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SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF
BOUNDED LINEAR OPERATORS IN HILBERT SPACES

S.S. DRAGOMIR

Abstract. The main aim of this paper is to establish some connections that

exist between the numerical radius w (A) , operator norm ‖A‖ and the semi-
inner products 〈A, I〉p,n and 〈A, I〉p,w with p ∈ {i, s} that can be naturally

defined on the Banach algebra B (H) of all bounded linear operators defined

on a Hilbert space H. Reverse inequalities that provide upper bounds for the
nonnegative quantities ‖A‖ − w (A) and w (A) − 〈A, I〉p,n under various as-

sumptions for the operator A are also given.

1. Introduction

In any normed linear space (E, ‖·‖) , since the function f : E → R, f (x) = 1
2 ‖x‖

2

is convex, one can introduce the following semi-inner products (see for instance [3]):

(1.1) 〈x, y〉i := lim
s→0−

‖y + sx‖2 − ‖y‖2

2s
, 〈x, y〉s := lim

t→0−

‖y + tx‖2 − ‖y‖2

2t

where x, y are vectors in E. The mappings 〈·, ·〉s and 〈·, ·〉i are called the superior
respectively the inferior semi-inner product associated with the norm ‖·‖ .

In the Banach algebra B (H) of all bounded linear operators defined on the real
or complex Hilbert space H we can associate to both the operator norm ‖·‖ and
the numerical radius w (·) the following semi-inner products:

(1.2) 〈A,B〉s(i),n := lim
t→0+(−)

‖B + tA‖2 − ‖B‖2

2t

and

(1.3) 〈A,B〉s(i),w := lim
t→0+(−)

w2 (B + tA)− w2 (B)
2t

respectively, where A,B ∈ B (H) .
It is obvious that the semi-inner products 〈·, ·〉s(i),n(w) defined above have the

usual properties of such mappings defined on general normed spaces and some
special properties that will be specified in the following.

For the sake of completeness we list here some properties of 〈·, ·〉s(i),n(w) that
will be used in the sequel.

We have:
(i) 〈A,A〉s(i),n = ‖A‖2

, 〈A,A〉s(i),w = w2 (A) for any A ∈ B (H) ;
(ii) 〈iA, A〉p,n(w) = 〈A, iA〉p,n(w) = 0 for each A ∈ B (H) ;
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(iii) 〈λA, B〉p,n(w) = λ 〈A,B〉p,n(w) = 〈A, λB〉p,n(w) for any λ ≥ 0 and A,B ∈
B (H) ;

(iv) 〈−A,B〉p,n(w) = 〈A,−B〉p,n(w) = −〈A,B〉q,n(w) for any A,B ∈ B (H) ;
(v) 〈iA, B〉p,n(w) = −〈A, iB〉p,n(w) for each A,B ∈ B (H) ;
(vi) The following Schwarz type inequalities hold true:

(1.4)
∣∣∣〈A,B〉p,n

∣∣∣ ≤ ‖A‖ ‖B‖

and

(1.5)
∣∣∣〈A,B〉p,w

∣∣∣ ≤ w (A)w (B)

for any A,B ∈ B (H) ;
(vii) The following identities hold true

(1.6) 〈αA + B,A〉p,n = α ‖A‖2 + 〈B,A〉p,n

and

(1.7) 〈αA + B,A〉p,w = αw2 (A) + 〈B,A〉p,w

for each α ∈ R and A,B ∈ B (H) ;
(viii) The following sub(super)-additivity property holds:

(1.8) 〈A + B,C〉s(i),p(w) ≤ (≥) 〈A,C〉s(i),p(w) + 〈B,C〉s(i),p(w) ,

where the sign “≤” applies for the superior semi-inner product, while the
sign “≥” applies for the inferior one;

(ix) The following continuity properties are valid:

(1.9)
∣∣∣〈A + B,C〉p,n − 〈B,C〉p,n

∣∣∣ ≤ ‖A‖ ‖C‖

and

(1.10)
∣∣∣〈A + B,C〉p,w − 〈B,C〉p,w

∣∣∣ ≤ w (A)w (C)

for each A,B,C ∈ B (H) ;
(x) From the definition we have the inequality

(1.11) 〈A,B〉i,n(w) ≤ 〈A,B〉s,n(w)

for A,B ∈ B (H) ;
where everywhere above p, q ∈ {i, s} and p 6= q.

As a specific property that follows by the well known inequality between the norm
and the numerical radius of an operator, i.e., w (A) ≤ ‖A‖ for each A ∈ B (H) , we
have

(1.12) 〈A, I〉i,n ≤ 〈A, I〉i,w (≤) 〈A, I〉s,w ≤ 〈A, I〉s,n

for any A ∈ B (H) , where I is the identity operator on H. We also observe that

〈A, I〉s(i),n = lim
t→0+(−)

‖I + tA‖ − 1
t

and

〈A, I〉s(i),w = lim
t→0+(−)

w (I + tA)− 1
t

for each A ∈ B (H) .
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Motivated by the natural connection that exists between the semi-inner products
〈A, I〉p,n , 〈A, I〉p,w with p ∈ {i, s} , the numerical radius w (A) and the operator
norm ‖A‖ outlined above, the aim of this paper is to establish deeper relationships
between these concepts. Amongst others, we show, in fact, that the semi-inner
product 〈A, I〉p,n is equal to 〈A, I〉p,w for p ∈ {i, s} and as a consequence the nu-

merical radius w (A) is bounded below by the maximum of the quantities
∣∣∣〈A, I〉i,n

∣∣∣
and

∣∣∣〈A, I〉s,n

∣∣∣ . Also, on utilising these quantities various reverse inequalities for
the fundamental fact that

1
2
‖A‖ ≤ w (A) ≤ ‖A‖ , A ∈ B (H) ,

are pointed out, improving the recent results of the author from [4], where some
upper bounds for the nonnegative differences ‖A‖−w (A) and ‖A‖2 −w2 (A) have
been established under appropriate conditions for the bounded linear operator A.

For recent results concerning inequalities between the operator norm and numer-
ical radius see the papers [2], [5], [6], [7], [8], [9], the books [1], [10], [11] and the
references therein.

2. The Functionals vs(i) on B (H)

The following representation result, which plays a crucial role in deriving various
inequalities for numerical radius may be stated:

Theorem 1. For any A ∈ B (H) , we have:

(2.1) 〈A, I〉s,n = 〈A, I〉s,w = sup
‖x‖=1

Re 〈Ax, x〉

and

(2.2) 〈A, I〉i,n = 〈A, I〉i,w = inf
‖x‖=1

Re 〈Ax, x〉 .

Proof. Let x ∈ H, ‖x‖ = 1. Then for t > 0 we obviously have:

Re 〈Ax, x〉 =
Re 〈x + tAx, x〉 − 1

t
(2.3)

≤ |〈x + tAx, x〉| − 1
t

≤ w (I + tA)− 1
t

.

Taking the supremum over x ∈ H, ‖x‖ = 1, we get

sup
‖x‖=1

Re 〈Ax, x〉 ≤ w (I + tA)− 1
t

for each t > 0, which implies, by letting t → 0+ that

(2.4) sup
‖x‖=1

Re 〈Ax, x〉 ≤ 〈A, I〉s,w ,

for each A ∈ B (H) .
Now, let δ := sup‖x‖=1 Re 〈Ax, x〉 . If x ∈ H, ‖x‖ = 1, then for any α > 0 we

have
‖(I − αA)x‖ ≥ Re 〈(I − αA) x, x〉 = 1− α Re 〈Ax, x〉 ≥ 1− αδ.

Therefore, by putting x = y
‖y‖ (y 6= 0) with y ∈ H, we have

(2.5) ‖(I − αA) y‖ ≥ (1− αδ) ‖y‖
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for each α > 0 and y ∈ H.
Now, if in (2.5) we replace y by (I + αA) z with z ∈ H, then we get

(2.6)
∥∥(I − α2A2

)
z
∥∥ ≥ (1− αδ) ‖(I + αA) z‖ for each z ∈ H.

Taking the supremum over ‖z‖ = 1 in (2.6), we get the operator norm inequality:∥∥I − α2A2
∥∥ ≥ (1− αδ) ‖I + αA‖

which is equivalent with

(2.7)
∥∥I − α2A2

∥∥+ αδ ‖I + αA‖ ≥ ‖I + αA‖ , α > 0.

If we subtract 1 from both sides of (2.7) and divide by α > 0, we get

(2.8)

∥∥I − α2A2
∥∥− 1

α
+ δ ‖I + αA‖ ≥ ‖I + αA‖ − 1

α
.

Taking the limit over α → 0+ in (2.8) and noticing that

lim
α→0+

‖I + αA‖ = 1, lim
α→0+

‖I + αA‖ − 1
α

= 〈A, I〉s,n

and

lim
α→0+

∥∥I − α2A2
∥∥− 1

α
= lim

α→0+
α · lim

α→0+

∥∥I − α2A2
∥∥− 1

α2
= 0,

then, by (2.8), we have:

(2.9) δ ≥ 〈A, I〉s,n .

Since, by (1.12), we always have 〈A, I〉s,n ≥ 〈A, I〉s,w , hence (2.4) and (2.9) imply
the desired equality (2.1).

Now, on utilising (iv) and (2.1), we have for all A ∈ B (H) that

〈A, I〉i,n = 〈−A, I〉s,n = − sup
‖x‖=1

Re 〈−Ax, x〉 = inf
‖x‖=1

Re 〈Ax, x〉

and the identity (2.2) is also obtained.

It is well known that a lower bound for the numerical radius w (A) is 1
2 ‖A‖ .

The following corollary of the above theorem provides the following lower bounds
as well:

Corollary 1. For any A ∈ B (H) we have

(2.10) max
{∣∣∣〈A, I〉s,n

∣∣∣ , ∣∣∣〈A, I〉i,n
∣∣∣} ≤ w (A) .

Proof. By Schwarz’s inequality for the semi-inner products 〈·, ·〉s,w and 〈·, ·〉i,w we
have ∣∣∣〈A, I〉s,w

∣∣∣ , ∣∣∣〈A, I〉i,w
∣∣∣ ≤ w (A) , A ∈ B (H)

which, by (2.1) and (2.2), imply the desired inequality (2.10).

Motivated by the representation Theorem 1, we can introduce the following
functionals defined on B (H) :

(2.11) vs (A) := sup
‖x‖=1

Re 〈Ax, x〉 and vi (A) := inf
‖x‖=1

Re 〈Ax, x〉 .

Now, on employing the properties of the semi-inner products outlined above, we
can state that:

(a) vs (−A) = −vi (A) , A ∈ B (H) ;
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(aa) vi (A) ≥ 0 for accretive operators on H;
(aaa) vs(i) (A + B) ≤ (≥) vs(i) (A) + vs(i) (B) for each A,B ∈ B (H) ;
(av) vs(i) (A) = 〈A, I〉s(i),n = 〈A, I〉s(i),w for any A ∈ B (H) ;
(v)

∣∣vs(i) (A)
∣∣ ≤ w (A) for all A ∈ B (H) ;

(va) vs(i) (A) = vs(i) (αI + A)− α for any α ∈ R and A ∈ B (H) ;
(vaa)

∣∣vs(i) (A + B)− vs(i) (B)
∣∣ ≤ w (A) for any A,B ∈ B (H) .

The following inequalities may be stated as well:

Proposition 1. For any A ∈ B (H) and λ ∈ C we have
1
2

[
‖A‖2 + |λ|2

]
(2.12)

≥ vs

(
λ̄A
)
≥


1
2

[
‖A‖2 + |λ|2

]
− 1

2 ‖A− λI‖2
,

1
4

[
‖A + λI‖2 − ‖A− λI‖2

]
.

Proof. Let x ∈ H, ‖x‖ = 1. Then, obviously

0 ≤ ‖Ax‖2 − 2 Re
[〈

λ̄Ax, x
〉]

+ |λ|2 = ‖(A− λI) x‖2 ≤ ‖A− λI‖2
,

which is equivalent with

(2.13)
1
2

[
‖Ax‖2 + |λ|2

]
− 1

2
‖A− λI‖2 ≤ Re

〈
λ̄Ax, x

〉
≤ 1

2

[
‖Ax‖2 + |λ|2

]
,

for any x ∈ H, ‖x‖ = 1.
Taking the supremum over ‖x‖ = 1 we get the first inequality in (2.12) and the

one from the first branch in the second.
For x ∈ H, ‖x‖ = 1 we also have that

(2.14) ‖Ax + λx‖2 = ‖Ax− λx‖2 + 4 Re
〈
λ̄Ax, x

〉
,

which, on taking the supremum over ‖x‖ = 1, will produce the second part of the
second inequality in (2.12).

It is well known, in general, that the semi-inner products 〈·, ·〉s(i) are not com-
mutative. However, for the Banach algebra B (H) we can point out the follow-
ing connection between 〈A, I〉s(i),n(w) = vs(i) (A) and the quantities 〈I,A〉s,n and
〈I,A〉i,n , where A ∈ B (H) .

Corollary 2. For any A ∈ B (H) we have

(2.15) vi (A) ≤ 1
2

[
〈I, A〉s,n + 〈I,A〉i,n

]
≤ vs (A) .

Proof. We have from the second part of the second inequality in (2.12) that

(2.16)
1
2

[
‖A + tI‖2 − ‖A‖2

2t
− ‖A− tI‖2 − ‖A‖2

2t

]
≤ vs (A)

for any t > 0.
Taking the limit over t → 0+ and noticing that

lim
t→0+

‖A− tI‖2 − ‖A‖2

2t
= 〈−I,A〉s,n = −〈I,A〉i,n ,

we get the second inequality in (2.15).
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Now, writing the second inequality in (2.15) for −A, we get

vs (−A) ≥ 1
2

[
〈I,−A〉s,n + 〈I,−A〉i,n

]
= −1

2

[
〈I,A〉s,n + 〈I,A〉i,n

]
,

which is equivalent with the first part of (2.15).

Utilising a similar approach for the numerical radius instead of the operator
norm, we can state the following result:

Proposition 2. For any A ∈ B (H) and λ ∈ C we have the double inequality:

1
2

[
w2 (A) + |λ|2

]
≥ vs

(
λ̄A
)

(2.17)

≥


1
2

[
w2 (A) + |λ|2

]
− 1

2w2 (A− λI) ,

1
4

[
w2 (A + λI)− w2 (A− λI)

]
.

The above result has the interesting consequence:

Corollary 3. For any A ∈ B (H) we have

(2.18) vi (A) ≤ 1
2

[
〈I,A〉s,w + 〈I,A〉i,w

]
≤ vs (A) .

Remark 1. Since w (A) ≥ ‖A‖ , hence the first inequality in (2.17) provides a
better upper bound for vs

(
λ̄A
)

than the first inequality in (2.12).

3. Reverse Inequalities in Terms of Operator Norm

The following result concerning reverse inequalities for the numerical radius and
operator norm may be stated:

Theorem 2. For any A ∈ B (H) \ {0} and λ ∈ C\ {0} we have the inequality:

(3.1) (0 ≤) ‖A‖ − w (A) ≤ ‖A‖ − vs

(
λ̄

|λ|
A

)
≤ 1

2 |λ|
‖A− λI‖2

.

In addition, if ‖A− λI‖ ≤ |λ| , then we have:

(3.2)

√
1−

∥∥∥∥ 1
λ

A− I

∥∥∥∥2

≤
vs

(
λ̄
|λ|A

)
‖A‖

≤ w (A)
‖A‖

(≤ 1)

and

(0 ≤) ‖A‖2 − w2 (A) ≤ ‖A‖2 − v2
s

(
λ̄

|λ|
A

)
(3.3)

≤ 2
(
|λ| −

√
|λ|2 − ‖A− λI‖2

)
vs

(
λ̄

|λ|
A

)
(
≤ 2

(
|λ| −

√
|λ|2 − ‖A− λI‖2

)
w (A)

)
,

respectively.
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Proof. Utilising the property (v), we have

w (A) = w

(
λ̄

|λ|
A

)
≥
∣∣∣∣vs

(
λ̄

|λ|
A

)∣∣∣∣ ≥ vs

(
λ̄

|λ|
A

)
,

for each λ ∈ C\ {0} and the first inequality in (3.1) is proved.
By the arithmetic mean-geometric mean inequality we have

1
2

[
‖A‖2 + |λ|2

]
≥ |λ| ‖A‖ ,

which, by (2.12) provides

vs

(
λ̄A
)
≥ |λ| ‖A‖ − 1

2
‖A− λI‖2

that is equivalent with the second inequality in (3.1).
Utilising the second part of the inequality (2.12) and under the assumption that

‖A− λI‖ ≤ |λ| we can also state that

(3.4) vs

(
λ̄A
)
≥ 1

2

[
‖A‖2 +

(√
|λ|2 − ‖A− λI‖2

)2
]

.

By the arithmetic mean-geometric mean inequality we have now:

(3.5)
1
2

[
‖A‖2 +

(√
|λ|2 − ‖A− λI‖2

)2
]
≥ ‖A‖

√
|λ|2 − ‖A− λI‖2

,

which, together with (3.4) implies the first inequality in (3.2).
The second part of (3.2) follows from (v).
From the proof of Proposition 1 we can state that

(3.6) ‖Ax‖2 + |λ|2 ≤ 2 Re
〈
λ̄Ax, x

〉
+ r2, ‖x‖ = 1

where we denoted r := ‖A− λI‖ ≤ |λ| . We also observe, from (3.6), that Re
〈
λ̄Ax, x

〉
> 0 for x ∈ H, ‖x‖ = 1.

Now, if we divide (3.6) by Re
〈

λ̄
|λ|Ax, x

〉
> 0, we get

(3.7)
‖Ax‖2

Re
〈

λ̄
|λ|Ax, x

〉 ≤ 2 |λ|+ r2

Re
〈

λ̄
|λ|Ax, x

〉 − |λ|2

Re
〈

λ̄
|λ|Ax, x

〉 for ‖x‖ = 1.
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If in this inequality we subtract from both sides the quantity Re
〈

λ̄
|λ|Ax, x

〉
, then

we get

‖Ax‖2

Re
〈

λ̄
|λ|Ax, x

〉 − Re
〈

λ̄

|λ|
Ax, x

〉

≤ 2 |λ|+ r2 − |λ|2

Re
〈

λ̄
|λ|Ax, x

〉 − Re
〈

λ̄

|λ|
Ax, x

〉

= 2 |λ| −


√
|λ|2 − r2√

Re
〈

λ̄
|λ|Ax, x

〉 −
√

Re
〈

λ̄

|λ|
Ax, x

〉
2

− 2
√
|λ|2 − r2

≤ 2
(
|λ| −

√
|λ|2 − r2

)
,

which obviously implies that

(3.8) ‖Ax‖2 ≤
(

Re
〈

λ̄

|λ|
Ax, x

〉)2

+ 2
(
|λ| −

√
|λ|2 − r2

)
Re
〈

λ̄

|λ|
Ax, x

〉
for any x ∈ H, ‖x‖ = 1.

Now, taking the supremum in (3.8) over x ∈ H, ‖x‖ = 1, we deduce the second
inequality in (3.3). The other inequalities are obvious and the theorem is proved.

The following lemma is of interest in itself.

Lemma 1. For any A ∈ B (H) and γ, Γ ∈ K we have:

(3.9) vi [(A∗ − γ̄I) (ΓI −A)] =
1
4
|Γ− γ|2 −

∥∥∥∥A− γ + Γ
2

I

∥∥∥∥2

.

Proof. We observe that, for any u, v, y ∈ H we have:

(3.10) Re 〈u− y, y − v〉 =
1
4
‖u− v‖2 −

∥∥∥∥y − u + v

2

∥∥∥∥2

.

Now, choosing u = Γx, y = Ax, v = γx with x ∈ H, ‖x‖ = 1 we get

Re 〈Γx−Ax, Ax− γx〉 =
1
4
|Γ− γ|2 −

∥∥∥∥Ax− γ + Γ
2

x

∥∥∥∥2

,

giving

inf
‖x‖=1

Re 〈(A∗ − γ̄I) (ΓI −A) x, x〉 =
1
4
|Γ− γ|2 − sup

‖x‖=1

∥∥∥∥Ax− γ + Γ
2

x

∥∥∥∥2

,

which is equivalent with (3.9).

We recall that the bounded linear operator B ∈ B (H) is called strongly m−accretive
(with m > 0) if Re 〈By, y〉 ≥ m for any y ∈ H, ‖y‖ = 1. For m = 0 the opera-
tor is called accretive. In general, we then can call the operator m−accretive for
m ∈ [0,∞).

The following result providing a characterisation for a class of operators that
will be used in the sequel is incorporated in:
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Lemma 2. For A ∈ B (H) , γ,Γ ∈ K with Γ 6= γ and q ∈ R, the following
statements are equivalent:

(i) The operator (A∗ − γ̄I) (ΓI −A) is q2−accretive;
(ii) We have the norm inequality:

(3.11)
∥∥∥∥A− γ + Γ

2
I

∥∥∥∥2

≤ 1
4
|Γ− γ|2 − q2.

The proof is obvious by Lemma 1 and the details are omitted.

Remark 2. Since the self-adjoint operators B satisfying the condition B ≥ mI in
the operator partial under “≥”, are m−accretive, then, a sufficient condition for
Cγ,Γ (A) := (A∗ − γ̄I) (ΓI −A) to be q2−accretive is that Cγ,Γ (A) is self-adjoint
and Cγ,Γ (A) ≥ q2I.

Corollary 4. Let A ∈ B (H) , γ,Γ ∈ K with Γ 6= ±γ and q ∈ R. If the operator
Cγ,Γ (A) is q2−accretive, then

(0 ≤) ‖A‖ − w (A) ≤ ‖A‖ − vs

(
Γ̄ + γ̄

|Γ + γ|
A

)
(3.12)

≤ 1
|γ + Γ|

[
1
4
|Γ− γ|2 − q2

]
.

Remark 3. If M,m are positive real numbers with M > m and the operator
Cm,M (A) = (A∗ −mI) (MI −A) is q2−accretive, then

(0 ≤) ‖A‖ − w (A) ≤ ‖A‖ − vs (A)(3.13)

≤ 1
M + m

[
1
4

(M −m)2 − q2

]
.

Remark 4. We observe that for q = 0, i.e., if Cγ,Γ (A) respectively Cm,M (A) are
accretive, then we obtain from (3.12) and (3.13) the inequality:

(0 ≤) ‖A‖ − w (A) ≤ ‖A‖ − vs

(
Γ̄ + γ̄

|Γ + γ|
A

)
(3.14)

≤ |Γ− γ|2

4 |Γ + γ|
and

(3.15) (0 ≤) ‖A‖ − w (A) ≤ ‖A‖ − vs (A) ≤ (M −m)2

4 (M + m)

respectively, which provide refinements of the corresponding inequalities (2.7) and
(2.34) in [4].

Remark 5. For any bounded linear operator A we know that w(A)
‖A‖ ≥ 1

2 , therefore
(3.2) would produce a useful result only if

1
2
≤

√
1−

∥∥∥∥ 1
λ

A− I

∥∥∥∥2

,

which is equivalent with

(3.16) ‖A− λI‖ ≤
√

3
2
|λ| .
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In conclusion, for A ∈ B (H) \ {0} and λ ∈ C\ {0} satisfying the condition (3.16),
the inequality (3.2) provides a refinement of the classical result:

(3.17)
1
2
≤ w (A)

‖A‖
, A ∈ B (H) .

Corollary 5. If ‖A− λI‖ ≤ |λ|, then we have

(0 ≤) ‖A‖2 − w2 (A) ≤ ‖A‖2 − v2
s

(
λ̄

|λ|
A

)
(3.18)

≤ ‖A‖2 ‖A− λI‖2

|λ|2
.

The proof follows by the inequality (3.2). The details are omitted.
The following corollary providing a sufficient condition in terms of q2−accretive

property may be stated as well:

Corollary 6. Let A ∈ B (H) \ {0} and γ, Γ ∈ K, Γ 6= −γ, q ∈ R so that Re (Γγ̄) +
q2 ≥ 0. If Cγ,Γ (A) is q2−accretive, then

(3.19)
2
√

Re (Γγ̄) + q2

|Γ + γ|
≤

vs

(
Γ̄+γ̄
|Γ+γ|A

)
‖A‖

≤ w (A)
‖A‖

(≤ 1)

and

(0 ≤) ‖A‖2 − w2 (A) ≤ ‖A‖2 − v2
s

(
Γ̄ + γ̄

|Γ + γ|
A

)
(3.20)

≤ 2 ‖A‖2

|Γ + γ|

[
1
4
|Γ− γ|2 − q2

]
(
≤ ‖A‖2 |Γ− γ|2

2 |Γ + γ|

)
.

Proof. By Lemma 2, the fact that Cγ,Γ (A) is q2−accretive implies that

(3.21)
∥∥∥∥A− γ + Γ

2
I

∥∥∥∥2

≤ 1
4
|Γ− γ|2 − q2.

Since, obviously
1
4
|Γ + γ|2 −

[
1
4
|Γ− γ|2 − q2

]
= Re (Γγ̄) + q2 ≥ 0,

hence
∥∥∥A− γ+Γ

2 I
∥∥∥ ≤ 1

2 |Γ + γ| and we can apply the inequality (3.2) for λ = γ+Γ
2

to get:

(3.22)

√∣∣∣γ+Γ
2

∣∣∣2 − ∥∥∥A− γ+Γ
2 I

∥∥∥2

∣∣∣γ+Γ
2

∣∣∣ ≤
vs

(
Γ̄+γ̄
|Γ+γ|A

)
‖A‖

,

and since, by (3.21),∣∣∣∣γ + Γ
2

∣∣∣∣2 − ∥∥∥∥A− γ + Γ
2

I

∥∥∥∥2

≥
∣∣∣∣γ + Γ

2

∣∣∣∣2 − 1
4
|Γ− γ|2 + q2

= Re (Γγ̄) + q2,
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hence by (3.22) we deduce the desired inequality in (3.19).
The inequality (3.20) follows from (3.19). We omit the details.

Remark 6. If γ, Γ and q are such that |Γ + γ| ≤ 4
√

Re (Γγ̄) + q2, then (3.19) will
provide a refinement of the classical result (3.17).

Remark 7. If M > m ≥ 0 and the operator Cm,M (A) is q2−accretive, then

(3.23)
2
√

Mm + q2

m + M
≤ vs (A)

‖A‖
≤ w (A)

‖A‖
(≤ 1)

and

(0 ≤) ‖A‖2 − w2 (A) ≤ ‖A‖2 − v2
s (A)(3.24)

≤ 2 ‖A‖2

m + M

[
1
4

(M −m)2 − q2

]
.

Remark 8. We also observe that, for q = 0, i.e., if Cγ,Γ (A) respectively Cm,M (A)
are accretive, then we obtain:

(3.25)
2
√

Re (Γγ̄)
|Γ + γ|

≤
vs

(
Γ̄+γ̄
|Γ+γ|A

)
‖A‖

≤ w (A)
‖A‖

,

(3.26)
2
√

Mm

m + M
≤ vs (A)

‖A‖
≤ w (A)

‖A‖
,

(0 ≤) ‖A‖2 − w2 (A) ≤ ‖A‖2 − v2
s

(
Γ̄ + γ̄

|Γ + γ|
A

)
(3.27)

≤ ‖A‖2 |Γ− γ|2

2 |Γ + γ|
and

(0 ≤) ‖A‖2 − w2 (A) ≤ ‖A‖2 − v2
s (A)(3.28)

≤ ‖A‖2 (M −m)2

2 (m + M)

respectively, which provides refinements of the inequalities (2.17), (2.31) and (2.20)
in [4], respectively. The inequality between the first and the last term in (3.28) was
not stated in [4].

Corollary 7. Let A ∈ B (H) , γ, Γ ∈ K, Γ 6= −γ, q ∈ R so that Re (Γγ̄) + q2 ≥ 0.
If Cγ,Γ (H) is q2−accretive, then

(0 ≤) ‖A‖2 − w2 (A) ≤ ‖A‖2 − v2
s

(
Γ̄ + γ̄

|Γ + γ|
A

)
(3.29)

≤
(
|Γ + γ| − 2

√
Re (Γγ̄) + q2

)
vs

(
Γ̄ + γ̄

|Γ + γ|
A

)
≤
(
|Γ + γ| − 2

√
Re (Γγ̄) + q2

)
w (A) .

The proof follows by the last part of Theorem 2 on utilising a similar argument
to the one employed in Corollary 6. The details are omitted.
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Remark 9. If M > m ≥ 0 and the operator Cm,M (A) is q2−accretive, then

(0 ≤) ‖A‖2 − w2 (A) ≤ ‖A‖2 − v2
s (A)(3.30)

≤
(
M + m− 2

√
Mm + q2

)
vs (A)

≤
(
M + m− 2

√
Mm + q2

)
w (A) .

Remark 10. Finally, for q = 0, i.e., if Cγ,Γ (A) respectively Cm,M (A) are accre-
tive, then we obtain from (3.29) and (3.30) some refinements of the inequalities
(2.29) and (2.33) from [4].

4. Reverse Inequalities in Terms of Numerical Radius

In Section 2 we established amongst others the following lower bound for the
numerical radius w (A)

(4.1)
∣∣vs(i) (A)

∣∣ ≤ w (A)

for any A a bounded linear operator, where

(4.2) vs(i) (A) = 〈A, I〉s(i) = sup
‖x‖=1

(
inf

‖x‖=1

)
Re 〈Ax, x〉 .

It is then a natural problem to investigate how far the left side of (4.1) is from
the numerical radius w (A) .

We start with the following result:

Theorem 3. For any A ∈ B (H) \ {0} and λ ∈ C\ {0} we have

(0 ≤)w (A)−
∣∣∣∣vs

(
λ̄

|λ|
A

)∣∣∣∣ ≤ w (A)− vs

(
λ̄

|λ|
A

)
(4.3)

≤ 1
2 |λ|

w2 (A− λI)
(
≤ 1

2 |λ|
‖A− λI‖2

)
.

Moreover, if w (A−AI) ≤ |λ| , then we have:

(4.4)

√
1− w2

(
1
λ

A− I

)
≤

vs

(
λ̄
|λ|A

)
w (A)

≤

∣∣∣vs

(
λ̄
|λ|A

)∣∣∣
w (A)

(≤ 1)

and

(0 ≤)w2 (A)− v2
s

(
λ̄

|λ|
A

)
(4.5)

≤ 2
(
|λ| −

√
|λ|2 − w2 (A− λI)

)
vs

(
λ̄

|λ|
A

)
(
≤ 2

(
|λ| −

√
|λ|2 − w2 (A− λI)

)
w (A)

)
,

respectively

Proof. From (4.1), we obviously have that

w (A) = w

(
λ̄

|λ|
A

)
≥
∣∣∣∣vs

(
λ̄

|λ|
A

)∣∣∣∣ ≥ vs

(
λ̄

|λ|
A

)
for A ∈ B (H) and λ ∈ C\ {0} .
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Now, utilising the inequality (2.17) and the elementary arithmetic-geometric
mean inequality, we have

vs

(
λ̄A
)
≥ 1

2

[
w2 (A) + |λ|2

]
− 1

2
w2 (A− λI)

≥ |λ|w (A)− 1
2
w2 (A− λI)

which is clearly equivalent with the third inequality in (4.3).
Under the assumption that w (A−AI) ≤ |λ| , on making use of (2.17) and the

arithmetic mean-geometric mean inequality, we can also state that

vs

(
λ̄A
)
≥ 1

2

[
w2 (A) +

(√
|λ|2 − w2 (A− λI)

)2
]

≥ w (A)
√
|λ|2 − w2 (A− λI) ,

which is clearly equivalent to (4.4).
Let us denote ρ := w (A− λI) ≤ |λ| . Then for any x ∈ H, ‖x‖ = 1 we have

ρ2 ≥ |〈Ax, x〉 − λ|2 = |〈Ax, x〉|2 − 2 Re
[
λ̄ 〈Ax, x〉

]
+ |λ|2

which yields that

(4.6) |〈Ax, x〉|2 + |λ|2 ≤ 2 Re
[
λ̄ 〈Ax, x〉

]
+ ρ2

for any x ∈ H, ‖x‖ = 1.
Making use of an argument similar to that in the proof of Theorem 2, we can

get out of (4.6) the following inequality:

(4.7) |〈Ax, x〉|2 ≤
(

Re
〈

λ̄

|λ|
Ax, x

〉)2

+ 2
(
|λ| −

√
|λ|2 − ρ2

)
Re
〈

λ̄

|λ|
Ax, x

〉
for any x ∈ H, ‖x‖ = 1.

Taking the supremum over x ∈ H, ‖x‖ = 1, we deduce the desired inequality in
(4.5).

Then following lemma is of interest in itself.

Lemma 3. For any A ∈ B (H) and γ, Γ ∈ K we have

(4.8) inf
‖x‖=1

Re [〈(ΓI −A)x, x〉 〈x, (A− γI) x〉] =
1
4
|Γ− γ|2 − w2

(
A− γ + Γ

2
I

)
.

Proof. We observe that for any u, v, y complex numbers, we have the elementary
identity:

(4.9) Re [(u− y) (ȳ − v̄)] =
1
4
|u− v|2 −

∣∣∣∣y − u + v

2

∣∣∣∣2 .

If we choose in (4.9) u = Γ, y = 〈Hx, x〉 and v = γ with x ∈ H, ‖x‖ = 1, then by
(4.9) we have:

(4.10) Re [〈(ΓI −A) x, x〉 〈x, (A− γI) x〉] =
1
4
|Γ− γ|2−

∣∣∣∣〈(A− γ + Γ
2

I

)
x, x

〉∣∣∣∣2
for each x ∈ H, ‖x‖ = 1.

Now, taking the infimum over ‖x‖ = 1 in (4.10) we deduce the desired identity
(4.8).
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Remark 11. We observe that for any x ∈ H, ‖x‖ = 1 we have

µ (A; γ, Γ) (x) := Re [〈(ΓI −A) x, x〉 〈x, (A− γI) x〉]
= (Re Γ− Re 〈Ax, x〉) (Re 〈Ax, x〉 − Re γ)

+ (Im Γ− Im 〈Ax, x〉) (Im 〈Ax, x〉 − Im γ)

and therefore a sufficient condition for µ (A; γ, Γ) (x) to be nonnegative for each
x ∈ H, ‖x‖ = 1 is that:

(4.11)

 Re Γ ≥ Re 〈Ax, x〉 ≥ Re γ

Im Γ ≥ Im 〈Ax, x〉 ≥ Im γ
, x ∈ H, ‖x‖ = 1.

Now, if we denote by µi (A; γ, Γ) := inf‖x‖=1 µ (A; γ, Γ) (x) , then we can state
the following lemma.

Lemma 4. For A ∈ B (H) , φ, Φ ∈ K, the following statements are equivalent:

(i) µi (A;φ; Φ) ≥ 0;
(ii) w

(
A− φ+Φ

2 I
)
≤ 1

2 |Φ− φ| .

Utilising the above results we can provide now some particular reverse inequali-
ties that are of interest.

Corollary 8. Let A ∈ B (H) and φ,Φ ∈ K with Φ 6= ±φ such that either (i) or
(ii) of Lemma 4 holds true. Then

(0 ≤) w (A)−
∣∣∣∣vs

(
φ̄ + Φ̄
|φ + Φ|

A

)∣∣∣∣ ≤ w (A)− vs

(
φ̄ + Φ̄
|φ + Φ|

A

)
(4.12)

≤ 1
4
· |Φ− φ|2

|Φ + φ|
.

Remark 12. If N > n > 0 are such that either µi (A;n, N) ≥ 0 or w
(
A− n+N

2 I
)
≤

1
2 (N − n) for a given operator A ∈ B (A) , then

(4.13) (0 ≤)w (A)− |vs (A)| ≤ w (A)− vs (A) ≤ 1
4
· (N − n)2

N + n
.

From a different perspective, we can state the following multiplicative reverse of
the inequality (4.1).

An equivalent additive version of (4.4) is incorporated in the following:

Corollary 9. If w (A− λI) ≤ |λ|, then we have

(0 ≤)w2 (A)− w2
s

(
λ̄

|λ|
A

)
≤ w2 (A) w2 (A− λI)

|λ|2
(4.14) ≤


‖A‖2w2(A−λI)

|λ|2

w2(A)‖A−λI‖2

|λ|2

≤ ‖A‖2 ‖A− λI‖2

|λ|2

 .

In applications, the following variant of (4.4) can be perhaps more convenient:
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Corollary 10. Let A ∈ B (H) \ {0} and φ,Φ ∈ K with Φ 6= −φ. If Re
(
Φφ̄
)

> 0
and either the statement (i) or equivalently (ii) from Lemma 4 holds true, then:

(4.15)
2
√

Re
(
Φφ̄
)

|φ + Φ|
≤

vs

(
φ̄+Φ̄
|φ+Φ|A

)
w (A)

≤

∣∣∣vs

(
φ̄+Φ̄
|φ+Φ|A

)∣∣∣
w (A)

(≤ 1)

and

(0 ≤)w2 (A)− v2
s

(
φ̄ + Φ̄
|φ + Φ|

A

)
(4.16)

≤ 1
4
· |Φ− φ|2

Re
(
Φφ̄
)v2

s

(
φ̄ + Φ̄
|φ + Φ|

A

)
(
≤ 1

4
· |Φ− φ|2

Re
(
Φφ̄
)w2 (A) ≤ 1

4
· |Φ− φ|2

Re
(
Φφ̄
) ‖A‖2

)
.

The proof follows by Theorem 3 on utilising a similar argument to the one
incorporated in the proof of Corollary 6 and the details are omitted.

Remark 13. If N > n > 0 are such that either µi (A;n, N) ≥ 0 or, equivalently

(4.17) w

(
A− n + N

2

)
≤ 1

2
(N − n) ,

then

(4.18)
2
√

nN

n + N
≤ vs (A)

w (A)
(≤ 1) ,

(4.19) (0 ≤) w (A)− vs (A) ≤

(√
N −

√
n
)2

2
√

nN
vs (A)

≤
(√

N −
√

n
)2

2
√

nN
w (A)


and

(4.20) (0 ≤) w2 (A)− v2
s (A) ≤ (N − n)2

4nN
v2

s (A)

(
≤ (N − n)2

4nN
w2 (A)

)
.

Finally, we can state the following result as well:

Corollary 11. Let A ∈ B (H) , φ,Φ ∈ K such that Re
(
Φφ̄
)

> 0. If either
µi (A;φ,Φ) ≥ 0 or, equivalently

w

(
A− Φ + φ

2
I

)
≤ 1

2
|Φ− φ| ,

then

(0 ≤)w2 (A)− v2
s

(
φ̄ + Φ̄
|φ + Φ|

A

)
(4.21)

≤
[
|φ + Φ| − 2

√
Re
(
Φφ̄
)]

vs

(
φ̄ + Φ̄
|φ + Φ|

A

)
(
≤
[
|φ + Φ| − 2

√
Re
(
Φφ̄
)]

w (A)
)

.
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Remark 14. If N > n > 0 are as in Remark 13, then we have the inequality:

(4.22) (0 ≤)w2 (A)− v2
s (A) ≤

(√
N −

√
n
)2

vs (A)
(
≤
(√

N −
√

n
)2

w (A)
)

.
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