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NOTE ON A CLASS OF COMPLETELY MONOTONIC
FUNCTIONS INVOLVING THE POLYGAMMA FUNCTIONS

FENG QI, SENLIN GUO, AND BAI-NI GUO

Abstract. In this article, some monotonicity of the function xα
∣∣ψ(i)(x+ β)

∣∣
and the complete monotonicity of the functions α

x

∣∣ψ(i)(x+β)
∣∣−∣∣ψ(i+1)(x+β)

∣∣
and α

∣∣ψ(i)(x + β)
∣∣ − x

∣∣ψ(i+1)(x + β)
∣∣ in (0,∞) for i ∈ N, α > 0 and β ≥

0 are investigated, where ψ(i)(x) is the well known polygamma functions.
Moreover, lower and upper bounds for infinite series whose coefficients involves

the Bernoulli numbers are established.

1. Introduction

Recall [7, 11, 14] that a function f is called completely monotonic on an interval
I if f has derivatives of all orders on I and 0 ≤ (−1)kf (k)(x) < ∞ for all k ≥ 0
on I. The well known Bernstein’s Theorem [14, p. 161] states that f ∈ C[(0,∞)]
if and only if f(x) =

∫∞
0
e−xs dµ(s), where µ is a nonnegative measure on [0,∞)

such that the integral converges for all x > 0. The class of completely monotonic
functions on I is denoted by C[I]. For more information on C[I], please refer to
[5, 6, 7, 8, 9, 10, 11, 14] and the references therein.

By using the convolution theorem of Laplace transforms, the increasingly mono-
tonicity of xα

∣∣ψ(i)(x + 1)
∣∣ is presented in [9, 10]: The function xα

∣∣ψ(i)(x + 1)
∣∣

is strictly increasing in (0,∞) if and only if α ≥ i, where ψ(x), the logarithmic
derivative of the classical Euler’s gamma function Γ(x), is called psi function and
ψ(i)(x) for i ∈ N are called polygamma functions. In [3], in order to show the
subadditive property of the function ψ(i)(a + ex), it was proved that the function
xψ′(x+a) is strictly increasing on [0,∞) for a ≥ 1. In [2], it was also showed, using
the convolution theorem of Laplace transforms, that the function xc

∣∣ψ(k)(x)
∣∣ for

k ≥ 1 is strictly decreasing in (0,∞) if and only if c ≤ k and is strictly increasing
in (0,∞) if and only if c ≥ k+1. In [4], the monotonicity of the more general func-
tion xα

∣∣ψ(i)(x+ β)
∣∣ was studied without using the convolution theorem of Laplace

transforms and, except the above results, the following conclusions are obtained:
For i ∈ N, α > 0 and β ≥ 0,

(1) the function xα
∣∣ψ(i)(x+ β)

∣∣ is strictly increasing in (0,∞) if (α, β) ∈
{
α ≥

i, 1
2 ≤ β < 1

}
∪

{
α ≥ i, β ≥ α−i+1

2

}
∪

{
α ≥ i + 1, β ≤ α−i+1

2

}
and only if

α ≥ i;
(2) α

x

∣∣ψ(i)(x)
∣∣− ∣∣ψ(i+1)(x)

∣∣ ∈ C[(0,∞)] if and only if α ≥ i+ 1;
(3)

∣∣ψ(i+1)(x)
∣∣− α

x

∣∣ψ(i)(x)
∣∣ ∈ C[(0,∞)] if and only if 0 < α ≤ i;

2000 Mathematics Subject Classification. Primary 33B15, 26A48; Secondary 26A51.
Key words and phrases. monotonicity, completely monotonic function, polygamma function,

bounds, infinite series, Bernoulli numbers.
This paper was typeset using AMS-LATEX.

1



2 F. QI, S. GUO, AND B.-N. GUO

(4) α
x

∣∣ψ(i)(x+ 1)
∣∣− ∣∣ψ(i+1)(x+ 1)

∣∣ ∈ C[(0,∞)] if and only if α ≥ i;
(5) α

x

∣∣ψ(i)(x + β)
∣∣ − ∣∣ψ(i+1)(x + β)

∣∣ ∈ C[(0,∞)] if (α, β) ∈
{
α ≥ i + 1, β ≤

α−i+1
2

}
∪

{
i ≤ α ≤ (i+1)(i+4β−2)

i+2β , 1
2 ≤ β < 1

}
∪

{
i ≤ α ≤ i+ 1, β ≥ α−i+1

2

}
and only if α ≥ i;

(6) α
∣∣ψ(i)(x+ β)

∣∣− x∣∣ψ(i+1)(x+ β)
∣∣ ∈ C[(0,∞)] if (α, β) ∈

{
i ≤ α ≤ i+ 1, β ≥

α−i+1
2

}
∪

{
α ≥ i+ 1, β ≤ α−i+1

2

}
and only if α ≥ i.

The main purpose of this paper is to research further the monotonic properties
of the function xα

∣∣ψ(i)(x + β)
∣∣ and to obtain some more better conclusions than

those mentioned above.
Our main results are the following four theorems.

Theorem 1. For i ∈ N, α ≥ 0 and β ≥ 0.
(1) The function xα

∣∣ψ(i)(x)
∣∣ in (0,∞) is strictly increasing if and only if α ≥

i+ 1 and strictly decreasing if and only if 0 ≤ α ≤ i.
(2) For β ≥ 1

2 , the function xα
∣∣ψ(i)(x + β)

∣∣ is strictly increasing in [0,∞) if
and only if α ≥ i.

(3) Let δ : (0,∞) →
(
0, 1

2

)
be defined by

δ(t) =
et(t− 1) + 1

(et − 1)2
(1)

for t ∈ (0,∞) and δ−1 :
(
0, 1

2

)
→ (0,∞) stand for the inverse function of

δ. If 0 < β < 1
2 and

α ≥ i+ 1−
[

eδ−1(β)

eδ−1(β) − 1
+ β − 1

]
δ−1(β), (2)

then the function xα
∣∣ψ(i)(x+ β)

∣∣ is strictly increasing in (0,∞).

Remark 1. It is noted that

0 <
[

eδ−1(β)

eδ−1(β) − 1
+ β − 1

]
δ−1(β) < 1

for β ∈ (0, 1), since limβ→0+[βδ−1(β)] = 0.

Theorem 2. Let i ∈ N, α ≥ 0 and β ≥ 0.
(1) α

∣∣ψ(i)(x)
∣∣− x∣∣ψ(i+1)(x)

∣∣ ∈ C[(0,∞)] if and only if α ≥ i+ 1.
(2) x

∣∣ψ(i+1)(x)
∣∣− α∣∣ψ(i)(x)

∣∣ ∈ C[(0,∞)] if and only if 0 ≤ α ≤ i.
(3) If β ≥ 1

2 , then α
∣∣ψ(i)(x + β)

∣∣ − x
∣∣ψ(i+1)(x + β)

∣∣ ∈ C[(0,∞)] if and only if
α ≥ i.

(4) If 0 < β < 1
2 and inequality (2) holds true, then α

∣∣ψ(i)(x+β)
∣∣−x∣∣ψ(i+1)(x+

β)
∣∣ ∈ C[(0,∞)].

Theorem 3. Let i ∈ N, α ≥ 0 and β ≥ 0.
(1) α

x

∣∣ψ(i)(x)
∣∣− ∣∣ψ(i+1)(x)

∣∣ ∈ C[(0,∞)] if and only if α ≥ i+ 1.
(2)

∣∣ψ(i+1)(x)
∣∣− α

x

∣∣ψ(i)(x)
∣∣ ∈ C[(0,∞)] if and only if 0 ≤ α ≤ i.

(3) If β ≥ 1
2 , then α

x

∣∣ψ(i)(x + β)
∣∣ − ∣∣ψ(i+1)(x + β)

∣∣ ∈ C[(0,∞)] if and only if
α ≥ i.

(4) If 0 < β < 1
2 and inequality (2) holds true, then α

x

∣∣ψ(i)(x+β)
∣∣−∣∣ψ(i+1)(x+

β)
∣∣ ∈ C[(0,∞)].
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Theorem 4. Let 0 < β < 1
2 and δ−1 be the inverse function of δ defined by (1).

Then the following inequalities holds for t ∈ (0,∞):

1
2
>

∞∑
k=1

B2k
t2k−1

(2k − 1)!
> 0, (3)

t

2
>

∞∑
k=0

B2k+2
t2k+2

(2k + 2)!
> max

{
0,
t

2
− 1

}
, (4)

∞∑
k=0

B2k+2
t2k+2

(2k + 2)!
>

(
1
2
− β

)
t+

[
eδ−1(β)

eδ−1(β) − 1
− β + 1

]
δ−1(β)− 1, (5)

where Bk stands for the Bernoulli numbers defined by

x

ex − 1
=

∞∑
k=0

Bkx
k

k!
. (6)

2. Lemmas

In order to prove our main results, the following lemmas are necessary.

Lemma 1 ([1, 12, 13]). The polygamma functions ψ(k)(x) are expressed for x > 0
and k ∈ N as

ψ(k)(x) = (−1)k+1

∫ ∞

0

tke−xt

1− e−t
d t. (7)

For x > 0 and r > 0,
1
xr

=
1

Γ(r)

∫ ∞

0

tr−1e−xt d t. (8)

For i ∈ N and x > 0,

ψ(i−1)(x+ 1) = ψ(i−1)(x) +
(−1)i−1(i− 1)!

xi
. (9)

Lemma 2 ([5, 6]). Let f(x) be defined in an infinite interval I. If limx→∞ f(x) = 0
and f(x)− f(x+ ε) R 0 for any given ε > 0, then f(x) R 0 in I.

3. Proofs of theorems

Proof of Theorem 1. Direct calculation and rearrangement yields

g′i,α,β(x)
xα−1

= α
∣∣ψ(i)(x+ β)

∣∣− x∣∣ψ(i+1)(x+ β)
∣∣

= (−1)i+1
[
αψ(i)(x+ β) + xψ(i+1)(x+ β)

]
(10)

and

lim
x→∞

g′i,α,β(x)
xα−1

= 0. (11)

Straightforwardly computing in virtue of formulas (9), (8) and (7) gives
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g′i,α,β(x)
xα−1

−
g′i,α,β(x+ 1)
(x+ 1)α−1

= (−1)i+1
{
α
[
ψ(i)(x+ β)− ψ(i)(x+ β + 1)

]
+ x

[
ψ(i+1)(x+ β)− ψ(i+1)(x+ β + 1)

]
− ψ(i+1)(x+ β + 1)

}
=

i!α
(x+ β)i+1

− (i+ 1)!x
(x+ β)i+2

− (i+ 1)!
(x+ β)i+2

+ (−1)i+2ψ(i+1)(x+ β)

= (−1)i+2ψ(i+1)(x+ β) +
i!(α− i− 1)
(x+ β)i+1

+
(i+ 1)!(β − 1)

(x+ β)i+2

=
∫ ∞

0

[
t

1− e−t
+ (β − 1)t+ α− i− 1

]
tie−(x+β)t d t

,
∫ ∞

0

hi,α,β(t)tie−(x+β)t d t.

(12)

If β = 0, the function h′i,α,0(t) = − 1+(t−1)et

(et−1)2 < 0 and hi,α,0(t) is decreasing
in (0,∞) with limt→0+ hi,α,0(t) = α − i and limt→∞ hi,α,0(t) = α − i − 1. For

α ≥ i + 1, the functions hi,α,0(t) and g′i,α,0(x)

xα−1 − g′i,α,0(x+1)

(x+1)α−1 are positive in (0,∞).
Combining this with (11) and considering Lemma 2, it is obtained that the functions
g′i,α,0(x)

xα−1 and g′i,α,0(x) are positive in (0,∞), which means that the function gi,α,0(x)
is strictly increasing in (0,∞) for α ≥ i + 1. Similarly, for α ≤ i, the function
gi,α,0(x) is strictly decreasing in (0,∞).

If β > 0, then the function h′i,α,β(t) = et(et−t−1)
(et−1)2 + β − 1 , λ(t) + β − 1 with

λ′(t) = et[et(t−2)+t+2]
(et−1)3 , λ1(t)

(et−1)3 and λ′1(t) = 1 + (t − 1)et > 0 in (0,∞), and the
function λ1(t) is increasing with λ1(0) = 0, thus λ1(t) > 0 and λ′(t) > 0. Hence, the
functions λ(t) and h′i,α,β(t) are strictly increasing in (0,∞) with limt→0+ h

′
i,α,β(t) =

β − 1
2 and limt→∞ h′i,α,β(t) = β. Thus, if β ≥ 1

2 , the function h′i,α,β(t) is positive
and the function hi,α,β(t) is strictly increasing in (0,∞) with limt→0+ hi,α,β(t) =
α − i and limt→∞ hi,α,β(t) = ∞. Accordingly, for α ≥ i and β ≥ 1

2 , the function
hi,α,β(t) > 0 in (0,∞). Therefore, for α ≥ i and β ≥ 1

2 , by the same argument as
above, it is deduced that the function gi,α,β(x) is strictly increasing in (0,∞).

If 0 < β < 1
2 , since the function h′i,α,β(t) is strictly increasing in (0,∞) with

limt→0+ h
′
i,α,β(t) = β − 1

2 < 0 and limt→∞ h′i,α,β(t) = β > 0, then the function
hi,α,β(t) attains its unique minimum at some point t0 ∈ (0,∞). It is easy to see that
the function δ(t) defined by (1) satisfies δ(t0) = β for 0 < β < 1

2 , equals −[λ(t)+1]
and is positive and strictly decreasing with limt→0+ δ(t) = 1

2 and limt→∞ δ(t) = 0.
Therefore, the unique minimum of hi,α,β(t) equals

δ−1(β)eδ−1(β)

eδ−1(β) − 1
+ (β − 1)δ−1(β) + α− i− 1,

where δ−1 is the inverse function of δ defined by (1) and is strictly decreasing
in (0, 1

2 ) with lims→0+ δ
−1(s) = ∞ and lims→ 1

2−
δ−1(s) = 0. As a result, while

inequality (2) holds for 0 < β < 1
2 , the function hi,α,β(t) is positive in (0,∞).

Consequently, if 0 < β < 1
2 and inequality (2) is valid, then the function gi,α,β(x)

is strictly increasing in (0,∞). The sufficiency is proved.
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Now we are in a position to prove the necessity. In [8], it was proved that
ψ(x)− lnx+ α

x ∈ C[(0,∞)] if and only if α ≥ 1 and lnx− α
x − ψ(x) ∈ C[(0,∞)] if

and only if α ≤ 1
2 . From this it is deduced that inequality

(k − 1)!
xk

+
k!

2xk+1
< (−1)k+1ψ(k)(x) =

∣∣ψ(k)(x)
∣∣ < (k − 1)!

xk
+

k!
xk+1

(13)

holds in (0,∞) for k ∈ N.
If gi,α,0(x) is strictly decreasing in (0,∞), then

xi+1−αg′i,α,0(x) = αxi
∣∣ψ(i)(x)

∣∣− xi+1
∣∣ψ(i+1)(x)

∣∣ < 0. (14)

Applying (13) into (14) leads to

0 ≥ lim
x→∞

xi+1−αg′i,α,0(x)

≥ α lim
x→∞

xi

[
(i− 1)!
xi

+
i!

2xi+1

]
− lim

x→∞
xi+1

[
i!
xi+1

+
(i+ 1)!
xi+2

]
= (i− 1)!(α− i),

which means α ≤ i.
If gi,α,0(x) is strictly increasing in (0,∞), then

xi+2−αg′i,α,0(x) = αxi+1
∣∣ψ(i)(x)

∣∣− xi+2
∣∣ψ(i+1)(x)

∣∣ > 0 (15)

and, applying (9) into (15) and using (13),

0 ≤ lim
x→0+

xi+2−αg′i,α,0(x)

= lim
x→0+

{
αxi+1

∣∣ψ(i)(x)
∣∣− xi+2

[∣∣ψ(i+1)(x+ 1)
∣∣ +

(i+ 1)!
xi+2

]}
= α lim

x→0+
xi+1

∣∣ψ(i)(x)
∣∣− (i+ 1)!− lim

x→0+
xi+2

∣∣ψ(i+1)(x+ 1)
∣∣

≤ α lim
x→0+

xi+1

[
(i− 1)!
xi

+
i!
xi+1

]
− (i+ 1)!

− lim
x→0+

xi+2

[
i!

(x+ 1)i+1
+

(i+ 1)!
2(x+ 1)i+2

]
= i!(α− i− 1),

which means α ≥ i+ 1.
If the function gi,α,β(x) is strictly increasing in (0,∞) for β > 0, then

xi+1−αg′i,α,β(x) = αxi
∣∣ψ(i)(x+ β)

∣∣− xi+1
∣∣ψ(i+1)(x+ β)

∣∣ > 0. (16)

Applying (13) in (16) and taking limit leads to

0 ≤ lim
x→∞

xi+1−αg′i,α,β(x)

≤ α lim
x→∞

xi

[
(i− 1)!
(x+ β)i

+
i!

(x+ β)i+1

]
− lim

x→∞
xi+1

[
i!

(x+ β)i+1
+

(i+ 1)!
2(x+ β)i+2

]
= (i− 1)!(α− i),

which means α ≥ i. The proof of Theorem 1 is complete. �
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Proof of Theorem 2. If hi,α,β(t) ≷ 0 in (0,∞), then ±
∫∞
0
hi,α,β(t)tie−(x+β)t d t ∈

C[(−β,∞)], which is equivalent to ±
[

g′i,α,β(x)

xα−1 − g′i,α,β(x+1)

(x+1)α−1

]
∈ C[(0,∞)] by (12), and

then, by definition,

(−1)j

[
g′i,α,β(x)
xα−1

−
g′i,α,β(x+ 1)
(x+ 1)α−1

](j)

= (−1)j

[
g′i,α,β(x)
xα−1

](j)

− (−1)j

[
g′i,α,β(x+ 1)
(x+ 1)α−1

](j)

R 0

in (0,∞) for j ≥ 0. Further, formulas (7) and (10) imply

lim
x→∞

[
g′i,α,β(x)
xα−1

](j)

= lim
x→∞

(−1)j

[
g′i,α,β(x)
xα−1

](j)

= 0. (17)

By (17) and Lemma 2, it is concluded that (−1)j
[

g′i,α,β(x)

xα−1

](j)

R 0 and

±
g′i,α,β(x)
xα−1

= ±
[
α
∣∣ψ(i)(x+ β)

∣∣− x∣∣ψ(i+1)(x+ β)
∣∣] ∈ C[(0,∞)]

if hi,α,β(t) ≷ 0 in (0,∞). The proof of Theorem 1 tells us that the function hi,α,β(t)
is positive in (0,∞) if either β = 0 and α ≥ i+1, or β ≥ 1

2 and α ≥ i, or 0 < β < 1
2

and inequality (2) validating, and that hi,α,β(t) is negative in (0,∞) if β = 0 and
α ≤ i. As a result, the function α

∣∣ψ(i)(x + β)
∣∣ − x

∣∣ψ(i+1)(x + β)
∣∣ is completely

monotonic in (0,∞) for either β = 0 and α ≥ i+1, or β ≥ 1
2 and α ≥ i, or 0 < β < 1

2

and inequality (2) being true, and x
∣∣ψ(i+1)(x+ β)

∣∣−α∣∣ψ(i)(x+ β)
∣∣ ∈ C[(0,∞)] for

β = 0 and α ≤ i.
The proofs of necessities are the same as those in Theorem 1. The proof of

Theorem 2 is complete. �

Proof of Theorem 3. This follows from Theorem 2 and the following facts that

±
[
α

x

∣∣ψ(i)(x+ β)
∣∣− ∣∣ψ(i+1)(x+ β)

∣∣] = ± 1
x

{
α
∣∣ψ(i)(x+ β)

∣∣− x∣∣ψ(i+1)(x+ β)
∣∣},

1
x ∈ C[(0,∞)], and that the product of two completely monotonic functions is also
completely monotonic on the union of their domains. �

Proof of Theorem 4. Let Bk(x) be the Bernoulli polynomials defined [1, 12, 13] by

text

et − 1
=

∞∑
k=0

Bk(x)
tk

k!
. (18)

It is well known that the Bernoulli numbers Bk and Bk(x) are connected by Bk(1) =
(−1)kBk(0) = (−1)kBk and B2k+1(0) = B2k+1 = 0 for k ≥ 1, and that the first
few Bernoulli numbers and polynomials are

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
,

B0(x) = 1, B1(x) = x− 1
2
, B2(x) = x2 − x+

1
6
, B3(x) = x3 − 3

2
x2 +

1
2
x.

Using these notations, the functions hi,α,β(t) and h′i,α,β(t) can be rewritten as

hi,α,β(t) =
tet

et − 1
+ (β − 1)t+ α− i− 1
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= α− i+
(
β − 1

2

)
t+

∞∑
k=2

Bk(1)
tk

k!

= α− i+
(
β − 1

2

)
t+

∞∑
k=2

(−1)kBk
tk

k!

= α− i+
(
β − 1

2

)
t+

∞∑
k=1

(−1)k+1Bk+1
tk+1

(k + 1)!

= α− i+
(
β − 1

2

)
t+

∞∑
k=0

B2k+2
t2k+2

(2k + 2)!
,

h′i,α,β(t) = β − 1
2

+
∞∑

k=1

B2k
t2k−1

(2k − 1)!
.

The proof of Theorem 1 states that

(1) h′i,α,0(t) < 0 in (0,∞);
(2) if α ≥ i+ 1, then hi,α,0(t) > 0 in (0,∞);
(3) if 0 < α ≤ i, then hi,α,0(t) < 0 in (0,∞);
(4) if β ≥ 1

2 , then h′i,α,β(t) > 0 in (0,∞);
(5) if α ≥ i and β ≥ 1

2 , then hi,α,β(t) > 0 in (0,∞);
(6) if 0 < β < 1

2 and inequality (2) holds true, then hi,α,β(t) > 0 in (0,∞).

From these and standard argument, Theorem 4 is proved. �
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