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INNER PRODUCT INEQUALITIES FOR TWO EQUIVALENT
NORMS AND APPLICATIONS

S. S. DRAGOMIR

Abstract. Some inequalities for two inner products h�; �i1 and h�; �i2 which
generate the equivalent norms k�k1 and k�k2 with applications for invertible
bounded linear operators, positive de�nite self-adjoint operators, integral and
discrete inequalities are given.

1. Introduction

Let (H; h�; �i) be an inner product over the real or complex number �eld K. The
following inequality

(1.1) jhx; yij � kxk kyk ; x; y 2 H

is well known in the literature as Schwarz�s inequality. It plays an essential role in
obtaining various results in the Geometry of Inner Product Spaces as well as in its
applications in Operator Theory, Approximation Theory and other �elds.
Due to the fact that

(1.2) jRe hx; yij � kxk kyk ; x; y 2 H;

we can introduce the angle between the vectors x; y; denoted by �x;y; through the
formula

(1.3) cos�xy :=
Re hx; yi
kxk kyk ; x; y 6= 0:

As observed by Krein in 1969, [6] (see also [5, p. 56]), the following interesting
inequality holds:

�xz � �xy +�yz for any x; y; z 2 Hn f0g :

We now recall some inequalities in which the quantity jhx; yij = (kxk kyk) for di¤erent
vectors is involved:

3 �
����� hx; yi hy; zi hz; xikxk2 kyk2 kzk2

����� �
���� hx; yikxk kyk

����2 + ���� hy; zikyk kzk

����2 + ���� hz; xikzk kxk

����2(1.4)

� 1 + 2 �
����� hx; yi hy; zi hz; xikxk2 kyk2 kzk2

����� [2, p. 37]
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1 �
����� hx; yikxk kyk �

hx; zi hz; yi
kxk kyk kzk2

�����+
����� hx; zi hz; yikxk kyk kzk2

�����(1.5)

�
���� hx; yikxk kyk

���� [2, p. 38]

(1.6)

����� hx; yi hy; zikxk kzk kyk2

����� � 1

2
�
�
1 +

���� hx; zikxk kzk

����� (Buzano�s inequality, [2, p. 49])

(1.7)

����� hx; yi hy; zikxk kzk kyk2
� 1

1 + �
� hx; zikxk kzk

����� � 1p
2
p
1 + Re �

[2, p. 51]

where � 2 K and j�j = 1; Re � 6= �1; and����� hx; yi hy; zikxk kzk kyk2

����� �
����� hx; yi hy; zikxk kzk kyk2

� 1
2

hx; zi
kxk kzk

�����+ 12 �
���� hx; zikxk kzk

����(1.8)

� 1

2
�
�
1 +

���� hx; zikxk kzk

����� [2, p. 52],

where x; y; z 2 Hn f0g :
We notice that (1.8) is a re�nement of Buzano�s inequality (1.6).
For other inequalities of this type, see [1], [4], [7], [8] and [9].
Motivated by the above results, the main aim of the present paper is to compare

the quantities

jhx; yij1
kxk1 kyk1

�
Re hx; yi1
kxk1 kyk1

�
and

jhx; yij2
kxk2 kyk2

�
Re hx; yi2
kxk2 kyk2

�
in the case when the inner products h�; �i1 and h�; �i2 de�ned on H2 generate two
equivalent norms, i.e., we recall that k�k1 and k�k2 are equivalent if there exists the
constants m;M > 0 such that

(1.9) m kxk2 � kxk1 �M kxk2 ; for any x 2 H:

Applications for invertible bounded linear operators, positive de�nite self-adjoint
operators, integral and discrete inequalities are also given.

2. The Results

The following result may be stated.

Theorem 1. Assume that the inner products h�; �ii ; i 2 f1; 2g on the real or com-
plex linear space H generate the norms k�ki ; i 2 f1; 2g which satisfy the following
condition:

(2.1) m kxk2 � kxk1 �M kxk2 for any x 2 H;

where 0 < m �M <1 are given constants.
If x; y 2 Hn f0g satisfy the condition Re hx; yi2 � 0; then

(2.2)
m2

M2
� 1 + Re hx; yi1

kxk1 kyk1
� Re hx; yi2
kxk2 kyk2

� Re hx; yi1
kxk1 kyk1

+
M2

m2
� 1:
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If Re hx; yi2 < 0; then

(2.3) 1� m2

M2
+
Re hx; yi1
kxk1 kyk1

� Re hx; yi2
kxk2 kyk2

� Re hx; yi1
kxk1 kyk1

+ 1� M
2

m2
:

Proof. For any inner product h�; �i on H; we have

(2.4) 1� Re hx; yikxk kyk =
1

2





 x

kxk �
y

kyk





2 ; x; y 2 Hn f0g :

Utilising the assumption (2.1), we have successively:

1� Re hx; yi1
kxk1 kyk1

=
1

2





 x

kxk1
� y

kyk1





2
1

� M2

2





 x

kxk1
� y

kyk1






2

(2.5)

=
M2

2

"
kxk22
kxk21

+
kyk22
kyk21

� 2Re hx; yi2kxk1 kyk1

#

� M2

2

�
1

m2
+

1

m2
� 2Re hx; yi2kxk1 kyk1

�
=M2

�
1

m2
� Re hx; yi2
kxk1 kyk1

�
=: I:

Now, if Re hx; yi2 � 0; then

�Re hx; yi2kxk1 kyk1
� � Re hx; yi2

M2 kxk2 kyk2
which implies that

(2.6) I �M2

�
1

m2
� Re hx; yi2
M2 kxk2 kyk2

�
=
M2

m2
� Re hx; yi2
kxk2 kyk2

:

Utilising (2.5) and (2.6) we deduce

1� Re hx; yi1
kxk1 kyk1

� M2

m2
� Re hx; yi2
kxk2 kyk2

;

which produces the second inequality in (2.2).
By (2.4) and (2.1) we also have

1� Re hx; yi1
kxk1 kyk1

� m2

2





 x

kxk1
� y

kyk1





2
2

(2.7)

=
m2

2

"
kxk22
kxk21

+
kyk22
kyk21

� 2Re hx; yi2kxk1 kyk1

#

� m2

2

�
1

M2
+

1

M2
� 2Re hx; yi2kxk1 kyk1

�
= m2

�
1

M2
� Re hx; yi2
kxk1 kyk1

�
=: J:

Due to the fact that Re hx; yi2 � 0; we have

�Re hx; yi2kxk1 kyk1
� � Re hx; yi2

m2 kxk2 kyk2
;
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which implies that

(2.8) J � m2

�
1

M2
� Re hx; yi2
m2 kxk2 kyk2

�
=
m2

M2
� Re hx; yi2
kxk2 kyk2

:

By making use of (2.7) and (2.8) we get

1� Re hx; yi1
kxk1 kyk1

� m2

M2
� Re hx; yi2
kxk2 kyk2

;

which is clearly equivalent to the �rst inequality in (2.2).
Finally, if Re hx; yi2 < 0; then Re hx;�yi2 > 0 and writing the inequality (2.2)

for �y instead of y; we easily deduce (2.3). �

Corollary 1. Let A 2 B (H) be an invertible operator on the Hilbert space (H; h�; �i) :
If x; y 2 Hn f0g are such that Re hx; yi � 0; then:

1� kAk2


A�1

2 + Re hx; yikxk kyk �

Re hAx;Ayi
kAxk kAyk(2.9)

� Re hx; yi
kxk kyk + 1�

1

kAk2 kA�1k2
:

If x; y 2 Hn f0g and Re hx; yi < 0; then

kAk2


A�1

2 � 1 + Re hx; yikxk kyk �

Re hAx;Ayi
kAxk kAyk(2.10)

� Re hx; yi
kxk kyk +

1

kAk2 kA�1k2
� 1:

Proof. Since A 2 B (H) is invertible, then
1

kA�1k � kxk � kAxk � kAk kxk ; for any x 2 H:

Applying Theorem 1 for hx; yi1 := hAx;Ayi ; hx; yi2 := hx; yi and m = 1
kA�1k ;

M = kAk and doing the necessary calculations, we deduce the desired result. �

Corollary 2. Let A 2 B (H) be a self-adjoint operator on the Hilbert space (H; h�; �i)
which satis�es the condition

(2.11) 
I � A � �I;
in the operator order of B (H) ; where 0 < 
 � � <1 are given.
If x; y 2 Hn f0g are such that Re hx; yi � 0; then

(2.12) 1� �


+
Re hx; yi
kxk kyk �

Re hAx; yi
[hAx; xi hAy; yi]

1
2

� Re hx; yi
kxk kyk + 1�




�
:

If x; y 2 Hn f0g are such that Re hx; yi < 0; then

(2.13)
�



� 1 + Re hx; yikxk kyk �

Re hAx; yi
[hAx; xi hAy; yi]

1
2

� Re hx; yi
kxk kyk +




�
� 1:

Proof. From (2.11) we have


 hx; xi � hAx; xi � � hx; xi ; x 2 H;

which implies that
p

 kxk � [hAx; xi]1=2 �

p
� kxk ; x 2 H:
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Now, if we apply Theorem 1 for hx; yi1 := hAx; yi ; hx; yi2 := hx; yi ; x; y 2 H
and m =

p

; M =

p
�; then we obtain the desired result. �

The following lemma is of interest in itself.

Lemma 1. Assume that the inner products h�; �ii ; i 2 f1; 2g de�ned on H satisfy
the condition (2.1). Then for any x; y 2 H we have

m2 [kxk2 kyk2 � jhx; yij2] � kxk1 kyk1 � jhx; yij1(2.14)

�M2 [kxk2 kyk2 � jhx; yij2]
and

m2 [kxk2 kyk2 � Re hx; yi2] � kxk1 kyk1 � Re hx; yi1(2.15)

�M2 [kxk2 kyk2 � Re hx; yi2] ;
respectively.

Proof. We use the following result obtained by Dragomir and Mond in [3] (see also
[2, p. 9]):
If [�; �]1 ; [�; �]2 are two hermitian forms on H with [x; x]1=21 � [x; x]

1=2
2 for any

x 2 H; then
(2.16) [x; x]

1=2
1 [y; y]

1=2
1 � j[x; y]1j � [x; x]

1=2
2 [y; y]

1=2
2 � j[x; y]2j

and

(2.17) [x; x]
1=2
1 [y; y]

1=2
1 � Re [x; y]1 � [x; x]

1=2
2 [y; y]

1=2
2 � Re [x; y]2

for any x; y 2 H:
Now, if we apply (2.16) and (2.17) �rstly for [�; �]2 := h�; �i1 ; [�; �]1 = m2 h�; �i2

and then for [�; �]2 =M2 h�; �i2 ; [�; �]1 := h�; �i1 ; we deduce the desired results (2.14)
and (2.15). �
The following result may be stated as well.

Theorem 2. Assume that the inner products h�; �ii ; i 2 f1; 2g satisfy the condition
(2.1). Then for any x; y 2 Hn f0g ; we have the inequalities:

(2.18)
m2

M2
� 1 + jhx; yi1j

kxk1 kyk1
� jhx; yi2j
kxk2 kyk2

� jhx; yi1j
kxk1 kyk1

+
M2

m2
� 1:

Proof. Dividing the inequality (2.14) by kxk1 kyk1 6= 0, we obtain

m2

�
kxk2 kyk2
kxk1 kyk1

� jhx; yi2j
kxk1 kyk1

�
� 1� jhx; yi1j

kxk1 kyk1
(2.19)

�M2

�
kxk2 kyk2
kxk1 kyk1

� jhx; yi2j
kxk1 kyk1

�
;

for any x; y 2 Hn f0g :
Observe, by (2.1) that:

kxk2 kyk2
kxk1 kyk1

� 1

m2
and � jhx; yi2j

kxk1 kyk1
� � jhx; yi2j

M2 kxk2 kyk2
:

Utilising the second inequality in (2.19), we deduce

1� jhx; yi1j
kxk1 kyk1

� M2

m2
� jhx; yi2j
kxk2 kyk2

;
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which is equivalent with the second inequality in (2.18).
In addition, we have

1

M2
� kxk2 kyk2
kxk1 kyk1

and � jhx; yi2j
m2 kxk2 kyk2

� � jhx; yi1j
kxk1 kyk1

which together with the �rst inequality in (2.19) produces the �rst part of (2.18).
�

Remark 1. On utilising the inequality (2.15) and an argument similar to the one
in the proof of Theorem 2, we can reobtain the inequalities (2.2) and (2.3) from
Theorem 1. The details are omitted.

Corollary 3. Let A 2 B (H) be an invertible operator on the Hilbert space (H; h�; �i) :
Then

1� kAk2


A�1

2 + jhx; yij

kxk kyk �
jhAx;Ayij
kAxk kAyk(2.20)

� jhx; yij
kxk kyk + 1�

1

kAk2 kA�1k2

for any x; y 2 Hn f0g :

The proof follows from Theorem 2 on choosing hx; yi1 := hAx;Ayi ; hx; yi2 :=
hx; yi ; x; y 2 H and m = 1

kA�1k ; M = kAk :

Corollary 4. Let A 2 B (H) be a self-adjoint operator satisfying the condition
(2.11). Then

(2.21) 1� �


+
jhx; yij
kxk kyk �

jhAx; yij
[hAx; xi hAy; yi]

1
2

� jhx; yij
kxk kyk + 1�




�
;

for any x; y 2 Hn f0g :

The proof follows by Theorem 2 on choosing hx; yi1 := hAx; yi ; hx; yi2 := hx; yi ;
x; y 2 H and m =

p

; M =

p
�:

3. Applications for Integral Inequalities

Assume that (K; h�; �i) is a Hilbert space over the real or complex number �eld
K. If � : [a; b] � R![0;1) is a measurable function then we may consider the
space L2� ([a; b] ;K) of all functions f : [a; b]! K that are strongly measurable andR b
a
� (t) kf (t)k2 dt <1: It is well known that L2� ([a; b] ;K) endowed with the inner

product h�; �i� de�ned by

hf; gi� :=
Z b

a

� (t) hf (t) ; g (t)i dt

and generating the norm

kfk� :=
 Z b

a

� (t) kf (t)k2 dt
! 1

2

is a Hilbert space over K.
The following proposition can be stated.
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Proposition 1. Let �1; �2 : [a; b] ! [0;1) be two measurable functions with the
property that there exists 0 < � � � <1 so that

(3.1) � � �1 (t)

�2 (t)
� � for a.e. t 2 [a; b] :

Then for any f; g 2 L2�2 ([a; b] ;K) we have the inequalities:

�

�
� 1 +

���R ba �1 (t) hf (t) ; g (t)i dt����R b
a
�1 (t) kf (t)k

2
dt
� 1
2
�R b

a
�2 (t) kg (t)k

2
dt
� 1
2

(3.2)

�

���R ba �2 (t) hf (t) ; g (t)i dt����R b
a
�2 (t) kf (t)k

2
dt
� 1
2
�R b

a
�2 (t) kg (t)k

2
dt
� 1
2

�

���R ba �1 (t) hf (t) ; g (t)i dt����R b
a
�1 (t) kf (t)k

2
dt
� 1
2
�R b

a
�2 (t) kg (t)k

2
dt
� 1
2

+
�

�
� 1:

Proof. From (3.1) we have

p
�

 Z b

a

�2 (t) kf (t)k
2
dt

! 1
2

�
 Z b

a

�1 (t) kf (t)k
2
dt

! 1
2

�
p
�

 Z b

a

�2 (t) kf (t)k
2
dt

! 1
2

:

Applying Theorem 2 for h�; �ii = h�; �i�i ; i 2 f1; 2g and H = L2�1 ([a; b] ;K) =

L2�2 ([a; b] ;K) ; we deduce the desired result. �

Remark 2. A similar result can be stated if one uses Theorem 1. The details are
omitted.

4. Applications for Discrete Inequalities

Assume that (K; h�; �i) is a Hilbert space over the real or complex number �eld
and p = (pi)i2N with pi � 0; i 2 N and

P1
i=1 pi <1: De�ne

`2p (K) :=

(
x := (xi)i2N

�� xi 2 K; i 2 N and
1X
i=1

pi kxik2 <1
)
:

It is well known that `2p (K) endowed with the inner product

hx;yip :=
nX
i=1

pi hxi; yii

and generating the norm

kxkp :=
 1X
i=1

pi kxik2
! 1

2

is a Hilbert space over K.
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Proposition 2. Assume that p = (pi)i2N ; q = (qi)i2N are such that pi; qi � 0;

i 2 N,
P1

i=1 pi;
P1

i=1 qi <1 and

(4.1) nqi � pi � Nqi for any i 2 N;
where 0 < n � N <1: Then we have the inequality

n

N
� 1 + j

P1
i=1 pi hxi; yiij�P1

i=1 pi kxik
2
� 1
2
�P1

i=1 pi kyik
2
� 1
2

(4.2)

� j
P1

i=1 qi hxi; yiij�P1
i=1 qi kxik

2
� 1
2
�P1

i=1 qi kyik
2
� 1
2

� j
P1

i=1 pi hxi; yiij�P1
i=1 pi kxik

2
� 1
2
�P1

i=1 pi kyik
2
� 1
2

+
N

n
� 1:

A similar result can be stated if one uses Theorem 1. However the details are
omitted.
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