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Abstract

Let (X,A, µ) and (Y,B, λ) be two probability measure spaces, I an interval of the real line,
f ∈ L1(µ), f(x) ∈ I for each x ∈ X, and ϕ a real-valued convex function on I. First we show
that, if ω0 and ω1 are two appropriate weight functions on X × Y , then

ϕ

(∫
X

fdµ

)
≤

∫
Y

A (ϕ; F0(y), F1(y)) dλ(y) ≤
∫

X

(ϕ ◦ f)dµ,

where A denotes the arithmetic mean of ϕ on the closed interval with end points F0(y) and
F1(y), and for λ-almost all y ∈ Y ’s

Fk(y) =

∫
X

f(x)ωk(x, y)dµ(x) (k = 0, 1).

Then using this refinement, we give some nice applications in refining some important in-
equalities between means and the information inequality.

Key words and phrases: Jensen’s inequality, Product measure, Weight function, Mean, Information
Inequality.
2000 Mathematics Subject Classifications. 26D15, 26A51, 28A35.

1. INTRODUCTION

Throughout this paper, we assume that (X,A, µ) and (Y,B, λ) are two probability measure
spaces, I is an interval of the real line, f ∈ L1(µ), f(x) ∈ I for each x ∈ X, and ϕ a real-valued
convex function on I. The classical integral form of Jensen’s inequality is as follows [2]:

ϕ

(∫
X

fdµ

)
≤
∫

X

(ϕ ◦ f)dµ. (1)
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We mean a weight function on X × Y , an A × B-measurable mapping ω : X × Y −→ [0,+∞); see
e.g. [8], such that ∫

X

ω(x, y)dµ(x) = 1 for each y ∈ Y ,

and ∫
Y

ω(x, y)dλ(y) = 1 for each x ∈ X.

For example, if X and Y are the unit interval [0, 1] with Lebesgue measure, then

ω(x, y) = 1 + (sin 2πx)(sin 2πy)

is a weight function on [0, 1]× [0, 1].
In [4] the following refinement of Jensen’s inequality (1) is achieved.

Theorem A.
With the above assumptions, if ω is a weight function on X × Y , then∫

Y

ϕ

(∫
X

f(x)ω(x, y)dµ(x)
)

dλ(y)

is meaningful, and we have

ϕ

(∫
X

fdµ

)
≤
∫

Y

ϕ

(∫
X

f(x)ω(x, y)dµ(x)
)

dλ(y) ≤
∫

X

(ϕ ◦ f)dµ. (2)

The following important inequality is a consequence of Theorem A:

Corollary B.
If ϕ is a real-valued convex function on a closed interval [a, b], then we have Hermite-Hadamard
inequality:

ϕ

(
a + b

2

)
≤ 1

b− a

∫ b

a

ϕ(t)dt ≤ ϕ(a) + ϕ(b)
2

. (3)

2. MAIN RESULTS

In this section, we extend Theorem A for two weight functions. According to the proof of
Theorem A, for each weight function ω, the integral

∫
X

f(x)ω(x, y)dµ(x) is existed and finite for
λ-almost all y ∈ Y ’s. Fix an α ∈ I. Let ω0 and ω1 be two weight functions on X × Y . There exists
a measurable set E with λ(E) = 0 such that for each y ∈ Y \ E the integrals

Fk(y) :=
∫

X

f(x)ωk(x, y)dµ(x) (k = 0, 1) (4)

are existed and finite. We set on E, Fk(y) = α (k = 0, 1). Clearly, for each 0 ≤ t ≤ 1,

ωt(x, y) := (1− t)ω0(x, y) + tω1(x, y)

is a weight function on X × Y , and the integral∫
X

f(x)ωt(x, y)dµ(x) = (1− t)
∫

X

f(x)ω0(x, y)dµ(x) + t

∫
X

f(x)ω1(x, y)dµ(x)
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is existed and finite for each y ∈ Y \ E. Thus, if for each 0 ≤ t ≤ 1, we set

Ft(y) :=
{ ∫

X
f(x)ωt(x, y)dµ(x) ; y ∈ Y \ E,

α ; y ∈ E.
(5)

the function Ft(y) = (1− t)F0(y) + tF1(y) ∈ I belongs to L1(λ); [4].
First we prove the following lemma.

Lemma 2.1
Let η be an arbitrary positive measure on X and h = u− v : X → (−∞,+∞], where 0 ≤ u ≤ +∞
and 0 ≤ v < +∞ are measurable functions on X. Now, if

∫
X

vdη < ∞, then
∫

X
hdη is meaningful

and ∫
X

hdη =
∫

X

udη −
∫

X

vdη. (6)

Proof
Since h− ≤ v, we have

∫
X

h−dη ≤
∫

X
vdη < ∞, and so

∫
X

hdη is meaningful. Now, since h+ + v =
h− + u, we have

∫
X

h+dη +
∫

X
vdη =

∫
X

h−dη +
∫

X
udη, and so∫

X

hdη =
∫

X

h+dη −
∫

X

h−dη =
∫

X

udη −
∫

X

vdη.

�
Theorem 2.2
With the above assumption,

∫
Y

A(ϕ;F0(y), F1(y))dλ(y) is meaningful and

ϕ

(∫
X

fdµ

)
≤
∫

Y

A (ϕ;F0(y), F1(y)) dλ(y) ≤
∫

X

(ϕ ◦ f)dµ, (7)

where the arithmetic mean A for an arbitrary integrable function g over a closed interval with end
points a and b, is defined by

A(g; a, b) =
1

b− a

∫ b

a

g(x)dx. (8)

Proof
By Theorem A, for each 0 ≤ t ≤ 1,

∫
Y

ϕ−(Ft(y))dλ(y) < ∞ and

ϕ

(∫
X

fdµ

)
≤
∫

Y

ϕ(Ft(y))dλ(y) ≤
∫

X

(ϕ ◦ f)dµ.

So,

ϕ

(∫
X

fdµ

)
+

∫
Y

ϕ− (Ft(y)) dλ(y) ≤
∫

Y

ϕ+ (Ft(y)) dλ(y) (9)

≤
∫

X

(ϕ ◦ f)dµ +
∫

Y

ϕ− (Ft(y)) dλ(y).

On the other hand, the function Y × [0, 1] → I with

(y, t) → ϕ(Ft(y)) = ϕ((1− t)F0(y) + tF1(y))

is product-measurable. So, integrating each side of (9) with respect to t on [0, 1], we have

ϕ

(∫
X

fdµ

)
+

∫ 1

0

∫
Y

ϕ− (Ft(y)) dλ(y)dt ≤
∫ 1

0

∫
Y

ϕ+ (Ft(y)) dλ(y)dt

≤
∫

X

(ϕ ◦ f)dµ +
∫ 1

0

∫
Y

ϕ− (Ft(y)) dλ(y)dt. (10)
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Fix an s0 ∈ int I. There is a real number m, such that

ϕ(s) ≥ m(s− s0) + ϕ(s0) (s ∈ I).

Thus,
ϕ−(s) ≤ |m(s− s0) + ϕ(s0)| ≤ |m||s|+ |m||s0|+ |ϕ(s0)| (s ∈ I).

In particular, for each t and y, letting s = Ft(y), we have

ϕ−(Ft(y)) ≤ |m||Ft(y)|+ |m||s0|+ |ϕ(s0)|
≤ |m| ((1− t)|F0(y)|+ t|F1(y)|) + |m||s0|+ |ϕ(s0)|.

So for each y ∈ Y ,∫ 1

0

ϕ−(Ft(y))dt ≤ |m| |F0(y)|+ |F1(y)|
2

+ |m||s0|+ |ϕ(s0)| < ∞ (0 ≤ t ≤ 1),

and ∫
Y

∫ 1

0

ϕ−(Ft(y))dtdλ(y) ≤ |m|||f ||1 + |m||s0|+ |ϕ(s0)| < ∞,

because, ∫
Y

|Fk(y)|dλ(y) =
∫

Y

∣∣∣∣∫
X

f(x)ωk(x, y)dµ(x)
∣∣∣∣ dλ(y)

≤
∫

Y

∫
X

|f(x)|ωk(x, y)dµ(x)dλ(y) =
∫

X

|f(x)|dµ(x)
∫

Y

ωk(x, y)dλ(y)

=
∫

X

|f(x)|dµ(x) = ||f ||1 (k = 0, 1).

Therefore, applying Lemma 2.1 for the function Y → (−∞,+∞] with

y →
∫ 1

0

ϕ(Ft(y))dt =
∫ 1

0

ϕ+(Ft(y))dt−
∫ 1

0

ϕ−(Ft(y))dt,

the integral
∫

Y

∫ 1

0
ϕ(Ft(y))dtdλ(y) is meaningful and∫

Y

∫ 1

0

ϕ(Ft(y))dtdλ(y) =
∫

Y

∫ 1

0

ϕ+(Ft(y))dtdλ(y)−
∫

Y

∫ 1

0

ϕ−(Ft(y))dtdλ(y).

Now, changing the order of integrations, we conclude from (10) that

ϕ

(∫
X

fdµ

)
≤
∫

Y

∫ 1

0

ϕ(Ft(y))dtdλ(y) ≤
∫

X

(ϕ ◦ f)dµ.

But, ∫ 1

0

ϕ(Ft(y))dt =
∫ 1

0

ϕ((1− t)F0(y) + tF1(y))dt,

which with the change of the variable u = (1− t)F0(y) + tF1(y), we have∫ 1

0

ϕ(Ft(y))dt =
1

F1(y)− F0(y)

∫ F1(y)

F0(y)

ϕ(u)du = A(ϕ; F0(y), F1(y)).
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This completes the proof. �

Remark 2.3
In the discrete case, when m and n are two positive integers, and xi ∈ I (1 ≤ i ≤ m), consider-
ing X = {1, · · · ,m}, Y = {1, · · · , n}, A = 2X , B = 2Y , µ{i} = µi, λ{j} = λj , f(i) = xi (i =
1, · · · ,m; j = 1, · · · , n), we have [5]:

ϕ

(
m∑

i=1

µixi

)
≤

n∑
j=1

λjA(ϕ;F0(j), F1(j)) ≤
m∑

i=1

µiϕ(xi), (11)

where

Fk(j) =
m∑

i=1

ωk(i, j)µixi (k = 0, 1; 1 ≤ j ≤ n).

In the following sections, we give some applications of (7) in refining of some important inequalities
between means and the information inequality. Considering (11), these are extensions of the results
obtained in [5], [6] and [7] previously.

3. APPLICATIONS TO INEQUALITIES BETWEEN MEANS

In this section, we give some refinements of several important inequalities between means, such
as, AGM, Ky Fan and Sandor inequalities.

Theorem 3.1 (First refinement of AGM inequality)
With the above assumptions, if f : X → (0,+∞) belongs to L1(µ), then

exp
(∫

X

ln fdµ

)
≤ exp

∫
Y

ln I(F0(y), F1(y))dλ(y) ≤
∫

X

fdµ, (12)

where the identric mean I of each a, b > 0, is defined by

I(a, b) =

 1
e

(
bb

aa

) 1
b−a

; a 6= b,

a ; a = b.
(13)

This is a refinement of AGM inequality exp
(∫

X
ln fdµ

)
≤
∫

X
fdµ; see e.g. [8].

Proof
The function ϕ(t) = − ln t is convex on (0,+∞), and we have

A(ln; a, b) = ln I(a, b) (a, b > 0). (14)

Now, the assertion follows from (7). �

Theorem 3.2 (Second refinement of AGM inequality)
With the above assumptions, if g : X → (0,∞) and ln g ∈ L1(µ), then

exp
(∫

X

ln gdµ

)
≤
∫

Y

L (exp(F0(y)), exp(F1(y))) dλ(y) ≤
∫

X

gdµ, (15)

where for λ-almost all y ∈ Y ’s

Fk(y) =
∫

X

ln g(x)ωk(x, y)dµ(x) (k = 0, 1),
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and the Logarithmic mean L of each a, b > 0, is defined by

L(a, b) =
{

b−a
ln b−ln a ; a 6= b,

a a = b.
(16)

Proof
The function ϕ(t) = exp(t) is convex on R, and we have

A(exp; a, b) = L(ea, eb) (a, b ∈ R). (17)

Now, the assertion follows from (7) by taking f = ln g. �

Theorem 3.3 (A refinement of Ky Fan’s inequality)
With the above assumptions, if f : X → (0, 1

2 ] belongs to L1(µ), then

1−
∫

X
fdµ∫

X
fdµ

≤ exp
∫

Y

ln
I(1− F0(y), 1− F1(y))

I(F0(y), F1(y))
dλ(y) ≤ exp

∫
X

ln
1− f

f
dµ, (18)

which is a refinement of Ky Fan’s inequality 1−
∫

X
fdµ∫

X
fdµ

≤ exp
∫

X
ln 1−f

f dµ; [1].

Proof
The function ϕ : (0, 1

2 ] → R with ϕ(t) = ln 1−t
t is convex on I = (0, 1

2 ], and we have

A(ϕ; a, b) = ln
I(1− a, 1− b)

I(a, b)
(0 < a, b < 1) .

Now, the assertion follows from (7). �

Theorem 3.4 (A refinement of Sandor’s inequality)
With the above assumptions, if f : X → (0, 1

2 ] belong to L1(µ), then

1∫
X

fdµ
− 1

1−
∫

X
fdµ

≤
∫

Y

(
1

L(F0(y), F1(y))
− 1

L(1− F0(y), 1− F1(y))

)
dλ(y)

≤
∫

X

1
f

dµ−
∫

X

1
1− f

dµ, (19)

which is a refinement of Sandor’s inequality 1∫
X

fdµ
− 1

1−
∫

X
fdµ

≤
∫

X
1
f dµ −

∫
X

1
1−f dµ; see [9] and

also [1].

Proof
The function ϕ : (0, 1

2 ] → R with ϕ(t) = 1
t −

1
1−t is convex on (0, 1

2 ], and

A(ϕ; a, b) =
1

L(a, b)
− 1

L(1− a, 1− b)
, (0 < a, b < 1) .

Now, the assertion follows from (7). �

4. APPLICATIONS TO INFORMATION THEORY

Let (X,A, η) be a positive measure space and p, q : X → (0,+∞) be A-measurable and∫
X

pdη =
∫

X

qdη = 1.
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The information inequality [3] states that

D(p||q) :=
∫

X

p ln
p

q
dη ≥ 0. (20)

In this section, we give some refinements of the Information Inequality (20).

Theorem 4.1
With the above assumptions, we have

D(p||q) ≥ −
∫

Y

ln I (F0(y), F1(y)) dλ(y) ≥ 0, (21)

where I is the identric mean (13), and for λ-almost all y ∈ Y ’s,

Fk(y) =
∫

X

q(x)ωk(x, y)dη(x) (k = 0, 1).

Proof
The function ϕ(t) = − ln t is convex on (0,+∞), and so the assertion follows from (7) by considering
dµ = pdη, f = q

p and (14). �

Theorem 4.2
With the above assumptions, we have

D(p||q) ≥
∫

Y

ln
√

(I(F0(y))2, (F1(y))2)
F0(y)+F1(y)

2 dλ(y) ≥ 0 (22)

where I is the identric mean (13), and for λ-almost all y ∈ Y ’s,

Fk(y) =
∫

X

p(x)ωk(x, y)dη(x) (k = 0, 1).

Proof
The function ϕ(t) = t ln t is convex on (0,+∞) and it is easily seen that

A(ϕ; a, b) =
a + b

4
ln I(a2, b2) (a, b > 0).

Now, the assertion follows from (7) by considering dµ = qdη and f = p
q . �

Theorem 4.3
With the above assumptions, if p ln p

q ∈ L1(η), then

D(p||q) ≥ − ln
∫

Y

L
(
eF0(y), eF1(y)

)
dλ(y) ≥ 0,

where L is the logarithmic mean (16), and for λ-almost all y ∈ Y ’s

Fk(y) =
∫

X

ln
q(x)
p(x)

ωk(x, y)p(x)dη(x) (k = 0, 1).

Proof
The function ϕ(t) = exp(t) is convex on R. Now, the assertion follows from (7) by taking dµ = pdη,
f = ln q

p , and considering (17). �
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