
On a Result of Hardy and Ramanujan

This is the Published version of the following publication

Avalin Charsooghi, Mohammad, Azizi, Yousof, Hassani, Mehdi and Mola-
Zadeh Bidokhti, Laleh (2007) On a Result of Hardy and Ramanujan. Research
report collection, 10 (3).  

The publisher’s official version can be found at 

Note that access to this version may require subscription.

Downloaded from VU Research Repository  https://vuir.vu.edu.au/18370/ 



ON A RESULT OF HARDY AND RAMANUJAN

M. AVALIN CHARSOOGHI, Y. AZIZI, M. HASSANI AND L. MOLA-ZADEH BIDOKHTI

Abstract. In this paper, we introduce some explicit approximations for the summation
∑

k≤n Ω(k), where

Ω(k) is the total number of prime factors of k.

1. Introduction

Letting Ω(k) be the total number of prime factors of k, a result of Hardy and Ramanujan [7] asserts that∑
k≤n

Ω(k) = n log log n + M ′n + O
( n

log n

)
,

where

M ′ = γ +
∑

p

(
log

(
1− p−1

)
+ (p− 1)−1

)
≈ 1.0346538818.

The aim of this paper is finding explicit version of this result. We proceed by letting n! =
∏

p≤n pvp(n!),

standard factorization of n! into primes. It is known that vp(n!) =
∑m

k=1b
n
pk c, with m = mn,p = b log n

log p c and

bxc is the largest integer less than or equal to x (see for example [10]). We introduce some explicit (and

neat) approximations for the summation Υ(n) =
∑

p≤n vp(n!). Then, considering∑
k≤n

Ω(k) = Ω(n!) = Υ(n),

we obtain the main result as follows.

Main Theorem. For every n ≥ 3 we have∣∣∣∣∣∣
∑
k≤n

Ω(k)− (n− 1) log log(n− 1)

∣∣∣∣∣∣ < 23(n− 1).

Note that one can modify above result to the following one:∣∣∣∣∣∣
∑
k≤n

Ω(k)− n log log n

∣∣∣∣∣∣ < 23n,

which is an explicit version of the result of Hardy and Ramanujan.
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2. Proof of the Main Theorem

Starting point of proof, is considering the inequality

(2.1)
n− p

p− 1
− log n

log p
< vp(n!) ≤ n− 1

p− 1
,

(see [8] for a proof). Taking the summation
∑

p≤n from parts of this inequality, we will require to approximate

summations of the form
∑

p≤n f(p) with f(p) = 1
log p and f(p) = 1

p−1 (and more generally, for a given function

f ∈ C1(R+)). To do this, we use reduction of a Riemann-Stieljes integral to a finite sum [3]; let α be a step

function defined on [a, b] with jump αk at xk, where a ≤ x1 < x2 < · · · < xn ≤ b. Let f be defined on

[a, b] in such a way that not both f and α are discontinuous from the right or from the left t each xk. Then∫ b

a
fdα exists and we have ∫ b

a

f(x)dα(x) =
n∑

k=1

f(xk)αk.

Thus, integrating by parts yields

n∑
k=1

f(xk)αk =
∫ b

a

f(x)dα(x) =
∫ b

a

α(x)
d

dx
(−f(x))dx + f(b)α(b)− f(a)α(a).

Also if for the sequence ak we let f(x) = ak when k − 1 < x ≤ k with f(0) = 0, then

n∑
k=1

ak =
n∑

k=1

f(k) =
∫ n

0

f(x)dbxc.

This allow us to get some ways for evaluating the summation
∑

p≤n f(p); two of them are:

• Using ϑ(x) =
∑
p≤x

log p, which ends to the approximation

∑
p≤n

f(p) =
∫ n

2−

f(x)
log x

dϑ(x) =
f(n)ϑ(n)

log n
+

∫ n

2

ϑ(x)
d

dx

(
−f(x)
log x

)
dx,

and it is known that for x > 1, we have 200 log2 x|ϑ(x)−x| < 793x, and log4 x|ϑ(x)−x| < 1717433x

(see [6] for more details).

• Using π(x) = #P ∩ [2, x], which ends to the approximation∑
p≤n

f(p) = f(x)π(x) +
∫ n

2

π(x)
d

dx

(
− f(x)

)
dx,

and we have some explicit bounds for π(x) (again see [6] for lots of them). In this paper we will use

the following neat one:

(2.2) π(x) ≤ x

log x

(
1 +

1.2762
log x

)
(x > 1).

Both of these methods are applicable for the summation
∑

p≤n
1

p−1 , while first method on the summation∑
p≤n

1
log p ends to some integrals hard for approximating. Here, based on some known approximations for

both of these summations, which are obtained on the second method, we give some neat bounds for them.
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Proposition 2.1. For every n ≥ 3, we have

log log(n− 1)− 14 <
∑
p≤n

1
p− 1

< log log(n− 1) + 23.

Proof. It is known [9] that∑
p≤n

1
p− 1

> log log n + a +
n

(n− 1) log n
− 1717433n

(n− 1) log5 n
(n ≥ 2),

where a ≈ −11.86870152. But, for n ≥ 3564183 we have

log log n + a +
n

(n− 1) log n
− 1717433n

(n− 1) log5 n
> log log(n− 1)− 14.

Thus, for n ≥ 3564183 we obtain ∑
p≤n

1
p− 1

> log log(n− 1)− 14,

which holds true for 2 ≤ n ≤ 3564182, too.

Also, we have ∑
p≤n

1
p− 1

< log log(n− 1) + b +
n

(n− 1) log n
+

1717433n

(n− 1) log5 n
(n ≥ 2),

where b ≈ 21.18095291. In the other hand, for n ≥ 7126157 we have

b +
n

(n− 1) log n
+

1717433n

(n− 1) log5 n
< 23.

So, for n ≥ 7126157 we obtain ∑
p≤n

1
p− 1

< log log(n− 1) + 23,

which holds true by computation for 3 ≤ n ≤ 7126156, too. This completes the proof. �

Proposition 2.2. For every n ≥ 2, we have∣∣∣∣∣∣
∑
p≤n

1
log p

−
{

n

log2 n
+

2n

log3 n
+

6n

log4 n

}∣∣∣∣∣∣ < 271382
n

log5 n
.

Proof. In a similar process [9], we have

n

log2 n
+

2n

log3 n
+

6n

log4 n
+

1607n

100 log5 n
− 1717433n

log6 n
+ a <

∑
p≤n

1
log p

(n ≥ 564),

where a ≈ −16.42613005. Also, we have∑
p≤n

1
log p

<
n

log2 n
+

2n

log3 n
+

6n

log4 n
+

54281n

800 log5 n
+

1717433n

log6 n
+ b (n ≥ 2),

where b ≈ 30.52238614. Computation gives

−271382n

log5 n
<

1607n

100 log5 n
− 1717433n

log6 n
+ a (n ≥ 564).

Also
54281n

800 log5 n
+

1717433n

log6 n
+ b <

271382n

log5 n
(n ≥ 569).
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Therefore, we obtain the following inequality:∣∣∣∣∣∣
∑
p≤n

1
log p

−
{

n

log2 n
+

2n

log3 n
+

6n

log4 n

}∣∣∣∣∣∣ < 271382
n

log5 n
(n ≥ 569).

A computer program verifies above inequality for 2 ≤ n ≤ 568, too. The proof is complete. �

Proof of the Main Theorem. Considering the right hand side of (2.1) and the Proposition 2.1, for every n ≥ 3

we have

Υ(n) ≤ (n− 1)
∑
p≤n

1
p− 1

< (n− 1) log log(n− 1) + 23(n− 1).

In the other hand, considering the left hand side of (2.1) and the Proposition 2.1, for every n ≥ 3 we have

Υ(n) > (n− 1)
∑
p≤n

1
p− 1

− π(n)− log n
∑
p≤n

1
log p

> (n− 1) log log(n− 1)− 14(n− 1)−R(n),

where

R(n) = π(n) + log n
∑
p≤n

1
log p

,

and considering (2.2) and the Proposition 2.2, we have

R(n) ≤ n

log n

(
1 +

1.2762
log n

)
+

n

log n
+

2n

log2 n
+

6n

log3 n
+

271382n

log4 n
=

2n

log n
+

3.2762n

log2 n
+

6n

log3 n
+

271382n

log4 n
.

But, for n ≥ 563206 the right hand side of this relation is strictly less than 9(n− 1). So, we obtain

Υ(n) > (n− 1) log log(n− 1)− 23(n− 1),

for n ≥ 563206, which holds true for 3 ≤ n ≤ 563205 by computations. This completes the proof. �

3. Remarks for Further Studies

3.1. Explicit Approximation of the Function Ω(n). Concerning the main theorem, considering n! =

Γ(n + 1), one can reform above result as

|Ω(Γ(n))− (n− 2) log log(n− 2)| < 23(n− 2),

and replacing n by Γ−1(n) (inverse of Gamma function), yields∣∣Ω(n)− (Γ−1(n)− 2) log log(Γ−1(n)− 2)
∣∣ < 23

(
Γ−1(n)− 2

)
.

This suggests an explicit approximation for the function Ω(n) in sense of inverse of Gamma function, which

approximating Γ−1 one can make it in sense of elementary functions.

Remark 3.1. We don’t know such approximations for Γ−1. Professor Horst Alzer [1] recommended to read the

papers [4] and [5] by Necdet Batir, who studied properties of the inverse gamma and polygamma functions.

He believes that modifiying Batir’s approach one can find properties of the inverse gamma function.



ON A RESULT OF HARDY AND RAMANUJAN 5

3.2. An Extension of the Function vp(n!). The function vp(n!) defined by

n! =
∏
p≤n

pvp(n!),

can be generalized for every positive integer m ≤ n instead prime p ≤ n. Fix n and consider canonical

decomposition

m =
∏
p≤n

pvp(m).

Same to vp(n!), we define vm(n!) in which mvm(n!)‖n!. So,

mvm(n!) =
∏
p≤n

pvp(m)vm(n!)
∥∥∥ ∏

p≤n

pvp(n!).

Therefore, we must have vp(m)vm(n!) ≤ vp(n!) for every prime p ≤ n; that is

vm(n!) ≤ min
p≤n

vp(m) 6=0

{
vp(n!)
vp(m)

}
.

This leads us to the following definition:

Definition. For positive integers m,n with m ≤ n, we set

vm(n!) =

 min
p≤n

vp(m) 6=0

{
vp(n!)
vp(m)

} .

Note that in above definition, vp(N) for a positive integer N and prime p, is a well defined notation for the

greatest power of p dividing N . Related by this generalization, the following question arise to mind:

Question. Find the function F(n) such that

n∑
m=1

vm(n!) = F(n)
∑
p≤n

vp(n!).
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