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A GENERALISATION OF THE PECARIC-RAJIC INEQUALITY
IN NORMED LINEAR SPACES

SEVER S. DRAGOMIR

ABSTRACT. In this paper we establish a generalisation of the recent Pecarié-
Rayié inequality by providing upper and lower bounds for the norm of the linear
combination } 7_; ajz; where aj € K and z; € X for j € {1,...,n} with
n > 2. Applications for two vectors that are related to the Massera-Schiffer,
Dunkl-Williams and Maligranda-Mercer inequalities are given. Some bounds
for the quantity ||z/ ||ly|| — y/ ||z|||] with z,y € X \ {0}, are also provided.

1. INTRODUCTION

In the recent paper [13], J. Pecari¢ and R. Raji¢ proved the following inequality
for n nonzero vectors xy, k € {1,...,n} in the real or complex normed linear space
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and showed that this inequality implies the following refinement of the generalised
triangle inequality obtained by M. Kato et al. in [8]:
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The inequality (1.2) can be also obtained as a particular case of the author’s result
established in [1]

P

n n
. 1 p-1 - xj
(13)  max {llz} | 3 sl 2]
=1 j=1

n n b [ n n x ’
_ . -1 j
>3 1P =0t Sy = min (a3 D P D ]
- - 1<j<n — — ||33J||
j=1 j=1 _]71 j=1

where p > 1 and n > 2.

Notice that, in [1], a more general inequality for convex functions has been
obtained as well.

In [13], Pecari¢ and Rajié¢ also observed that, for n = 2,27 = x and 23 = —y
their result reduces to

llz = yll = lllzll — NIyl
(1.4) : <L - L)<
min {|z(, [ly|[} ezl llyll
which holds for each nonzero vector z,y € X.
The second inequality in (1.4) has been obtained by L. Maligranda in [9]. Tt
provides a refinement of the Massera-Schdffer inequality [10]
2|z —yl

i - il <
el ~ Tl = mavs T, 7

which, in its turn, is a refinement of the Dunkl- Williams inequality [7]

[
=~ Tl = T+ Tl

The first inequality in (1.4) was obtained by P.R. Mercer in [11].

The main aim of this paper is to establish a generalisation of the Pecari¢-Raji¢
inequality (1.1) by providing upper and lower bounds for the norm of the linear
combination Y7, ajz; where a; € K and z; € X for j € {1,...,n} with n > 2.
Applications for two vectors that are related to the Maligranda-Mercer inequalities
(1.4) are given. Some bounds for the dual quantity ||z/ ||y|| — y/ ||z]/|| with =,y € X
. {0}, are also provided.

= yll + [ll<]l = llylll
max {{[z[|, [ly[[}

z Y

T Y

2. A GENERAL NORM INEQUALITY FOR n VECTORS

We can state the following result

Theorem 1. Let (X, ||-||) be a normed linear space over the real or complex number
field K. If a; € K and x; € X for j € {1,...,n} withn > 2, then

n n
ol 2| 2l e el
j=1 j=1

n n n
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Proof. Observe that, for any fixed k € {1,...,n} we have

(2.2) Za]x] = ag Zx] + Z — o)

Taking the norm in (2.2) and utilising the triangle inequality we have successively

n n n
Doy < flowd | + 1> (o — o)
j=1 = =1
n n
<ol [ D wj]| + > lay — a5,
j=1 j=1
which, on taking the minimum over k € {1,...,n}, produces the second inequality

n (2.1).
Since, obviously, by (2.2) we have

n
Zoz xj —akZmJ Z ap — o) T
Jj=1 j=1

then on utilising the continuity property of the norm we also have
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which, on taking the maximum over k € {1,...,n} produces the first part of (2.1)
and the theorem is completely proved. i

Remark 1. If some information is available about the location of the scalars a; #
0,5 € {1,...,n} namely, if

ajl‘ <p foreachjke{l,...,n}
ag

for a given p > 0, then we get from the second part of (2.1) that

n n n
> ajay|| < = Hllln {ol} (11D 5|+ 2D Nyl
j=1 et j=1 j=1

.....

Ifx; € X for je{l,...,n} are such that

n n
doaj| e llzil =0
j=1 j=1
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then the following nontrivial lower bound can be stated as well

n n n
max o Zx —pz zill| < Zao:v
ke{l,..,,n}“ I} 2.7 2 [l 2, 0%

Corollary 1. Let (X, ||-||) be a normed linear space over the real or complex number
field K. If z; € X for j € {1,...,n} withn > 2, then

n n
(2.3) pemax [kl ij —ZIII%II—II»’%IIIII%II
Jj=1 Jj=1

n n n
Z zillz;i|l < min Tk Zm +Z zill — lekll| ||z
S beslle <, uin | Sl |30+ 3 lhesl = bl e

The proof is obvious by Theorem 1 on choosing ay = ||z, k € {1,...,n}.
From (2.3) we can deduce some upper and lower bounds for the nonnegative

quantity >0, ;1> — szzl llz;]] x]H as follows:
Corollary 2. Ifz; € X forj € {1,...,n} withn > 2, then

(2.4) (0=), min - {llzel} ZH%H Za?j

.....

< Z ;1% - ZH%H%
< emax  {llzel} ZII%II— Z%

.....

Proof. Assume that mingegq, oy {l|lzell} = |2k, || with ko € {1,...,n}. Then, on
utilising the second inequality in (2.3) we have

n n n
S sl g < Nl 11D @5l + D sl = [z, | 5]
j=1 j=1 j=1

n

n n
2
= [l (1|2 25| + D0 Masl® =l [ D Nl
j=1 j=1

Jj=1

which is clearly equivalent to the first inequality in (2.4).
The second part follows likewise and the details are omitted. |

Remark 2. If x; € X\ {0} for j € {1,...,n} with n > 2, then from (2.1) for
ar =1/|lzk]l, k € {1,...,n} we deduce the Peéarié-Raji¢ inequality (1.1).
3. INEQUALITIES FOR TWO VECTORS

The case of two vectors may be of interest for applications in the Geometry of
Banach Spaces.
We start with the following result:
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Proposition 1. For any two vectors x,y € X and two scalars o, 3 € K we have
the double inequality

(3.1) % [(lal + 18D llz + yll = la = Bl (2l + lly[])]

1
t3 [(laf = [8]) lz + yll + e = Bl (=] = llyl])]
lax + By||

< % [(lad +160) lz + yll + e = Bl (]l + [ly[D)]

- % (e = 16]) lz + yll = lee = Bl (]l = lylDI -

Proof. If we apply Theorem 1 forn =2, a1 = «a, as =, 1 = x and x92 = y we
have
(3.2) max {|af |z + yl| — | = Byl I8 |z + gl — o = Bl ||}

< |laz + By||

< min{lef |z +yl + e = Bl Iyl 8z + yll + [a = Bl 1]} -

We utilize the properties that

IN

A

max{a,b}:%(a+b+|a—b|),min{a,b}:%(a+b— la—b)),
for any a,b € R and since
max {|al ||z + yl| = oo = Bl lyll, |8 |z + yll — oo = Bl |}
= % [(la + 18D NIz + yll = la = Bl (Il + [lyl])]
+ % [(la = 18D llz + yll + o = Bl Izl = [yl

and
min {|a| ||z + yl| + o = Bl [yl 8] |z + yl| + o = Bl |||}
1
< 5 l(ad + 16D llz +yll + | = Bl (lzll + [ly )]

1
=5 (el =18 |z +yll = la = Bl (
hence by (3.2) we deduce the desired result (3.1). I

[zll =1yl

The following particular cases are of interest.
Corollary 3. Under the assumptions of Proposition 1 and if |a| = |B| = 1, then
(3-3) llew + Byll = [l + ylll < o = Bl min {[lz]], ly[|},
for any x,y € X.
Corollary 4. Under the assumptions of Proposition 1 and if |z|| = ||y|| = 1, then

r+y
2

r+y
2

<o =Bl = llaf = 18] -

(3-4) lox + Byl = (|| + |5]) -

)

for any o, B € K.
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4. DUAL VERSIONS OF THE MALIGRANDA-MERCER INEQUALITY
In this section we provide two dual versions of the Maligranda-Mercer inequality:

2 = yll = [ll=ll = llylll ‘ T H lz = yll + [zl — NIyl
min {[||, [|y[[} el [yl max {|[z|, [[y[|}
namely, we obtain upper and lower bounds for the quantity
x Y

Iyl =l ’
in the case when the vectors x and y are nonzero in the normed linear space (X, ||-||) -

(4.1)

Theorem 2. For any x,y € X\ {0} we have

] llz] ~ fl
(4.2) 0< — -
win ([l [y}~ me (], JolT}
4x_y‘< lz— o iz~ sl
= Tl ™ el = mas (Tl oy min (T Tl

Proof. We use the inequality (3.1) for a =1/ ||y|| and 8 =1/ ||z]| .
Firstly, we observe that

(4.3) I:= % [(laf + 18D Iz + yll = la = Bl ([l + [ly]])]

1
+ 5 (el =18 |z + gl + la = 5l (] = llyI)]

(NN Ml =l
‘J(wwm)'*“ ﬂnn(”+”@

1 <||$|—||y||> [l [l =yl
+s T ) eyl + e (el =Myl
2‘ /vl [yl
1 (IIxI + ||y|>
=S| T ) Ul + il =zl = [lvll)
2\ lzlHlyl
L{ll[] = [lyll]
+ s eyl ] = (]
2z [lyll
and since
lz +yll + [zl = [yl = llz +yll + [zl =yl

we get from (4.3) that

Nzl + llyll | =l = llyll
yll +
Il lyll [l Iyl
1 el = [yl [lell +lyl =l = Nyl
2 Nzl lyll [yl

1

Moreover, it is clear that

1 = 11 1
1 [IIII +lyll =l IIyII] :max{’} _
2.0 [l llll [l Tyl ™yl ) min {{j2]], [ly[|}

[T 1
2 [ Tellwl ~ " Tl Tl Tl Tl § = maox el Tl

and
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and then, by (4.4) we deduce

le+oll izl =yl
min {[|z[, ly[[}  max {[|2[, [ly[}

(4.5) I=

Secondly, if we define J by

J = [(Ia\+|ﬁ|)||$+y||+|a—ﬁ|(llml\ +llylD]

l\DM—l

~3 = (1o = 181) 1+ yll — lex = 81 (]l — 1)

then for o =1/ ||y|| and 8 =1/ ||z|| we get in a similar manner the equality

[z +yl [zl — Nyl
(4.6) J = , .
max {||z|, [yll} ~ min {[lz]|, ly[I}

Finally, by making use of the representations (4.5) and (4.6) we deduce from the
inequality (3.1) that

(@7) o<zt fll=l = llyll
min {[lz]|, [lyl[}  max {[lz], [ly[}
H+ [z + yll [l — NIl
Tl Tl || = e (el [y min (T [T}

which is clearly equivalent with (4.2). I

The second results looks slightly different:

Theorem 3. For any two nonzero vectors x,y € X we have

z Y

Iyl Nl

Proof. For a = ﬁ and 3 = HTIH in the left side of (3.2), we have

@ (<2).

‘ lz+yll | o _ M=l + vl
min {2, [[y[[} | ~ max {|lz[|, [y][}

llll + llyll lll + Myl
max e +yll - Myl g e+ oyl = =l
{II | eyl || | el yll

Iz -+ yll Qe + lylD) (2l + lyl)?
[l lyll [l i

e+ yll Azl = llgl) - (el + iyl Q] = Iyll)’
[l Iyl ] lyll

1
)

2
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2
Lo fle+yll Azl +llylD 1 (el + lyl)

2 [l Iyl 2 el iyl

b el =Nl +oll 1 il = lylll Clell + liy )

2 ] Iyl 2 ] Iyl
1z +yl
= 5 [l + Tyl + il = [1yll]
2 |yl
1 fzf] + Iyl
-5 el + Tyl = Tl = [yl
2 [ iyl
1 1 1 1
ot sl mac{ b= el + i {2
]l [yl ]l Tyl
_ lz+yl =l + 1yl
min {[[z, [[yl[} ~ max {[|lz[, [ly[}
On utilising the first inequality in (3.2) we then conclude that
lz +yll ]| + lly z y
(4.9) . — <\o7 —walls .y € X\{0}.
min {[[z|, [lyll}  max{|lz[|, [y} ~ [yl [l

We also have
n{letol el

7 e | Il 7]
- alkdl

il
Wl TellTol Il Tl
2
1 eyl G+ ) Qe+ o)
2 B B
1zl (el = ) el ol Al — D)
2| el EIE
2
1 eyl Qe+ el 1 (el + i)
2 el Tl 2 Tl
1 el — il
S . ]| RIS
2 Tl ol
1 ety
_ L Uzl + Iyl + 1Nzl = ol
2 el Tyl
L] + ]
L Nl I g = el = il
2 Tl
1 1 1 1
=nmﬂmw{,}+wwwmm%,}
el Tol Tall” Tol
o+l lall + ol

min {[[z], [ly[|} ~ max {|l], [ly]}

On utilising the second inequality in (3.2) we deduce

o )

(4.10) ‘

o ‘ [z + ]| ]l + [yl
Iyl Ml — min{{lz]], lyll} — max{|jz]|, [y}

The desired result (4.8) is clearly equivalent with (4.9) and (4.10) and the proof is
complete. I
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5. BOUNDS FOR THE CEBYSEV FUNCTIONAL
For B8:=(04,...,0,) € K* and y :=(y1,...,yn) € X" we consider the un-
weighted Cebysev functional defined by

1« 1 — 1 «
Cn (8,Y) ::ﬁigﬁjyjfﬁzgﬂjgzlyj.
J= J= J=

This functional plays an important role in providing error bounds for approximating
%Z?:l B;y; by the simpler quantities %Z?:l B; and - > i1 Y4
We remark that, this functional has been considered previously by the author

and some bounds have been established. We recall here some simple results.

With the above assumptions for X, a and y, we have

YANTE, 6]
max Ay, 6]

AOéj|
JE{l,..,n

1 2 _
(07 —1) max

n—1 n—1
5 (1-1) % jaayl S 1Ayl Bl
i= i=

n—1 %
(Z ij||q> ;
j=1

(5.1) G (a,y)ll <

1

lnz—l = A |P
6 n Zl| Ck]|
j:

p>11+l=1 |2

where Az; = 211 — z; is the forward difference. Here the constants ﬁ,% and %

are best possible in the sense that they cannot be replaced by smaller quantities.

In [5] we also have established that

(5.2)  Cn (e, y)ll

max
i€{l,...,n—1}

) n o
det i n SN A
e < Zk,:l e E o1 Ok )‘ Zj_l || yjH

q % n—1 %
) S g
7j=1

det ( ; ‘ " >
22:1 Qg ZZ:1 A

(%

IN
Sw‘ —

1 1 _ 1.
forp>1,5+5—1,

n—1

2.

i=1

Ayl .
max A

det < ‘ n )‘
e ; .
Z;e=1 ok 2221 Qg je{l,..,n
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and

(5.3)  Cn (. y)ll

n 1
1 1
max ap—= >, agl- i]|A
ie{l,...,n—1}|" k2:31 S kZ::1 F 2; H yl”
1 1
n—1 4 n 1 7 a\ q n—1 » P
1 Doy k=g > o : ZZIIAyzH
< — X =1 k=1 k=1 =1
n
forp>1,%+%:1;
n—1 |y n 1 7
iy oe—7 ) a IIAyLII
i=1 k=1 k=1 {1» 0

Finally, we recall the following result from [4]:
If there exists the complex numbers a, A € C such that

Re[(A— ;) (a; —a@)] >0 foreach i€ {l,...,n}

or, equivalently,

Al 1
ai—a—; ’<2|A—a for each i€ {1,...,n},

then one has the inequality:

n

1 1 1o
(5.4) 1Ca BV < S1A=al- =3 i = =Dy
Jj=1

i=1

The constant % in the right hand side of the inequality (5.4) is best possible in the
sense that it cannot be replaced by a smaller quantity.

For many other results that hold for n-tuples 3 and y of real numbers we rec-
ommend the chapters devoted to Griiss and Cebysev inequalities from the books
[12] and [14].

In the following we provide other upper and lower bounds for |C,, (3,¥)]l-

Proposition 2. For any B:=(04,...,5,) € K" and y :=(y1,...,Yn) € X" we
have

(5.5) Cn (B,y)l

= ke{l g ’ﬁ ﬁk

1 n
—Ezzzlyz

min }{' max {‘5j—ﬁk’}}}l2;1 Hyj—%ZLlye

ke{l,...n} je{1,...,n}

win {3510, - ] Al - 3 S ]

..... R
where p > 1, 5+5_1’

IA
=
m
-~
—

min {35518~ 0} max {llys & S e}

ke{l,...,n €{1,...,n}
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Proof. We observe that

1 — 1 &
n(lﬁay):EZﬂj yj—EZye
j=1 (=1

Now, on applying the second inequality in Theorem 1 for oy = ; and z; =
yj— % >, ye we deduce the first part of (5.5). The second part is obvious by the
Holder inequality. R

The following results can be stated as well:

Proposition 3. For any B:=(04,...,5,) € K" and y :=(y1,...,Yn) € X" we

have
1 n 1 n 1 n
5.6 max By — — Be| || = i — 2| T — Bj—B T2
(5:6) | max § |5 n;e ngy 7@' el lyi ==
< Cn (B, )l
< min -3 S g —w + 2318 = Bl —
ke{l,...,n} nzzl nj:1 nj:l

for any z,w € X.

Proof. Follows from Theorem 1 on noticing that
1 I
Cn(ﬁvy):ﬁz ﬂj_ﬁZ/Bé (yj_t)
j=1 =1

forany t € X. I

Remark 3. As a particular case, one can state the following inequality

I 1 1
(657, max ﬂk—gg,@e ;;yj —;;m—ﬂklnwn

< [[Cn (B; ¥)l

n

. 1 1 ¢ RS
<, Hin ﬂkfﬁzm ﬁ;yj +E;|5j*5k|||yj”

{=1 =

that provides simpler upper and lower bounds for the norm of the unweighted Cebysev
functional C,, (B,y) .
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