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FOUR LOGARITHMICALLY COMPLETELY MONOTONIC
FUNCTIONS INVOLVING GAMMA FUNCTION AND
ORIGINATING FROM PROBLEMS OF TRAFFIC FLOW

FENG QI, JIAN CAO, AND DA-WEI NIU

ABSTRACT. In this paper, two classes of functions, involving a parameter and
the Euler gamma function, and two functions, involving the Euler gamma
function, are verified to be logarithmically completely monotonic in (— % s oo) or
(0, 00) and an inequality involving the Euler gamma function, due to J. Wendel,
is refined partially.

1. INTRODUCTION

The Kershaw’s inequality in [9] states that the double inequality

holds for 0 < s < 1 and = > 1, where I' denotes the classical Euler gamma function

and ¢ = 1%, the logarithmic derivative of I'. If taking s = % in (1), then

1 Dx+1) | V3 -1

Let s and ¢ be nonnegative numbers and o = min{s, ¢}. For z € (—a, 00), define

T ¢ 1/(t—s)
[@H] Ca st
zst(x) = |D(x + ) (3)
e¥(@ts) _ g s=t.

In order to establish the best bounds in Kershaw’s inequality (1), among other
things, the papers [4, 6, 15, 19] established the following monotonicity and convexity
property of z ;(x): The function z;,(z) is either convex and decreasing for |t — s| <
1 or concave and increasing for |t — s| > 1. This result was further generalized in
the papers [12, 13].

In [5, p. 123] and [10], while ones studied certain problems of traffic flow, the
following double inequality was obtained for n € N:

2F(n+;> SF(;)F(n—Fl) gznr(m;) ()
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which can be rearranged for n > 1 as

1< {F(1/2)F(n+1)} 1/(n—1)

T (n + 1/2) =2 5)

In [23], by using the following double inequality due to J. Wendel in [27]:

(xia)lagmgl (6)

for 0 < a <1 and x > 0, inequality (4) was extended and refined as

I'(z+1) 1
ﬁgr(x+1/2)— T3 M
for z > 0.

It is clear that the double inequality (7) is weaker than (2).

Recall [14, 24, 28] that a function f is said to be completely monotonic on an
interval I if f has derivatives of all orders on I and 0 < (—1)"f(™(z) < oo for
x € I and n > 0. The set of the completely monotonic functions on [ is denoted
by C[I]. The well known Bernstein’s Theorem [28, p. 161] states that f € C[(0, c0)]
if and only if f(z) = fooo e " du(s), where p is a nonnegative measure on [0, 00)
such that the integral converges for all x > 0. This expresses that f € C[(0, 00)] if
and only if f is a Laplace transform of the measure pu.

Recall [2, 7, 14, 16, 17, 20, 21] also that a positive function f is called loga-
rithmically completely monotonic on an interval I if f has derivatives of all orders
on I and its logarithm In f satisfies 0 < (—1)*[In f(z)]*) < oo for all k € N on
I. The set of the logarithmically completely monotonic functions on I is denoted
by L[I]. In [3, Theorem 1.1] and [7, 21] it is pointed out that the logarithmically
completely monotonic functions on (0,00) can be characterized as the infinitely
divisible completely monotonic functions studied by Horn in [8, Theorem 4.4].

It was proved in [3, 14, 18, 20, 21, 24] that L[I] C C[I], but not conversely.
Stimulated by the papers [17, 20], among other things, it was further revealed in [3]
that S\ {0} C L[(0,00)] C C[(0,00)], where S denotes the set of Stieltjes transforms.

Let v = 0.57721566 - - - be Euler-Mascheroni’s constant. For z € (f%, oo), let

r(1/2)0(z + 1)@V
Sresm] ot

exp{l’yiﬁ(;)} T

The first aim of this paper is to show the logarithmically complete monotonicity of
g(z). The first main result of this paper is as follows.

g(x) = (8)

Theorem 1. Let g(z) be the function defined by (8). Then g(z) € L[(—1,00)]
with lim,_, 1, g(z) = oo and lim,—. g(z) = 1.

Remark 1. From the decreasingly monotonic property of g(z) and lim, . g(z) = 1
in Theorem 1 and g(1) = exp[l — v — ¢(2)], it is obtained that

2F<x+ ;) < F(;)I‘(aﬁL 1) < 2r<:z:+ ;) exp{(a: 1) {1 7¢(2>” (9)
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for x € [1,00). From ¢(0) = 2, lim,_. g(z) = 1 and the decreasingly monotonicity
of g(x), it is also revealed that

or <x + ;) < F(;)I‘(x +1) < 2zr<x + ;) (10)
for z € (0, 00).

Inequalities (9) and (10) extend (4) and (5) and the right hand side inequality
of (9) refines the right hand side inequality of (4) and (5). Therefore, it can be
said that Theorem 1 generalizes, extends, and refines the double inequalities (4)
and (5).

By the way, numerical calculation shows

1+ \/52_1 =1.168 - > 2exp{(l—l){l—y—@z;(‘;’)”—1.128~-.

I'(1/2)
and
2+ ‘/32_1 =1.538--- < F(fmexp{(2—1){1—y—¢(§>}} =1.660-- - ,

hence, the right hand side inequality of (2) and the following inequality

sl [ o

for « € [1,00), which is deduced from the right hand side inequality of (9), are not
included each other. Similarly, it is easy to show that inequality (11) and the right
hand side inequality in (7) are also not included each other in x € [1, c0).

For z > 0 and a > 0, let

(x +a)!7T(z + a)
al'(z)

ha(x) = (12)

The second aim of this paper is to prove the logarithmically complete monotonicity
of hq(z). The second main result of this paper is as follows.

Theorem 2. Let h,(x) be the function defined by (12). Then

(1) limg—oy ho(x) = % and limg 00 he(z) =1 for any a > 0,
(2) he(z) € L](0,00)] if 0 <a <1,
(3) [ha(@)]7" € L[(0,00)] if a > 1.

Let v = 0.57721566 - - - be the Euler-Mascheroni’s constant. For = € (0, 00),
define

e 1/(1-=)
T/ 1 1)\ y X 17
p(z) = [F T+ 1)] 7 (13)
e 7, z=1.
The third aim of this paper is to present the logarithmically complete monotonicity

of p(z). The third main result of this paper is as follows.

Theorem 3. Let p(x) be the function defined by (13). Then p(x) € L[(0,00)] with

lim, o4 p(z) =1 and lim, o, p(z) = é,
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For z € (0,00) and a € (0, 00), let
Iz + a)
() = ———2. 14
fulw) = s (14
The fourth aim of this paper is to consider the logarithmically complete monotonic-
ity of f,(z). The fourth main result of this paper is as follows.

Theorem 4. Let f,(x) be the function defined by (14). Then

(1) limg oo fa(x) =1 for any a € (0,00),
(2) fa(z) € L](0,00)] and lim,_,o4 fo(x) =00 if a > 1,
(3) [fa(z)]7t € £[(0,00)] and lim, o4 fo(z) =0if 0 < a < 1.

As a straightforward consequence of Theorem 2 and Theorem 4, the following
refinement of inequality (6) is established.

Theorem 5. Let z € (0,00). If 0 < a <1, then

() <

Fla+1)( = \'° . ap(a)
a? (x+a) sl O<es 1—p(a)’ (15)

ap(a)
1—7p(a) < T <00,

where p(x) is defined by (13). If a > 1, the reversed inequality of (15) holds.

L,

Remark 2. The graph of the function 1(2015((13) , pictured by MATHEMATICA 5.2, shows

that it is an increasing function from (0, c0) to (0, 00).

2. PROOFS OF THEOREMS

It is well-known that, for x > 0 and w > 0,

1 1 e
—=—— et 16
=T ), Ce 1o
and that, for k € N and = > 0,
<1 1
_ 1 - —zTu d 17
T A = (17)
(k) w5t ¢
= (-1 ——e " dt. 18
W0 = ([ e (18)
Moreover, as £ — oo, the following asymptotic formula holds:
_T(z+a) (a—0b)(a+b—-1) 1
bra 2~ L — 1
v ['(z+b) * 2z +0 x2)’ (19)

where a and b are two constants.
It is remaked that formulas (16), (17), (18) and (19) can be found in [1, p. 257
and p. 259] and [11, 14, 16, 17, 19, 20, 21, 25, 26).
Proof of Theorem 1. Taking logarithm of g(z) leads to
~ InT(z+1) +InT(1/2) = InT(z +1/2) — In2
N z—1

Ing(z)
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_ Inl'(z+1)-In2 Ihl(z+1/2) - InI'(1/2)

r—1 x—1
_lnF(x-i-l)—lnF(l—i—l) InT(z+1/2) —InT(141/2)
o r—1 B rz—1

(qul)duxil/lm@/J(qulﬂ)du

_ ! /I[w(w 1) — (u +1/2)] du

rz—1

:zfl/ //;p t)dt du
:/ [33—1/ g u+t)du]dt

:/ /¢'((x—1)u+t+1)dudt
172 Jo
and, for k € N,

n (k1) [ u
(—1)*ng(z /1/2/ Fp* D (2 — Du+t + 1)) dudt > 0

by considering formula (18). This means g(z) € L[(—4,00)].
By L’Hospital’s rule and formula (17), it is deduced that

/1 1
= lim In ol + lim ( — ) (e_“ — e_“/g)e_” du =0,
+ 0 u 1—e v
which can be restated as lim,_.o g(z) = 1.
It is easy to see that hmw_,_;+ Ing(z) = oo and limm_,_%+ g(x) = oco. The proof

of Theorem 1 is complete. O

Proof of Theorem 2. Using the differences equation I'(x + 1) = zI'(z) and taking
limit directly gives

lim h,(x) = lim Metat+l) I+ a)
z—0+ 0(z+a)el(z+1)  a°

Using the asymptotic expansion (19) yields
I'z+a+1) a\ * ala+1) 1
ha(z) = —(1+2) (1 +%2T0 o= 1
() (x+a)el(x+1) ( + x) [ + 2x + 22)|

as ¢ — 00, which means lim,_, ho(z) = 1.
Taking logarithm of h,(z), differentiating with respect to x successively and
utilizing formulas (16) and (18) leads to

Inhe(z)=(1—-a)ln(z+a)+InT(z+a) —InT(z+1)
and, for n € Nand n > 1,

(=1)" " (n—1)!

o)) = (1 =) I

+" (@t a) — T @+ 1)
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1y (g — (n—1)!
— 1 fe-n e

0o o) n—1
_ (_l)n{/ (a — 1)6—(x+a)ttn—l dt +/ |:e—(w+a)t . e—(m+1)t} t dt}
0 0 1—e?
o0 —(x+a)ttn—1
- (_1)n{/ 6174[((1_ H(l—ef)+1 —e(“_l)t} dt}
0 — €

oo —(a:—i—a)ttn—l
£ (-1 "/ L r@#)dt.
Co [

It is clear that r'(t) = (a—1)e~*(1—e**) and r(0) = 0. Therefore, the function r(t) is
non-positive for a > 1 and r(t) > 0for 0 < a < 1. Asaresult, (—1)"[In h,(z)]"™ <0

for a > 1 and (—1)"[In hy(x)]™ > 0for 0 < a < 1.
By formula (17), it is easy to see that

F =10 a4 0) = (1) D+ 1)

1—a
1 "= — 1
Inha(@) = % + 0o +a) — d(e + 1)
l1—a x+a /1 1
— 1 - —at _ _—t —ztdt
x+a+nx—|—1+/0 (t 1—et>(e e
-0

as ¢ — o0o. Since [Inhy(z)]" is decreasing for a > 1 and increasing for 0 < a < 1,
then [lnhy(z)]" >0 for a > 1 and [lnh,(z)] <0 for 0 < a < 1.

Summing up, for any positive integer k € N, if @ > 1 then (—1)*[In h,(2)]*® <0,
if 0 < a <1 then (—1)*[Inh,(2)]* > 0. The proof of Theorem 2 is complete. [

Proof of Theorem 3. From the differences equation I'(z + 1) = aT'(x), it follows
easily that

(20)

8=

Pl +1) — () =
for x > 0. Taking logarithm of p(z) and utilizing (
zlnz —InT(z+1)

[\~

0) gives

Inp(z) = -2
B InT(z+1)—InT(14+1) zlnz—1Inl
h rx—1 r—1
S /ww(u—i—l)du—i/w(l—i—lnu)du
_x—l 1 .]3—1 1
1 xX

:x—l/l [W(u+1) —Inu]du—1

xll/lx[¢(U)—lnu+Hdu_1
[ v

1
r—1

1
:/ U((z—1Du+1)du—1.
0
Formulas (16) and (17) imply that

U(z) = (@) —Inz+ © = /Ooo {M]e” du.

X

(1>



FOUR LOGARITHMICALLY COMPLETELY MONOTONIC FUNCTIONS 7
Since e* — 1 —u > 0 for u € (0,00), then ¥(x) € C[(0,00)]. Therefore, for k € N,
1
(—1)FInp(z)]* = / uF[(~ )PP (2 — Du+1)] du > 0.
0

This means p(z) € L[(0,00)].
The L’Hospital’s rule and formulas (17) and (20) yield

lim Inp(z) = lim zlnz —Inl(z+1) = lim [¢(x+1) — (1 4+ Inz)]

xr— 00 T—00 1—=z T—00

r—00 Tr—00 Tr—00 I

= lim [w(m)—lnx—&—sﬂ —1= lim [¢(z) —Inz] + lim l—lz -1

Thus, it follows easily that lim, .o p(z) = 1.
It is clear that lim, o4 Inp(z) = 0. Hence, the limit lim, o4 p(z) = 1 follows.
The proof of Theorem 3 is complete. O

Proof of Theorem 4. Applying (19) reveals

fula) = F;frfx‘;) —1 2o <1> L1

as x — oo for a € (0,00).

. . oa>1,
From fa(x):%f;)ra),it follows that lim, oy f.(z) = go g ca<l

Taking logarithm of f,(z) and differentiating yields
Inf,(z) =InT(z+a) —alnz —InT(z)
and, by (16) and (18) for n > 1,

(1) fula)]® = (~1)" [W-”(x fa) " (a) —a

o0 tn—l o0
_ / (e—(;c+a)t _ 6_“)77: dt + / ae—xttn—l dt
0 l—e~ 0

e o] n—1
= / t [e‘at -1+ a(l — e_t)]e_wt dt
0

(=) Y(n - 1)!]

xn

1—et
N (o) tnfl ot
= T e_ts(t)e dt.
, 1-—
It is clear that s(0) = 0 and s'(t) = a[1 — e!=9*]e~*. Thus, standard argument
>0, a>1 >0, a>1

i DR ' This implies (—1)"[In f,(z)](™ ¢ ~ 7 ’
glvess(){SQ 0<a<l is implies (—1)"[In f, ()] {SO, 0<a<l

Since

a

[In fo(2)]" = ¢(z +a) — P(z) - .
_ /OOO (1 - _let> (et — 1)e“dt+1n<1 n z) _ % ~0

/

as ¢ — oo and the function [In f,(z)]’ is increasing for a > 1 and decreasing for
<0, a>1,

0<a<1,then [In f, ()]
“ en [In fa (@) >0, 0<a<l.
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>0, a>1,
<0, O0<a<l1.
proof of Theorem 4 is complete. O

In a word, for k € N, it follows that (—1)F[In f,(x)]*) The

Proof of Theorem 5. As a direct consequence of Theorem 2, a double inequality is
obtained: For 0 < a <1 and x > 0,

(I :Er a)1a ) F;icr—i(-;;) < F(aa—a&— 1) (I jcr a)la. o

For a > 1 and x > 0, the double inequality (21) is reversed.
As an easy consequence of Theorem 4, an inequality is deduced: For 0 < a < 1,
inequality

I'(xz + a)
—— <1 22
zel(x) < (22)
is valid in z € (0,00). For a > 1, inequality (22) reverses.
It is a standard argument that % (ﬁ_a)ka <lifand onlyif 0 < x < 1“_]”15'(13)

for 0 < a < 1. The proof of Theorem 5 is complete.
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