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ON SOME INEQUALITIES IN NORMED ALGEBRAS

S.S. DRAGOMIR

ABSTRACT. Some inequalities in normed algebras that provides lower and up-
per bounds for the norm of } ", ajxz; are obtained. Applications for es-
timating the quantities HHx_lﬂ T+ Hy_1H y” and H”y_lH x + ||x_1H yH for
invertible elements z, y in unital normed algebras are also given.

1. INTRODUCTION

In [1], in order to provide a generalisation of a norm inequality for n vectors in a
normed linear space obtained by Pec¢ari¢ and Raji¢ in [2], the author obtained the
following result:
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where z;, 7 € {1,...,n} are vectors in the normed linear space (X, |-||) over K
while o, j € {1,...,n} are scalars in K (K = C,R).

For ay, = m, with zp # 0, k € {1,...,n} the above inequality produces the
following result established by Pecari¢ and Raji¢ in [2]:
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which implies the following refinement and reverse of the generalised triangle in-
equality due to M. Kato et al. [3]:
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The other natural choice, ay = ||zx||, k¥ € {1,...,n} in (1.1) produces the result
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which in its turn implies another refinement and reverse of the generalised triangle
inequality:
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provided xp #0, k € {1,...,n}.
In [2], the authors have shown that the case n = 2 in (1.2) produces the
Maligranda-Mercer inequality:

(1.6)

-yl

7

2 = yll — [ll=ll —llglll ‘
min {[|z] , [ly[[}

for any x,y € X\ {0} .

We notice that Maligranda proved the right inequality in [5] while Mercer proved
the left inequality in [4].

We have shown in [1] that the following dual result for two vectors is also valid:

H llz = yll + [ll=ll = llyll|
max {|[z]|, [[y]l}

[z =y ]l = Tl
(1.7) (0<)— -
min {[|z[, ly[[}  max {[|2[, [ly[|}
< ‘ z oy [z =y ]l = [yl
“ Ayl T max {{f2]] gl min{fla] fly]}

for any z,y € X\ {0}.

Motivated by the above results, the aim of the present paper is to establish
lower and upper bounds for the norm of Z;L:1 a;x;, where aj,z;,j € {1,...,n} are
elements in a normed algebra (A4, ||||) over the real or complex number field K. In
the case where (A, ||-||) is a unital algebra and z,y are invertible, lower and upper
bounds for the quantities

Ml e =Ny llwll - and llly™ |2 £ [~y

are provided as well.
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2. INEQUALITIES FOR n PAIRS OF ELEMENTS

Let (A, |]]]) be a normed algebra over the real or complex number field K.

Theorem 1. If (aj,z;) € A%, j €{1,...,n}, then
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Proof. Observe that for any k € {1,...,n} we have

n

Za]xjfak ij +Z fak

Taking the norm and utilising the triangle inequality and the normed algebra prop-
erties, we have

n n
> ;| < lla | Z )~ )
i=1 =1 i=1
n
< |lag Zl‘j Z i — ag) zj|
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for any k € {1,...,n}, which implies the second part in (2.1).
Observing that
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and utilising the continuity of the norm, we have

n n n
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for any k € {1,...,n}, which implies the first part in (2.1). I

Remark 1. If there exists v > 0 so that ||a; —ag|| < rllak|| for any j, k €
{1,...,n}, then, by the second part of (2.1), we have

22) syl <, min {lasl} |3 +r D eyl
j=1 j=1 j=1

T ke{l,...,n

Corollary 1. Ifz; € A, j € {1,...,n}, then
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Corollary 2. Assume that A is a unital normed algebra. If v; € A are invertible
for any j € {1,...,n}, then
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Proof. If 1 € A is the unity, then on choosing ay = ||x,;1|’ -1in (2.1) we get

(2.5) max {II%IH Z% ZIH%IH—Hwlelejll}

ke{1,...,
N
kegnn {]xle ij +Z|Hx 1H_kal|||||xj||}
Now, assume that mln {kalH} |zH| - Then

.....

Zx] +2H>w U= e s

I

== =i | (Zuxjn— Zwa )+é|\w;lulle||.

Utilising the second inequality in (2.5), we deduce

n n n
i 1| D2 sl = | D ) < D2 s M sl =
Jj=1 j=1 j=1

and the first inequality in (2.4) is proved.
The second part of (2.4) can be proved in a similar manner, however, the details
are omitted. |

—1
J H%

Remark 2. An equivalent form of (2.4) is:

S5 Nl el = |25l s
(2:6) max Hx71H
ke{1,..., k
" " ol s = g |
SZH%‘H— Zfﬂj S mm ||33 T ’
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which provides both a refinement and a reverse inequality for the generalised triangle
inequality.
3. INEQUALITIES FOR TwWO PAIRS OF ELEMENTS
The following particular case of Theorem 1 is of interest for applications.
Lemma 1. If (a,b),(x,y) € A%, then

(3.1) max{lla(z£y)ll—[[(b—a)yll,[Ib(z £yl = [I(b - a)z[|}
< [laz + by[| < min {{la (z £ y)|| + [[(b = a) yl|, [|b (z £ y)[| + |(b — a) x|}
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or, equivalently,
(3.2) % {lla (@£ y)ll+ 116+ )l = [ —a)yll +[[(b—a)z[]}

+ % lla (@)l =1b@ £yl + 10— a)yll = (b —a) ]|
llaz + by]|

%{Ila(ﬂsiy)ll o £yl + 100 —a)yll +[I(b - a) 2[]}

- % lla (z+ )l + 116z £yl = (60— a)yl| = [I(b—a) 2[].

IN

IN

Proof. The inequality (3.1) follows from Theorem 1 for n = 2, a; = a, az = b,
x1 = and xy = Fy.
Utilising the properties of real numbers,

1

min{a,ﬁ}:%[a—l—ﬁ—w—m], max{a,ﬁ}:§[a+ﬁ—|—|a—ﬁ|]; a, B eR;

the inequality (3.1) is clearly equivalent with (3.2). I

The following result contains some upper bounds for ||az + by|| that are perhaps
more useful for applications.

Theorem 2. If (a,b), (z,y) € A2, then

33)  laz £ byll < min{lla(z £ y)[l,[Ib(z £ y)[I} + [[b — al| max {|[z]|, [ly[}
< [lo £yl min {{lal| , [|b]|} + [1b — al| max {{lz]|, |[y[|}

and

(34)  laz £by| < |lz £yl max {|lall , [} + min{[|(b—a) x|, [|(b—a)yl}
< ||z £ yllmax {[[all, [|b]|} + [|b — af min {|[z[, |y[l} -

Proof. Observe that ||(b—a)z| < ||b—a|||z]| and ||(b—a)y|| < ||b—a] |ly]|, and
then

(3.5) 1(b—a) ]|, |(b — a)yl| < ||b— al| max {[l=]|, [y]},
which implies that
min {[la (z £ y)|[ + [[(b — a) yll, [b(z £y)|| + [[(b — a) x|}
<min{|[a(z £y, [b(z £ y)lI} + 16— all max {{l], ly[[}
< [l £ yllmin {{|all , [|b]]} + [[b — al| max {{|z[, [[y]}

Utilising the second inequality in (3.1), we deduce (3.3).
Also, since [la (z £ y)|| <[l |z £ y| and [|b(z £ y)|| < [[b]| [l £ y]|, hence

la(z £yl [[b(z£y)| < |z £yl max{|all,[b]l},
which implies that
min {[la (z + y)|[ + (b — a) y[l, [|b(z £ y)[| + (b — a) x|}
< [l £ yllmax {|[a], [[6]|} + min{||(b — a) 2|/, [|(b — a) y }
< [l £yl max {|[all, 16} + [Ib — al| min {[lz]|, ly]l},
and the inequality (3.4) is also proved. I

The following corollary may be more useful for applications.
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Corollary 3. If (a,b), (z,y) € A2, then

llall + 1ol Ml + llyll
2 2 '
Proof. Follows from Theorem 2 by adding the last inequality in (3.3) to the last

inequality (3.4) and utilising the property that min{«, 8} + max{a, 8} = a + 3,
a,feR. 1

(3.6) laz + byl <z £yl - +b—al

The following lower bounds for ||az + by|| can be stated as well:

Theorem 3. For any (a,b) and (x,y) € A%, we have:

(3.7) max {|[laz|| — llay||, |[[bz[| — [[byll[} — [Ib — all max {{|z|, [ly[/}
<max{[la(zxy)|,[|b(x £y} — [|b—al max {[|z|, [ly[l}
< [laz & by||

and

(3.8)  min {|[|az| — |lay||[, [[[bx|| — [|byl|} — [|b — al| min {||z], [ly[[}
< min {|lazl| — llaglll, 16l — 1byl1} — min {16 — o) 2], I (b — @) yll}
< |laz £ by|| .

Proof. Observe that, by (3.5) we have that

max {|[a (z £ y)[| = (6 = a) yl[, [|b(z £ y)| = (b — a) z[[}
> max {[laz + ay|, [[bx £ byl[} — (b — al| max {|[z]|, |y[}
> max {{[|az| — [lay[[|, [[lox]| = [[by[l[} = [Ib = ]| max {{][, [[y][}

and on utilising the first inequality in (3.1), the inequality (3.7) is proved.
Observe also that, since

a(z £y, bz +y)l| = min{|[laz| — aylll, |[[bx]| — lby|[|} ,
then
max {[la (z £y)|| = [|[(b—a)y[, b (x £y)[| — [I(b —a) x|}

> min {|[|az|| — [lay[l[ , [[[b=]] = [|by|[[} — min {||(b — a) z||, [|(b — a) yl[}
> min {[[|az|| — |layll[, [[[b=]| = [by[[[} = [1b — al| min {[l2]], [ly[|} -

Then, by the first inequality in (3.1), we deduce (3.8). I

Corollary 4. For any (a,b), (z,y) € A2, we have

||+ ||y
all - LW < g sy

1
(3.9) 5 - [lllazll = llaylll + [l[bz|] — llby[}I] — [Ib —

The proof follows from Theorem 3 by adding (3.7) to (3.8). The details are
omitted.

4. APPLICATIONS FOR TwoO INVERTIBLE ELEMENTS

In this section we assume that A is a unital algebra with the unity 1. The
following results provide some upper bounds for the quantity ||||z=!|| = + ||y || y||,
where x and y are invertible in A.
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Proposition 1. If (z,y) € A? are invertible, then
@1) llz= =+ g~

< oyl min {[|2 =] [l [} + [[l27H] = [l (| max {2 1w}
and

(“42) e e = [y ]
< |lz £yl max{”x_l

y 13 [l = lly™ [ min (el Tyl -

Proof. Follows by Theorem 2 on choosing a = ||z=![| - 1 and b= |[y~*|| - 1. N

)

Corollary 5. With the above assumption for x and y, we have

43) e == [y ]
S el 20

Sy gy el Dl
5 L [ | R e

< ey :
Lower bounds for ||||z~*|| « £ ||y~*|| y|| are provided below:
Proposition 2. If (z,y) € A? are invertible, then
(44) £ ylmax {lz= ], [Jy 7 = [[J=7 = lv™* ||| max {[l=[l, lly[l}
<l =+ [ly= [ vl
and
(4.5) o £yl min {|lz7] ly 1} = [l=7 ] = o[ min (]l ]}
< lla7H = =+ [ly~ [l

Proof. The first inequality in (4.4) follows from the second inequality in (3.7) on
choosing a = ||z7!|| - 1 and b= ||y || - 1.
We know from the proof of Theorem 3 that

(4.6)  max{lla(zty)| —[Ib—a)yl,[bzxy)|—(b—a)z|} < |laz byl
If in this inequality we choose a = Hx_lH -1 and b= Hy‘lH -1, then we get
Mz e+ [ly™ [ v

2 max {{|z7 [l =yl = [l = [ly™ [T Hlls ™ [Vl £ 9l = [l = fly = 1 el
> Jle £ yllmin {{le 7|, [ly™H]} = [l = v~ [ min {liel o1}

and the inequality (4.5) is obtained. B

Corollary 6. If (z,y) € A? are invertible, then

R el [ B T B

<lle" e =y~ Mol
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Remark 3. We observe that the inequalities (4.3) and (4.7) are in fact equivalent

with:
—1 -1
@8) |l o o~ ol - o o - LA
- —aypp =l llyll
< [l — o - B

2

Now we consider the dual expansion H Hy’l || T+ qu || yH, for which the follow-
ing upper bounds can be stated.

Proposition 3. If (x,y) are invertible in A, then
(@9) |y~ [+ [« y]
<l yllmin { [l =] [y~ 13+ 2= = lly ™ | max {Jizll 1y}
and
(4.10)  |[ly~" =+ == vl
< ||xiy|\max{”x_1

y 1} [l = lly™ [ min (el Tl -

)

In particular,
@11) [y~ = £ =]

a7+ ||ly _ —uypy N+ Tyl
s|@u||~%ﬂ|!z =Ml I =5

The proof follows from Theorem 2 on choosing a = Hy‘l H -1l and b= Hx_l || - 1.
The lower bounds for the quantity || ||y_1 H x+ Hx_l H y|| are incorporated in:

Proposition 4. If (x,y) are invertible in A, then

y = [l ] = (| max {ll(] lll}
< lly™ = £ [l vl

(412) o £ yl| max {||z~"

)

and
(4.13) o £ ylfmin {{|z=|, [y} = ]| = [Jy || min {[lz]], ly[|}
< Wyl =+ ==l -

In particular,

—1 + —1 a B +
(4.14) ||xj:y||-w_‘”x U=y 1|||.M

<y =+ ==yl
Remark 4. We observe that the inequalities (4.11) and (4.14) are equivalent with

x|+ ||yt
415) [l ot o= ol ~ o - T

- —ayp . el + Hlyll
<= =Nyl =5
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