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A REMARK ON THE SUM OF RECIPROCAL OF IMAGINARY PARTS
OF ZETA ZEROS

MEHDI HASSANI

Abstract. In this note, we give some explicit upper and lower bounds for the summation∑
0<γ≤T

1
γ , where γ is the imaginary part of nontrivial zeros ρ = β + iγ of ζ(s), that is a

zero with 0 ≤ β ≤ 1. In a research report appeared in “RGMIA Research Report Collection,

9(2), Article 15, 2006”, we have given some bounds, but here we give the following more

clean ones:
1
4π

log2 T − log(2π)
2π

log T +
15
250

<
∑

0<γ≤T

1
γ

<
1
4π

log2 T − log(2π)
2π

log T +
109
250

,

where the left hand side holds for T ≥ 2 and the right hand side holds for T ≥ 2.222.

1. Introduction

The Riemann zeta function is defined for <(s) > 1 by ζ(s) =
∑∞

n=1
1
ns and extended

by analytic continuation to the complex plan with one singularity at s = 1; in fact a sim-

ple pole with residues 1. The functional equation for this function in symmetric form, is

π−
s
2 Γ

(
s
2

)
ζ(s) = π−

1−s
2 Γ

(
1−s
2

)
ζ(1 − s), where Γ(s) =

∫∞
0

e−tts−1dt is a meromorphic func-

tion of the complex variable s, with simple poles at s = 0,−1,−2, · · · (see [3]). By this

equation, trivial zeros of ζ(s) are s = −2,−4,−6, · · · . Also, it implies symmetry of nontriv-

ial zeros (other zeros ρ = β + iγ which have the property 0 ≤ β ≤ 1) according to the line

<(s) = 1
2
. The summation

A(T ) =
∑

0<γ≤T

1

γ
,

where γ is the imaginary part of nontrivial zeros appears in some explicit approximation of

primes, and having some explicit approximations of it can be useful for careful computa-

tions. This is a summation over imaginary part of zeta zeros, and for approximating such

summations we use Stieljes integral and integrating by parts; let N(T ) be the number of

zeros ρ of ζ(s) with 0 < =(ρ) ≤ T and 0 ≤ <(ρ) ≤ 1. Then, supposing 1 < U ≤ V and
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Φ(t) ∈ C1(U, V ) to be non-negative, we have

∑
U<γ≤V

Φ(γ) =

∫ V

U

Φ(t)dN(t) = −
∫ V

U

N(t)Φ′(t)dt + N(V )Φ(V )−N(U)Φ(U).(1.1)

About N(T ), Riemann [5] guessed that

(1.2) N(T ) =
T

2π
log

T

2π
− T

2π
+ O(log T ).

This conjecture of Riemann proved by H. von Mangoldt more than 30 years later [1, 2].

An immediate corollary of above approximate formula, which is known as Riemann-van

Mangoldt formula is A(T ) = O(log2 T ), which follows by partial summation from Riemann-

van Mangoldt formula [2]. In 1941, Rosser [6] introduced the following approximation of

N(T ):

(1.3) |N(T )− F (T )| ≤ R(T ) (T ≥ 2),

where F (T ) = T
2π

log T
2π
− T

2π
+ 7

8
, and R(T ) = 137

1000
log T + 433

1000
log log T + 397

250
. This approxi-

mation allows us to make some explicit approximation of A(T ).

2. Approximation of A(T )

2.1. Approximate Estimation of A(T ). As we set above, γ1 is the imaginary part of first

nontrivial zero of the Riemann zeta function in the upper half plane and computations [4]

give us γ1 = 14.13472514 · · · . On using (1.1) with Φ(γ) = 1
γ
, 0 < U < γ1 and V = T , we

obtain

(2.1) A(T ) =

∫ T

U

dN(t)

t
=

∫ T

U

N(t)

t2
dt +

N(T )

T
.

Substituting N(T ) from (1.2), we obtain

A(T ) =
1

2π

∫ T

U

log
(

t
2π

)
t

dt− 1

2π

∫ T

U

dt

t
+

1

2π
log

T

2π
− 1

2π
+ O

(∫ T

U

log(t)

t2
dt

)
+ O

( log T

T

)
.

Computing integrals and error terms, and then letting U → γ−1 , we get the following ap-

proximation

A(T ) =
1

4π
log2 T − log(2π)

2π
log T + O(1).
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2.2. Explicit Estimation of A(T ). Considering (1.3) and using (2.1) with 2 ≤ U < γ1,

for every T ≥ 2 implies∫ T

U

F (t)

t2
dt−

∫ T

U

R(t)

t2
dt+

F (T )−R(T )

T
≤ A(T ) ≤

∫ T

U

F (t)

t2
dt+

∫ T

U

R(t)

t2
dt+

F (T ) + R(T )

T
.

A simple calculation, yields F (t)
t2

= d
dt
{ 1

4π
log2 t − 1+log(2π)

2π
log t + log2(2π)−2 log(2π)

4π
− 7

8t
}, and

setting E(t) =
∫∞

1
ds
sts

, we also have R(t)
t2

= d
dt
{− 433

1000
log log t

t
− 137

1000
log t

t
− 69

40t
− 433

1000
E(t)}. The

integral of E(t) converges for t > 1; in fact E(t) ∼ 1
t log t

when t → ∞. Using the fact
d
dt

E(t) = − 1
t2 log t

, we get 1
t log t

− 1
t log2 t

< E(t) < 1
t log t

− 31
95t log2 t

for t ≥ 2. Therefore, after

letting U → γ−1 , we get the following explicit upper bound

A(T ) <
1

4π
log2 T − log(2π)

2π
log T + cau −

137 log2 T + 433 log T − 433

1000T log2 T
(T ≥ 2),

where cau = 0.43596427 · · · < 109
250

and for T ≥ 2.222 we have −137 log2 T+433 log T−433
1000T log2 T

< 0.

Thus, we obtain A(T ) < 1
4π

log2 T − log(2π)
2π

log T + 109
250

for T ≥ 2.222. Similarly, we get

A(T ) >
1

4π
log2 T − log(2π)

2π
log T + cal

+
274 log3 T + 866(log log T ) log2 T + 3313 log2 T + 433 log T − 433

1000T log2 T
(T ≥ 2),

where cal = 0.06058187 · · · > 3
50

and for T ≥ 2 the last term in the above inequality is

positive. So, we obtain A(T ) > 1
4π

log2 T − log(2π)
2π

log T + 3
50

for T ≥ 2. Therefore we have

proved the following result:

Proposition 2.1. Letting A(T ) =
∑

0<γ≤T
1
γ

with γ is imaginary part of zeta zeros, we have

(2.2)
15

250
< A(T )−

{ 1

4π
log2 T − log(2π)

2π
log T

}
<

109

250
,

where the left hand side holds for T ≥ 2 and the right hand side holds for T ≥ 2.222.
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