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A DOUBLE INEQUALITY FOR DIVIDED DIFFERENCES AND
SOME IDENTITIES OF PSI AND POLYGAMMA FUNCTIONS

FENG QI

Abstract. In this short note, from the logarithmically completely monotonic

property of the function (x + c)b−a Γ(x+a)
Γ(x+b)

, a double inequality for the di-

vided differences and some identities of the psi and polygamma functions are
presented.

1. Introduction

Recall [1, 8] that a positive function f is called logarithmically completely mono-
tonic on an interval I if f has derivatives of all orders on I and its logarithm ln f
satisfies (−1)k[ln f(x)](k) ≥ 0 for all k ∈ N on I. For more detailed information,
please refer to [1, 2, 3, 4, 7, 10, 11] and the related references therein.

It is well known that the classical Euler’s gamma function Γ(x) plays a cen-
tral role in the theory of special functions and has much extensive applications in
many branches, for example, statistics, physics, engineering, and other mathemati-
cal sciences. The logarithmic derivative of Γ(x), denoted by ψ(x) = Γ′(x)

Γ(x) , is called
psi or digamma function, and ψ(i)(x) for i ∈ N are known as the polygamma or
multigamma functions.

For real numbers α and β with α 6= β, (α, β) 6= (0, 1) and (α, β) 6= (1, 0) and for
t ∈ R, let

qα,β(t) =


e−αt − e−βt

1− e−t
, t 6= 0,

β − α, t = 0.
(1)

From the necessary and sufficient conditions such that the function qα,β(t) is mono-
tonic, which were established in [5, 6], the following logarithmically complete mono-
tonicity was obtained.

Lemma 1 ([9]). Let a, b and c be real numbers and ρ = min{a, b, c}. Then the
function

Ha,b,c(x) = (x+ c)b−a Γ(x+ a)
Γ(x+ b)

(2)

is logarithmically completely monotonic in (−ρ,∞) if and only if

(a, b, c) ∈ D1(a, b, c) , {(a, b, c) : (b− a)(1− a− b+ 2c) ≥ 0}
∩ {(a, b, c) : (b− a)(|a− b| − a− b+ 2c) ≥ 0}
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\ {(a, b, c) : a = c+ 1 = b+ 1} \ {(a, b, c) : b = c+ 1 = a+ 1}, (3)

so is Hb,a,c(x) in (−ρ,∞) if and only if

(a, b, c) ∈ D2(a, b, c) , {(a, b, c) : (b− a)(1− a− b+ 2c) ≤ 0}
∩ {(a, b, c) : (b− a)(|a− b| − a− b+ 2c) ≤ 0}

\ {(a, b, c) : b = c+ 1 = a+ 1} \ {(a, b, c) : a = c+ 1 = b+ 1}. (4)

The first aim of this short note is to deduce a double inequality for the divided
differences of the polygamma functions from Lemma 1 as follows.

Theorem 1. Let b > a ≥ 0 and k ∈ N. Then the double inequality

(k − 1)!
(x+ α)k

≤
(−1)k−1

[
ψ(k−1)(x+ b)− ψ(k−1)(x+ a)

]
b− a

≤ (k − 1)!
(x+ β)k

(5)

for x ∈ (0,∞) holds if and only if α ≥ max
{
a, a+b−1

2

}
and 0 ≤ β ≤ min

{
a, a+b−1

2

}
.

The second aim of this short note is to show some identities of the psi and
polygamma functions by using Theorem 1.

Theorem 2. Let k ∈ N. then the following identities of polygamma functions are
valid:

ψ(k−1)

(√5 + 1
2

)2
−ψ(k−1)

(√
5 + 1
2

)
= (−1)k−1(k− 1)!

(√
5 − 1
2

)k

, (6)

ψ(k−1)

( 3
√

9−
√

69 + 3
√

9 +
√

69
3
√

18

)3
− ψ(k−1)

(
3
√

9−
√

69 + 3
√

9 +
√

69
3
√

18

)

= (−1)k−1(k − 1)!

(
3
√

18
3
√

9−
√

69 + 3
√

9 +
√

69

)k

, (7)

ψ(k−1)

1
8

(√
a− b+

2√
b− a

+
√
b− a

)4


− ψ(k−1)

(
1
2

√
a− b+

2√
b− a

+
√
b− a

2

)

= (−1)k−12k(k − 1)!

(√
a− b+

2√
b− a

+
√
b− a

)−k

, (8)

where a = 4 3

√
2

3(9+
√

849 ) and b = 3
√

9+
√

849
18 .

For v > 1 and α > 1, let v0 > 1 denote the real root of equation vα − v − 1 = 0,
then

vk
0

[
ψ(k−1)(vα

0 )− ψ(k−1)(v0)
]

= (−1)k−1(k − 1)!. (9)

For 0 < v < 1 and α < 0, let v0 < 1 be the real root of equation vα − v − 1 = 0,
then identity (9) is also valid.
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2. Proofs of theorems

Proof of Theorem 1. From the logarithmically complete monotonicity of the func-
tion Ha,b,c(x) in Lemma 1, it follows that

0 ≤ (−1)k[lnHa,b,c(x)](k)

= (−1)k

[
ψ(k−1)(x+ a)− ψ(k−1)(x+ b) +

(−1)k−1(b− a)(k − 1)!
(x+ c)k

]
(10)

for (a, b, c) ∈ D1(a, b, c), then the left hand side inequality in (5) is deduced straight-
forwardly by standard arguments.

The right hand side inequality in (5) can be deduced from (−1)k[lnHb,a,c(x)](k) ≥
0 for (a, b, c) ∈ D2(a, b, c). �

Proof of Theorem 2. Inequality (5) in Theorem 1 can be rearranged as

(k − 1)!
[max{v, (u+ v − 1)/2}]k

≤
(−1)k−1

[
ψ(k−1)(u)− ψ(k−1)(v)

]
u− v

=
(−1)k−1

u− v

∫ u

v

ψ(k)(t) d t ≤ (k − 1)!
[min{v, (u+ v − 1)/2}]k

(11)

for u > v > 0.
Substituting u = v2 for v > 1 in (11) yields

(k − 1)!(v2 − v)
[max{v, (v2 + v − 1)/2}]k

≤ (−1)k−1
[
ψ(k−1)(v2)− ψ(k−1)(v)

]
≤ (k − 1)!(v2 − v)

[min{v, (v2 + v − 1)/2}]k
. (12)

Since equation v2 − v − 1 = 0 has a unique root
√

5 +1
2 greater than 1, then, if

1 < v ≤
√

5 +1
2 ,

(k − 1)!
(

1
vk−2

− 1
vk−1

)
≤ (−1)k−1

[
ψ(k−1)(v2)− ψ(k−1)(v)

]
≤ (k − 1)!2kv(v − 1)

(v2 + v − 1)k
; (13)

if v ≥
√

5 +1
2 , above inequality reverses. Taking v →

√
5 +1
2 in (12) or (13) yields

identity (6).
It is easy to see that equation v3 − v − 1 = 0 has a unique real root

3

√
1
2
− 1

6

√
23
3

+
3

√
1
2

+
1
6

√
23
3

=
3
√

9−
√

69 + 3
√

9 +
√

69
3
√

2 3
√

9
= 1.324 · · · . (14)

Substituting u = v3 for v > 1 in (11) yields

(k − 1)!(v3 − v)
[max{v, (v3 + v − 1)/2}]k

≤ (−1)k−1
[
ψ(k−1)(v3)− ψ(k−1)(v)

]
≤ (k − 1)!(v3 − v)

[min{v, (v3 + v − 1)/2}]k
. (15)
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If 1 < v ≤
3
√

9−
√

69 +
3
√

9+
√

69
3√2 3√9

,

(k − 1)!
(

1
vk−3

− 1
vk−1

)
≤ (−1)k−1

[
ψ(k−1)(v3)− ψ(k−1)(v)

]
≤ (k − 1)!2kv(v2 − 1)

(v3 + v − 1)k
; (16)

if v ≥
3
√

9−
√

69 +
3
√

9+
√

69
3√2 3√9

, above inequality reverses. Identity (7) follows from taking

v →
3
√

9−
√

69 +
3
√

9+
√

69
3√2 3√9

in (15) or (16).
It is not difficult to see that the quartic equation v4 − v − 1 = 0 has a unique

real root

1
2

√√√√√√4 3

√
2

3
(
9 +

√
849

) − 3

√
9 +

√
849

18
+

2√
3
√

9+
√

849
18 − 4 3

√
2

3(9+
√

849 )

+
1
2

√√√√ 3

√
9 +

√
849

18
− 4 3

√
2

3
(
9 +

√
849

) = 1.220 · · · (17)

Replacing u by v4 for v > 1 in (11) gives

(k − 1)!(v4 − v)
[max{v, (v4 + v − 1)/2}]k

≤ (−1)k−1
[
ψ(k−1)(v4)− ψ(k−1)(v)

]
≤ (k − 1)!(v4 − v)

[min{v, (v4 + v − 1)/2}]k
. (18)

If 1 < v ≤ 1
2

√
a− b+ 2√

b−a
+ 1

2

√
b− a , then

(k − 1)!
(

1
vk−4

− 1
vk−1

)
≤ (−1)k−1

[
ψ(k−1)(v4)− ψ(k−1)(v)

]
≤ (k − 1)!2kv(v3 − 1)

(v4 + v − 1)k
; (19)

if v ≥ 1
2

√
a− b+ 2√

b−a
+ 1

2

√
b− a , above inequality reverses. Identity (8) follows

from taking v → 1
2

√
a− b+ 2√

b−a
+ 1

2

√
b− a in (18) or (19).

For v > 1 and α > 1, since the function fα(v) = vα − v − 1 satisfying

lim
v→1+

fα(v) = −1 and lim
v→∞

fα(v) = ∞, (20)

the equation vα − v − 1 = 0 must have at least one root v0 greater than 1. Letting
u = vα > v > 1 and taking limit v → v0 in (11) leads to

ψ(k−1)(v4
0)− ψ(k−1)(v0) =

(−1)k−1(k − 1)!
vk
0

. (21)

Identity (9) is proved for v > 1 and α > 1.
For 0 < v < 1 and α < 0, since the function fα(v) = vα − v − 1 satisfying

lim
v→1+

fα(v) = −1 and lim
v→0+

fα(v) = ∞, (22)
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the equation vα − v − 1 = 0 must have at least one root v0 less than 1. Letting
u = vα > 1 > v and taking limit v → v0 in (11) leads to (21). Hence, identity (9)
is proved for 0 < v < 1 and α < 0. �
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