 

0.252 

0.268 

0.206 

0.198 

W 
rrobj 

0.590 

0.576 

0.551 

0.577 

0.557 

0.548 

Iteration 

66 

66 

89 

86 

102 

113 

Time 

(Min.) 

52 

36 

63 

46 

68 

57 

As shown in Table 5.6, results of B E S O are better than that of ESO. It is instructive to 

notice the shape change from topologies (bl) to (cl) and (b2) to (c2). While all of the 

four spokes change in size in BESO, ESO modifies the structure in such a way that the 

two outer spokes disappear thus the remaining two have much larger dimension than 
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their B E S O counterparts. If we allow material to be added as well as removed in shape 

b2, it will most likely to evolve to cl instead of c2, since the former represents a better 

solution. This reflects one possible weakness of ESO that it may remove elements 

prematurely. As for computing efficiency, BESO is also more advantageous. 

Example 7: cantilever beam 

Another example for displacement optimisation is a cantilever beam as shown in Fig. 

5.21. The beam was fixed at its left-hand side. A load P = 3 kN acted in the middle of 

the right-hand free end (point A), where the displacement constraint was imposed. The 

full design had the displacement at point A u0 =0.33 mm. The displacement limits were 

w*=0.5, 0.6 and 0.7 mm, respectively. The Young's modulus £=207 GPa and the 

Poisson's ratio v=0.3 were assumed. 

Full design 

~w 

0.10 m 

JL 

0.16 m . 

t=0.001 m 

3kN 

•*l 

Fig. 5.21: A cantilever beam. 
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The full design consisted of 48x30, totalling 1440 elements. Fig. 5.22 gives the initial 

design including two rows of elements linking the load and supports. The final optima 

obtained by ESO and BESO are given in Fig. 5.23. They are similar to the results of the 

homogenisation method (Suzuki and Kikuchi 1991). 

Fig. 5.22: FE model and initial design 
(Example 7). 

::::::::::::::x: 
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(al) u* = 0.5 mm, W0bj = 0.884. (a2) u* = 0.5 mm, W0bj = 0.869. 

c — i" i.''' 

.. j ;., n ...., 

" " Ti 

fcn 

n rr:: : : : 

pF 

(bl) u* = 0.6 mm, W0bj = 0.847. (b2) w* = 0.6 mm, W0bj = 0.892. 
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H 
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r-^rttr 
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(cl) w* = 0.7 mm, JF0fy = 0.868. (c2) u* = 0.7 mm, WQbj = 0.873. 

Fig. 5.23: Optimal topologies: BESO: (alHd); ESO: (a2)~(c2). 

Numerical results are provided in Table 5.7. For such a small finite element problem, as 

computing loads of structural analysis and optimisation are close, the efficiency of ESO 

and BESO is comparable. 

Table 5.7: Results of BESO and ESO (Example 7). 

u* 

(mm) 

0.5 

0.6 

0.7 

ESO 

BESO 

ESO 

BESO 

ESO 

BESO 

w 

0.572 

0.597 

0.494 

0.468 

0.410 

0.415 

Kbj 

0.869 

0.884 

0.892 

0.847 

0.873 

0.868 

Iteration 

54 

86 

68 

122 

83 

140 

Time 

(Min.) 

15 

15 

20 

24 

23 

27 

5.3.2 Multiple Displacement Constraints 

Example 8: three-point loaded beam 

This example used the same full design, initial design, finite element setting and load 

condition as for example 1. Multiple displacement constraints were imposed on points 
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1, 2 and 3, where the loads were applied. They were equal in magnitude. Four cases 

where ux *= i^ *= u3 *=0.3, 0.35, 0.4 and 0.5 mm were considered. The full design had 

displacements ux= w3 =0.207 mm and u2=0.227 mm. 

(al) u* = 0.3 mm, WQbj = 0.711. (a2) u* = 0.3 mm, WQbj = 0.701. 

(bl) u* = 0.35 mm, W0bj = 0.634. (b2) u* = 0.35 mm, WQbj = 0.644. 

(cl) u* = 0.4 mm, W0bj = 0.572. (c2) u* = 0.4 mm, WQbj = 0.626. 

(dl) u* = 0.5 mm, W0bj = 0.553. (d2) u* = 0.5 mm, W0bj = 0.552. 

Fig. 5.24: Optimal topologies: BESO: (alMdl); ESO: (a2)~(d2). 
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Optimal designs are compared in Fig. 5.24 and results are given in Table 5.8. B E S O 

consumes less computing time. 

Table 5.8: Results of B E S O and E S O (Example 8). 

u* 

(mm) 

0.3 

0.35 

0.4 

0.5 

ESO 

BESO 

ESO 

BESO 

ESO 

BESO 

ESO 

BESO 

W 

0.530 

0.538 

0.418 

0.414 

0.357 

0.324 

0.254 

0.251 

w * 
rrobj 

0.701 

0.711 

0.644 

0.634 

0.626 

0.572 

0.552 

0.553 

Iteration 

61 

94 

84 

127 

96 

155 

127 

186 

Time 

(Hour) 

4.5 

3.5 

6 

5 

6.5 

6 

8 

7.2 

12 r 

1 

0.8 

< o-6 

3 
0.4 
0.2 

0 
40 80 120 160 200 

Number of Iterations 

Fig. 5.25: Displacement history. 

It was also noted that the displacements Wj (u3) and ^ became closer during 

optimisation as a result of equal constraints. The change of displacement ratio u^ I ux is 
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displayed in Fig. 5.25. It increased steadily in the first 120 iterations. In the later 

evolution, there were some jumps where u2 exceeded ux. This only happened 

occasionally and most of time, u2 was the dominant constraint and its Lagrangian 

multiplier was taken a larger value. 

5.3.3 Multiple Displacement Constraints under Multiple Load Cases 

Example 9: three-point loaded beam 

Here, we used example 1. It was assumed that three loads were applied independently. 

Equal displacement constraints were imposed simultaneously at points 1, 2 and 3 under 

each load case. Conceptually, the sensitivity analysis using equation (4.56) should take 

account of the contribution of altogether 3x3 individual sensitivity numbers. However, 

as discussed in Chapter 4.2.3.4, we can identify a critical load case from the outset in 

this example. As the three loads are equal in magnitude, the one applied at the location 

of one constrained displacement will always be the most critical load for that constraint. 

As a result, the final sensitivity number only consists of three components. This 

simplification can significantly reduce the computing efforts in finite element analysis. 

Topologies corresponding to displacements ux * = 02 and 0.3 mm are shown in Fig. 

5.26. The objective weight and solution time for BESO and ESO are compared in Table 

5.9. BESO proves to be a better method in this case as it results in smaller objective 

weights as well as requiring less solution time. 
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(al) u* = 0.2 mm, WQbj = 0.768. (a2) u* = 0.2 mm, WQbj = 0.826. 

(bl) M* = 0.3 mm, W0bj = 0.759. (b2) u* = 0.3 mm, W0bj = 0.873. 

Fig. 5.26: Optimal topologies: BESO:(al)~(bl); ESO: (a2)~(b2). 

Table 5.9: Results of B E S O and E S O (Example 9). 

u* 

(mm) 

0.2 

0.3 

ESO 

BESO 

ESO 

BESO 

W 

0.424 

0.401 

0.299 

0.259 

W * 

0.826 

0.768 

0.873 

0.759 

Iteration 

80 

119 

111 

172 

Time 

(Hour) 

4.5 

3.3 

6.0 

5.5 

With regarding to the above stiffness and displacement optimisation problems, three 

aspects are worth noting: 
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Firstly, it is instructive to compare different optimisations performed on the three-point 

loaded beam, as discussed in examples 1, 4, 8 and 9. A common feature of these 

problems is that the 2D continuum gradually reduces to a truss structure as the amount 

of material available decreases. This phenomenon has been observed in most of the 

results by using ESO and the homogenisation method, which is consistent with the 

analytical solution for truss layout optimisation (Michell 1904; Rozvany 1993). 

Further, optimal topologies under multiple load conditions, either with single or 

multiple constraints, possess more intricate architecture compared to single load 

optimisation. This point was also observed by Diaz and Bends0e (1992). 

Secondly, The change of sensitive number a, was recorded in evolution. While the 

largest value of a, only changes slightly from iteration to iteration, the smallest one 

increases rapidly as the evolution proceeds. Further, as stated in equations (4.18) and 

(4.41), the sensitivity number is uniformly distributed among all elements at an 

optimum. This highly idea state can hardly be achieved by the evolutionary method. 

This is mainly because of the discrete nature of design variables. For the 2D continua 

studied in this chapter, the high order of structural indeterminacy adds to the difficulty. 

In optimisation of some skeletal structures, however, the optimum was found to be a 

determinate truss where all the component had the same sensitivity number, i.e., the 

element strain energy was uniform (Chu 1997). 

Thirdly, the two evolutionary methods BESO and ESO yielded broadly similar and 

comparable results. Nonetheless, differences between them in structural behaviour as 

well as optimal topology were also observed. Apart from reasons related to computing 
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accuracy associated with a numerical method, their differences can also be due to the 

property of the ground structure approach. In this approach, as the final solution is a 

subset of the initial structural universe, the definition of a ground structure does affect 

the optimal solution. The effect of ground structure in ESO method has been studied by 

Chu (1997). BESO and ESO use different ground structures. Though a full design are 

defined in BESO, not all its element participate in the optimisation. From this point of 

view, the difference between BESO and ESO is unavoidable. This is also 

understandable because most numerical methods aim to find a design sufficiently close 

to the absolute optimum. Most often, these near-optimal solutions are not unique. 

5.4 Summary 

The BESO method was tested on some stiffness and displacement optimisation 

problems. Its feasibility was established by the satisfactory agreement of the results of 

BESO and those of ESO, which also demonstrats the validity of the evolutionary 

algorithm. Differences in optimal topologies obtained by two methods were observed, 

which reflects the feature of the evolutionary method as a ground structure approach. 

BESO and ESO were also compared in terms of computing cost. While BESO may need 

more iterations to reach an optimum solution, it can be computationally more efficient 

than ESO in most cases as a result of using a much smaller finite element model. This is 

particularly true when a large finite element problem is defined, multiple load cases or 

multiple displacement constraints are specified for optimisation. 
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Chapter 6 

Further Studies on Various Aspects of BESO 

The algorithm reliability and parametric sensitivity are important factors in evaluating 

an iterative numerical method. These two aspects regarding the BESO method are 

investigated in this chapter. It contains two major parts. The first part addresses some 

common problems encountered in the computational implementation of BESO. The 

effect of parametric variation on BESO performance is studied in the second part. 

Initially, the problem of sharp change is studied and it is solved by using a post­

processing strategy. Other considerations such as the singular element and maintenance 

of symmetry are also discussed. The parameter study in the latter part includes the effect 

of the initial design, modification ratio (MR) and addition ratio (AR). As the final result 

is closely related to the maximum design, differences may exist as a result of using 

different initial designs. The modification ratio (MR) controls the evolution speed, 

functioning similarly to the move limit in mathematical programming and the step size 

in the optimality criteria method. A smaller MR makes the evolution smoother but is 

computationally more expensive. The addition ratio (AR) is another speed related 

parameter as it controls the net weight change between two consecutive evolution 

cycles. 
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Numerical tests were conducted on some of the examples studied in Chapter 4. Unless 

otherwise specified, parameters and factors were same as those in Table 4.1. 

6.1 Considerations in Numerical Aspects 

6.1.1 Processing of Sharp Changes 

As the evolutionary algorithm uses a step-by-step procedure, it is required in BESO and 

ESO that the convergence of the objective function is gradual and smooth. A necessary 

condition for this requirement is that the number of elements modified at a single 

iteration is small enough. However, this is not sufficient as occasional sharp changes in 

structural behaviour are observed in many examples, despite the use of a very small 

modification ratio. 

The occurrence of sharp changes is mainly due to the assumption used in the sensitivity 

analysis that the displacement is the same before and after the element modification. 

Using the same denotations as those in Chapter 4 , equation (4.1) can be re-written in an 

incremental form: 

(K + ,dK)(u + 4u) = P,i.e. (6.1) 

KAVL + ^IKu + AKAa = 0, then 

An = -(K + AK)"' AKu, (6-2) 

where AK and An are changes in the stiffness matrix and in the displacement, 

respectively. 
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Compared to equation (4.19), the above derivation does not ignore the contribution of 

AKAu and thus can be more reliable. Suppose that there are altogether n\ elements 

modified (for simplicity, only consider removed elements) in the current structure, the 

mean compliance will change as 

AC=}prAu = ^Pr(K-i:Ki)-
12;Kiu=iu»

r(2;Ki)u = iZui'
rKiui, (6.3) 

where u' is the displacement vector of the new structure after element removal. In 

contrast, the change in the mean compliance calculated from the sensitivity number 

a, is the summation of contribution of each removed element, i.e. 

1 nl 

A C = - S « i r K 1 u , . (6.4) 

Equation (6.4) can be a reliable approximation of equation (6.3) when the difference in 

the displacement field of the new and old structures is negligible. But this does not 

always hold true, particularly when the effect of all participating elements on the 

displacement field is combined. In some situations, it may happen that each removed 

element has a very small sensitivity number as calculated from equation (4.19), while 

their combination may cause significant changes in the displacement field. In this case, 

equation (6.4) under-estimates such changes and some elements can be inappropriately 

removed. In BESO, these elements are most likely to be recovered in later steps and the 

excessive displacement can be alleviated to a certain extent. The same cannot happen 
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in ESO. As elements cannot be brought back, the following evolution based on the 

incorrectly modified structure will gradually deviate from the true direction and cannot 

reach an optimum. 

A post-processing strategy is used in ESO and BESO to remedy the problem of sharp 

changes. Removed elements are firstly recovered to the design and the later evolution is 

based on this new design. To avoid immediate elimination of these recovered elements 

in the successive iterations, they are assigned as non-design elements and this status will 

be kept continuously for, say, ten iterations. Beyond this point, they are free to be 

modified. 

The procedure is very simple and easy to program. At the beginning of each iteration, 

the displacement (or mean compliance) is checked against that of the last iteration. A 

difference as large as 10% is used to define the occurrence of a sharp change. If a sharp 

change arises, instead of going ahead with the optimisation as sensitivity analysis and 

element modification, the program turns to the next iteration directly after the elements 

are recovered. The example of the cantilever beam studied in Chapter 4 is used for 

illustration. 

Sharp changes are seen in the later descending stage. Fig. 6.1 displays the constrained 

displacement vs. the structure weight. A jump is first seen from Al to A2, then the 

displacement has a decrease from A2 to Bl because some elements are recovered 

gradually. There is another jump from Bl to B2, which is much larger in magnitude. At 
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point C, the displacement is recovered slightly. Though BESO is capable of correcting 

some prematurely removed elements, results from Al to D were not acceptable. 

In contrast, the displacement change is smooth and gradual if the previously proposed 

recovery strategy is used, as shown by the black line in Fig. 6.1. Elements removed at 

Al are recovered immediately. The subsequent evolution starting from the recovered 

structure still follows the previous track. In the later stage, a slight increase is seen in 

the structural weight because of frequent element recovery. The weight becomes stable 

in a range of 18%~20% and has no further decrease. This means that only a small 

number of elements remain which are necessary for the connection condition. 

30 

25 

20 

= 15 
a 

B2 

With Element 
Recovery 

D 

Without Element 
°' /? Recovary 

W / W n 

Fig. 6.1: Displacement changes. 

The lightest design is attained at the 189th iteration, as shown in Fig. 6.2(a). Elements 

in grey are those recovered ones. Compared to the design of the same weight without 

being processed as shown in Fig. 6.2 (b), we can see that four inner bars are removed 

incorrectly, resulting in an excessively flexible design. The displacement at the free end 

is 3 mm and 77 mm, respectively. 
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(a) W = 0.18%, u = 3 mm. (b) W =0.18%, u = 77 mm. 

Fig. 6.2: Designs of cantilever beam: 
(a) with element recovery; (b) without element recovery. 

6.1.2 Singularity of the Stiffness Matrix 

Another problem that may arise in ESO and BESO is that the stiffness matrix may 

become singular during evolution as a result of element removal. This happens to a 

four-node element when its nodes are inadequately connected. As the element has no in-

plane rotational stiffness corresponding to the drilling freedom, an element can rotate 

freely if there is only one node connected to other elements, and thus cause a singularity 

in the stiffness matrix. 

Measures are taken to prevent as well as to remedy singular elements in the BESO 

method. Firstly, at the end of the previous iteration, all the elements are checked and 

those connected to other elements only at one node are removed. This measure, 

however, may miss the case where a group of elements are totally disconnected with the 

remaining structure. These kinds of elements can be detected quite easily as they have a 

very small sensitivity number (nearly equal to zero). Therefore, a second measure is 
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taken in the current iteration to pick up the elements of near-zero sensitivity and 

exclude them from consideration. 

6.1.3 Maintenance of Symmetry 

For symmetric structures, it is often necessary to keep all new designs also symmetrical. 

Special consideration in determining the number of elements in relation to the number 

of the symmetric axes is required to avoid lose of the symmetry. If a structure has one 

symmetrical axis, for example, the symmetry can be maintained by simply modifying an 

even number of elements at each iteration. Similarly, if the structure is symmetrical with 

respect to n axes, the number of modified elements should be the multipliers of 2n. 

However, this does not account for the case where there are elements located right on 

the axes. These elements have no symmetrical counterparts and the symmetry may be 

violated if they are modified incorrectly. Another factor affecting the symmetry is that 

the symmetric elements supposed to have the exactly same value of sensitivity number 

may actually assume slightly different values due to numerical errors. 

A most convenient way to accommodate all possibilities is to introduce a check 

process. At the end of the element modification, sensitivity numbers of the last removed 

and added elements are recorded as a^ and am, respectively. Then all existing 

elements and potential added elements are checked in terms of sensitivity number. 

Elements that have the same value of sensitivity as a^ or aREM are picked up and 

modified accordingly. 
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6.2 Parametric Study 

From the tests on BESO in Chapter 5, we note that optimum was found in the 

descending stage. The structure in the ascending stage is not fully developed as the 

number of design variables is still increasing. For this reason, the parametric study in 

this section focuses on the m a x i m u m design and the behaviour in the descending stage. 

6.2.1 Effect of Initial Designs 

In B E S O , elements connecting loads and supports define the initial design. There can be 

several different kinds of connections for some structures. Take the cantilever beam for 

example, using the same finite element mesh as in Chapter 5, w e can define three initial 

designs, as shown in Fig. 6.3. 

iiliir:;iii Wil 

(a) easel. (b) case 2. 

wmmmfflmmmmmmmmm 

(c) case 3. 

Fig. 6.3: Initial designs. 
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Case 1: Three supports in the middle of the left side are connected to the load. 

Case 2: Six outer supports at the top and bottom are connected to the load. 

Case 3: In addition to the middle linkage used in case 1, all the supports are connected. 

»:l 

:::-trij|::|:::::|l!:|:g|:l";fcs 

rrfrrftilrf' I 1 T t i l ' II 

" T" 

- -fj 

(a) Iteration = 78, W= 0.646, W0bj =0.878 (case 

1). 

(a) fP =0.415, Iteration =140 (case 1). 

(b) Iteration = 87, W = 0.707, W0bj = 0.847 (case 
2). 

(b) W= 0.401, Iteration = 161 (case 2). 

IIHIIl'imilUliiHHllfHllHlln :::: 

l;|-|;RJ;|;:|i|^ 

ffl^^^P liiiiililJJiJllfiilijiliilH::;:!::! 

(c) Iteration = 90, W= 0.731, W0bj = 0.862 
(case 3). 

(c) W= 0.384, Iteration =174 (case 3). 

Fig. 6.4: Maximum designs. Fig. 6.5: Topologies with displacement 

u* = 0.7 m m . 
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The evolution parameters used are MR =1.5%, AR= 0.66 for the ascending stage 

and AR = 0.25 for the descending stage. 

Among the maximum designs of the three cases given in Fig. 6.4, case 3 has the largest 

weight and case 2 has the smallest objective weight. Topologies satisfying constrained 

displacement w*=0.7 mm are given in Fig. 6.5. The result of case 3 is the best, with a 

weight about 3% lower than that of case 1. Case 2 has a similar topology to case 3. 

The displacement change of the whole descending stage is given in Fig. 6.6. With the 

same structural weight, the displacement yielded in case 3 is the smallest in most 

iterations. Further, the results of cases 2 and 3 are very close. The above behaviour can 

be explained from two perspectives. 

0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 

w/w0 

Fig. 6.6: Displacement change corresponding to different initial designs. 
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Firstly, the initial design of case 3 is the best representation of the given loading and 

supporting conditions in that all the supports are connected. Also, compared to case 1, 

cases 2 and 3 can better reflect the mechanical behaviour of a cantilever beam which is 

supposed to have a larger cross section at the fixed end than the free end. 

Secondly, the space of design variables is determined by existing elements as well as 

potential added elements. While the number of existing elements is changing steadily 

throughout the evolution, the number of potential added elements can be very arbitrary. 

Apart from the relevance to the structural weight, the number of potential added element 

is also affected by the shape of design, especially the structural boundaries and holes. In 

this respect, cases 2 and 3 may be more advantageous because their initial design 

contains more potential added elements. Further, at the same level of structural weight, 

their potential added elements outnumber that of case 1 in most of iterations. This 

means that the optimisation is performed in a larger space so that there are more options 

to choose from. 

5.2.2 Effect of Modification Ratio (MR) 

The modification ratio (MR) can affect the final results as well as the solution time. This 

sub-section is to investigate the effect of different value of MR on these aspects. 

Examples of the cantilever beam, the Michell type structure and the three-point loaded 

beam are tested. They represent structures of small, moderate and large size of finite 

element model, respectively. The same finite element setting and initial design as those 

in Chapter 5 are used. 
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Three cases where MR =1.5% (case 1), 3.0% (case 2) and 5.0% (case 3) are studied. 

Addition ratios AR = 0.66 and AR = 0.25 are assumed for ascending and descending 

stage, respectively. 

1. cantilever beam 

Fig. 6.7 gives the maximum designs of three cases. It is noted that as the modification 

ratio increases, both the structural weight and the objective weight increase. The 

maximum design for case 3 almost grows to the full design and contains few cavities. 

(a) Iteration = 78, W = 0.646, WQbj = 0.878 (b) Iteration = 45, W = 0.814, W0bj = 0.892 
(case 1). (case 2). 

(c) Iteration = 29, W= 0.916, WQbj = 0.937 
(case 3). 

Fig. 6.7: Maximum designs corresponding to different MR. 
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Fig. 6.8 gives the displacement change against the structural weight during the 

descending stage. It was found that results of three cases were very close when the 

structural weight was greater than 45%. The benefit of smaller modification ratios used 

in cases 1 and 2 was clear as the weight became smaller. As for these two cases, the 

result of case 1 was not always the better one. This may be due to the maximum 

design. A small maximum design may be unfavourable for the subsequent evolution 

because of the small space of design variables, as also discussed in the study of initial 

design. 

Additionally, within 150 iterations, the smallest design was reached in case 2 instead of 

case 3, despite that the latter had the fastest decrease in structural weights. This is due to 

two causes. The first is that case 3 starts decreasing the weight from a very large 

maximum design, as shown in Fig. 6.7(c). The second is that the evolution has to 

stabilise on a relatively large weight to meet the requirement of suppressing sharp 

changes. Among the three cases, sharp changes appeared in case 3 most frequently. 

7 

6 

5 

o 4 
3 
3 3 
2 

1 

0 
0.8 

IVR=3.0% 

0.6 0.4 

w/w„ 

0.2 

Fig. 6.8: Displacement change corresponding to different MR (cantilever beam). 
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The two topologies with u* = 0.6 m m and u* =1.0 m m are shown in Figs. 6.9 and 6.10. 

Topologies by different modification ratios were similar in the outer shape while the 

inner configuration was different. A tendency for the configuration to become simpler 

as the modification ratio increases can be observed. 

(a) W0bj = 0-847 (case 1). (a) W0bj = 0.882 (easel). 

(b) Wobj = 0-850 (case 2). (h) W0bj = 0.857 (case 2). 

(c) W0bj = 0-860 (case 3). (c) W0bj = 0-882 (case 3). 

Fig. 6.9: Topologies with displacement 
u* = 0.6 m m . 

Fig. 6.10: Topologies with displacement 
u* =1.0 mm. 
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Table 6.1 compares the solution time of the three cases, as the modification ratio 

increases, the solution time to reach the design of the same displacement decreases. 

Also considering the result of displacements, MR =3.0% appears to be the most suitable 

parameter for this example. 

Table 6.1: Results by different MR (cantilever beam). 

u* 

(mm) 

0.6 

1.0 

MR 

1.5% 

3.0% 

5.0% 

1.5% 

3.0% 

5.0% 

Kbj 

0.847 

0.850 

0.860 

0.882 

0.857 

0.882 

Iteration 

122 

79 

54 

190 

115 

76 

Time 

(Min.) 

26 

18 

17 

38 

24 

21 

2. Michell type structure 
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0.6 0.5 0.4 0.3 0.2 0.1 0 
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Fig. 6.11: Displacement change corresponding to different MR 
(Michell type structure). 
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Similar phenomenon to the last example can be observed in Fig. 6.11. The effect of 

different modification ratios is clearly reflected when the structural weight is relatively 

small (around 40%). Case 3 is the most unstable one and results of cases 1 and 2 are 

very close. Case 2 obtains the smallest structure in 300 iterations. 

(a) Iteration = 57, W= 0.443, WQbj = 0.629 (a) Wobj = °-576 (case 1). 
(case 1). 

(b) Iteration = 41, W = 0.536, W0bj = 0.679 (b) WQbj = 0.579 (case 2). 
(case 2). 

(c) Iteration =38, W = 0.662, WQbj = 0.717 (c) WQbj = 0.622 (case 3). 
(case 3). 

Fig. 6.12: Maximum designs corresponding to Fig. 6.13: Topologies with displacement 

different MR. «* = 0.6 m m . 
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The maximum designs are given in Fig. 6.12. A higher value of M? leads to a larger 

design with a larger objective weight. Topologies corresponding to a displacement limit 

u*=0.6 mm are given in Fig. 6.13. As the modification ratio increases, the structure 

grows higher, as a result of larger maximum design. Additionally, topologies shown in 

Figs. 6.13(b,c) contain fewer inner details than those in Fig. 6.13(a), with the number of 

spokes reducing from six to four, and the design possessing coarser boundaries. 

The comparison of solution times is shown in Table 6.2. Case 3 is not as efficient as 

case 2 despite a larger value of modification ratio. Firstly, the finite element problem 

has a larger size in case 3 due to a larger maximum design. Secondly, many iterations 

are required to process the sharp changes. Case 2, with comparable displacement results 

to case 1 and the highest efficiency, is the best scheme for this example. 

Table 6.2: Results by different MR (Michell type structure). 

u* 

(mm) 

0.6 

MR 

1.5% 

3.0% 

5.0% 

Kbj 

0.576 

0.579 

0.622 

Iteration 

66 

56 

51 

Time 

(Min.) 

45 

30 

40 
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3. Three-point loaded beam 

The same design conditions as in example 4 of Chapter 5 were used here. As seen from 

Fig. 6.14, the displacements of three cases were almost the same in the earlier 

descending stage. As the structure becomes smaller, case 3 yields larger displacement 

and sharp changes occur in many iterations. Within 150 iterations, case 2 obtains the 

smallest structure, the same as the previous two examples. 

6 

5 

4 

o 
3 3 
3 
2 

1 

0 

MR=3.0% 

MR=1.5% 

0.7 0.6 0.5 0.4 0.3 0.2 0.1 

w/wn 

Fig. 6.14: Displacement change corresponding to different MR 
(three-point loaded beam). 

As shown in Fig. 6.15, the maximum design becomes taller with increasing 

modification ratio, as also observed in the Michell type structure. Topologies of two 

weights W*=50% and W*=30% are given in Figs. 6.16 and 6.17. The inner 

configuration becomes simpler and sections of spokes become larger as the modification 

ratio increases. Some noise-like small holes are observed in Fig. 6.17(c). This is because 
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m a n y removed elements are recovered in later iterations as a result of the sharp change 

processing. 

(a) Iteration = 77, W = 0.566, C0bj = 0.754 
(case 1). 

(b) Iteration = 56, W= 0.645, C0bj = 0.779 
(case 2). 

(c) Iteration = 45, W= 0.671, C0bj = 0.802 
(case 3). 

Fig. 6.15: Maximum designs corresponding to different MR. 

(a) C0bj = 0.725 (case 1). (a) C0bj = 0696 (case 1). 

132 



(h) C0bj = 0-734 (case 2). (b) CQbj = 0.703 (case 2). 

(c) C0bj = 0.766 (case 3). (c) CQbj = 0.847 (case 2). 

Fig. 6.16: Topologies of weight Fig. 6.17: Topologies of weight 
W* = 5 0 % . JF* = 3 0 % . 

Table 6.3: Results by different MR (three-point loaded beam). 

w* 

50% 

30% 

MR 

1.5% 

3.0% 

5.0% 

1.5% 

3.0% 

5.0% 

*-obj 

0.725 

0.734 

0.766 

0.696 

0.703 

0.847 

Iteration 

91 

71 

55 

155 

101 

100 

Time 

(Hour) 

4.2 

2.8 

2.3 

7.0 

4.3 

4.7 

Table 6.3 lists the solution time of the three cases. For a larger structure (^*=50%), use 

of a larger modification ratio can save the computational cost. This is not the case when 
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the structure weight is low (30%) as case 3 takes longer than case 2. As also mentioned 

in the last example, this is because processing of sharp changes consumes many 

iterations. For this reason, case 2 can be taken as the best scheme for this example. 

In studying the effect of the modification ratio MR, a point to be kept in mind is that 

there does not exist a fixed value of modification ratio that is optimal for all problems. 

Though the selection of a suitable modification ratio can be problem specific, we may 

summarise some instructive points from the above three examples. In doing so, we 

divide the optimisation problem into two groups according to the target weight. 

• Group 1: The target weight W* is relatively high compared to the full design, say, 

W*>40%Wo, or the displacement limit is small, say, u<2 UQ. 

• Group 2. Cases other than group 1. 

As for group 1, we observe that from the maximum design to a middle-weighted 

topology, results of different MR were similar and increasing the modification ratio can 

lower the computing cost. Therefore, a large MR (3.0% or 5.0%) can be used to obtain 

satisfactory results with reasonable computing efforts. 

As for group 2, it is noted that the difference in results becomes distinct when the 

structure weight was relatively small. A smaller modification ratio MR can yield a 

better solution. Use of a large modification ratio may be disadvantageous in three ways. 

First, the displacement results may be unreliable. Second, the target weight may be too 

small to be reached because of suppression of sharp changes. Third, more iterations are 
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needed to reach the same target weight due to processing the sharp changes. Taking all 

these factors into account, and compromising between the result reliability and 

computing efficiency, we may use a moderate value of modification ratio (3.0%) for 

this kind of problem. 

Another point is that the maximum design plays an important role in affecting the result 

as well as the computational efficiency. A small maximum design may be unreliable 

due to inadequate design variables. For this reason, a too small MR (smaller than 1.5%) 

is not recommended. This is a case different from ESO where a smaller modification 

ratio almost always means improved results (Chu 1997). 

6.2.3. Effect of Addition Ratio (AR) 

In this investigation, the same addition ratio AR = 0.66 was assumed for the ascending 

stage thus the maximum designs were the same. Different values of addition ratio were 

used for the descending stage and their effects were studied. AR =0.25 was specified for 

case 1 and AR =0.33 for case 2. MR=\.5% was assumed in both cases. 

/. Michell type structure 

The change in displacement during 300 iterations is shown in Fig. 6.18. Results 

•obtained by using different addition ratios were very close. Some slight differences are 

observed only at later iterations. 
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o 
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AR=0.33 
R=0.25 

0.4 0.3 0.2 0.1 0 

w/wft 

Fig. 6.18: Displacement change corresponding to different .4/? 
(Michell type structure). 

Fig. 6.19 gives two topologies with the constrained displacement u*=0.6 m m . Though 

they are not identical, their difference is not as distinct as that due to the effect of 

modification ratio (see Fig. 6.13). They are similar in the topology height, number of 

spokes and many structural details. 

(a) AR = 0.25, W0bj = 0.576 (case 1). (b) AR = 0.33, W0bj = 0.587 (case 2). 

Fig. 6.19: Topologies of different^/?: u* = 0.6 m m . 
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2. Three-point loaded beam 

The same design conditions as in example 4 of Chapter 5 were used. The displacement 

in the two cases are very close, as shown in Fig. 6.20. 

2.5 

2 

1.5 

1 

0.5 

0.6 0.5 0.4 

w/w„ 

^ = 0 . 3 3 

AR=0.25 

0.3 0.2 

Fig. 6.20: Displacement change corresponding to different .4/? 
(three-point loaded beam). 

Designs of 0 * = 5 O % and W*=30% are shown in Figs. 6.21 and 6.22. Compared to 

topologies of the Michell structure in the last example, the difference in corresponding 

topologies can be easily observed. This may be because of consideration of multiple 

load conditions. The corresponding objective weights were very close, while case 2 

required longer computing time, as shown in Table 6.4. The modification ratio decides 

the total change in element numbers between two cycles. At the same time, the addition 

ratio determines the net decrease and thus also affects the evolution speed. The net 

element decrease rates in two cases were (0.66-033)MR = 0.33MZ? and (0.75-0.25)Mi? = 

0.5MR, respectively. Therefore, to reach the same weight case 2 involves more 

iterations than case 1. 
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(a) AR = 0.25, C0bj = 0.725 (case 1). (b) AR = 0.33, CQbj = 0.726 (case 2). 

Fig. 6.21: Topologies of different AR: W* = 50%. 

(a) AR = 0.25, CQbj = 0.696 (case 1). (b) AR = 0.33, C0bj = 0.698 (case 2). 

Fig. 6.22: Topologies of different^: W* = 30%. 

Table 6.4: Results by different^/? (three-point loaded beam). 

w* 

50% 

30% 

AR 

0.25 

0.33 

0.25 

0.33 

c 
^obj 

0.725 

0.726 

0.696 

0.698 

Iteration 

91 

97 

155 

182 

Time 

(Hour) 

4.2 

4.5 

7.0 

8.5 
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From the above case study, we can see that the topologies and numerical results change 

with the initial design as well as the two parameters. Different initial designs and 

parameters result in different maximum designs. To some extend, the maximum design 

can be viewed as a sort of ground structure for the BESO method, which can heavily 

affect the final solution. In studying the effect of the addition ratio, we use the same 

maximum design for different cases. This may explain the insensitivity of final results 

to the addition ratio. In contrast, different maximum designs were used in studying the 

effect of different initial designs and modification ratios. As a result, the difference in 

solution was more distinct than that using alternative addition ratios. 

The parametric sensitivity reflects the numerical instability which is associated with 

most of the optimisation methods (Sigmund and Petersson 1998). This can be due to 

the nature of the optimisation problem. The displacement and stiffness optimisation is 

not convex thus the convergence may lead to a local minimum instead of a global one. 

In BESO, it is seen that while these solutions of 'local minimum' vary in topologies, 

they are similar in numerical values. Therefore, we can assume that these local solutions 

are sufficient close to the global minimum. 

6.3 Conclusions 

Strategies for suppressing sharp changes, processing singular elements, keeping 

symmetric properties are proposed in this chapter. They are included in the computer 

code BESODSP and are executed automatically without manual interruption. 
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At this stage, the initial design is specified by manually assigning appropriate property 

numbers in constructing the finite element model. It is possible to complete this task 

automatically. The automatic specification is more attractive when there are several 

alternative initial designs, which represent different load paths from the applying points 

to the supports. To enhance the performance of the BESO method, we can improve the 

algorithm in such a way that the 'best' initial design is picked up and used for 

optimisation. Such a best design may be featured by full interpretation of loading and 

boundary conditions, longest boundary lines and probably, smallest objective weight or 

objective compliance. 

Another factor affecting BESO performance is the modification ratio (MR). Too small 

or large modification ratios may cause accuracy problems. A suitable range for cases of 

larger target weight can be 3%~5%. A value of 3% can be used for cases of small target 

weight. Designs obtained by using relatively larger modification ratio assume less 

complicated topologies. This can be convenient for the subsequent image processing for 

practical purpose. A modification ratio smaller than 1.5% is not recommended, mainly 

because the resultant maximum design may be too small. BESO is less sensitive to the 

addition ratio AR than to the modification ratio. A value of AR = 0.66 for the ascending 

stage and AR = 0.25 for descending stage are suggested from the solution efficiency 

point of view. 
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Chapter 7 

Conclusions and Recommendations 

7.1 Conclusions 

Basic theories of the bi-directional evolutionary structural optimisation (BESO) method 

have been presented in this thesis. The simple concept of BESO is that by slowly 

removing inefficient elements as well as adding efficient ones, the resultant structure 

gradually evolves towards an optimum. BESO can be mathematically interpreted as an 

optimality criterion algorithm with discrete design variables. Its advantage is that a 

small initial design is defined as the starting point of evolution thus the computation can 

be more efficient compared to the ESO method. The optimisation constraints under 

investigation were stiffness and displacement. A wide range of design problems were 

studied including single and multiple constraints under one and several alternative load 

cases. This chapter summarises the main conclusions of this study. 

Sensitivity Numbers and Displacement Extrapolation 

The sensitivity number a, and displacement extrapolation play essential roles in 

BESO. On one hand, as the sensitivity number is derived on the basis of optimality 
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criteria (OC) procedure, BESO is generally valid regardless of the structural system. 

On the other hand, as an initial exploration of the bi-directional method, the study in 

this thesis focuses on the 2D continuum under plane stress condition. The displacement 

extrapolation is easy for this kind of finite element model. Results on 2D continua may 

serve as a precursor for future investigation on some more complicated structural 

systems. 

The physical meaning of sensitivity number is the element strain energy. For potential 

added elements, it is an approximated value based on an extrapolated displacement 

field. While the displacement field is kinematically admissible, the equilibrium 

conditions within the elements are not satisfied. For this reason, the sensitivity number 

for potential added elements is over-estimated and has a much larger value than that for 

the existing elements. 

A generalised sensitivity number rj, is formulated for structural systems where the 

definition of the objective weight or objective compliance is available, rj, indicates the 

change in the Lagrangian function due to element modification. It makes the effect of 

element removal and addition comparable thus the structural weight can automatically 

change to minimise the Lagrangian function. However, due to the accuracy problem in 

the displacement extrapolation of potential added elements, the generalised sensitivity 

number is only of theoretical importance. In practice, we still use the sensitivity number 

a, to evaluate the element efficiency. 
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Evolutionary Procedures 

The procedure of BESO is basically similar to that of ESO, i.e. the structural 

modification following the finite element analysis. Their difference is displayed at two 

levels. At a single iteration level, extra work is needed in BESO to identify the potential 

added elements as well as to calculate their sensitivity numbers. At the whole evolution 

level, unlike the case in ESO where the structure weight keeps decreasing all along, 

BESO procedure contains two stages, namely, the ascending stage (weight increases) 

and descending stage (weight decreases). These two stages are controlled by assigning 

appropriate values to the addition ratio AR, with AR>0.5 for the ascending stage and 

AR<0.5 for the descending stage, respectively. They are divided at a point where the 

objective weight WobJ or objective compliance Cobj reaches the first minimum value. 

The optimal solution is normally sought in the descending stage. 

Numerical Tests and Parametric Studies 

A number of examples of 2D plane stress problems were studied using the BESO and 

ESO procedures. Comparisons were conducted according to three criteria, namely, the 

structural results (objective stiffness or objective compliance), final optimal topology 

and solution time for reaching the optimum. 

/. Structural Results 
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• The differences in structural results obtained from the two methods are within 3%. 

This demonstrates the validity of the evolutionary algorithm as an integrated 

system. 

• Solutions of BESO are better in most cases, despite a larger modification ratio (1.5% 

in BESO and 1.0% in ESO). This points to the strength of the concept of bi­

directional evolution, which allows for the prematurely removed elements to be 

recovered. 

• The strength of BESO is achieved at a cost of more design cycles, which may also 

reflects a property of less stable convergence. A major reason for convergence 

instability can be that the space of design variables is smaller and is arbitrarily 

changing during the optimisation. This potential weakness may explain the 

disadvantage of BESO in some examples. 

2. Optimal Topology 

The change of optimal topologies observed in both ESO and BESO has the similar 

tendencies: 

• When the target weight is relatively large (say, 50%), the final topology has a 2D 

continua representation. As the target weight decreases, a topology assuming 

skeletal form is resulted. 

• Using the same full design and initial design, the topology for multiple load cases 

has more complicated configurations. 

Further comparison between ESO and BESO reveals: 

• that the optimal topologies are similar in the outer shape. 
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• that BESO yields topology with simpler inner architecture and larger connections. 

• that in truss topology, the arc height obtained by BESO is smaller than that obtained 

by ESO. 

Different topologies with close numerical results can be explained by the ground 

structure approach where the finial optimal design is dependent on the ground structure. 

3. Solution Time 

The total solution time is mainly determined by the dimension of finite element 

problems as well as the total design cycles. On one hand, as the computation for 

structural modification is nominal compared to that for structural analysis, BESO is 

more likely to save solution time in one iteration. On the other hand, BESO normally 

requires more iterations as it experiences two stages. Based on these factors, the 

following conclusions are reached: 

• In most cases, BESO can be computationally more efficient mainly than ESO as a 

results of smaller finite element models. 

• For problems with multiple constraints or multiple load conditions, the savings in 

solution time by using BESO are particularly significant. 

• In cases where the maximum structure occupies a high proportion of the full design 

(say, greater than 70%), BESO needs many more iterations than ESO and may be 

less efficient. 

The performance of BESO is affected by the initial structure, the modification ratio MR 

and addition ratio AR. 
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The initial design decides the dimension of the design space. A definition fully 

interpreting the support and load conditions and having longer boundaries can be more 

advantageous. 

The modification ratio MR, together with the reference structure, controls the total 

number of modified elements at one design cycle. While a large modification ratio 

should be avoided for the sake of smooth transition, too small a value of MR (say, 

smaller than 1.5%) is not recommended because it may lead to a very small maximum 

design. BESO may yield unfavourable results from a small maximum design because of 

fewer design variables. Different topologies are obtained using different modification 

ratios. Using a larger MR results in topologies of simpler inner configuration and coarser 

boundary. A range of modification ratio MR 1.5%~3.0% is recommended for the trade­

off between the solution accuracy and the computing efficiency. 

Another parameter, the addition ratio AR controls the net change in elements between 

two design cycles. Its effect on optimal results is not as critical as that of modification 

ratio. The numerical results and topologies are similar for different values of AR. 

AR=0.66 for the ascending and ^i?=0.25 for the descending stage are recommended 

mainly for the consideration in computing efficiency. 
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7.2 Recommendations for Further Investigation 

As mentioned in Chapter 4, the extension of BESO to other types of structural systems 

can be one area for further study. Some modifications on the displacement extrapolation 

and objective weight are needed to account for a particular kind of finite element. 

Among these investigations, BESO for plate bending problems can be the most 

straightforward if the four-node isoparametric element is used. BESO for skeletal 

structures such as plane and spatial trusses and frames remains a challenge. This is 

because some major modifications to the basic concept of displacement extrapolation 

may be required. 

Stiffness and displacement constrained problems can be the simplest case using the 

sensitivity approach. Theoretically, the procedure of BESO can be applied to buckling 

load and dynamic frequency constraints equally. Two conditions add to the difficulties 

for these eigenvalue optimisation problems. The first is that the objective function or 

constraint is not linear either in the space of design variables or that of reciprocal 

variables. This means that we may not be able to define a Lagrangian function of an 

explicit form as in the stiffness and displacement optimisation. The second is that the 

mode shapes may swap their orders unpredictably during optimisation, which is referred 

to as the multi-modal phenomenon. The multi-modal problem may slow down or force 

an end to the evolution. As for the dynamic study, ESO has solved the natural 

frequency optimisation, and more efforts can be devoted to dynamic behaviour in 
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harmonic or transient response for forced vibration so as to address more practical 

engineering design problems. 

Also, more practical designs can be achieved if multiple criteria are included 

simultaneously. A typical example is the design of a compliant mechanism, as 

mentioned in Chapter 2. BESO can be extended to optimise a compliant mechanism and 

the major modification can be determination of the weight of an individual criterion. 

Further, the criteria can be more comprehensive and include stress, stability and 

frequency. Solving of multiple problems may help to handle some real-life design tasks. 

Additionally, as a means of computer aided design (CAD), BESO can be programmed 

in such a way that it allows for an entirely automatic process to achieve its full potential. 

If we introduce such functions as automatic mesh generation, the effort of the designer 

can be reduced to specifying the loading and support conditions. The computer can 

generate the element mesh as well as define the initial design. In the event of several 

alternative initial designs, the 'best' one can be automatically selected for further 

optimisation. 
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