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APPROXIMATION OF THE SUM OF RECIPROCAL OF
IMAGINARY PARTS OF ZETA ZEROS

MEHDI HASSANI

Abstract. In this paper, we approximate γn, where 0 < γ1 ≤ γ2 ≤ γ3 ≤ · · ·
are consecutive ordinates of nontrivial zeros ρ = β + iγ of ζ(s); the Riemann

zeta function. Then we obtain explicit bounds for the summation
∑

0<γ≤T
1
γ
.

1. Introduction

The Riemann zeta-function is defined for Re(s) > 1 by

ζ(s) =
∞∑

n=1

1
ns

,

and extended by analytic continuation to the complex plan with one singularity at
s = 1; in fact a simple pole with residues 1. This was one of the results which B.
Riemann obtained in his only paper on the theory of numbers [10], another one is
functional equation which stated symmetrically as follows:

(1.1) π−
s
2 Γ

(s

2

)
ζ(s) = π−

1−s
2 Γ

(
1− s

2

)
ζ(1− s),

where Γ(s) =
∫∞
0

e−tts−1dt is a meromorphic function of the complex variable
s, with simple poles at s = 0,−1,−2, · · · (see [8]). Riemann made a number of
wonderful conjectures. For example, he guessed that the number N(T ) of zeros ρ
of ζ(s) with 0 < =(ρ) ≤ T and 0 ≤ <(ρ) ≤ 1, satisfies the following relation:

N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log T ).

This conjecture of Riemann proved by H. von Mangoldt more than 30 years later
[4, 7]. Some immediate corollaries of above approximate formula, which is known
as Riemann-van Mangoldt formula, are

A(T ) =
∑

0<γ≤T

1
γ

= O(log2 T ),

and γn ∼ 2πn
log n when n → ∞, where 0 < γ1 ≤ γ2 ≤ γ3 ≤ · · · are consecutive

ordinates of nontrivial zeros ρ = β + iγ of ζ(s), which follow by partial summation
from Riemann-van Mangoldt formula and using the obvious inequality N(γn−1) <
n ≤ N(γn+1), respectively [7]. In this paper, we make some explicit approximation
of γn and A(T ).
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2. Approximation of γn

In 1941, Rosser [11] introduced the following approximation of N(T ):

(2.1) |N(T )− F (T )| ≤ R(T ) (T ≥ 2),

where

(2.2) F (T ) =
T

2π
log

T

2π
− T

2π
+

7
8
,

and

(2.3) R(T ) = 0.137 log T + 0.443 log log T + 1.588.

In this paper, using Rosser’s result, we approximate γn, and then A(T ), explicitly.
Using (2.1) and N(γn) = n, we have:

(F −R)(γn) ≤ n ≤ (F + R)(γn).

Both of the functions (F ±R)(T ) are increasing for T ≥ 14, thus,

(F + R)−1(n) ≤ γn ≤ (F −R)−1(n),

holds for every n ≥ 1. Unfortunately, finding an explicit formula for the inverses
(F ±R)−1(T ) isn’t possible and we must replace error term R by another one. Let

Y (T ) =
25
147

T.

For every T ≥ 14, we have R(T ) ≤ Y (T ), and the functions (F ± Y )(T ) are
increasing for T ≥ 18. Since γ2 ' 21.02, we obtain:

(F + Y )−1(n) ≤ γn ≤ (F − Y )−1(n) (n ≥ 2).

Now, we are able to find inverses (F ± Y )−1(T ); considering Lambert W function
W (x), defined by W (x)eW (x) = x for x ∈ [−e−1,+∞), for every n ≥ 2 we yield
that:

(2.4)
1
4

(8n− 7) π

W
(

1
8 (8n− 7) e−1+ 50

147 π
) ≤ γn ≤

1
4

(8n− 7) π

W
(

1
8 (8n− 7) e−1− 50

147 π
) ,

which holds also for n = 1. To make some explicit bounds, independent of Lambert
W function, we use the following bounds

log x− log log x < W (x) < log x,

which the left hand side holds true for x > 41.19 and the right hand side holds true
for x > e [5]. Thus, we obtain:

(2.5) γn <
2π(n− 7

8 )
log(n− 7

8 )− log
(
log(n− 7

8 )− (1 + 50
147π)

)
− (1 + 50

147π)
,

which holds for (n− 7
8 )e−(1+ 50

147 π) > 41.19 or equivalently for n > 7
8+41.19e1+ 50

147 π ≈
326.83, and by computation for 13 ≤ n ≤ 326, too. Also, we obtain:

(2.6)
2π(n− 7

8 )
log(n− 7

8 )− (1− 50
147π)

< γn,

which holds for (n− 7
8 )e−(1− 50

147 π) > e or equivalently for n > 7
8 + e2− 50

147 π ≈ 3.41,
and by computation for n = 1 and n = 3, too.
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3. Approximation of A(T )

We note that:

A(T ) = G(N) =
N∑

n=1

1
γn

,

in which

N = max{n : γn ≤ T} = N(T ).

Now, we are ready to make explicit bounds for A(T ).

3.1. Upper Bound. Consider (2.6) and the following inequality1:

G(N0) <
4
π

N0∑
n=1

log
(

1
8 (8n− 7) e−1+ 50

147 π
)

8n− 7
(N0 = 9996).

For every N ≥ N0, we have

G(N) <
4
π

N∑
n=1

log
(

1
8 (8n− 7) e−1+ 50

147 π
)

8n− 7

=
4
π

N∑
n=1

log(8n− 7)
8n− 7

+ c1Ψ
(

N +
1
8

)
− c1Ψ

(
1
8

)
,

where c1 = 25
147 −

1+3 log 2
2π ≈ −0.3200403161, and Ψ(x) = Γ′(x)

Γ(x) with Γ(x) =∫∞
0

e−ttx−1dt, is digamma function [8]. For every x ≥ 1, it is known that

(3.1) log
(

x− 1
2

)
< Ψ(x) ≤ log

(
x− 1 + e−c

)
,

where c ' 0.5772156649 is Euler constant [1]. In other hand, we have:

N∑
n=1

log(8n− 7)
8n− 7

<
N∑

n=2

log(8n)
8(n− 1)

=
log 8

8
H(N − 1) +

1
8

N∑
n=2

log n

n− 1
,

1We generate this numerical inequality, because the inequality (2.6) isn’t true for n = 2. To
compute the value of N0, which is best possible value, we used numerical data concerning zeros

of ζ(s), due to A. Odlyzko [9] and the following program in Maple software worksheet:

restart:
with(stats):
N:=9996:
x:=array(1..N):
fp:=fopen(”zeros1.txt”,READ):
g:=0:
for i from 1 by 1 to N do g:=g+1/describe[mean](fscanf(fp,”%f”,x[i])) end do:
fclose(fp):
G(N)=g;

G.A. Pirayesh helped me to write above program, which I deem my duty to thank him

for his kind helps.
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where H(N) =
∑N

n=1
1
n and for every N ≥ 1, we have H(N) ≤ c+log(N−1+e1−c)

(see [1]). Also, we have:
N∑

n=2

log n

n− 1
<

∫ N

1

log t

t− 1
dt = −dilog(N),

where dilog(x) is Dilogarithm function, defined by dilog(x) =
∫ x

1
log t
1−t dt for x > 0

(see [16]). It is known that [6] for every x > 1, the inequalities

D(x,N) < dilog(x) < D(x,N) +
1

xN

holds true for all N ∈ N, with

D(x, N) = −1
2

log2 x− π2

6
+

N∑
n=1

1
n2 + 1

n log x

xn
.

Therefore, we have

(3.2) −1
2

log2 x− π2

6
+

1 + log x

x
< dilog(x),

and using this, we obtain

G(N) <
1
4π

log2 N +
(

log 8
2π

+ c1

)
log N +

(
c log 8

2π
+

π

12
− c1Ψ

(
1
8

))
+ E1(N),

where,

E1(N) =
log 8
2π

log
(

1 +
e1−c − 2

N

)
+ c1 log

(
1− 3

8N

)
− 1 + log N

2πN
< − log N

2πN
.

Thus

(3.3) G(N) <
1
4π

log2 N + c2 log N + c3 −
1
2π

log N

N
,

for every N ≥ 9996, with c2 = log 8
2π + c1 ≈ 0.0109130841 and c3 = c log 8

2π + π
12 −

c1Ψ
(

1
8

)
≈ −2.231824968. Also, it holds true for 4905 ≤ N ≤ 9995, by computation.

Remembering N = N(T ), and using (2.1), we obtain the following explicit upper
bound:

A(T ) <
1
4π

log2 (F (T ) + R(T )) + c2 log (F (T ) + R(T ))(3.4)

+ c3 −
1
2π

log (F (T ) + R(T ))
F (T ) + R(T )

(N(T ) ≥ 4905).

3.2. Lower Bound. Consider (2.5), which holds true for n ≥ 13, and G(12) ≈
0.3731710458. For every N ≥ 13 we have

G(N) > G(12) +
4
π

N∑
n=13

log(n− 7
8 )− log

(
log(n− 7

8 )− (1 + 50
147π)

)
− (1 + 50

147π)
8n− 7

=
4
π

N∑
n=13

{
log(8n− 7)

8n− 7
−

log
(
147 log(n− 7

8 )− 147− 50π
)

8n− 7

}

+ c4Ψ
(

N +
1
8

)
+ c5,
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where

c4 =
4
π

(
−3

8
log 2 +

1
8

log 147− 1
8
− 25

588
π

)
≈ 0.1340756439,

and

c5 = G(12)−c4

(
13236224754014816
1220833367678925

+ Ψ
(

1
8

))
+

6618112377007408
1220833367678925π

≈ 1.769772.

Easily, we have:

N∑
n=13

log(8n− 7)
8n− 7

=
1
8

N∑
n=13

log
(
n− 7

8

)
n− 7

8

+
log 8

8

N∑
n=13

1
n− 7

8

,

and
N∑

n=13

log
(
n− 7

8

)
n− 7

8

>

∫ N+1− 7
8

13− 7
8

log t

t
dt =

1
2

log2

(
N +

1
8

)
+ c6,

with

c6 = −9
2

log2 2 + 3 log 2 log 97− 1
2

log2 97 ≈ −3.113184782,

and
N∑

n=13

1
n− 7

8

= Ψ
(

N +
1
8

)
+ c7,

with

c7 = −
(

13236224754014816
1220833367678925

+ Ψ
(

1
8

))
≈ −2.453465877.

In other hand, we have:

N∑
n=13

log
(
147 log(n− 7

8 )− 147− 50π
)

8n− 7
<

N∑
n=13

log
(
147 log(n− 7

8 )
)

8n− 7

=
1
8

log 147Ψ
(

N +
1
8

)
+ c8

+
N∑

n=13

log (log(8n− 7)− log 8)
8n− 7

,

where

c8 = −1
8

log 147
(

13236224754014816
1220833367678925

+ Ψ
(

1
8

))
≈ −1.530482008.

Also, we have:

N∑
n=13

log (log(8n− 7)− log 8)
8n− 7

<
N∑

n=13

log log(8n− 7)
8n− 7

<

∫ 8N−7

8(12)−7

log log t

t
dt

= (log log(8N − 7)− 1) log(8N − 7) + c9,

where
c9 = − log log 89 log 89 + log 89 ≈ −2.251270867.
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Therefore, combining all of above inequalities and considering (3.2), for every N ≥
13, we obtain:

G(N) >
1
4π

log2

(
N +

1
8

)
− 4

π
(log log(8N − 7)− 1) log(8N − 7)

+ c10 log
(

N − 7
8

+ e−c

)
+ c11,

with
c10 =

3 log 2− log 147
2π

+ c4 ≈ −0.3292229701,

and

c11 =
c6 + (3 log 2)c7

2π
− 4(c8 + c9)

π
+ c5 ≈ 5.277388010.
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