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GENERALIZATIONS OF A THEOREM OF I. SCHUR

FENG QI, WEI LI, AND BAI-NI GUO

Abstract. In the article, the monotonicities of two functions
(
1+ 1

x

)x+α
and(

1+ α
x

)x+β
and their corresponding sequences

(
1+ 1

n

)n+α
and

(
1+ α

n

)n+β
are

presented, an equivalent relations between the monotonicities of either these

two functions or these two sequences are verified, an inclusion that a logarith-

mically absolutely monotonic function is also absolutely monotonic is revealed,

and the logarithmically complete monotonicity and the logarithmically abso-

lute monotonicity of the function
(
1 + α

x

)x+β
are proved, where α and β are

given real parameters. As by-products, some new inequalities for the naturally

logarithmic function ln t are obtained.

1. Introduction

In standard textbooks of calculus or advanced mathematical analysis, to prove
that the limits limn→∞

(
1+ 1

n

)n and limx→∞
(
1+ 1

x

)x exist, it is sufficient to verify
the sequence

(
1 + 1

n

)n and the function
(
1 + 1

x

)x are bounded and increasing
respectively. These can be done traditionally by Newton’s binomial expansion, by
the arithmetic-geometric-harmonic means inequalities ([8] and [9, pp. 223–226]),
by Bernoulli’s inequality [10], by Young’s inequality [7], by mathematical induction
[9], and so on. See also [22]. As is well-known, the number e is contained in the
interval

(
1 + 1

n

)n
< e <

(
1 + 1

n

)n+1, where the sequence
(
1 + 1

n

)n+1 is decreasing
([11, pp. 357–371] and [13, pp. 266–268]).

A theorem of I. Schur [14, pp. 30, 186] states that the sequence
(
1 + 1

n

)n+α is
decreasing if and only if α ≥ 1

2 . In [6] it was verified that the sequence
(
1 + 1

n

)n+α

is increasing if and only if α ≤ 2 ln 3−3 ln 2
2 ln 2−ln 3 . In [9, 10, 11, 13] and [15, Vol. I, Part I,

Chapter 4, p. 38] it was proved that the sequence
(
1 + 1

n

)n(
1 + β

n

)
is decreasing if

and only if β ≥ 1
2 ; the sequence

(
1 + γ

n

)n+1 decreases for 0 < γ ≤ 2 and increases
for γ > 2 and n ≥ γ

γ−2 + 1; the sequence
(
1 + θ

n

)n increases for θ > 0. It is easy
to see that the function

(
1 + α

x

)x is increasing with respect to x > max{0,−α} for
α 6= 0. In the proof in [13, 3.6.3 on p. 267], it was presented that for fixed x > 0
the function

(
1 + x

p

)p is increasing with p ∈ (0,∞) and the function
(
1 + x

p

)p+x/2

is decreasing with p ∈ (0,∞). Some related generalizations of I. Schur’s theorem
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have been studied in [4, 5, 17, 20, 28]. For some new recent developments on this
topic, please look up in [12, pp. 86–88 and pp. 291–292].

Now it is an entirely natural way to pose the following problem: How about the
monotonicities of the functions

(
1 + 1

x

)x+α and
(
1 + α

x

)x+β and the corresponding

sequences
(
1 + 1

n

)n+α and
(
1 + α

n

)n+β for all α 6= 0 and β ∈ R, respectively?
In this article, using analytic method, we will prove the following theorems which

answer the problem posed above.

Theorem 1. For x > 0, the function fα(x) =
(
1 + 1

x

)x+α increases if and only if
α ≤ 0 and decreases if and only if α ≥ 1

2 .
For x < −1, the function fα(x) decreases if and only if α ≥ 1 and increases if

and only if α ≤ 1
2 .

The necessary and sufficient conditions such that the sequence an =
(
1 + 1

n

)n+α

decreases or increases are α ≥ 1
2 or α ≤ 2 ln 3−3 ln 2

2 ln 2−ln 3 respectively.

Theorem 2. Let bn =
(
1+ α

n

)n+β for α > −1 and α 6= 0 and Fα,β(x) =
(
1+ α

x

)x+β

for α 6= 0 and either x > max{0,−α} or x < min{0,−α}.
(1) For x > max{0,−α}, the function Fα,β(x) increases if and only if either

α > 0 ≥ β, or α < 0 ≤ β, or α ≤ 2β < 0; the function Fα,β(x) decreases if
and only if either 2β ≥ α > 0 or β ≤ α < 0.

(2) For x < min{0,−α}, the function Fα,β(x) increases if and only if either
α > 0 ≥ β, or 0 < 2β ≤ α, or α < 0 ≤ β; the function Fα,β(x) decreases if
and only if either 0 > α ≥ 2β or 0 < α < β.

(3) The sequence bn increases if and only if either β ≤ ln(1+α)−2 ln(1+α/2)
ln(1+α/2)−ln(1+α) and

α > 0 or −1 < α < 0 and α ≤ 2β. The sequence bn decreases if and only
if either −1 < α < β ≤ ln(1+α)−2 ln(1+α/2)

ln(1+α/2)−ln(1+α) < 0 or 0 < α ≤ 2β.

Theorem 3. Theorem 1 and Theorem 2 are equivalent to each other.

Remark 1. As by-products of proofs of Theorem 1 and Theorem 2, some inequalities
for the naturally logarithmic function ln t are obtained as follows.

ln t ≥ t + 3
t + 1

ln
1 + t

2
, t > 0; (1)

ln t ≥ 1 + t

t
ln

1 + t

2
, t ∈ (0, 1); (2)

2t

2 + t
≤ ln(1 + t) ≤ t(2 + t)

2(1 + t)
, t > 0; (3)

ln(1 + t) >
t(1− t)
1 + t

, t ∈ (−1, 1). (4)

When −1 < t < 0, inequality (3) is reversed.
These inequalities from (1) to (4) play important roles in theory of gamma

functions. The left hand side of inequality (3), which is the same as the left hand
side of [13, 3.6.19] essentially, improves a related problem of the 11th William Lowell
Putnam Mathematical Competition. The right hand side of inequality (3) is weaker
than the right hand side of [13, 3.6.18 and 3.6.19]. For further information, please
refer to [11, pp. 367–368] or [13].
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Remark 2. Note that some errors of mathematical expression in [4, 5, 17, 28] are
corrected by Theorem 2.

Recall [1, 2, 16, 18, 19, 21, 23, 25, 27] that a function f is said to be com-
pletely monotonic on an interval I if f has derivative of all orders on I such that
(−1)nf (n)(x) ≥ 0 for x ∈ I and n ≥ 0. The set of the completely monotonic
functions on I is denoted by C[I]. In [21], it was coined explicitly that a positive
function f is said to be logarithmically completely monotonic on an interval I if its
logarithm ln f satisfies (−1)k[ln f(x)](k) ≥ 0 for k ∈ N on I. This is a similarity of
completely monotonic function [18, 24, 25, 27]. The set of the logarithmically com-
pletely monotonic functions on I is denoted by CL[I]. For more information about
the logarithmically completely monotonic functions, please refer to [2, 16, 23, 25]
and the references therein.

A function f is said to be absolutely monotonic on an interval I if it has deriva-
tives of all orders and f (k)(t) ≥ 0 for t ∈ I and k ∈ N. The set of the absolutely
monotonic functions on I is denoted by A[I]. See [16, 18, 24, 25, 27] and the refer-
ences therein. As a similarity of this terminology and an analogy of logarithmically
completely monotonic function, now a new notion is introduced below.

Definition 1. A positive function f is said to be logarithmically absolutely mono-
tonic on an interval I if it has derivatives of all orders and [ln f(t)](k) ≥ 0 for t ∈ I

and k ∈ N.

The set of the logarithmically absolutely monotonic functions on I is denoted
by AL[I]. It is well known that a logarithmic convex function is also convex. As
a generalization of this conclusion and an analogy of the inclusion CL[I] ⊂ C[I] in
[2, 19, 21], the following Theorem 4 is established.

Theorem 4. A logarithmically absolutely monotonic function on an interval I is
also absolutely monotonic on I, equivalently, AL[I] ⊂ A[I].

Theorem 4 hints us that in order to show some functions, especially the power-
exponential functions or the exponential functions, are absolutely monotonic, maybe
it is much simpler or easier to prove the stronger statement that they are logarith-
mically absolutely monotonic.

In [23, Theorem 1.2] and [29], it was proved that Fα,β(x) ∈ CL[(0,∞)] for α > 0
and β ∈ R if and only if 2β ≥ α > 0. From CL[I] ⊂ C[I] it is deduced that the
function (1+ α

x )x+β−eα ∈ C[(0,∞)] if and only if 0 < α ≤ 2β, which is a conclusion
obtained in [1].

Now it is natural to pose a problem: How about the logarithmically complete
(absolute) monotonicity of the function Fα,β(x) for all real numbers α 6= 0 and β

in the interval (−∞,min{0,−α}) or (max{0,−α},∞)? The following Theorem 5
answers this problem.

Theorem 5. For α < 0, Fα,β(x) ∈ CL[(−α,∞)] if and only if β ≤ α and
[Fα,β(x)]−1 ∈ CL[(−α,∞)] if and only if 2β ≥ α.

For α > 0, Fα,β(x) ∈ CL[(0,∞)] if and only if 2β ≥ α and [Fα,β(x)]−1 ∈
CL[(0,∞)] if and only if β ≤ 0.
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For α < 0, Fα,β(x) ∈ AL[(−∞, 0)] if and only if β ≥ 0 and [Fα,β(x)]−1 ∈
AL[(−∞, 0)] if and only if 2β ≤ α.

For α > 0, Fα,β(x) ∈ AL[(−∞,−α)] if and only if 2β ≤ α and [Fα,β(x)]−1 ∈
AL[(−∞,−α)] if and only if β ≥ α.

As an immediate consequence of combining Theorem 5 with CL[I] ⊂ C[I], the
following complete monotonicity relating to the function Fα,β(x), which extends the
corresponding result obtained in [1, 23, 29] and mentioned above, can be obtained
easily.

Theorem 6. For α > 0, (1 + α
x )x+β − eα ∈ C[(0,∞)] if and only if α ≤ 2β and

(1+ α
x )−(x+β)− e−α ∈ C[(0,∞)] if and only if β ≤ 0. For α < 0, (1+ α

x )x+β − eα ∈
C[(−α,∞)] if and only if β ≤ α and 1

Fα,β(x) ∈ C[(−α,∞)] if and only if 2β ≥ α.

2. Proofs of theorems and inequalities

2.1. Proof of Theorem 1. Direct calculation gives

[ln fα(x)]′ = ln
(
1 +

1
x

)
− x + α

x(x + 1)
and [ln fα(x)]′′ =

(2α− 1)x + α

x2(x + 1)2
.

For x > 0, it is easy to see that [ln fα(x)]′′ > 0 and [ln fα(x)]′ increases if and
only if α ≥ 1

2 . Since limx→∞[ln fα(x)]′ = 0 for any α ∈ R, thus [ln fα(x)]′ < 0 for
α ≥ 1

2 (This implies the right hand side of inequality (3)), which means f ′α(x) < 0
and fα(x) decreases. This implies also that the sequence an is decreasing for α ≥ 1

2 .
For x > 0, it is clear that [ln fα(x)]′′ < 0 and [ln fα(x)]′ decreases if and only if

α ≤ 0. Then [ln fα(x)]′ > 0, f ′α(x) > 0 and fα(x) increases for α ≤ 0. This implies
that the sequence

(
1 + 1

n

)n+α is increasing for α ≤ 0.
For x > 0, when 0 < α < 1

2 , the function [ln fα(x)]′′ has a unique zero point
x0 = α

1−2α > 0 which is a supremum point of [ln fα(x)]′, this supremum equals
[ln fα(x0)]′ = ln

(
1
α−1

)
+2(2α−1) > 0 (This implies the left hand side of inequality

(3)). Since limx→0+ [ln fα(x)]′ = −∞ for α > 0 and limx→∞[ln fα(x)]′ = 0 for any
α ∈ R, it is yielded that the functions [ln fα(x)]′ and f ′α(x) have only one zero
point x1 > 0, which is a unique infimum point of fα(x) on (0,∞). Consequently,
the sufficient and necessary condition of the sequence an being increasing is fα(1) ≤
fα(2) which is equivalent to α ≤ 2 ln 3−3 ln 2

2 ln 2−ln 3 .
For x < −1, the function [ln fα(x)]′′ > 0 and [ln fα(x)]′ is increasing if and

only if α ≤ 1
2 . From limx→−∞[ln fα(x)]′ = 0 it is deduced that [ln fα(x)]′ > 0 and

f ′α(x) > 0 in (−∞,−1). Consequently, the function fα(x) is increasing in (−∞,−1)
if α ≤ 1

2 .
For x < −1, the function [ln fα(x)]′′ < 0 and [ln fα(x)]′ is decreasing if and only

if α ≥ 1. From limx→−∞[ln fα(x)]′ = 0 it follows that [ln fα(x)]′ < 0 and f ′α(x) < 0
in (−∞,−1). Accordingly, the function fα(x) decreases in (−∞,−1) if α ≥ 1.

For x < −1 and 1
2 < α < 1, the function [ln fα(x)]′′ has a unique zero point x0 =

α
1−2α < −1 which is a minimum point of [ln fα(x)]′. Since limx→(−1)− [ln fα(x)]′ =
∞ and limx→−∞[ln fα(x)]′ = 0, then the functions [ln fα(x)]′ and f ′α(x) have only
one zero point x1 > 0, which is a unique infimum point of fα(x) on (0,∞). This
completes the proof of Theorem 1.
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2.2. Proofs of Inequalities. Let G(t) = (2 + t) ln(1 + t) − (4 + t) ln
(
1 + t

2

)
for

t > −1. Then

G′(t) = ln(1 + t)− ln
(
1 +

t

2

)
+

1
1 + t

− 2
2 + t

and G′′(t) =
t(3 + 2t)

(1 + t)2(2 + t)2
.

It is clear that G′′(t) has a unique zero t = 0 for t > −1 and G′(t) takes the infimum
G′(0) = 0, thus G′(t) > 0 (This implies the inequality (4)) and G(t) is increasing.

From G(0) = 0, it follows that G(t)

{
> 0, t > 0,

< 0, t < 0.
From this, we conclude the

inequality (1) and
ln(1 + t)− 2 ln

(
1 + t

2

)
ln

(
1 + t

2

)
− ln(1 + t)

<
t

2
(5)

for t > −1 and t 6= 0.
The inequality (2) follows from standard arguments.

2.3. Proof of monotonicity of
(
1 + α

x

)x+β
. Calculating directly yields

lnFα,β(x) = (x + β) ln
(
1 +

α

x

)
, (6)

[lnFα,β(x)]′ = ln
(
1 +

α

x

)
− α(x + β)

x(x + α)
, (7)

[lnFα,β(x)]′′ =
α[(2β − α)x + αβ]

x2(x + α)2
. (8)

2.3.1. The case of x > max{0,−α}. It is not difficult to see that the function
Fα,0(x) is increasing for x > max{0,−α}.

Direct calculation yields

lim
x→∞

[lnFα,β(x)]′′ = 0, lim
x→∞

[lnFα,β(x)]′ = 0, (9)

lim
x→0+

[lnFα,β(x)]′ = − sgn β · ∞ if α > 0, (10)

lim
x→(−α)+

[lnFα,β(x)]′ = −∞ if β = α < 0, (11)

lim
x→(−α)+

[lnFα,β(x)]′ = sgn(β − α) · ∞ if α < 0, β 6= 0 and β 6= α. (12)

From (8), it follows that [ln Fα,β(x)]′′ > 0 and [lnFα,β(x)]′ is increasing for
α = 2β > 0. Further, from (9), it follows also that [lnFα,β(x)]′ < 0 (From this, we
can obtain the right hand side of inequality (3)) and lnFα,β(x) decreases. Therefore
Fα,β(x) decreases for α = 2β > 0. By the same argument, it can be deduced that
if α = 2β < 0 the function Fα,β(x) increases.

From (8), if α 6= 2β, the function [lnFα,β(x)]′′ may have one zero point x0 =
αβ

α−2β at most.
If x0 ≤ max{0,−α}, then the function [lnFα,β(x)]′′ has no zero point. This

means that if α > 0 > β, or 0 < α < 2β, or α < 0 < β, or α < 2β < 0,
or β ≤ α < 0, the function [lnFα,β(x)]′′ keep the same sign and [lnFα,β(x)]′ is
monotonic. Furthermore, utilizing (10), (11) and (12), it is concluded that when
either α > 0 > β, or α < 0 < β or α < 2β < 0, the function [lnFα,β(x)]′ > 0, and
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then lnFα,β(x) and Fα,β(x) increases; when either 2β > α > 0 or β ≤ α < 0, the
function [lnFα,β(x)]′ < 0, then lnFα,β(x) and Fα,β(x) decreases.

If x0 > max{0,−α}, the function [lnFα,β(x)]′′ has a unique zero x0. If α(2β −
α) > 0, the function [ln Fα,β(x)]′ has a unique minimum attained at x0; if α(2β −
α) < 0, the function [lnFα,β(x)]′ has a unique maximum attained at x0. This
implies that for α < β < α

2 < 0 the function [lnFα,β(x)]′ has a unique zero point
which is a maximum point of lnFα,β(x) and Fα,β(x) and that for 0 < 2β < α the
function [ln Fα,β(x)]′ has a unique zero point which is a minimum point of lnFα,β(x)
and Fα,β(x).

2.3.2. The case of x < min{0,−α}. It is not difficult to see that the function
Fα,0(x) increases for x < min{0,−α}.

Straightforward computation leads to

lim
x→−∞

[lnFα,β(x)]′′ = 0, lim
x→−∞

[lnFα,β(x)]′ = 0, (13)

lim
x→(−α)−

[lnFα,β(x)]′ = − sgn(β − α) · ∞ if α > 0, (14)

lim
x→0−

[lnFα,β(x)]′ = −∞ if β = α < 0, (15)

lim
x→0−

[lnFα,β(x)]′ = sgnβ · ∞ if α < 0 and β 6= α. (16)

By (8), if α = 2β > 0, then the function [lnFα,β(x)]′′ > 0 and [lnFα,β(x)]′

is increasing. Considering (13) gives [lnFα,β(x)]′ > 0, and then lnFα,β(x) and
Fα,β(x) are increasing for α = 2β > 0. Similarly, if α = 2β < 0, the function
Fα,β(x) is decreasing.

Observing (8), when α 6= 2β, the function [ln Fα,β(x)]′′ may have at most one
zero point x0 = αβ

α−2β .
If x0 ≥ min{0,−α}, then [lnFα,β(x)]′′ has no zero point. This implies that

if either 0 > α > 2β, or α > 0 > β, or 0 < 2β < α, or 0 < α < β, or α <

0 < β then the function [lnFα,β(x)]′′ does not change its sign and [ln Fα,β(x)]′ is
monotonic. Employing (14), (15) and (16) concludes that when either α > 0 > β,
or 0 < 2β < α, or α < 0 < β the function [lnFα,β(x)]′ > 0, and then lnFα,β(x)
and Fα,β(x) increases and that when either 0 > α > 2β or 0 < α < β the function
[lnFα,β(x)]′ < 0, and then lnFα,β(x) and Fα,β(x) decreases.

If x0 < min{0,−α}, the function [lnFα,β(x)]′′ has a unique zero x0. If α(2β −
α) > 0, the function [ln Fα,β(x)]′ has a unique minimum attained at x0; if α(2β −
α) < 0, the function [lnFα,β(x)]′ has a unique maximum attained at x0. This
implies that for 2β > α > β > 0 the function [lnFα,β(x)]′ has a unique zero point
which is a minimum point of lnFα,β(x) and Fα,β(x) and that for 0 > 2β > α

the function [lnFα,β(x)]′ has a unique zero point which is a maximum point of
lnFα,β(x) and Fα,β(x).

2.4. Proof of monotonicity of
(
1 + α

n

)n+β
. It has been proved above that the

function Fα,β(x) has a unique maximum if α < β < α
2 < 0 and that the function

Fα,β(x) has a unique minimum if 0 < 2β < α. Consequently, if Fα,β(1) ≤ Fα,β(2)
for α > 2β > 0 the sequence bn increases; if Fα,β(1) ≥ Fα,β(2) for 2β < α <
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β < 0 the sequence bn decreases; otherwise, bn is not monotonic. Namely, when
α > 2β > 0 and β ≤ ln(1+α)−2 ln(1+α/2)

ln(1+α/2)−ln(1+α) , the sequence bn =
(
1 + α

n

)n+β increases;

when 2β < α < β < 0 and β ≤ ln(1+α)−2 ln(1+α/2)
ln(1+α/2)−ln(1+α) , the sequence bn decreases. As

a result, using inequality (1) or (5), the sufficient and necessary conditions of the
sequence

(
1 + α

n

)n+β being monotonic are concluded. The proof of Theorem 2 is
complete.

2.5. Proof of Theorem 3. It is clear that Theorem 1 is a special case of Theo-
rem 2.

In order to prove Theorem 3, it is sufficient to conclude Theorem 2 directly from
Theorem 1. For this purpose, taking α

x = 1
y for α > 0 yields Fα,β(x) = [fβ/α(y)]α.

This shows that the functions Fα,β(x) and fβ/α(y) have the same monotonicity
as α > 0. On the other hand, if α < 0, setting −α

x+α = 1
y leads to Fα,β(x) =

[f1−β/α(y)]α. This tells us that the functions Fα,β(x) and f1−β/α(y) have the
opposite monotonicity as α < 0. From Theorem 1, the monotonicities of Fα,β(x)
can be deduced immediately.

By similar arguments, the equivalence between the necessary and sufficient con-
ditions of the monotonicities of the sequences an and bn can be obtained easily.
The proof of Theorem 3 is complete.

2.6. Proof of Theorem 4. The Faá di Bruno’s formula [3, 26] gives an explicit
formula for the n-th derivative of the composition g(h(t)): If g(t) and h(t) are
functions for which all the necessary derivatives are defined, then

dn

dxn
[g(h(x))] =

∑
16i6n,ik>0∑n

k=1 ik=i∑n
k=1 kik=n

n!∏n
k=1 ik!

g(i)(h(x))
n∏

k=1

[
h(k)(x)

k!

]ik

. (17)

Applying (17) to g(x) = ex and h(x) = ln f(x) leads to

f (n)(x) =
[
eln f(x)

](n) = n!f(x)
∑

16i6n,ik>0∑n
k=1 ik=i∑n

k=1 kik=n

n∏
k=1

{
[ln f(x)](k)

}ik

[ik!(k!)ik ]
(18)

for n ∈ N. Theorem 4 follows easily.

2.7. Proof of Theorem 5. For α < 0 and x > −α, in virtue of formula

1
xr

=
1

Γ(r)

∫ ∞

0

tr−1e−xt dt (19)

for x > 0 and r > 0, the equation (8) can be rewritten as

[ln Fα,β(x)]′′ =
1

x + α
− 1

x
− β − α

(x + α)2
+

β

x2

,
∫ ∞

0

[β − qα(t)]t
(
eαt − 1

)
e−(x+α)t dt,

(20)
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where

qα(t) =
eαt − αt− 1
t
(
eαt − 1

) =
α(eu − u− 1)

u(eu − 1)
, αq(u) (21)

for t > 0 and u = αt < 0. Since q(u) is decreasing in (−∞, 0) with limu→0− q(u) = 1
2

and limu→−∞ q(u) = 1, then when β ≤ α the function (−1)i[lnFα,β(x)](i+2) ≥ 0
and when 2β ≥ α the function (−1)i[lnFα,β(x)](i+2) ≤ 0 in (−α,∞) for i ≥ 0. Since
[ln Fα,β(x)]′ increases for β ≤ α and decreases for 2β ≥ α, considering the second
limit in (9) shows that [lnFα,β(x)]′ ≤ 0 for β ≤ α and [lnFα,β(x)]′ ≥ 0 for 2β ≥ α.
In conclusion, (−1)k[lnFα,β(x)](k) ≥ 0 for β ≤ α and (−1)k[lnFα,β(x)](k) ≤ 0
for 2β ≥ α and k ∈ N. This means that Fα,β(x) ∈ CL[(−α,∞)] for β ≤ α < 0
and 1

Fα,β(x) ∈ CL[(−α,∞)] for both 2β ≥ α and α < 0. Conversely, if Fα,β(x) ∈
CL[(−α,∞)] for α < 0, then [lnFα,β(x)]′ ≤ 0 which can be rearranged as

β ≤ x

[(
1 +

x

α

)
ln

(
1 +

α

x

)
− 1

]
, θα(x) (22)

and limx→(−α)+ θα(x) = α, thus β ≤ α. If 1
Fα,β(x) ∈ CL[(−α,∞)] for α < 0, then

[ln Fα,β(x)]′ ≥ 0 which can be rearranged as β ≥ θα(x) → α
2 as x → ∞, hence

2β ≥ α holds.
If α > 0, the formulas (20) and (21) are valid for x > 0 and u > 0. Since

q(u) is decreasing in (0,∞) with limu→0+ q(u) = 1
2 and limu→∞ q(u) = 0, by the

same argument as above, it follows easily that Fα,β(x) ∈ CL[(0,∞)] for 2β ≥ α

and 1
Fα,β(x) ∈ CL[(0,∞)] for β ≤ 0. Conversely, if Fα,β(x) ∈ CL[(0,∞)] for α > 0,

then [lnFα,β(x)]′ ≤ 0 which can be rewritten as β ≥ θα(x) → α
2 as x tends to ∞;

if 1
Fα,β(x) ∈ CL[(0,∞)] for α > 0, then [lnFα,β(x)]′ ≥ 0 which can be rewritten as

β ≤ θα(x) → 0 as x → 0.
For α < 0 and x < 0, it is easy to obtain

[lnFα,β(x)]′′ = − 1
−(x + α)

+
1
−x

− β − α

[−(x + α)]2
+

β

(−x)2

,
∫ ∞

0

[β + pα(t)]t
(
1− eαt

)
ext dt,

(23)

where

pα(t) =
1 + (αt− 1)eαt

t(1− eαt)
=

α[1 + (u− 1)eu]
u(1− eu)

, αp(u) (24)

for t > 0 and u = αt < 0 and p(u) is decreasing in (−∞, 0) with limu→−∞ p(u) = 0
and limu→0− p(u) = − 1

2 . Accordingly, for i ≥ 0 and in (−∞, 0), if β − α
2 ≤ 0 then

[lnFα,β(x)](i+2) ≤ 0, if β ≥ 0 then [lnFα,β(x)](i+2) ≥ 0. By virtue of (13), it is
deduced immediately that [lnFα,β(x)](k) ≤ 0 for 2β ≤ α and [ln Fα,β(x)](k) ≥ 0 for
β ≥ 0 and k ∈ N in (−∞, 0). Conversely, if Fα,β(x) is logarithmically absolutely
monotonic in (−∞, 0), then [lnFα,β(x)]′ ≥ 0 which can be rewritten as β ≥ θα(x)
for x ∈ (−∞, 0). From limx→0− θα(x) = 0, it follows that β ≥ 0; if 1

Fα,β(x) is log-
arithmically absolutely monotonic in (−∞, 0), then [lnFα,β(x)]′ ≤ 0 which can be
rearranged as β ≤ θα(x) for x ∈ (−∞, 0). From limx→−∞ θα(x) = α

2 , it concludes
that 2β ≤ α.
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For α > 0 and x < −α, the formulas (23) and (24) hold for x ∈ (−∞,−α) and
u > 0. The function p(u) is negative and decreasing in (0,∞) with limu→0+ p(u) =
− 1

2 and limu→∞ p(u) = −1. Consequently, if β − 1
2α ≤ 0 then [lnFα,β(x)](i+2) ≥ 0

for i ≥ 0 in (−∞,−α), if β − α ≥ 0 then [lnFα,β(x)](i+2) ≤ 0 for i ≥ 0 in
(−∞,−α). In virtue of (13), it is concluded readily that [ln Fα,β(x)](k) ≥ 0 for
2β ≤ α and [ln Fα,β(x)](k) ≤ 0 for β ≥ α and k ∈ N in (−∞,−α). Conversely, if
Fα,β(x) is logarithmically absolutely monotonic in (−∞,−α), then [lnFα,β(x)]′ ≥ 0
which can be rewritten as β ≤ θα(x) for x ∈ (−∞,−α). From the fact that
limx→−∞ θα(x) = α

2 , it follows that 2β ≤ α; if 1
Fα,β(x) is logarithmically absolutely

monotonic in (−∞,−α), then [ln Fα,β(x)]′ ≤ 0 which can be rearranged as β ≥
θα(x) for x ∈ (−∞,−α). From the fact that limx→(−α)− θα(x) = α, it concludes
that β ≥ α. The proof of Theorem 5 is complete.
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