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A CLASS OF LOGARITHMICALLY COMPLETELY MONOTONIC
FUNCTIONS AND APPLICATION TO THE BEST BOUNDS IN

THE SECOND GAUTSCHI-KERSHAW’S INEQUALITY

FENG QI

Abstract. In this article, the logarithmically complete monotonicity of the
function [Γ(x + b)/Γ(x + a)]1/(a−b) exp[ψ(x + c)] are discussed, where a, b, c
are real numbers and Γ is the classical Euler’s gamma function. From this, the
best upper and lower bounds for Walls’ ratio Γ(x + 1)/Γ(x + s) are established,
which refine the second Gautschi-Kershaw’s inequality.

1. Introduction

It is well known that the classical Euler’s gamma function Γ can be defined for
x > 0 as Γ(x) =

∫∞
0

e−ttx−1 d t. The digamma or psi function ψ is defined as the
logarithmic derivative of Γ and ψ(i) for i ∈ N are called polygamma functions.

Recall [26] that a function f is said to be completely monotonic on an interval
I if f has derivatives of all orders on I and (−1)nf (n)(x) ≥ 0 for x ∈ I and
n ≥ 0. Recall [2, 13, 20, 21, 22, 23] also that a function f is called logarithmically
completely monotonic on an interval I if f has derivatives of all orders on I and its
logarithm ln f satisfies 0 ≤ (−1)k[ln f(x)](k) < ∞ for all k ∈ N on I. For our own
convenience, the sets of the completely monotonic functions and the logarithmically
completely monotonic functions on I are denoted respectively by C[I] and L[I]. In
[2, 20, 21], it has been proved that L[I] ⊂ C[I]. For more information on the classes
C[I] and L[I], please refer to [2, 13, 20, 21, 22, 23] and the references therein.

The first and second Gautschi-Kershaw inequalities [5, 7, 9, 24] state that

(
x +

s

2

)1−s

<
Γ(x + 1)
Γ(x + s)

<

(
x− 1

2
+

√
s +

1
4

)1−s

(1)

and

exp
[
(1− s)ψ

(
x +

√
s
)]

<
Γ(x + 1)
Γ(x + s)

< exp
[
(1− s)ψ

(
x +

s + 1
2

)]
(2)

for s ∈ (0, 1) and x ≥ 1.
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In [15], among other things, the increasing monotonicity of [Γ(s)/Γ(r)]1/(s−r) for
s > 0 and r > 0 and inequality

exp [(s− r)ψ(s)] >
Γ(s)
Γ(r)

> exp [(s− r)ψ(r)] (3)

for s > r > 0 were obtained.
Inequalities (1), (2) and (3) give the lower and upper bounds for the well known

Wallis’ ratio Γ(x + 1)/Γ(x + s).
In [3], it was proved that the functions

Γ(x + 1)
Γ(x + s)

(
x +

s

2

)s−1

∈ C[(0,∞)] (4)

and

Γ(x + s)
Γ(x + 1)

exp
[
(1− s)ψ

(
x +

s + 1
2

)]
∈ C[(0,∞)] (5)

for s ∈ (0, 1).
Let s and t be nonnegative numbers and α = min{s, t}. In [5, Theorem 5] and

[24], the result (5) was generalized to
[
Γ(x + s)
Γ(x + t)

]1/(t−s)

exp
[
ψ

(
x +

s + t

2

)]
∈ L[(−α,∞)]. (6)

In [14, 18], the monotonicity of the function

qα,β(t) =





e−αt − e−βt

1− e−t
, t 6= 0

β − α, t = 0
(7)

for real numbers α and β with (α, β) 6∈ {(0, 1), (1, 0)} and α 6= β was established,
and then the paper [10] considered the logarithmically complete monotonicity of
the more general function

Ha,b,c(x) = (x + c)b−a Γ(x + a)
Γ(x + b)

(8)

for x ∈ (−ρ,∞), where a, b and c are real numbers and ρ = min{a, b, c}, and
obtained the following conclusions:

(1) Ha,b,c(x) ∈ L[(−ρ,∞)] if (a, b, c) ∈ {
a + b ≥ 1, c ≤ b < c + 1

2

} ∪ {
a > b ≥

c+ 1
2

}∪{2a+1 ≤ a+b ≤ 1, a < c}∪{b−1 ≤ a < b ≤ c}\{a = c+1, b = c}.
(2) [Ha,b,c(x)]−1 ∈ L[(−ρ,∞)] if (a, b, c) ∈ {

(a, b, c) : a + b ≥ 1, c ≤ a < c + 1
2

}
∪ {

(a, b, c) : b > a ≥ c + 1
2

} ∪ {(a, b, c) : b < a ≤ c} ∪ {(a, b, c) : b + 1 ≤
a, c ≤ a ≤ c+1}∪{(a, b, c) : b+c+1 ≤ a+b ≤ 1}\{(a, b, c) : a = c+1, b =
c} \ {(a, b, c) : b = c + 1, a = c}.

These (logarithmically) complete monotonicity mentioned above can be applied
to acquire the best bounds in Gautschi-Kershaw’s inequalities (1) and (2). For more
detailed information, please refer to [4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16, 17, 19, 24, 25]
and the references therein.

The main aim of this article is to generalize the logarithmically complete mono-
tonicity (6). The main result of this paper is the following Theorem 1.
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Theorem 1. Let a, b and c be real numbers and ρ = min{a, b, c}. Define

Fa,b,c(x) =





[
Γ(x + b)
Γ(x + a)

]1/(a−b)

exp[ψ(x + c)], a 6= b

exp[ψ(x + c)− ψ(x + a)], a = b 6= c

(9)

for x ∈ (−ρ,∞). Furthermore, let θ(t) be an implicit function defined by equation

et − t = eθ(t) − θ(t) (10)

in (−∞,∞). Then θ(t) is decreasing and tθ(t) < 0 for θ(t) 6= t, and
(1) Fa,b,c(x) ∈ L[(−ρ,∞)] if (a, b, c) ∈ D1(a, b, c), where

D1(a, b, c) = {c ≥ a, c ≥ b} ∪ {c ≥ a, 0 ≥ c− b ≥ θ(c− a)}
∪ {c ≤ a, c− b ≥ θ(c− a)} \ {a = b = c}; (11)

(2) [Fa,b,c(x)]−1 ∈ L[(−ρ,∞)] if (a, b, c) ∈ D2(a, b, c), where

D2(a, b, c) = {c ≤ a, c ≤ b} ∪ {c ≥ a, c− b ≤ θ(c− a)}
∪ {c ≤ a, 0 ≤ c− b ≤ θ(c− a)} \ {a = b = c}. (12)

Remark 1. The numerical computation of θ(t) defined by (10) can be carried out
by using the well known software Mathematica 5.2, for example, as follows:

θ(0.5) = −0.599 · · · , θ(1) = −1.4937 · · · , θ(1.5) = −2.928 · · · ,

θ(2) = −5.3844 · · · , θ(2.5) = −9.6824 · · · , θ(3) = −17.085 · · · ,

θ(−0.5) = 0.42864 · · · , θ(−1) = 0.75078 · · · , θ(−1.5) = 1.0028 · · · ,

θ(−2) = 1.2065 · · · , θ(−2.5) = 1.3756 · · · , θ(−3) = 1.5193 · · · .

As an application of Theorem 1, the following inequalities are obtained.

Theorem 2. Let D1(a, b, c) and D2(a, b, c) be defined by (11) and (12) respectively.
If (a, b, c) ∈ D1(a, b, c), then

[
Γ(x + b)
Γ(x + a)

]1/(b−a)

< exp[ψ(x + c)] (13)

for x ∈ (−ρ,∞) and
[

Γ(x + b)
Γ(x + a)

]1/(b−a)

≥
[

Γ(δ + b)
Γ(δ + a)

]1/(b−a)

exp[ψ(x + c)− ψ(δ + c)] (14)

for x ∈ [δ,∞) are valid, where δ is a constant greater than −ρ.
If (a, b, c) ∈ D2(a, b, c), inequalities (13) and (14) are reversed.

As a direct consequence of Theorem 2, the best lower and upper bounds for
Wallis’s ratio Γ(x + 1)/Γ(x + s) are established below, which improve the second
Gautschi-Kershaw’s inequality (2) and inequality (3).

Theorem 3. Let θ(t) be defined by (10), p(t) = t− θ(t− 1) in (−∞,∞) and p−1

stand for the inverse function of p. Then inequalities

Γ(x + 1)
Γ(x + s)

< exp
[
(1− s)ψ

(
x + p−1(s)

)]
(15)
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for x ∈ (−s,∞) and

Γ(x + 1)
Γ(x + s)

≥ Γ(δ + 1)
Γ(δ + s)

exp
[
ψ

(
x + p−1(s)

)− ψ
(
δ + p−1(s)

)]
(16)

for x ∈ (δ,∞) are valid for s ∈ (0, 1), where δ > −s and s ≤ p−1(s) ≤ 1.

Remark 2. By the software Mathematica 5.2, some values of p(t) are calculated
numerically:

p(0.1) = −0.59286 · · · , p(0.2) = −0.43195 · · · , p(0.3) = −0.26780 · · · ,

p(0.4) = −0.10013 · · · , p(0.5) = 0.071355 · · · , p(0.6) = 0.24702 · · · ,

p(0.7) = 0.42726 · · · , p(0.8) = 0.61249 · · · , p(0.9) = 0.80322 · · · .

This shows that 0.5 < p−1(s) < 1 for s ∈ (0, 1) approximately.

2. Proofs of theorems

Proof of Theorem 1. It is well known [1] that

ψ(x) =
∫ ∞

0

(
e−u

u
− e−xu

1− e−u

)
du (17)

for x > 0.
For a = b, by (17), it is clear that

ln Fa,a,c(x) = ψ(x + c)− ψ(x + a) =
∫ ∞

0

e−au − e−cu

1− e−u
e−xu du

and

(−1)i[ln Fa,a,c(x)](i) =
∫ ∞

0

e−au − e−cu

1− e−u
uie−xu du

for i ∈ N. Therefore Fa,a,c(x) ∈ L[(−a,∞)] if a = b < c and [Fa,a,c(x)]−1 ∈
L[(−c,∞)] if c < a = b.

For b 6= a, taking the logarithm of the function Fa,b,c(x), differentiating and
using (17) yields

ln Fa,b,c(x) = ψ(x + c)− ln Γ(x + b)− ln Γ(x + a)
b− a

= ψ(x + c)− 1
b− a

∫ b

a

ψ(x + t) d t

=
∫ ∞

0

(
1

b− a

∫ b

a

e−tu d t− e−cu

)
e−xu

1− e−u
du

=
∫ ∞

0

[
e(c−a)u − e(c−b)u

u(b− a)
− 1

]
e−(x+c)u

1− e−u
du

and

(−1)i[ln Fa,b,c(x)](i) =
∫ ∞

0

[
e(c−a)u − e(c−b)u

u(b− a)
− 1

]
uie−(x+c)u

1− e−u
du

,
∫ ∞

0

[gc−a,c−b(u)− 1]
uie−(x+c)u

1− e−u
du

for i ∈ N.
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Let

hα,β(u) , gα,β(u)− 1 =
[eαu − αu]− [eβu − βu]

(α− β)u
(18)

for u > 0 and (α, β) ∈ R2 with α 6= β. It is easy to see that the function et − t
is decreasing in (−∞, 0) and increasing in (0,∞). See Figure 1. Consequently, if
α ≥ 0 and β ≥ 0, the function hα,β(u) is positive in (0,∞); if 0 ≥ α and 0 ≥ β,
the function hα,β(u) is negative in u ∈ (0,∞). Let θ(t) be defined by (10). It is

t1 t2

Plot Exp t t, t, 9, 3
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10
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15

17.5

Figure 1. The graph of et − t in (−9, 3) pictured by Mathematica 5.2

apparent that tθ(t) < 0 for θ(t) 6= t. As a result, if α ≥ 0 and 0 ≥ β ≥ θ(α), then
hα,β(u) is positive; if α ≥ 0 and β ≤ θ(α), then the function hα,β(u) is negative in
(0,∞); if α ≤ 0 and 0 ≤ β ≤ θ(α), then hα,β(u) is negative; if α ≤ 0 and β ≥ θ(α),
then the function hα,β(u) is positive in (0,∞)

From the positivity or negativity of the function hα,β(u), the logarithmically
completely monotonicity of the function Fa,b,c(x) is obtained:

(1) If either c − a ≥ 0 and c − b ≥ 0 or c − a ≥ 0 and 0 ≥ c − b ≥ θ(c − a) or
c− a ≤ 0 and c− b ≥ θ(c− a), then Fa,b,c(x) ∈ L[(−ρ,∞)];

(2) If either c−a ≤ 0 and c−b ≤ 0 or c−a ≥ 0 and c−b ≤ θ(c−a) or c−a ≤ 0
and 0 ≤ c− b ≤ θ(c− a), then [Fa,b,c(x)]−1 ∈ L[(−ρ,∞)].

The proof of Theorem 1 is complete. ¤
Proof of Theorem 2. For a and b being two constants, as x → ∞, the following
asymptotic formula is given in [1, p. 257 and p. 259]:

xb−a Γ(x + a)
Γ(x + b)

= 1 +
(a− b)(a + b− 1)

2x
+ O

(
1
x2

)
= 1 + O

(
1
x

)
. (19)

In [17], it was proved that ψ(x) − lnx + α/x ∈ C[(0,∞)] if and only if α ≥ 1 and
ln x− α/x−ψ(x) ∈ C[(0,∞)] if and only if α ≤ 1/2. From this, it is deduced that

ln x− 1
x

< ψ(x) < ln x− 1
2x

(20)

in (0,∞). Utilization of (19) and (20) leads to

lim
x→∞

Fa,b,c(x) = lim
x→∞

{
exp[ψ(x + c)]

x

[
1 + O

(
1
x

)]1/(b−a)}
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= lim
x→∞

exp[ψ(x + c)]
x

= 1.

Hence, if (a, b, c) ∈ D1(a, b, c), then Fa,b,c(x) > 1 which is equivalent to inequality
(13); if (a, b, c) ∈ D2(a, b, c), then Fa,b,c(x) < 1 which is equivalent to the reversed
inequality of (13).

Let δ be a constant greater than −ρ. If (a, b, c) ∈ D1(a, b, c), then Fa,b,c(x) ≤
Fa,b,c(δ) in x ∈ [δ,∞), which is equivalent to inequality (14); if (a, b, c) ∈ D2(a, b, c),
then Fa,b,c(x) ≥ Fa,b,c(δ) in x ∈ [δ,∞), which is equivalent to the reversed inequality
of (14). The proof of Theorem2 is complete. ¤

Proof of Corollary 3. Taking a = 1 and b = s ∈ (0, 1) in (13) and (14) leads to

Γ(x + 1)
Γ(x + s)

< exp[(1− s)ψ(x + c)] (21)

for x ∈ (−ρ,∞) and

Γ(x + 1)
Γ(x + s)

≥ Γ(δ + 1)
Γ(δ + s)

exp{(1− s)[ψ(x + c)− ψ(δ + c)]} (22)

for x ∈ (δ,∞), where δ > −ρ, c ≤ 1 and c − s ≥ θ(c − 1) ≥ 0. Since θ(t) is
strictly decreasing in t ∈ (−∞,∞), then the function p(t) is strictly increasing in
t ∈ (−∞,∞). Thus, inequalities (21) and (22) validate for c ≥ p−1(s) and s ∈ (0, 1).
Since ψ(x + c) is increasing and ψ(x + c) − ψ(δ + c) for x > δ is decreasing with
respect to c, inequalities (21) and (22) have a best upper bound and a best lower
bound exp

[
(1−s)ψ

(
x+p−1(s)

)]
and [Γ(δ + b)/Γ(δ + a)]1/(b−a) exp

[
ψ

(
x+p−1(s)

)−
ψ

(
δ + p−1(s)

)]
respectively. The proof of Corollary 3 is complete. ¤
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