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APPROXIMATION OF THE LAMBERT W FUNCTION AND HYPERPOWER
FUNCTION

ABDOLHOSSEIN HOORFAR AND MEHDI HASSANI

Abstract. In this note, we get some explicit approximations for the Lambert W function W (x), defined

by W (x)eW (x) = x for x ≥ −e−1. Also, we get upper and lower bounds for the hyperpower function

h(x) = xxx..
.

.

1. Introduction

The Lambert W function W (x), is defined by W (x)eW (x) = x for x ≥ −e−1. For −e−1 ≤ x < 0, there

are two possible values of W (x), which we take such values that aren’t less than −1. The history of the

function goes back to J. H. Lambert (1728-1777). One can find in [2] more detailed definition of W as a

complex variable function, historical background and various applications of it in Mathematics and Physics.

Expansion

W (x) = log x− log log x +
∞∑

k=0

∞∑
m=1

ckm
(log log x)m

(log x)k+m
,

holds true for large values of x, with ckm = (−1)k

m! S[k+m, k+1] where S[k+m, k+1] is Stirling cycle number

[2]. The series in above expansion being to be absolutely convergent and it can be rearranged into the form

W (x) = L1 − L2 +
L2

L1
+

L2(L2 − 2)
2L2

1

+
L2(2L2

2 − 9L2 + 6)
6L3

1

+ O

((
L2

L1

)4
)

,

where L1 = log x and L2 = log log x. Note that by log we mean logarithm in the base e. Since Lam-

bert W function appears in some problems in Mathematics, Physics and Engineering, having some explicit

approximations of it is very useful. In [5] it is shown that

(1.1) log x− log log x < W (x) < log x,

which the left hand side holds true for x > 41.19 and the right hand side holds true for x > e. Aim of present

note is to get some better bounds.

2. Better Approximations of the Lambert W Function

It is easy to see that W (−e−1) = −1, W (0) = 0 and W (e) = 1. Also, for x > 0, since W (x)eW (x) = x > 0

and eW (x) > 0, we have W (x) > 0. About derivation, an easy calculation yields that

d

dx
W (x) =

W (x)
x(1 + W (x))

.
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So, x d
dxW (x) > 0 holds true for x > 0 and consequently W (x) is strictly increasing for x > 0 (and also for

−e−1 ≤ x ≤ 0, but not by this reason).

Theorem 2.1. For every x ≥ e, we have

(2.1) log x− log log x ≤ W (x) ≤ log x− 1
2

log log x,

with equality holding only for x = e. The coefficients −1 and − 1
2 of log log x both are best possible for the

range x ≥ e.

Proof. For constant 0 < p ≤ 2 consider the function

f(x) = log x− 1
p

log log x−W (x),

for x ≥ e. Easily
d

dx
f(x) =

p log x− 1−W (x)
px(1 + W (x)) log x

,

and if p = 2, then
d

dx
f(x) =

(log x−W (x)) + (log x− 1)
2x(1 + W (x)) log x

.

Considering right hand side of (1.1) implies d
dxf(x) > 0 for x > e and consequently f(x) > f(e) = 0, and this

gives right hand side of (2.1). Trivially, equality holds for only x = e. If 0 < p < 2, then d
dxf(e) = p−2

2ep < 0,

and this yields that the coefficient − 1
2 of log log x in the right hand side of (2.1) is best possible for the range

x ≥ e.

For the another side, note that log W (x) = log x − W (x) and the inequality log W (x) ≤ log log x holds for

x ≥ e, because of the right hand side of (1.1). Thus, log x−W (x) ≤ log log x holds for x ≥ e with equality

only for x = e. Sharpness of (2.1) with coefficient −1 for log log x comes from the relation lim
x→∞

(W (x) −
log x + log log x) = 0. This completes the proof. �

Now, we try to obtain some upper bounds for the function W (x) with main term log x− log log x. To do

this we need the following lemma.

Lemma 2.2. For every t ∈ R and y > 0, we have

(t− log y)et + y ≥ et,

with equality for t = log y.

Proof. Letting

f(t) = (t− log y)et + y − et,

we have
d

dt
f(t) = (t− log y)et

and
d2

dt2
f(t) = (t + 1− log y)et.

Now, we observe that

f(log y) =
d

dt
f(log y) = 0,
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and
d2

dt2
f(log y) = y > 0.

This means the function f(t) takes its minimum value equal to 0 at t = log y, only. This gives the result of

lemma. �

Theorem 2.3. For y > 1
e and x > − 1

e we have

(2.2) W (x) ≤ log
(

x + y

1 + log y

)
,

with equality only for x = y log y.

Proof. Using the result of above lemma with t = W (x), we get

(W (x)− log y)eW (x) − (eW (x) − y) ≥ 0,

which considering W (x)eW (x) = x gives (1 + log y)eW (x) ≤ x + y and this is desired inequality for y > 1
e and

x > − 1
e . The equality holds when W (x) = log y, i.e. x = y log y. �

Corollary 2.4. For x ≥ e we have

(2.3) log x− log log x ≤ W (x) ≤ log x− log log x + log(1 + e−1),

where equality holds in left hand side for x = e and in left hand side for x = ee+1.

Proof. Consider (2.2) with y = x
e , and the left hand side of (2.1). �

Remark 2.5. Taking y = x in (2.2) we get W (x) ≤ log x − log
(

1+log x
2

)
, which is sharper than right hand

side of (2.1).

Theorem 2.6. For x > 1 we have

(2.4) W (x) ≥ log x

1 + log x
(log x− log log x + 1),

with equality only for x = e.

Proof. For t > 0 and x > 1, let

f(t) =
t− log x

log x
− (log t− log log x),

We have
d

dt
f(t) =

1
log x

− 1
t
,

and
d2

dt2
f(t) =

1
t2

> 0,

Now, we observe that d
dtf(log x) = 0 and so

min
t>0

f(t) = f(log x) = 0.

Thus, for t > 0 and x > 1 we have f(t) ≥ 0 with equality at t = log x. Putting t = W (x) and simplifying,

we get the result, with equality at W (x) = log x or equivalently at x = e. �
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Corollary 2.7. For x > 1 we have

W (x) ≤ (log x)
log x

1+log x .

Proof. This refinement of the right hand side of (1.1), can be obtained simplifying (2.4) with W (x) =

log x− log W (x). �

Bounds which we have obtained up to now have the form W (x) = log x− log log x + O(1). Now, we give

bounds with error term O( log log x
log x ) instead O(1), with explicit constants for error term.

Theorem 2.8. For every x ≥ e we have

(2.5) log x− log log x +
1
2

log log x

log x
≤ W (x) ≤ log x− log log x +

e

e− 1
log log x

log x
,

with equality only for x = e.

Proof. Taking logarithm from the right hand side of (2.1), we have

log W (x) ≤ log
(

log x− 1
2

log log x

)
= log log x + log

(
1− log log x

2 log x

)
.

Using log W (x) = log x−W (x), we get

W (x) ≥ log x− log log x− log
(

1− log log x

2 log x

)
,

which considering − log(1− t) ≥ t for 0 ≤ t < 1 (see [1]) with t = log log x
2 log x , implies the left hand side of (2.5).

To prove another side, we take logarithm from the left hand side of (2.1) to get

log W (x) ≥ log(log x− log log x) = log log x + log
(

1− log log x

log x

)
.

Again, using log W (x) = log x−W (x), we get

W (x) ≤ log x− log log x− log
(

1− log log x

log x

)
.

Now we use the inequality − log(1− t) ≤ t
1−t for 0 ≤ t < 1 (see [1]) with t = log log x

log x , to get

− log
(

1− log log x

log x

)
≤ log log x

log x

(
1− log log x

log x

)−1

≤ 1
m

log log x

log x
,

where m = min
x≥e

(
1− log log x

log x

)
= 1 − 1

e . So, we have − log
(
1− log log x

log x

)
≤ e

e−1
log log x

log x , which gives desired

bounds. This completes the proof. �

3. Studying the hyperpower function h(x) = xxx..
.

Consider the hyperpower function h(x) = xxx..
.

. One can define this function as the limit of the sequence

{hn(x)}n∈N with h1(x) = x and hn+1(x) = xhn(x). It is proven that this sequence converge if and only if

e−e ≤ x ≤ e
1
e (see [4] and references therein). This function satisfies the relation h(x) = xh(x), which taking

logarithm from both sides and a simple calculation yields

h(x) =
W (log(x−1))

log(x−1)
.
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In this section we get some explicit upper and lower bounds for this function. To do this we won’t use the

bounds of Lambert W function, cause of they holds true and are sharp for x large enough. Instead, we do

it directly.

Theorem 3.1. Taking λ = e− 1− log(e− 1) = 1.176956974 · · · , for e−e ≤ x ≤ e
1
e we have

(3.1)
1 + log(1− log x)

1− 2 log x
≤ h(x) ≤ λ + log(1− log x)

1− 2 log x
,

where equality holds in left hand side for x = 1 and in the right hand side for x = e
1
e .

Proof. For t > 0 we have t ≥ log t+1, which taking t = z−log z with z > 0, implies z
(
1−2 log(z

1
z )
)
≥ log

(
1−

log(z
1
z )
)
+1, and putting z

1
z = x, or equivalently z = h(x), it yields that h(x)(1−2 log x) ≥ log(1− log x)+1;

this is the left hand side (3.1), cause of 1− 2 log x is positive for e−e ≤ x ≤ e
1
e . Note that equality holds for

t = z = x = 1.

For the right hand side, we define f(z) = z − log z with 1
e ≤ z ≤ e. Easily we see that 1 ≤ f(z) ≤ e− 1; in

fact it takes its minimum value 1 at z = 1. Also, consider the function g(t) = log t− t + λ for 1 ≤ t ≤ e− 1,

with λ = e− 1− log(e− 1). Since d
dtg(t) = 1

t − 1 and g(e− 1) = 0, we obtain the inequality log t− t + λ ≥ 0

for 1 ≤ t ≤ e− 1, and putting t = z − log z with 1
e ≤ z ≤ e in this inequality, we obtain log(1− log z) + λ ≥

z
(
1−2 log(z

1
z )
)
. Taking z

1
z = x, or equivalently z = h(x) yields the right hand side (3.1). Note that equality

holds for x = e
1
e (z = e, t = e− 1). This completes the proof. �
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