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SUBADDITIVE AND SUPERADDITIVE PROPERTIES OF
POLYGAMMA FUNCTIONS

FENG QI AND BAI-NI GUO

ABSTRACT. In this short paper, it is proved that the function |¢(i)(em)‘ for
i € N is subadditive in (Infp,c0) and superadditive in (—oo,Infp), where
0o € (0,1) is the unique root of equation 2|V (9)| = | (92)].

1. INTRODUCTION

Recall [2, 3, 4] that a function f defined on an interval I is said to be subadditive
on I if f(x +y) < f(x) + f(y) holds for all z,y € I such that z +y € I. If
flx+y) > f(x) + f(y), then f is called superadditive on I.

The subadditive and superadditive functions play an important role in the theory
of differential equations, in the study of semi-groups, in number theory, and also in
the theory of convex bodies. A lot of literature for the subadditive and superadditive
functions can be found in [2, 3] and the references therein.

It is well known that the classical Euler’s gamma function I" can be defined for
z>0asT(z) = [[Te*t*" ! dt. The digamma or psi function t is defined as the
logarithmic derivative of T’ and () for i € N are called polygamma functions.

In [3], a subadditive property of the gamma function I" was proved: The function

I'(x)]* is subadditive in (0, 00) if and only if 122 < o < 0, where A = min, > [G2)
In A 2V T'(z)

In [4], a subadditive property of the psi function was obtained: The function
Y(a + e*) is subadditive in (—o0o, 00) if and only if a > ¢y, where ¢ is the unique
positive zero of ¥ (x).

In this short paper, we would like to discuss the subadditive and superadditive
properties of the polygamma functions (9 (z) for i € N.

Our main result is the following Theorem 1.

Theorem 1. The function |¢(i) (e””)| for i € N is superadditive in (—oo,Infy) or
subadditive in (In 8y, 00), where By € (0, 1) is the unique root of equation 2|1/J(i) (9)| =
v (6%)].

2. PROOF OF THEOREM 1

In [5], the monotonicity of the function z¢ |1/J(i) (z+18) | was researched thoroughly,
which is a generalization of the corresponding results in [1, 4], as follows:
(1) The function xa|¢(i) (a:)| in (0,00) is strictly increasing if and only if o >
i+ 1 and strictly decreasing if and only if 0 < a <.
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(2) For B > £, the function wo‘|¢(i) (x + B)| is strictly increasing in [0, 00) if
and only if a > 3.
(3) Let 6 : (0,00) = (0,1) be defined by

aw:igg%ﬁi (1)

for t € (0,00) and 1 : (0,1) — (0, 00) stand for the inverse function of 4.
If0< B <3 and

edHB)
aZi+1—[ﬁ+ﬂ ] 1(8), (2)
e

then the function 2|1y (z + 8)| is strictly increasing in (0, c0).
It is noted that

65_1(5) .
0<|:65_1(T—1+ﬂ_1:|6 (ﬂ)<1 (3)

for 8 € (0,1), since limg_,o+[861(8)] = 0.
Let
Fo(e,y) = [0 (B + )| + [0 DB +y)| — [0 (8 +ay) (4)
for x > 0 and y > 0, where 8 > 0 and ¢ € N. In order to show Theorem 1, it

is sufficient to prove the positivity or negativity of the function fg(z,y). Directly
calculating yields

OIATY) 15410 (8 4 )] — [+ (8 + )
Oz (5)

= ey g0 (8 + zy)| - 2|V (8 + )]

From the monotonicity of the function a:“|1/1(i) (x + [3)| in [5] mentioned above,
it follows easily that W z 0 if and only if y ; 1. This means that the
function fo(x,y) is strictly increasing for y < 1 and strictly decreasing for y > 1
in z € (0,00). Since lim,_, o fo(z,y) |¢ | > 0, then for y > 1 the function
fo(z,y) is positive in z € (0, 00).
For y < 1, by the increasingly monotonicity of fo(z,y), it is deduced that

(1) if z > 1, then fo(1,y) |1/J(’) | < fo(z y |1/J(’) |

(2) if z < 1, then fo(z,y) < fo(l,y) = |¢ |

(3) ify <z <1, then fo(y,y) < fo(z,y),
(4) if z <y <1, then fo(z,z) < fo(z,y).

This implies that

f0(8,0) = 2|v D (0)] — [ D (62| < fo(z,y) (6)

for y < 1, where § < 1 with 8 < z and 0 < y.

Since fo(6,9) is strictly increasing in 6 € (0,1) such that fo(1,1) = [ (1)] >
and limg_,o+ fo(0,60) = —o0, then the function fo(#,6) has a unique zero 00 € (0, 1)
and fo(6,6) > 0for 1> 6> 6,.

In conclusion, the function fo(z,y) is positive for all z,y > 6y or negative for
0 < z,y < 0. The proof of Theorem 1 is complete.
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