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A FUNCTION INVOLVING GAMMA FUNCTION AND HAVING
LOGARITHMICALLY ABSOLUTE CONVEXITY

FENG QI, BAI-NI GUO, AND SENLIN GUO

Abstract. In the paper, the logarithmically complete monotonicity, logarith-

mically absolute monotonicity and logarithmically absolute convexity of the

function
[Γ(1+tx)]s

[Γ(1+sx)]t
for x, s, t ∈ R such that 1 + sx > 0 and 1 + tx > 0 with

s 6= t are verified, some known results are generalized.

1. Introduction

By using a geometrical method in [1], the following double inequality was proved:

1
n!
≤ [Γ(1 + x)]n

Γ(1 + nx)
≤ 1 (1)

for x ∈ [0, 1] and n ∈ N, where Γ(x) stands for the classical Euler’s gamma function
defined for x > 0 by Γ(x) =

∫∞
0

e−ttx−1 d t.
By analytical arguments in [29], it was presented that the function

f(x, y) =
[Γ(1 + x)]y

Γ(1 + xy)
(2)

for all y ≥ 1 is decreasing in x ≥ 0. From this, it is deduced that

1
Γ(1 + y)

≤ [Γ(1 + x)]y

Γ(1 + xy)
≤ 1 (3)

for all y ≥ 1 and x ∈ [0, 1], which is a generalization of inequality (1).
Recall [12, 30, 31] that a function f is called completely monotonic on an in-

terval I if f has derivatives of all orders on I and (−1)kf (k)(x) ≥ 0 for all k ≥ 0
on I. The set of completely monotonic functions on I is denoted by C[I]. Recall
also [20, 21, 22] that a positive function f is said to be logarithmically completely
monotonic on an interval I if f has derivatives of all orders on I and its logarithm
ln f satisfies (−1)k[ln f(x)](k) ≥ 0 for all k ∈ N on I. The set of logarithmically
completely monotonic functions on I is denoted by L[I]. Recall [3] that if f (k)(x) for
some nonnegative integer k is completely monotonic on an interval I, but f (k−1)(x)
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is not completely monotonic on I, then f(x) is called a completely monotonic func-
tion of k-th order on an interval I. Among other things, it was proved implicitly
or explicitly in [4, 14, 18, 20, 22, 30] that a logarithmically completely monotonic
function is always completely monotonic, but not conversely. Motivated or stimu-
lated by the papers [20, 22], among other things, it is further revealed in [4] that
S \ {0} ⊂ L[(0,∞)] ⊂ C[(0,∞)], where S denotes the set of Stieltjes transforms. In
[4, Theorem 1.1] and [9, 21] it is pointed out that the logarithmically completely
monotonic functions on (0,∞) can be characterized as the infinitely divisible com-
pletely monotonic functions studied by Horn in [10, Theorem 4.4]. For more in-
formation on the logarithmically completely monotonic functions, please refer to
[3, 4, 6, 7, 8, 9, 15, 18, 19, 20, 21, 22, 23, 25, 28, 30] and the references therein.

Definition 1. Let f be a positive function which has derivatives of all orders on
an interval I. If [ln f(x)](k) for some nonnegative integer k is completely monotonic
on I, but [ln f(x)](k−1) is not completely monotonic on I, then f is said to be a
logarithmically completely monotonic function of k-th order on I.

In [25, 28], the following logarithmically complete monotonicities, as generaliza-
tions of the decreasingly monotonic property in [29], are presented:

(1) For given y > 1, the function f(x, y) defined by (2) is decreasing and
logarithmically concave with respect to x ∈ (0,∞), and 1

f(x,y) is a logarith-
mically completely monotonic function of second order in x ∈ (0,∞).

(2) For given 0 < y < 1, the function f(x, y) defined by (2) is increasing and
logarithmically convex with respect to x ∈ (0,∞), and f(x, y) is a logarith-
mically completely monotonic function of second order in x ∈ (0,∞).

(3) For given x ∈ (0,∞), the function f(x, y) defined by (2) is logarithmi-
cally concave with respect to y ∈ (0,∞), and 1

f(x,y) is a logarithmically
completely monotonic function of first order in y ∈ (0,∞).

(4) For given x ∈ (0,∞), let

Fx(y) =
Γ(1 + y)[Γ(1 + x)]y

Γ(1 + xy)
(4)

in ∈ (0,∞). If 0 < x < 1, then Fx(y) is a logarithmically completely
monotonic function of second order in (0,∞); if x > 1, then 1

Fx(y) is a
logarithmically completely monotonic function of second order in (0,∞).

In [13], It was shown that if f is a differentiable and logarithmically convex
function in [0,∞), then the function [f(x)]a

f(ax) for a ≥ 1 (or 0 < a ≤ 1 respectively) is
decreasing (or increasing respectively) in [0,∞). As one of applications to inequal-
ities involving gamma function, Riemann’s zeta function and the complete elliptic
integrals of the first kind, inequalities (1) and (3) were deduced.

In [11], an inequality involving a positive linear operator acting on the composi-
tion of two continuous functions is presented and, as applications of this inequality,
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some new inequalities involving the beta, gamma and Riemann’s zeta functions and
a large family of functions which are Mellin transforms are produced. In particular,
for β > δ > 0, αβ > −1 and αδ > −1, if either α < 0 or α > 1, then inequality

[Γ(1 + δ)]α

Γ(1 + αδ)
>

[Γ(1 + β)]α

Γ(1 + αβ)
(5)

holds true; if 0 < α ≤ 1, inequality (5) is reversed. It is not difficult to see that the
left hand sides in inequalities (1) and (3) are special cases of inequality (5).

In [5, Theorem 2.1], it was proved that the function

Gs,t(x) =
[Γ(1 + tx)]s

[Γ(1 + sx)]t
(6)

is decreasing (or increasing respectively) in x ∈ [0,∞) if either s ≥ t > 0 or 0 > s ≥ t

(or both s > 0 and t < 0 respectively) such that 1 + sx > 0 and 1 + tx > 0. This
result generalized and extended the corresponding conclusions in [1, 11, 29].

Recall [12, 15, 16, 27, 30, 31] that a function f is said to be absolutely monotonic
on an interval I if it has derivatives of all orders and f (k−1)(t) ≥ 0 for t ∈ I and
k ∈ N. Recall also [14, 26] that a positive function f is said to be logarithmi-
cally absolutely monotonic on an interval I if it has derivatives of all orders and
[ln f(t)](k) ≥ 0 for t ∈ I and k ∈ N. In [14, 26] it was proved that a logarithmically
absolutely monotonic function on an interval I is also absolutely monotonic on I,
but not conversely.

Definition 2. Let f be a positive function which has derivatives of all orders on
an interval I. If [ln f(x)](k) for some nonnegative integer k is absolutely monotonic
on I, but [ln f(x)](k−1) is not absolutely monotonic on I, then f is said to be a
logarithmically absolutely monotonic function of k-th order on I.

Recall [12, p. 375, Definition 3] and [16, 17, 30, 31] that a function f which has
derivatives of all orders on an interval I is said to be absolutely convex on I if
f (2k)(x) ≥ 0 on I for any nonnegative integer k.

Definition 3. A positive function f which has derivatives of all orders on an
interval I is said to be logarithmically absolutely convex on I if [ln f(x)](2k) ≥ 0 on
I for k ∈ N.

The main aim of this paper is to generalize and extend some results obtained in
[1, 5, 11, 13, 25, 28, 29].

Our main results can be stated as the following theorem.

Theorem 1. The function Gs,t(x) defined by (6) for x, s, t ∈ R such that 1+sx > 0
and 1 + tx > 0 with s 6= t has the following properties:

(1) Gs,t(x) = 1
Gt,s(x) ;

(2) For t > s > 0 and x ∈ (0,∞), Gs,t(x) is an increasing function and a
logarithmically completely monotonic function of second order in x;
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(3) For t > s > 0 and x ∈ (− 1
t , 0

)
, Gs,t(x) is a logarithmically completely

monotonic function in x;
(4) For s < t < 0 and x ∈ (−∞, 0), Gs,t(x) is a decreasing function and a

logarithmically absolutely monotonic function of second order in x;
(5) For s < t < 0 and x ∈ (

0,− 1
s

)
, Gs,t(x) is a logarithmically completely

monotonic function in x;
(6) For s < 0 < t and x ∈ (− 1

t , 0
)
, Gt,s(x) is an increasing function and a

logarithmically absolutely convex function in x;
(7) For s < 0 < t and x ∈ (

0,− 1
s

)
, Gt,s(x) is a decreasing function and a

logarithmically absolutely convex function in x.

2. Proof of Theorem 1

It is clear that Gs,t(x) = 1
Gt,s(x) . Therefore, it is sufficient to show Theorem 1

only for s < t.
Taking logarithm of Gs,t(x) yields

ln Gs,t(x) = s ln Γ(1 + tx)− t ln Γ(1 + sx) (7)

and

∂k[lnGs,t(x)]
∂xk

= stkψ(k−1)(1 + tx)− tskψ(k−1)(1 + sx)

=
st

xk−1

[
(tx)k−1ψ(k−1)(1 + tx)− (sx)k−1ψ(k−1)(1 + sx)

] (8)

for k ∈ N.
In [2, Lemma 2.2], it was obtained that the function xα

∣∣ψ(i)(1 + x)
∣∣ is strictly

increasing in (0,∞) if and only if α ≥ i, where i ∈ N and α ∈ R. This was
generalized in [24, Theorem 1] as follows: For β ≥ 1

2 , the function xα
∣∣ψ(i)(x + β)

∣∣
is strictly increasing in [0,∞) if and only if α ≥ i ∈ N. In particular, the functions
x2iψ(2i)(1 + x) are decreasing and the functions x2i−1ψ(2i−1)(1 + x) are increasing
in [0,∞) for i ∈ N. From this, it is readily obtained for i ∈ N, t > s > 0 and x > 0
that

∂2i[lnGs,t(x)]
∂x2i

> 0 and
∂2i+1[lnGs,t(x)]

∂x2i+1
< 0.

Since
∂[ln Gs,t(x)]

∂x
= st[ψ(1 + tx)− ψ(1 + sx)] (9)

and the psi function ψ is increasing in (0,∞), it is is easy to see

∂[lnGs,t(x)]
∂x

> 0.

Consequently, for t > s > 0 and x > 0, Gs,t(x) is an increasing function in x ∈
(0,∞) and a logarithmically completely monotonic function of second order in
x ∈ (0,∞).
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If t > s > 0 and 0 > x > − 1
t , then

(−1)k−1 ∂k[ln Gs,t(x)]
∂xk

=
st

(−x)k−1

[
(tx)k−1ψ(k−1)(1 + tx)− (sx)k−1ψ(k−1)(1 + sx)

]

for k ∈ N. Let hk(u) = ukψ(k)(1 + u) for u ∈ (−1, 0) and k ∈ N. Straightforward
computation gives

h′k(u) = uk−1
[
kψ(k)(1 + u) + uψ(k+1)(1 + u)

]

= (−u)k−1
{
k
[
(−1)k+1ψ(k)(1 + u)] + (−u)

[
(−1)k+2ψ(k+1)(1 + u)

]}
> 0.

This means that the function hk(u) for u ∈ (−1, 0) and k ∈ N is increasing. Then
it is concluded that (−1)k−1 ∂k[ln Gs,t(x)]

∂xk < 0 for k ∈ N. As a result, the function
Gs,t(x) is logarithmically completely monotonic in x ∈ (− 1

t , 0
)

for t > s > 0.
If s < t < 0 and x < 0, then

(−1)k ∂k[lnGs,t(x)]
∂xk

=
st

(−x)k−1

[
(sx)k−1ψ(k−1)(1 + sx)− (tx)k−1ψ(k−1)(1 + tx)

]

for k ∈ N, accordingly

(−1)2i ∂
2i[ln Gs,t(x)]

∂x2i
> 0 and (−1)2i+1 ∂2i+1[ln Gs,t(x)]

∂x2i+1
< 0

for i ∈ N. From (9), it follows that ∂[ln Gs,t(x)]
∂x < 0. Hence, Gs,t(x) is a logarithmi-

cally absolutely monotonic function of second order in x ∈ (−∞, 0) for s < t < 0.
If s < t < 0 and 0 < x < − 1

s , then formula (8) is valid. In virtue of the
increasingly monotonic property of the function hk(u) for u ∈ (−1, 0) and k ∈ N,
it is deduced that ∂k[ln Gs,t(x)]

∂xk > 0 for k ∈ N. This means that the function Gs,t(x)
for s < t < 0 is logarithmically completely monotonic in x ∈ (

0,− 1
s

)
.

If s < 0 < t and − 1
t < x < 0, then

∂k[ln Gs,t(x)]
∂xk

=
−st

(−x)k−1

{
(−1)k−1(−tx)k−1

[
(−1)kψ(k−1)(1 + tx)

]

− (sx)k−1
[
(−1)kψ(k−1)(1 + sx)

]}

for k ∈ N. Accordingly, it is obtained readily that ∂2i[ln Gs,t(x)]
∂x2i < 0 for i ∈ N. This

implies that the function 1
Gs,t(x) is logarithmically absolutely convex in x ∈ (− 1

t , 0
)

for s < 0 < t. Formula (9) implies that the function Gs,t(x) is increasing in
x ∈ (− 1

t , 0
)

for s < 0 < t.
If s < 0 < t and 0 < x < − 1

s , then

∂k[ln Gs,t(x)]
∂xk

=
−st

xk−1
(−1)k

{
(sx)k−1

[
(−1)kψ(k−1)(1 + sx)

]

− (tx)k−1
[
(−1)kψ(k−1)(1 + tx)

]}

for k ∈ N. Hence, it is deduced apparently that ∂2i[ln Gs,t(x)]
∂x2i < 0 for i ∈ N. This

implies that the function 1
Gs,t(x) is logarithmically absolutely convex in x ∈ (

0,− 1
s

)
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for s < 0 < t. Formula (9) implies that the function Gs,t(x) is decreasing in
x ∈ (

0,− 1
s

)
for s < 0 < t. The proof of Theorem 1 is finished.
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