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IDENTITIES BY GENERALIZED L−SUMMING METHOD

M. HASSANI AND Z. JAFARI

Abstract. In this paper, we introduce 3-dimensional L−summing method, which is a rearrangement of

the summation
∑

Aabc with 1 ≤ a, b, c ≤ n. Applying this method on some special arrays, we obtain some

identities on the Riemann zeta function and digamma function. Also, we give a Maple program for this

method to obtain identities with input various arrays and out put identities concerning some elementary

functions and hypergeometric functions. Finally, we introduce a further generalization of L−summing

method in higher dimension spaces.

1. Introduction and Motivation

Consider the following n× n multiplication table

Figure 1. Multiplication table and L−summing element, Lk

If we set Σ(n) for the sum of all numbers in it, then by summing line by line we have Σ(n) =
(

n(n+1)
2

)2

. On

the other hand, we can find Σ(n) by using another method; letting Lk be the sum of numbers in the rotated

L in above table (right part of Figure 1), we have

Lk = k + 2k + · · ·+ k2 + · · ·+ 2k + k = 2k(1 + 2 + · · ·+ k)− k2 = k3.

We call Lk, L−summing element. Thus we get Σ(n) =
∑n

k=1 Lk =
∑n

k=1 k3, and therefore
∑n

k=1 k3 =(
n(n+1)

2

)2

. This is 2-dimensional L-summing method (applied on the array Aab = ab), which briefly is

(1.1)
∑

(L− Summing Elements) = Σ.
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More precisely, the L−summing method of elements of n × n array Aab with 1 ≤ a, b ≤ n, is the following

rearrangement
n∑

k=1

{
k∑

a=1

Aak +
k∑

b=1

Akb −Akk

}
=

∑
1≤a,b≤n

Aab.

This method allows to obtain easily some classical algebraic identities and also, with help of MAPLE,

some new compact formulas for sums related with the Riemann zeta function, the gamma function and the

digamma function [2, 3].

In this paper we introduce a 3-dimensional version of L−summing method for n×n×n arrays and applying

it on some special arrays we obtain some identities concerning the Riemann zeta function and digamma

function. Then, we give a Maple program for this method and using it we generate and then proof some

new identities, concerning some elementary functions and hypergeometric functions. Finally, we introduce

a further generalization of L−summing method in higher dimension spaces and for latices related by a

manifold.

2. Formulation of the L−summing method in R3

Consider a three dimensional array Aabc with 1 ≤ a, b, c ≤ n and n is a positive integer. We should

prepare an explicit version of the general formulation (1.1) for this array. The summation of all entries is

Σ(n) =
∑

1≤a,b,c≤n Aabc. The L−summing elements in this array have the form pictured bellow

Figure 2. L−summing elements in R3

So, we have Lk = Σ2 − Σ1 + Σ0, with

Σ2 =
k∑

b,c=1

Akbc +
k∑

a,c=1

Aakc +
k∑

a,b=1

Aabk, Σ1 =
k∑

a=1

Aakk +
k∑

b=1

Akbk +
k∑

c=1

Akkc, Σ0 = Akkk.

Therefore, L−summing method in R3 take the following formulation

(2.1)
n∑

k=1

{Σ2 − Σ1 + Σ0} = Σ(n).

Note that Σ2 is the sum of entries in three faces, Σ1 is the sum of entries in three intersected edges and Σ0

is the end point of all faces and edges.
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If the array Aabc is symmetric, that is for each permutation σ ∈ S3 it satisfies Aabc = Aσ(a)σ(b)σ(c), then

L−summing elements in R3 takes the following easier form

(2.2) Lk = 3
∑

1≤b,c≤k

Akbc − 3
k∑

a=1

Aakk + Akkk.

In the next section we will apply 3-dimensional L−summing method on two special symmetric arrays, related

by the Riemann zeta function and digamma function.

3. Arrays related by the Riemann zeta function and digamma function

3.1. The Riemann zeta function. Suppose s ∈ C and let Aabc = (abc)−s. It is clear that

Σ(n) =
∑

1≤a,b,c≤n

(abc)−s =

(
n∑

k=1

1
ks

)3

= ζ3
n(s),

where ζn(s) =
∑n

k=1 k−s. Since this array is symmetric, considering (2.2), we have

Lk = 3
ζ2
k(s)
ks

− 3
ζk(s)
k2s

+
1

k3s
,

and an easy simplifying, we can reform
∑

Lk = Σ(n) as follows

(3.1)
n∑

k=1

ζ2
k(s)
ks

− ζk(s)
k2s

=
ζ3
n(s)− ζn(3s)

3
.

Note that if <(s) > 1, then limn→∞ ζn(s) = ζ(s), where ζ(s) =
∑∞

k=1 n−s is the well-known Riemann zeta

function defined for complex values of s with <(s) > 1 and admits a meromorphic continuation to whole

complex plan [5]. So, for <(s) > 1 we have

∞∑
k=1

ζ2
k(s)
ks

− ζk(s)
k2s

=
ζ3(s)− ζ(3s)

3
,

which also is true for other values of s by meromorphic continuation, except s = 1 and s = 1
3 .

3.2. Digamma function. Setting s = 1 in (3.1) (or equivalently taking Aabc = 1
abc ) and considering

ζn(1) = Hn =
∑n

k=1
1
k , we obtain

n∑
k=1

H2
k

k
− Hk

k2
=

H3
n − ζn(3)

3
.

One can state this identity in sense of digamma function Ψ(x) = d
dx ln Γ(x), with Γ(x) =

∫∞
0

e−ttx−1dt is

the well-known gamma function. Considering logarithmic derivative of the formula Γ(n + 1) = nΓ(n), we

obtain

(3.2) Ψ(n + 1) =
1
n

+ Ψ(n),

and applying this relation, we yield that Ψ(n + 1)−Ψ(1) = Hn. Thus, we have

(3.3) Ψ(n + 1) + γ = Hn,
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in which γ = 0.57721 · · · is the Euler constant [1]. Therefore, we obtain

(3.4)
n∑

k=1

{
(Ψ(k + 1) + γ)2

k
− Ψ(k + 1) + γ

k2

}
=

(Ψ(n + 1) + γ)3 − ζn(3)
3

.

Letting

S(m,n) =
n∑

k=1

Ψ(k)m

k
,

the following identity [3] is a result of 2-dimensional L−summing method

(3.5) S(1, n) =
(Ψ(n + 1) + γ)2 + Ψ(1, n + 1)

2
− π2

12
−Ψ(n + 1)γ − γ2,

where Ψ(m,x) = dm

dxm Ψ(x) is called mth polygamma function [1] and we have
∑n

k=1
1
k2 = −Ψ(1, n+1)+ π2

6 ,

which is special case of the following identity

(3.6) ζn(s) =
(−1)s−1

(s− 1)!
Ψ(s− 1, n + 1) + ζ(s) (s ∈ Z, s ≥ 2),

and using it in (3.1) one can get a generalization of (3.4), however this relation itself is the key of getting an

analogue of (3.5) in R3, stated bellow.

Theorem 3.1. For every integer n ≥ 1, we have
n∑

k=1

Ψ(k)2

k
+

Ψ(k)
k2

=
(Ψ(n + 1) + γ)3

3
− ζn(3)

3
+ (γ− 2)

π2

6
− (γ− 2)Ψ(1, n+1)− γ2Ψ(n+1)− γ3− 2S(1, n).

Proof. We begin from the left hand side of the identity (3.4); simplifying it by the relations (3.2), (3.3) and

the relation (3.6) with s = 2, gives the result. �

Corollary 3.2. For every integer n ≥ 1, we have

S(2, n) =
(Ψ(n + 1) + γ)3

3
− ζn(3)

3
+(γ−2)

π2

6
− (γ−2)Ψ(1, n+1)−γ2Ψ(n+1)−γ3−2S(1, n)−

n∑
k=1

Ψ(k)
k2

.

In above corollary, the main term in the right hand side is Ψ(n+1)3

3 . Also, we note that the summation∑n
k=1

Ψ(k)
k2 is converges. Thus, we can write the following asymptotic relation

S(2, n) =
Ψ(n + 1)3

3
+ O(ln2 n) (n →∞).

Similarly, considering (3.5) we have

S(1, n) =
Ψ(n + 1)2

2
+ O(lnn) (n →∞).

Note and Problem. It is interesting to find an explicit (probably recurrence) relation for the function S(m,n).

Considering two above asymptotic relations, we guess that

S(m,n) =
Ψ(n + 1)m+1

m + 1
+ O(lnm n) (n →∞).

One can attack to this problem considering generalization of L−summing method in higher dimension spaces,

pointed in the last section of this paper.
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4. Generating some new identities by Maple and 3-dimension L−summing method

Appendix of this paper includes Maple program of 3-dimension L−summing method. By LSMI < Aabc >,

we call the identity outputted by L−Summing method’s Maple program with input Aabc. The algorithm

of this program is result of the formulation of 3-dimension L−summing method in above sections. In this

program we input a 3-dimensional array Aabc, then out put is an identity generated by Maple. In this section

we will state some of these identities, with handling a detailed proof.

4.1. Some elementary functions.

Proposition 4.1. We have

LSMI < ln(a) >:
n∑

k=1

{
k2 ln k + 2 k ln Γ(k + 1)− 2 k ln k − ln Γ(k + 1) + ln k

}
= n2 ln Γ(n + 1).

Proof. Considering the relations (2.1) and Γ(n + 1) = n!, we have Σ(n) = n2
∑n

a=1 ln a = n2 ln Γ(n + 1).

Also, Σ2 = k2 ln k + 2k ln Γ(k + 1), Σ1 = lnΓ(k + 1) + 2k ln k and Σ0 = ln k. Putting these relations in (2.1)

yields LSMI < ln(a) > as desired. �

Corollary 4.2. We have
n∑

k=1

{
(k2 − k) ln k + 2k ln Γ(k + 1)

}
= (n2 + n) ln Γ(n + 1).

Proof. Breaking up the statement under the summation obtained from LSMI < ln(a) > in Proposition 4.1,

into the sum of (k2 − k) ln k + 2k ln Γ(k + 1) and lnΓ (k + 1) + k ln k− ln k, and considering the Proposition

6 of [3], which states
n∑

k=1

{ln Γ (k + 1) + k ln k − ln k} = n ln Γ(n + 1),

completes the proof. �

Remark 4.3. Examining Maple code of expressed summation on above corollary, one can see that Maple

has no comment on the computing this summation; however, it is obtained by Maple itself and L−summing

method. This example shows that program-writers of Maple can add L−summing method in the summation

package of this software, in order to making it able to compute some summations which already couldn’t

compute them.

Proposition 4.4. A little simplifying LSMI < tan(a) >, we have
n∑

k=1

{
(k − 1)2 tan k + (2k − 1)T(k)

}
= n2T(n),

where T(n) =
∑n

k=1 tan k.

Proof. Considering the relation (2.1), we have Σ(n) = n2
∑n

a=1 tan a = n2T(n). Also, Σ2 = k2 tan k+2kT(k),

Σ1 = T(k) + 2k tan k and Σ0 = tan k, and consequently Lk = (k − 1)2 tan k + (2k − 1)T(k). This completes

the proof. �
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4.2. Hypergeometric functions. In the next proposition, we introduce an identity concerning hyperge-

ometric functions, denoted in Maple by hypergeom([a1 a2 · · · ap],[b1 b2 · · · bq],x). Standard notation

and definition [6] is as follows

pFq

[
a1 a2 · · · ap

b1 b2 · · · bq

;x

]
=
∑
k≥0

tkxk,

where
tk+1

tk
=

(k + a1)(k + a2) · · · (k + ap)
(k + b1)(k + b2) · · · (k + bq)(k + 1)

x.

Proposition 4.5. A little simplifying LSMI < a! > and stating in standard notations, we have

n∑
k=1

{
(k − 1)2k! + (2k − 1)(k + 1!)H(1, k + 2)

}
= n2(n + 1)!H(1, n + 2),

where

H(α, β) = 2F0

[
α β

−
; 1

]
.

Proof. Considering definition of hypergeometric functions we have H(1, n + 1) = (n + 1)H(1, n + 2), which

implies
∑n

a=1 a! = H(1, 2)− (n + 1)!H(1, n + 2) = P(n), say. This gives Σ(n) = n2P(n) and in similar way

it yields that Lk = (k − 1)2k! + (2k − 1) ((k + 1!)H(1, k + 2)− H(1, 2)). Thus, we obtain

n∑
k=1

{
(k − 1)2k! + (2k − 1) ((k + 1!)H(1, k + 2)− H(1, 2))

}
= n2(n + 1)!H(1, n + 2)− n2H(1, 2),

and a easy simplifying this, implies the result. �

Remark 4.6. Three last propositions are examples of the array Aabc = f(a), for some given function f . In

this case, L−summing method takes the following form

n∑
k=1

{
(2k − 1)F(k) + (k − 1)2f(k)

}
= n2F(n),

where F(n) =
∑n

a=1 f(a).

5. Further generalizations of the L−summing method and some comments

5.1. The L−Summing method in Rt. Consider a t−dimensional array Ax1x2···xt and let Σ(n) =
∑

Ax1x2···xt

with 1 ≤ x1, x2, · · · , xt ≤ n. The L−Summing method in Rt is the rearrangement Σ(n) =
∑

Lk, where

Lk =
∑t

m=1

{
(−1)m−1Σt−m

}
and

Σt−m =
∑

1≤i1<i2<···<im≤t

{∑′
Axi1i2···im

}
,

where in the inner summation
∑′ is over xj ∈ {xi1 , · · · , xim

}C = {x1, x2, · · · , xt} − {xi1 , · · · , xim
} with

1 ≤ xj ≤ k, and the index xi1i2···im denotes x1x2 · · ·xt with xi1 = xi2 = · · · = xim = k. One can apply
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this generalized version to get more general form of relations obtained in previous sections. For example,

considering the array Ax1x2···xt
= (x1x2 · · ·xt)−s with s ∈ C, yields

n∑
k=1

{
t−1∑
m=1

(−1)m−1

(
t

m

)
k−msζk(s)t−m

}
= ζn(s)t + (−1)tζn(ts).

5.2. L−summing method on manifolds. As in rising of this paper, the base of the L−summing method is

ordinary multiplications table. Above generalization of the L−Summing method in Rt is based on generalized

multiplication tables [4]. But, Rt is a very special t-dimensional manifold, and if we replace it with Γ, an

l−dimensional manifold with l ≤ t, then we can define generalized multiplication table on Γ by considering

lattice points on it (which of course isn’t easy problem). Let

LΓ(n) =
{
(a1, a2, · · · , at) ∈ Γ ∩ Nt : 1 ≤ a1, a2, · · · , at ≤ n

}
,

and f : Rk −→ C is a function. If OΓ is a collection of k − 1 dimension orthogonal manifolds, in which

LΓ(n) = ∪Λ∈OΓLΛ(n) and LΛi(n)∩LΛj (n) = φ for distinct Λi,Λj ∈ OΓ, then we can formulate L−summing

method as follows, ∑
X∈LΓ(n)

f(X) =
∑

Λ∈OΓ

 ∑
X∈LΛ(n)

f(X)

 .

Here L−summing elements are
∑

X∈LΛ(n) f(X). This may be useful when one apply it on some special

manifolds.

5.3. Stronger form of L−summing method. One can state the method of L−summing
∑

Lk = Σ(n)

in the following stronger form

Ln = Σ(n)− Σ(n− 1).

Specially, this will be useful for those arrays with Σ(n) computable explicitly and Lk maybe note. For

example, applying this note on the array Ax1x2···xt
= (x1x2 · · ·xt)−s in Rt with s ∈ C, implies

t−1∑
m=1

(−1)m−1

(
t

m

)
n−msζn(s)t−m = ζn(s)t + (−1)tζn(ts)− ζn−1(s)t − (−1)tζn−1(ts).
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restart:

A[abc]:=1/(a*b*c);

S21:=sum(sum(eval(A[abc],a=k),b=1..k),c=1..k):

S22:=sum(sum(eval(A[abc],b=k),a=1..k),c=1..k):

S23:=sum(sum(eval(A[abc],c=k),a=1..k),b=1..k):

S2:=S21+S22+S23:

S11:=sum(eval(eval(A[abc],a=k),b=k),c=1..k):

S12:=sum(eval(eval(A[abc],a=k),c=k),b=1..k):

S13:=sum(eval(eval(A[abc],b=k),c=k),a=1..k):

S1:=S11+S12+S13:

S0:=eval(eval(eval(A[abc],a=k),b=k),c=k):

L[k]:=simplify(S2-S1+S0):

ST(A):=(simplify(sum(sum(sum(A[abc],a=1..n),b=1..n),c=1..n))):

Sum(L[k],k=1..n)=ST(A);

Aabc :=
1

abc
n∑

k=1

3 (Ψ (k + 1))2 k2 + 6Ψ (k + 1) k2γ + 3 γ2k2 − 3Ψ (k + 1) k − 3 γ k + 1

k3
= (Ψ (n + 1) + γ)3
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