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BOUNDS FOR THE RATIO OF TWO GAMMA FUNCTIONS

FENG QI

Abstract. By looking back at the long history of bounding the ratio
Γ(x+a)
Γ(x+b)

for x > −min{a, b} and a, b ∈ R, various origins of this topic are clarified,
several developed courses are followed, different results are compared, useful
methods are summarized, new advances are presented, some related problems
are pointed out, and related references are collected.
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5.1. An extension and the sharpness 41
5.2. Alzer’s refinement and sharpness 41
5.3. ABRVV’s monotonic and log-convex functions 41
5.4. Alzer’s necessary and sufficient conditions 42
5.5. Chen-Qi’s necessary and sufficient conditions 42
5.6. Guo-Qi-Srivastava’s double inequality 42
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1. Basic definitions and notations

In order to fluently and smoothly understand what follow in this paper, some
basic concepts and notations need to be stated at first in this section.

1.1. The gamma function and related formulas.

1.1.1. The gamma function. It is well-known that the classical Euler gamma func-
tion can be defined for x > 0 by

Γ(x) =
∫ ∞

0

tx−1e−t d t, (1.1)

the derivative of its logarithm ln Γ(x) is called the psi or digamma function and
denoted by ψ(x), and ψ(k)(x) for k ∈ N are called the polygamma functions.

It is general knowledge that

Γ(x + 1) = xΓ(x), x > 0. (1.2)

Taking the logarithm and differentiating on both sides of (1.2) give

ψ(x + 1) = ψ(x) +
1
x

, x > 0. (1.3)

1.1.2. Stirling’s formula. For x > 0, there exists 0 < θ < 1 such that

Γ(x + 1) =
√

2π xx+1/2 exp
(
−x +

θ

12x

)
. (1.4)

See [1, p. 257, 6.1.38].

1.1.3. Wallis cosine formula. Wallis cosine or sine formula reads [158] that
∫ π/2

0

cosn xdx =
∫ π/2

0

sinn xdx

=
√

π Γ((n + 1)/2)
nΓ(n/2)

=





π

2
· (n− 1)!!

n!!
for n even,

(n− 1)!!
n!!

for n odd,

(1.5)

where n!! denotes a double factorial. Therefore,

(2k)!!
(2k − 1)!!

=
√

π Γ(k + 1)
Γ(k + 1/2)

, k ∈ N. (1.6)

1.1.4. Duplication formula. For x > 0,

2x−1Γ
(

x

2

)
Γ
(

x + 1
2

)
=
√

π Γ(x). (1.7)

1.1.5. Binet’s first formula. Binet’s first formula for ln Γ(x) is given by

ln Γ(x) =
(

x− 1
2

)
ln x− x + ln

√
2π + θ(x) (1.8)

for x > 0, where

θ(x) =
∫ ∞

0

(
1

et − 1
− 1

t
+

1
2

)
e−xt

t
d t (1.9)

for x > 0 is called the remainder of Binet’s first formula for the logarithm of the
gamma function. See [78, p. 11].
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1.1.6. Wendel’s limit. For real numbers a and b,

lim
x→∞

[
xb−a Γ(x + a)

Γ(x + b)

]
= 1. (1.10)

See [1, p. 257, 6.1.46].
If z 6= −a,−a− 1, . . . ; and z 6= −b,−b− 1, . . . , then

zb−a Γ(z + a)
Γ(z + b)

∼ 1 +
(a− b)(a + b− 1)

2z

+
(a− b)(a− b− 1)

[
3(a + b− 1)2 − a + b− 1

]

24z2
+ · · · (1.11)

as z →∞ along any curve joining z = 0 and z = ∞. See [94, pp. 118–119].

1.1.7. Legendre’s formula. For x > 0,

ψ(x) = −γ +
∫ 1

0

tx−1 − 1
t− 1

d t. (1.12)

1.1.8. Gauss’ Theorem. For Re(c− a− b) > 0,
∞∑

n=0

(a)n(b)n

n!(c)n
= 2F1(a, b; c; 1) =

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (1.13)

See [13, p. 66, Theorem 2.2].

1.2. The q-gamma function and related formulas. It is well-known (see [13,
pp. 493–496] and [46]) that the q-gamma function, the q-analogue of the gamma
function Γ(x), is defined for x > 0 by

Γq(x) = (1− q)1−x
∞∏

i=0

1− qi+1

1− qi+x
(1.14)

for 0 < q < 1 and

Γq(x) = (q − 1)1−xq(
x
2)

∞∏

i=0

1− q−(i+1)

1− q−(i+x)
(1.15)

for q > 1. It has the following basic properties

lim
q→1+

Γq(z) = lim
q→1−

Γq(z) = Γ(z) and Γq(x) = q(
x−1
2 )Γ1/q(x). (1.16)

The q-psi function ψq(x), the q-analogue of the psi function ψ(x), for 0 < q < 1
and x > 0 may be defined by

ψq(x) =
Γ′q(x)
Γq(x)

= − ln(1− q) + ln q

∞∑

k=0

qk+x

1− qk+x

= − ln(1− q) + ln q

∞∑

k=1

qkx

1− qk
, (1.17)

and ψ
(k)
q (x), the q-analogues of the polygamma functions ψ(k)(x), for k ∈ N are

called the q-polygamma functions. The following Stieltjes integral representation
for ψq(x) is given in [61]:

ψq(x) = − ln(1− q)−
∫ ∞

0

e−xt

1− e−t
dγq(t) (1.18)
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for 0 < q < 1 and x > 0, where

γq(t) = − ln q

∞∑

k=1

δ(t + k ln q). (1.19)

1.3. Logarithmic convex functions.

Definition 1.1 ([96, 110]). For k ∈ N, a positive and k-time differentiable function
f(x) is said to be k-log-convex on an interval I if

[ln f(x)](k) ≥ 0 (1.20)

on I. If the inequality (1.20) is reversed, then f is said to be k-log-concave on I.

Remark 1.3.1. It is clear that a 1-log-convex function (or 1-log-concave function,
respectively) is equivalent to a positive and increasing (or decreasing, respectively)
function and that a 2-log-convex function is positive and convex. Conversely, a
convex function may not be 2-log-convex. See [96, p. 7, Remark. 1.16].

1.4. Completely monotonic functions.

Definition 1.2 ([90, Chapter XIII] and [161, Chapter IV]). A function f is said
to be completely monotonic on an interval I if f has derivatives of all orders on I
and

(−1)nf (n)(x) ≥ 0 (1.21)
for x ∈ I and n ≥ 0.

Remark 1.4.1. The famous Bernstein-Widder’s Theorem [161, p. 161] states that a
function f is completely monotonic on (0,∞) if and only if

f(x) =
∫ ∞

0

e−xs dµ(s), (1.22)

where µ is a nonnegative measure on [0,∞) such that the integral (1.22) converges
for all x > 0. This means that a completely monotonic function f on (0,∞) is a
Laplace transform of the measure µ.

Remark 1.4.2. A result of [38, p. 98] asserts that for a completely monotonic func-
tion f on (a,∞) inequalities in (1.21) strictly hold unless f(x) is constant. This
assertion can also be found in [124].

Definition 1.3 ([14]). If f (k)(x) for some nonnegative integer k is completely
monotonic on an interval I, but f (k−1)(x) is not completely monotonic on I, then
f(x) is called a completely monotonic function of k-th order on an interval I.

1.5. Logarithmically completely monotonic functions.

Definition 1.4 ([14, 118]). A positive function f is said to be logarithmically
completely monotonic on an interval I ⊆ R if it has derivatives of all orders on I
and its logarithm ln f satisfies

(−1)k[ln f(x)](k) ≥ 0 (1.23)

for k ∈ N on I.

Remark 1.5.1. In [19, 112, 118, 136], it was recovered that any logarithmically
completely monotonic function f on I must be completely monotonic on I, but
not conversely. However, it was discovered in [85, Section 5] that every completely
monotonic function on (0,∞) is logarithmically convex.
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Remark 1.5.2. The following conclusions may be useful: A logarithmically convex
function is also convex; If f is non-negative and concave, then it is logarithmically
concave; The sum of finite logarithmically convex functions is also a logarithmically
convex function; But, the sum of two logarithmically concave functions may not be
logarithmically concave. See [85, Section 3].

Remark 1.5.3. In [19, Theorem 1.1] and [51, 124] it is pointed out that the logarith-
mically completely monotonic functions on (0,∞) can be characterized as the infin-
itely divisible completely monotonic functions studied by Horn in [59, Theorem 4.4]
and that the set of all Stieltjes transforms is a subset of the set of logarithmically
completely monotonic functions on (0,∞).

Remark 1.5.4. For more information on characterizations, applications and history
of the class of logarithmically completely monotonic functions, please refer to [14,
19, 112, 118, 124] and related references therein.

Definition 1.5 ([127, 128]). Let f be a positive function which has derivatives of all
orders on an interval I. If [ln f(x)](k) for some nonnegative integer k is completely
monotonic on I, but [ln f(x)](k−1) is not completely monotonic on I, then f is said
to be a logarithmically completely monotonic function of k-th order on I.

Definition 1.6 ([103, 161]). A function f is said to be absolutely monotonic on
an interval I if it has derivatives of all orders and

f (k−1)(t) ≥ 0 (1.24)

for t ∈ I and k ∈ N.

Definition 1.7 ([127, 128]). Let f be a positive function which has derivatives of
all orders on an interval I. If [ln f(x)](k) for some nonnegative integer k is absolutely
monotonic on I, but [ln f(x)](k−1) is not absolutely monotonic on I, then f is said
to be a logarithmically absolutely monotonic function of k-th order on I.

Definition 1.8 ([127, 128]). A positive function f which has derivatives of all
orders on an interval I is said to be logarithmically absolutely convex on I if

[ln f(x)](2k) ≥ 0 (1.25)

on I for k ∈ N.

1.6. Some useful formulas and inequalities.

1.6.1. Jensen’s inequality. If φ be a convex function on [a, b], then

φ

(
n∑

k=1

pkxk

)
≤

n∑

k=1

pkφ(xk), (1.26)

where n ∈ N, xk ∈ [a, b] and pk ≥ 0 for 1 ≤ k ≤ n satisfying
∑n

k=1 pk = 1.

1.6.2. Hölder’s inequality for integrals. Let p and q be positive numbers satisfying
1
p + 1

q = 1. If f and g are absolutely integrable on (0,∞), then
∫ ∞

0

|f(t)g(t)|d t ≤
[∫ ∞

0

|f(t)|p d t

]1/p[∫ ∞

0

|g(t)|q d t

]1/q

, (1.27)

with equality when |g(x)| = c|f(x)|p−1.
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1.6.3. Convolution theorem of Laplace transform. Let fi(t) for i = 1, 2 be piecewise
continuous in arbitrary finite intervals included on (0,∞). If there exist some
constants Mi > 0 and ci ≥ 0 such that |fi(t)| ≤ Mie

cit for i = 1, 2, then
∫ ∞

0

[ ∫ t

0

f1(u)f2(t− u) du

]
e−st d t =

∫ ∞

0

f1(u)e−su du

∫ ∞

0

f2(v)e−sv dv. (1.28)

See [159].

1.6.4. Mean values. The generalized logarithmic mean Lp(a, b) of order p ∈ R for
positive numbers a and b with a 6= b is defined in [22, p. 385] by

Lp(a, b) =





[
bp+1 − ap+1

(p + 1)(b− a)

]1/p

, p 6= −1, 0;

b− a

ln b− ln a
, p = −1;

1
e

(
bb

aa

)1/(b−a)

, p = 0.

(1.29)

Note that

L1(a, b) =
a + b

2
= A(a, b), L−1(a, b) = L(a, b) and L0(a, b) = I(a, b) (1.30)

are called respectively the arithmetic mean, the logarithmic mean, and the identric
or exponential mean in the literature. Since the generalized logarithmic mean
Lp(a, b) is increasing in p for a 6= b, see [22, pp. 386–387, Theorem 3], inequalities

L(a, b) < I(a, b) < A(a, b) (1.31)

are valid for a > 0 and b > 0 with a 6= b. See also [103, 108] and related references
therein.

1.6.5. Bernoulli numbers. Bernoulli numbers Bn for n ≥ 0 can be defined as

x

ex − 1
=

∞∑
n=0

Bn

n!
xn = 1− x

2
+

∞∑

j=1

B2j
x2j

(2j)!
, |x| < 2π. (1.32)

The first six Bernoulli numbers are

B0 = 1, B1 = −1
2
, B2 =

1
6
, B4 = − 1

30
, B6 =

1
42

, B8 = − 1
30

. (1.33)

1.6.6. A completely monotonic function. For any real number α, let

Θα(x) = xα[ln x− ψ(x)], x ∈ (0,∞). (1.34)

The function Θ1(x) was proved in [12, Theorem 3.1] to be decreasing and convex
on (0,∞).

By using Binet’s first formula (1.9) and complicated calculating techniques for
proper integrals, a general result was presented in [6, pp. 374–375, Theorem 1]: For
real number α, the function Θα(x) is completely monotonic on (0,∞) if and only
if α ≤ 1.

The completely monotonic property of Θα(x) was also proved by a different
approach in [117] recently.
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1.7. Properties of a function involving the exponential function. For t ∈ R
and real numbers α and β satisfying α 6= β and (α, β) 6∈ {(0, 1), (1, 0)}, let

qα,β(t) =





e−αt − e−βt

1− e−t
, t 6= 0,

β − α, t = 0.
(1.35)

In [104, 110, 116, 120, 126], sufficient and necessary conditions that the function
qα,β(x) is monotonic, logarithmically convex and logarithmically concave on (0,∞)
were discovered step by step.

1.7.1. Monotonic properties of qα,β(x). The earliest complete conclusions on mono-
tonic properties of qα,β(x) were discussed in the paper [104] little by little but
thoroughly.

Theorem 1.1 ([104, 120]). Let α and β satisfying α 6= β and (α, β) 6∈ {(0, 1), (1, 0)}
be real numbers and t ∈ R.

(1) The function qα,β(t) is increasing on (0,∞) if and only if

(β − α)(1− α− β) ≥ 0 and (β − α)(|α− β| − α− β) ≥ 0. (1.36)

(2) The function qα,β(t) is decreasing on (0,∞) if and only if

(β − α)(1− α− β) ≤ 0 and (β − α)(|α− β| − α− β) ≤ 0. (1.37)

(3) The function qα,β(t) is increasing on (−∞, 0) if and only if

(β − α)(1− α− β) ≥ 0 and (β − α)(2− |α− β| − α− β) ≥ 0. (1.38)

(4) The function qα,β(t) is decreasing on (−∞, 0) if and only if

(β − α)(1− α− β) ≤ 0 and (β − α)(2− |α− β| − α− β) ≤ 0. (1.39)

(5) The function qα,β(t) is increasing on (−∞,∞) if and only if

(β − α)(|α− β| − α− β) ≥ 0 and (β − α)(2− |α− β| − α− β) ≥ 0. (1.40)

(6) The function qα,β(t) is decreasing on (−∞,∞) if and only if

(β − α)(|α− β| − α− β) ≤ 0 and (β − α)(2− |α− β| − α− β) ≤ 0. (1.41)

Remark 1.7.1. The (α, β)-domains from (1.36) to (1.41) can be described respec-
tively by Figure 1 to Figure 6.

Remark 1.7.2. Theorem 1.1 and Figure 1 to Figure 4 correct several minor errors
in [104, 110, 120].

1.7.2. Logarithmically convex properties of qα,β(t). These results were founded at
first in [126, Lemma 1], earlier than monotonic properties of qα,β(t).

Theorem 1.2 ([104, 116, 120, 126]). The function qα,β(t) on (−∞,∞) is logarith-
mically convex if β − α > 1 and logarithmically concave if 0 < β − α < 1.

Remark 1.7.3. This theorem tells us that the logarithmic convexity and logarithmic
concavity of qα,β(t) on the interval (−∞, 0), showed in [126, Lemma 1], are wrong.
However, this does not affect the correctness of any other results established in [126],
since the wrong conclusions about qα,β(t) on the interval (−∞, 0) are idle there
luckily.
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Figure 1. (α, β)-domain where qα,β(t) increases on (−∞,∞)

1.7.3. Three-log-convex properties of qα,β(t).

Theorem 1.3 ([110]). If 1 > β−α > 0, then qα,β(t) is 3-log-convex on (0,∞) and
3-log-concave on (−∞, 0); if β−α > 1, then qα,β(t) is 3-log-concave on (0,∞) and
3-log-convex on (−∞, 0).

Remark 1.7.4. So far no any application of 3-log-convex properties of qα,β(t) is
disclosed, unlike monotonic and logarithmically convex properties of qα,β(t) already
having applications in [116, 120, 122, 126] respectively.

Remark 1.7.5. One of the key steps proving Theorem 1.1 to Theorem 1.3 is to
rewrite the function qα,β(t) as

qα,β(t) =
sinh (β−α)t

2

sinh t
2

exp
(1− α− β)t

2
. (1.42)

Remark 1.7.6. The monotonic and convex properties of qα,β(t) have important
applications to investigations of the gamma and q-gamma functions.

2. The history and origins

In the history of this topic, there are several independent origins and different
motivations of bounding the ratio of two gamma functions, no matter their appear-
ances were early or late.
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Figure 2. (α, β)-domain where qα,β(t) decreases on (−∞,∞)

2.1. Wendel’s double inequality and proof. As early as in 1948, in order to
establish the classical asymptotic relation

lim
x→∞

Γ(x + s)
xsΓ(x)

= 1 (2.1)

for real s and x, using Hölder’s inequality (1.27), J. G. Wendel proved in [160] the
double inequality

(
x

x + s

)1−s

≤ Γ(x + s)
xsΓ(x)

≤ 1 (2.2)

for 0 < s < 1 and x > 0.

Wendel’s proof for (2.1) and (2.2). Let

0 < s < 1, p =
1
s
, q =

p

p− 1
=

1
1− s

,

f(t) = e−sttsx, g(t) = e−(1−s)tt(1−s)x+s−1,
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Figure 3. (α, β)-domain where qα,β(t) is increasing on (0,∞)

and apply Hölder’s inequality (1.27) and the recurrent formula (1.2) to obtain

Γ(x + s) =
∫ ∞

0

e−ttx+s−1 d t

≤
(∫ ∞

0

e−ttx d t

)s(∫ ∞

0

e−ttx−1 d t

)1−s

= [Γ(x + 1)]s[Γ(x)]1−s

= xsΓ(x).

(2.3)

Replacing s by 1− s in (2.3) we get

Γ(x + 1− s) ≤ x1−sΓ(x), (2.4)

from which we obtain

Γ(x + 1) ≤ (x + s)1−sΓ(x + s), (2.5)

by substituting x + s for x.
Combining (2.3) and (2.5) we get

x

(x + s)1−s
Γ(x) ≤ Γ(x + s) ≤ xsΓ(x).

Therefore, the inequality (2.2) follows.
Letting x tend to infinity in (2.2) yields (2.1) for 0 < s < 1. The extension to

all real s is immediate on repeated application of (1.2). ¤
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Figure 4. (α, β)-domain where qα,β(t) is decreasing on (0,∞)

Remark 2.1.1. The inequality (2.2) can be rewritten for 0 < s < 1 and x > 0 as

x1−s ≤ Γ(x + 1)
Γ(x + s)

≤ (x + s)1−s. (2.6)

Remark 2.1.2. The limits (1.10) and (2.1) are equivalent to each other, since

xt−s Γ(x + s)
Γ(x + t)

=
Γ(x + s)
xsΓ(x)

· xtΓ(x)
Γ(x + t)

.

Hence, the limit (1.10) is called Wendel’s limit in the literature of this paper.

Remark 2.1.3. The double inequality (2.2) or (2.6) is more meaningful than the
limit (2.1), since the former implies the latter, but not conversely.

Remark 2.1.4. Due to unknown reasons, Wendel’s paper [160] and inequalities (2.2)
or (2.6) were possibly neglected by nearly all mathematicians for more than fifty
years about, until 1999 in [88] and later in [84, 85, 109, 111, 139, 150], to the best
of my knowledge.

2.2. Gurland’s upper bound. In 1956, by a basic theorem in mathematical sta-
tistics concerning unbiased estimators with minimum variance, Gurland in [58,
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Figure 5. (α, β)-domain where qα,β(t) is increasing on (−∞, 0)

p. 645] established a closer approximation to π

4k + 3
(2k + 1)2

[
(2k)!!

(2k − 1)!!

]2

< π <
4

4k + 1

[
(2k)!!

(2k − 1)!!

]2

, k ∈ N (2.7)

through presenting
[
Γ((n + 1)/2)

Γ(n/2)

]2

<
n2

2n + 1
, n ∈ N. (2.8)

Remark 2.2.1. The double inequality (2.7) may be rearranged as
√

4k + 3√
π (2k + 1)

<
(2k − 1)!!

(2k)!!
<

2√
π(4k + 1)

, k ∈ N. (2.9)

Remark 2.2.2. The inequality (2.8) is better than the right-hand side inequality in
(2.6) for x = n−1

2 and s = 1
2 .

Remark 2.2.3. Taking respectively n = 2k and n = 2k − 1 for k ∈ N in (2.8) leads
to √

k +
1
4

<
Γ(k + 1)

Γ(k + 1/2)
<

2k√
4k − 1

, k ∈ N. (2.10)

This is better than (2.6) for x = k and s = 1
2 . We will see that it is also better

than (2.20) for s = 1
2 and it is the same as (2.28).



14 F. QI

-α1O

6β

1

` ` `
` ` `

` ` `
` ` `

` ` `
` ` `

` ` `
` ` `

` ` `
` ` `

` ` `
` ` `

` ` `
` ` `

` ` `
` ` `

` ` `
` ` `

` ` `
` ` `

` ` `
` ` `

` ` `
` ` `

` ` `

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

β = α

β = α− 1

β = α + 1

`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀̀
`̀¡

¡
¡

¡
¡

¡

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@

@
@@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

@
@
@

` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
β = 1− α

Figure 6. (α, β)-domain where qα,β(t) is decreasing on (−∞, 0)

Remark 2.2.4. It is astonished that inequalities in (2.8) or (2.9) were recovered in
[36] by a different but elementary approach. In other words, the inequality (2.8)
and the right-hand side inequality in (2.27) are same. See Section 2.5.

Remark 2.2.5. Just like the paper [160], Gurland’s paper [58] was also neglected
until 1966 in [148] and 1985 in [39]. The famous monograph [89] recorded neither
of the papers [58, 160]. It’s a pity, since inequalities in (2.7) and (2.8) are very
sharp, as discussed in Remark 2.3.2 below.

Remark 2.2.6. For more information on new developments of bounding Wallis’
formula (1.5), please refer to Section 7.4.

2.3. Kazarinoff’s bounds for Wallis’ formula. In 1956, starting from one form
of the celebrated formula of John Wallis:

1√
π(n + 1/2)

<
(2n− 1)!!

(2n)!!
<

1√
πn

, n ∈ N, (2.11)

which had been quoted for more than a century before 1950s by writers of textbooks,
it was proved in [62] that the sequence θ(n) defined by

(2n− 1)!!
(2n)!!

=
1√

π(n + θ(n))
(2.12)
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satisfies 1
4 < θ(n) < 1

2 for n ∈ N. This implies

1√
π(n + 1/2)

<
(2n− 1)!!

(2n)!!
<

1√
π(n + 1/4)

, n ∈ N. (2.13)

It was said in [62] that it is unquestionable that inequalities similar to (2.13)
can be improved indefinitely but at a sacrifice of simplicity, which is why they have
survived so long.

The proof of (2.13) is based upon the property

[ln φ(t)]′′ − {[lnφ(t)]′}2 > 0 (2.14)

of the function

φ(t) =
∫ π/2

0

sint xdx =
√

π

2
Γ((t + 1)/2)
Γ((t + 2)/2)

(2.15)

for −1 < t < ∞. The inequality (2.14) was proved by making use of (1.12) and
estimating the integrals

∫ 1

0

xt

1 + x
dx and

∫ 1

0

xt ln x

1 + x
dx. (2.16)

Since (2.14) is equivalent to the statement that the reciprocal of φ(t) has an every-
where negative second derivative, therefore, for any positive t, φ(t) is less than the
harmonic mean of φ(t− 1) and φ(t + 1); simplifying this leads to the fact that

Γ((t + 1)/2)
Γ((t + 2)/2)

<
2√

2t + 1
, t > 0. (2.17)

As a subcase of this result, the right-hand side inequality in (2.13) is established.

Remark 2.3.1. Replacing t by 2t for t > 0 in (2.17) leads to

Γ(t + 1/2)
Γ(t + 1)

<
1√

t + 1/4
(2.18)

for t > 0, which is better than the left-hand side inequality in (2.6) for s = 1
2 and

extends the left-hand side inequality in (2.10).

Remark 2.3.2. The right-hand side inequality in (2.9) is same as the corresponding
one in (2.13), and that the left-hand side inequality in (2.9) is better than the
corresponding one in (2.13) and (3.6) for n ≥ 2. Therefore, Gurland’s inequality
(2.8) is much sharp.

Remark 2.3.3. A double inequality bounding the quantity (2k−1)!!
(2k)!! can be reduced

to an upper or a lower bound for the ratio Γ((n+1)/2)
Γ(n/2) . Conversely, either the upper

or the lower bound for the ratio Γ((n+1)/2)
Γ(n/2) can be used to derive a double inequality

bounding the quotient (2k−1)!!
(2k)!! .

Remark 2.3.4. The idea and spirit of Kazarinoff in [62] would be developed by
Watson in [156]. See Section 3.1.
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2.4. Gautschi’s double inequalities. In 1959, among other things, by a different
motivation from Wendel in [160], W. Gautschi established independently in [47] two
double inequalities for n ∈ N and 0 ≤ s ≤ 1:

n1−s ≤ Γ(n + 1)
Γ(n + s)

≤ exp((1− s)ψ(n + 1)), (2.19)

n1−s ≤ Γ(n + 1)
Γ(n + s)

≤ (n + 1)1−s. (2.20)

Remark 2.4.1. It is clear that the upper bound and the domain in the inequal-
ity (2.20) are not better and more extensive than the corresponding ones in (2.6).

Remark 2.4.2. The upper bounds in (2.6), (2.19) and (2.20) have the following
relationships:

exp((1− s)ψ(n + 1)) ≤ (n + 1)1−s (2.21)

for 0 < s ≤ 1 and n ∈ N,

(n + s)1−s ≤ exp((1− s)ψ(n + 1)) (2.22)

for 0 ≤ s ≤ 1
2 and n ∈ N, and the inequality (2.22) reverses for s > e1−γ − 1 =

0.52620 · · · , since the function

Q(x) = eψ(x+1) − x (2.23)

was proved in [119, Theorem 2] to be strictly decreasing on (−1,∞), with

lim
x→∞

Q(x) =
1
2
. (2.24)

This means that Wendel’s double inequality (2.6) and Gautschi’s first double in-
equality (2.19) are not included each other but they all contain Gautschi’s second
double inequality (2.20).

Remark 2.4.3. By the convex property of ln Γ(x), Merkle recovered in [81, 82, 83,
85, 86, 87] inequalities in (2.19) and (2.20) once again. See Section 4.

Remark 2.4.4. The monotonic and convex properties of the function (2.24) are also
derived in [43]. See Section 3.19.1 and Remark 3.19.6 to Remark 3.19.8.

Remark 2.4.5. The Mathematical Reviews’ comments MR0103289 on the paper
[47] is cited as follows: The author gives lower and upper bounds of the form
c
[(

xp + 1
c

)1/p − x
]

for exp ∫∞
x

e−tp

d t in the range p > 1 and 0 ≤ x < ∞; the

respective values of c are 2 and
[
Γ
(
1 + 1

p

)]p/(p−1). As it stands, the proof is only
valid if p is an integer, but, in a correction, the author has indicated a modification
which validates it for all p > 1.

Remark 2.4.6. There is no a word commenting on inequalities in (2.19) and (2.20)
by the Mathematical Reviews’ reviewer of the paper [47]. However, these two
double inequalities later became a major source of a series of research on bounding
the ratio of two gamma functions.

Remark 2.4.7. The function exp ∫∞
x

e−tp

d t was further investigated in [2, 15, 41,
70, 92, 114, 129, 138] and related references therein.
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2.5. Chu’s double inequality. In 1962, by discussing that bn+1(c) T bn(c) if and

only if (1− 4c)n + 1− 3c T 0, where

bn(c) =
(2n− 1)!!

(2n)!!
√

n + c , (2.25)

it was demonstrated in [36, Theorem 1] that

1√
π[n + (n + 1)/(4n + 3)]

<
(2n− 1)!!

(2n)!!
<

1√
π(n + 1/4)

, n ∈ N. (2.26)

As an application of (2.26), by using Γ
(

1
2

)
=
√

π and (1.2), the following double
inequality √

2n− 3
4

<
Γ(n/2)

Γ(n/2− 1/2)
≤

√
(n− 1)2

2n− 1
. (2.27)

for positive integers n ≥ 2 was given in [36, Theorem 2].

Remark 2.5.1. After letting x = n−1
2 the inequality (2.27) becomes

√
x− 1

4
<

Γ(x + 1/2)
Γ(x)

<
x√

x + 1/4
, (2.28)

which is same as (2.10).

Remark 2.5.2. When n is large enough, the lower bound in (2.26) is better than
the one in (3.6).

Remark 2.5.3. Any one of the bounds in (2.28) may be derived from the other one
by Boyd’s method in [21] (see Section 3.4), by Shanbhag’s technique in [153] (see
Section 3.5), by Raja Rao’s technique in [142] (see Section 3.10), or by Slavić’s
method in [154] (see Section 3.10), or by the β-transform in Section 4.1. This
implies that the double inequality (2.27) is equivalent to the inequality (2.8).

Remark 2.5.4. The double inequality (2.26) and the right-hand side inequality in
(2.27) are a recovery of (2.9) and (2.8) respectively. Notice that the reasoning
directions in the two papers [36, 58] are opposite:

(2n− 1)!!
(2n)!!

[36]
=⇒
⇐=
[58]

Γ(n/2)
Γ(n/2− 1/2)

. (2.29)

This confirms again what says in Remark 2.3.3.

Remark 2.5.5. The idea of Chu’s proof in [36, Theorem 1] has the same spirit as
Kershaw’s in [64]. See Section 3.11.

2.6. Zimering’s inequality. In 1962, Zimering obtained in [168, p. 88] that

Γ(n + r)
n!

≤ nr − (n− 1)r

r
(2.30)

for 0 < r < 1 and n ∈ N.

Remark 2.6.1. From (1.2) it is easy to see that n! = Γ(n + 1). Hence, the inequal-
ity (2.30) can be rearranged as

Γ(n + 1)
Γ(n + r)

≥ r

nr − (n− 1)r
(2.31)
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for 0 < r < 1 and n ∈ N. Although the inequality (2.30) or (2.31) is not better than
the left-hand side inequality in (2.19) or (2.20), since its motivation is particular,
it is believed that it was obtained independently, and so the paper [168] can also
be regarded as an origin of this topic.

2.7. Further remarks.

Remark 2.7.1. To the best of our knowledge and understanding, two evidences that
there was no a cross-citation between them and that their motivations are different
convince us to believe that the above origins are independent. Actually, the very
real origin(s) may not be found out forever.

Remark 2.7.2. Except Wendel’s result, all inequalities above take values on N, the
set of positive integers. In other words, only Wendel’s double inequality (2.6), the
earliest result on this topic, takes values on (0,∞), the set of real numbers.

Remark 2.7.3. As one will see, in the history of this topic, the works by Wendel,
Gurland and Zimering did not become a source of bounding the ratio of two gamma
functions.

Remark 2.7.4. In [39], some of the extensive previous background of the papers
[62, 156] was outlined.

Remark 2.7.5. Currently, we may conclude that the very origins of bounding the
ratio of two gamma functions are asymptotic analysis, estimation of Wallis’ cosine
formula, estimation of π, and mathematical statistics.

Remark 2.7.6. The bounds for the ratio of two gamma functions should satisfy one
or several of the following conditions:

(1) The bounds should be easily computed by hand or by computers.
(2) Sharper the bounds are, better the bounds are.
(3) The bounds should be simple in form.
(4) The bounds should be beautiful in form.
(5) The bounds should be expressed by elementary functions or any other easily

calculated functions.
(6) The bounds is of some recurrent or symmetric properties.
(7) The bounds should have origin(s) and background(s).
(8) The bounds should have application(s) in mathematics or mathematical

sciences.

Maybe these standards are also suitable for judging any other inequalities and
estimates in mathematics.

3. Refinements and extensions

In this section, the refinements and extensions of bounds for the ratio of two
gamma functions from 1959 will be collected, to the best of my ability.

3.1. Watson’s monotonicity result. In 1959, motivated by the result in [62],
mentioned in Section 2.3, and basing on Gauss’ Theorem (1.13), G. N. Watson
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observed in [156] that

[Γ(x + 1)]2

x[Γ(x + 1/2)]2
= 2F1

(
−1

2
,−1

2
; x; 1

)

= 1 +
1
4x

+
1

32x(x + 1)
+

∞∑
r=3

[(−1/2) · (1/2) · (3/2) · (r − 3/2)]2

r!x(x + 1) · · · (x + r − 1)
(3.1)

for x > − 1
2 , which implies the much general function

θ(x) =
[

Γ(x + 1)
Γ(x + 1/2)

]2

− x, (3.2)

ever discussed in [62] or Section 2.3 as a special case θ(n) for n ∈ N, for x > − 1
2 is

decreasing and with

lim
x→∞

θ(x) =
1
4

and lim
x→(−1/2)+

θ(x) =
1
2
. (3.3)

This apparently implies the sharp inequalities

1
4

< θ(x) <
1
2

(3.4)

for x > − 1
2 ,

√
x +

1
4

<
Γ(x + 1)

Γ(x + 1/2)
≤

√
x +

1
4

+
[
Γ(3/4)
Γ(1/4)

]2

=
√

x + 0.36423 · · · (3.5)

for x ≥ − 1
4 , and, by (1.5),

1√
π(n + 4/π − 1)

≤ (2n− 1)!!
(2n)!!

<
1√

π(n + 1/4)
, n ∈ N. (3.6)

In [156], an alternative proof of the double inequality (3.4) was provided as
follows: Let

f(x) =
2√
2

∫ π/2

0

cos2x t d t =
2√
2

∫ ∞

0

exp
(−xt2

) t exp(−t2/2)√
1− exp(−t2)

d t (3.7)

for x > 1
2 . By using the fairly obvious inequalities

√
1− exp

(−t2
) ≤ t (3.8)

and
t exp(−t2/4)√
1− exp(−t2)

=
t√

2 sinh(t2/2)
≤ 1, (3.9)

we have, for x > − 1
4 ,

1√
π

∫ ∞

0

exp
(−(x + 1/2)t2

)
d t < f(x) <

1√
π

∫ ∞

0

exp
(−(x + 1/4)t2

)
d t,

that is to say
1√

x + 1/2
< f(x) <

1√
x + 1/4

. (3.10)
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Remark 3.1.1. In [156, p. 8], the following interesting relation was provided:

x + θ(x) =
x2

x− 1/2 + θ(x− 1/2)
(3.11)

for appropriate ranges of values of x.

Remark 3.1.2. The formula (3.1) would be used in [21] to obtain the inequal-
ity (3.22).

Remark 3.1.3. The function θ(x) defined by (3.2) was extended and studied in [25,
43, 71, 100, 107, 116, 121, 126] later.

Remark 3.1.4. It is easy to see that the inequality (3.5) extends and improves (2.6)
if s = 1

2 , say nothing of (2.19) and (2.20) if s = 1
2 .

Remark 3.1.5. The left-hand side inequality in (3.6) is better than the corresponding
one in (2.13) but worse than the corresponding one in (2.9) for n ≥ 2.

Remark 3.1.6. The double inequality (3.6) for bounding Wallis’ formula (1.5) was
recovered, refined or generalized recently in [24, 29, 30, 31, 32, 34, 35, 66, 114,
167] and related references therein. For more information on bounds for Wallis’
formula (1.5), please refer to Section 2.2, Section 2.3 and Section 7.4 of this paper.

Remark 3.1.7. It is easy to see that

θ(x)
x

+ 1 =
Γ(x)Γ(x + 1)
[Γ(x + 1/2)]2

(3.12)

which is a special case of Gurland’s ratio

T (x, y) =
Γ(x)Γ(y)

[Γ((x + y)/2)]2
(3.13)

defined first in [57] for positive numbers x and y.
The formula (3.12) reveals that bounds for Gurland’s ratio T (x, y) can be reduced

to bounds for Γ(x)
Γ(x+1/2) .

For more information on bounding Gurland’s ratio, please refer to [23, 45, 84, 85]
and related references therein. However, there does not exist a general identity
similar to (3.12) between Gurland’s ratio and the ratio of two gamma functions.
As a result, considering the limitation of length of this paper, new developments
on Gurland’s ratio (3.13) will not be involved in detail.

3.2. Erber’s inequality. Gurland proved in [57] that

[Γ(δ + α)]2

Γ(δ)Γ(δ + 2α)
≤ δ

δ + α2
, (3.14)

where α 6= 0, α + 2δ > 0 and δ > 0. In [45], the following results were derived from
the right-hand side inequality in (2.20) and (3.14):

(1) Taking in (3.14) δ = n ∈ N and α = s+1
2 for s ∈ (0, 1) and rearranging lead

to

Γ(n + 1)
Γ(n + s)

<
4(n + s)

4n + (s + 1)2

[
Γ(n + 1)

Γ(n + (1 + s)/2)

]2

, 0 < s < 1, n ∈ N.
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Since 0 < 1+s
2 < 1, applying the right-hand side inequality in (2.20) to the

ratio in the bracket yields a strengthened upper bound of (2.20)

Γ(n + 1)
Γ(n + s)

<
4(n + s)

4n + (s + 1)2
(n + 1)1−s, 0 < s < 1, n ∈ N. (3.15)

(2) If letting δ = n and 0 < s = α < 1 in (3.14) and using the right-hand side
inequality in (2.20), then

Γ(n + s)
Γ(n + 2s)

<
(n + 1)1−s

n + s2
, 0 < s < 1, n ∈ N. (3.16)

(3) After k + 1 iterations of the above process, it was obtained that

Γ(n + s)
Γ(n + 2s)

<
(n + 1)1−s

(n + s2)R(n, s, k)
(3.17)

and
Γ(n + 1)
Γ(n + s)

<
(n + 1)1−s

R(n, s, k)
, (3.18)

where

R(n, s, k) =
k∏

i=0

{
n + [(s + 2i+1 − 1)/2i+1]2

n + (s + 2i − 1)/2i

}2i

(3.19)

for n, k ∈ N and 0 < s < 1.

In the final of [45], it was pointed out that it is ready to verify that the limit
limk→∞R(n, s, k) exists and that it would be interesting to know the value of this
infinite product in closed form.

Remark 3.2.1. It is easy to observe that bounds for Gurland’s ratio provide a
method to refine bounds for ratio of two gamma functions. Conversely, it is also
done.

3.3. Uppuluri’s bounds. If X is a random variable defined on a probability space
and E denotes the expectation operator, then {E|X|r}1/r is a nondecreasing func-
tion of r > 0. See [75, p. 156]. Using this conclusion, the double inequality (2.6)
was recovered in [146] for x > 0 and 0 ≤ s ≤ 1, which sharpens the inequality
(2.20) given in [47].

Following the same lines as in [45] or Section 3.2, after k + 1 iterations, Rao
Uppuluri further obtained in [146] that

Γ(x + 1)
Γ(x + s)

<

[
x +

(
s− 1 + 2k+1

)
/2k+1

]1−s

R(x, s, k)
(3.20)

and
Γ(x + s)
Γ(x + 2s)

<

[
x +

(
s− 1 + 2k+1

)
/2k+1

]1−s

(x + s2)R(x, s, k)
(3.21)

for x > 0, 0 ≤ s ≤ 1 and k ∈ N, which improve inequalities (3.17) and (3.18).

Remark 3.3.1. In [153, p. 48], Shanbhag pointed out that the discussion concerning
(3.20) and (3.21) in [146] is misleading.
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3.4. Uppuluri-Boyd’s double inequality. Motivated by (2.11) and the results
in [58] (see Section 2.2), a false double inequality was obtained in [148], but it was
corrected by different methods respectively in [21] and [147] as follows:

√
n +

1
4

+
1

32(n + 1)
<

Γ(n + 1)
Γ(n + 1/2)

<
n + 1/2√

n + 3/4 + 1/(32n + 48)
(3.22)

for n ∈ N.
After pointed out the error appeared in [148], the left-hand side inequality in

(3.22) was first proved in [21] by making use of (3.1), and then the right-hand side
inequality in (3.22) was established by considering

Γ(n + 1)
Γ(n + 1/2)

=
n + 1/2

Γ(n + 3/2)/Γ(n + 1)
(3.23)

and utilizing the left-hand side inequality in (3.22).
Influenced by [21], the inequality (3.22) was recovered in [147] by the same

method, using the Battacharya bounds for the variance of an unbiased estimator,
as in [148].

Remark 3.4.1. V. R. Rao Uppuluri claimed in [148] to have established

Γ(n + 1)
Γ(n + 1/2)

>

(
n +

1
4

+
9

48n + 32

)1/2

for n ∈ N. A. V. Boyd [21] pointed out that this inequality is incorrect, as can be
easily showed by numerical calculation for n = 1, and showed by (3.1) that it is not
possible to have

Γ(n + 1)
Γ(n + 1/2)

>

(
n +

1
4

+
1

an + b

)1/2

for all positive integers n if a < 32.

Remark 3.4.2. The technique used in (3.23) was employed once again in [154],
see also Section 3.10, and summarized in [85] as the so-called β-transform and
πn-transform, see also Section 4.

Remark 3.4.3. It is obvious that the lower bound in (3.22) is better than the corre-
sponding ones in (2.6), (2.8) and (2.10), (2.19) and (2.20), (2.27) and (2.28), (2.30)
and (2.31), and (3.5).

3.5. Shanbhag’s inequalities. Motivated by [146], it was first pointed out in [153]
that the right-hand side inequality in (2.6) may be deduced from the left-hand side
inequality in (2.6) by observing

Γ((x + s) + 1)
Γ((x + s) + (1− s))

≥ (x+ s)1−(1−s) ⇐⇒ (x + s)Γ(x + s)
Γ(x + 1)

≥ (x+ s)s. (3.24)

Then, by (2.6) and the technique stated in (3.24), a more general double inequality
was established:

α0(x, s) < α1(x, s) < · · · < Γ(x + 1)
Γ(x + s)

< · · · < β1(x, s) < β0(x, s), (3.25)

where

αk(x, s) =
(x + k)1−s(x + s + k − 1)(k)

(x + k)(k)
, (3.26)
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βk(x, s) =
(x + k + s)1−s(x + s + k − 1)(k)

(x + k)(k)
(3.27)

for k ≥ 0, and y(m) is equal to 1 if m = 0 and equal to y(y − 1) · · · (y −m + 1) if
m ≥ 1.

From the inequality (3.25), the following corollaries were deduced in [153]:
(1) If x 6∈ N, then

θ0(x) < θ1(x) < · · · < γ(x) < · · · < ξ1(x) < ξ0(x), (3.28)

where

θk(x) =
(x + k)x−[x]([x] + k)!

(x + k)(k+1)
(3.29)

and

ξk(x) =
([x] + k + 1)x−[x]([x] + k)!

(x + k)(k+1)
(3.30)

for all nonnegative integer k and [x] being the largest integer less than x.
(2) If 0 < s ≤ 1, then

s +
1
s
− 1 < Γ(s) <

1
s
. (3.31)

(3) If x > 0, 0 < s < 1 and k is a nonnegative integer, then

η0(x, s) < η1(x, s) < · · · < Γ(x + s)
Γ(x + 2s)

< · · · < ρ1(x, s) < ρ0(x, s), (3.32)

where

ηk(x, s) =
(x + s + k)1−s(x + 2s + k − 1)(k)

(x + s + k)(k+1)
(3.33)

and

ρk(x, s) =
(x + 2s + k)1−s(x + 2s + k − 1)(k)

(x + s + k)(k+1)
. (3.34)

It was also proved in [153] that

β0(x, s) < T0(x, s) < T1(x, s) < · · · (3.35)

and
ρ0(x, s) < P0(x, s) < P1(x, s) < · · · , (3.36)

where

Tk(x, s) =

[
x +

(
s− 1 + 2k+1

)
/2k+1

]1−s

R(x, s, k)
(3.37)

and

Pk(x, s) =
Tk(x, s)
x + s2

(3.38)

for x > 0, 0 < s < 1 and k is a nonnegative integer, hence D. N. Shanbhag
pointed out in [153, p. 48] that the discussion concerning (3.20) and (3.21) in [146]
is misleading.

Remark 3.5.1. The method used in [153] is same as the technique utilizing in (3.23)
which has been summarized as the πn-transform II(x, β, n) in Section 4.2.
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3.6. Raja Rao’s results. Based on [47, 146, 153] and by using Liapounoff’s in-
equality and probability distribution functions, the double inequalities (2.20) and
(3.25) was recovered in [142].

It was also showed in [142] that

βk(x, s) =
x + s

αk(x + s, 1− s)
, (3.39)

so the inequality (3.25) can be written as

αk(x, s) ≤ Γ(x + 1)
Γ(x + s)

≤ x + s

αk(x + s, 1− s)
. (3.40)

Moreover, the following double inequalities on the hypergeometric functions were
also obtained in [142]:

Γ(x + 1)
Γ(x + s)

(x + s + k)s−1 ≤ 2F1(−k, 1− s; x + 1; 1) ≤ Γ(x + 1)
Γ(x + s)

(x + k)s−1, (3.41)

x + k

x + k + 1
≤

[
2F1(−k − 1, 1− s; x + 1; 1)

2F1(−k, 1− s;x + 1; 1)

]1/(1−s)

≤ x + s + k

x + s + k + 1
, (3.42)

where x > 0, 0 ≤ s ≤ 1, k = 0, 1, 2, . . . and 2F1(a, b; c; 1) is the hypergeometric
function defined by (1.13).

In [141, 143, 144, 145], Raja Rao established some generalized inequalities and
analogues for incomplete gamma functions, Beta functions and hypergeometric
functions, similar to the double inequality (2.6).

3.7. Kečkić-Vasić’s double inequality. In 1971, by considering monotonic prop-
erties of

x + lnΓ(x)− x ln x + α ln x (3.43)

on (1,∞) for α = 1
2 or 1 respectively, among other things, Kečkić and Vasić gave

in [63, Theorem 1] the following double inequality for b > a > 1:

bb−1

aa−1
ea−b <

Γ(b)
Γ(a)

<
bb−1/2

aa−1/2
ea−b. (3.44)

Remark 3.7.1. Taking b = x + 1 and b = x + s in Kečkić-Vasić’s double inequal-
ity (3.44) gives

(x + 1)x

(x + s)x+s−1
e−(1−s) <

Γ(x + 1)
Γ(x + s)

<
(x + 1)x+1/2

(x + s)x+s−1/2
e−(1−s) (3.45)

for 0 < s < 1 and x > 0.

Remark 3.7.2. In [63], inequalities in (3.44) were compared with those in (2.20),
(2.27) and (2.30). For example, if taking b = n

2 and a = n−1
2 and letting n large

enough, then the double inequality (3.44) is not sharper than (2.27), say nothing
of the inequality (3.22).

Remark 3.7.3. For more information on extensions and refinements of the inequal-
ity (3.44), please refer to Remark 3.15.2 and Section 5.
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3.8. Amos’ sharp upper bound. In 1973, in an appendix of the paper [10],
starting with the asymptotic expansion

ln Γ(z) =
(

z − 1
2

)
ln z − z +

1
2

ln(2π) +
1

12z
− 1

360z3
+ R (3.46)

for z > 0 and estimate R by the next term |R| ≤ 1
1260z5 , see [1, p. 257, 6.1.42], the

following inequality was established in [10, pp. 425–427]:

[Γ(x + 1)]2

[Γ(x + 1/2)]2
< x

(
1 +

1
4x

+
1

32x2
− 1

128x3
+

6
5x4

)
(3.47)

for x ≥ 2. This expression is asymptotically correct in all terms except the last.

Remark 3.8.1. In virtue of the techniques used in [21, 142, 153], a lower bound for
(3.47) can be procured from its upper bound.

3.9. Lazarević-Lupaş’s convexity. In 1974, among other things, the function

θα(x) =
[

Γ(x + 1)
Γ(x + α)

]1/(1−α)

− x (3.48)

on (0,∞) for α ∈ (0, 1) was claimed in [71, Theorem 2] to be decreasing and convex,
and so

α

2
<

[
Γ(x + 1)
Γ(x + α)

]1/(1−α)

− x ≤ [Γ(α)]1/(1−α). (3.49)

Remark 3.9.1. Although Lazarević-Lupaş’s proof given in [71] on monotonic and
convex properties of θα(x) is wrong, as commented in [43, p. 240], but these prop-
erties are correct, as we know now.

Remark 3.9.2. Taking α = 1
2 in (3.48) leads to Watson’s monotonicity result in

Section 3.1, but the range of x here is slightly smaller. Note that Watson did not
discuss in [156] the convex property of the function θ(x) defined by (3.2).

Remark 3.9.3. The function θα(x) would be extended and the same properties
would be verified in [25, 43, 116, 126]. See Section 3.19.1 and Section 6.1.

Remark 3.9.4. It seems that the problem discussed in [71, Theorem 1] on charac-
terization of the gamma function was further carried out by Merkle in [81, 85] and
Lorch in [76] and related references therein.

3.10. Slavić’s double inequalities. In 1975, by virtue of (1.2), the following
implications were pointed out in [154, p. 19]:

f(x) ≤ Γ(x + 1)
Γ(x + 1/2)

⇒ Γ(x + 1)
Γ(x + 1/2)

≤ x + 1/2
f(x + 1/2)

, (3.50)

Γ(x + 1)
Γ(x + 1/2)

≤ g(x) ⇒ x

g(x− 1/2)
≤ Γ(x + 1)

Γ(x + 1/2)
. (3.51)

In particular, adopting

g(x) =

√
x +

1
4

+
1

32x + 8
(3.52)

in (3.51) leads to
√

x +
1
4

+
1

32x + 8 + 36/(4x− 1)
<

Γ(x + 1)
Γ(x + 1/2)

<

√
x +

1
4

+
1

32x + 8
. (3.53)
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On basis of Duplication formula (1.7) and Binet’s first formula (1.9), the following
integral representation was also given in [154]:

Γ(x + 1)
Γ(x + 1/2)

=
√

x exp

{
n∑

k=1

(
1− 2−2k

)
B2k

k(2k − 1)x2k−1

×
∫ ∞

0

[
tanh t

2t
−

n∑

k=1

22k
(
22k − 1

)
B2k

2 · (2k)!
t2k−2

]
e−4tx d t

}
, (3.54)

from which, a more accurate double inequality was procured:

√
x exp

(
2m∑

k=1

(
1− 2−2k

)
B2k

k(2k − 1)x2k−1

)
<

Γ(x + 1)
Γ(x + 1/2)

<
√

x exp

(
2`−1∑

k=1

(
1− 2−2k

)
B2k

k(2k − 1)x2k−1

)
(3.55)

for x > 0, where m and ` are natural numbers and B2k for k ∈ N are Bernoulli
numbers.

Remark 3.10.1. Why can the function g(x) in (3.51) be taken as (3.52)? There was
no any clue to it in [154], but the double inequality (3.53) is surely sound.

Remark 3.10.2. What are the ranges of x in the double inequalities (3.50), (3.51)
and (3.53)? These were not provided explicitly in [154]. As we know now, the
double inequality (3.53) is valid for x > − 1

4 .

Remark 3.10.3. It was claimed in [154] that inequalities in (3.53) is sharper than
those in (3.22) and many other inequalities mentioned above. In fact, it is true.

Remark 3.10.4. It was also claimed in [154] that inequalities in (3.55) are sharper
than those in (3.53), but there was no a proof supplied in it.

Remark 3.10.5. It is conjectured that the constants 32 and 8 in the upper bound
of (3.53) are the best possible.

Remark 3.10.6. The lower bound in (3.53) would be refined by the corresponding
one in (7.25) obtained in [162, Theorem 1].

Remark 3.10.7. The method showed by (3.50) and (3.51) had been used in [21, 142,
153] when proving the double inequality (3.22) and it was summarized in [85] as
the β-transform in Section 4.1.

3.11. Kershaw’s double inequalities and proofs. In 1983, motivated by the
inequality (2.19) in [47], Kershaw presented in [64] the following two double in-
equalities for 0 < s < 1 and x > 0:

(
x +

s

2

)1−s

<
Γ(x + 1)
Γ(x + s)

<

[
x− 1

2
+

(
s +

1
4

)1/2]1−s

, (3.56)

exp
[
(1− s)ψ

(
x +

√
s
)]

<
Γ(x + 1)
Γ(x + s)

< exp
[
(1− s)ψ

(
x +

s + 1
2

)]
. (3.57)

They are called in the literature Kershaw’s first and second double inequalities
respectively, although the order of these two inequalities (3.56) and (3.57) reverses
the original order in [64].
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Kershaw’s proof for (3.56) and (3.57). Define the functions fα and gβ by

fα(x) =
Γ(x + 1)
Γ(x + s)

exp((s− 1)ψ(x + α)) (3.58)

and

gβ(x) =
Γ(x + 1)
Γ(x + s)

(x + β)s−1 (3.59)

for x > 0 and 0 < s < 1, where the parameters α and β are to be determined.
It is not difficult to show, with the aid of Stirling’s formula (1.4), that

lim
x→∞

fα(x) = lim
x→∞

gβ(x) = 1. (3.60)

Now let

F (x) =
fα(x)

fα(x + 1)
=

x + s

x + 1
exp

1− s

x + α
. (3.61)

Then
F ′(x)
F (x)

= (1− s)
(α2 − s) + (2α− s− 1)x
(x + 1)(x + s)(x + α)2

.

It is easy to show that
(1) if α = s1/2, then F ′(x) < 0 for x > 0;
(2) if α = s+1

2 , then F ′(x) > 0 for x > 0.

Consequently if α = s1/2 then F strictly decreases, and since F (x) → 1 as x →∞
it follows that F (x) > 1 for x > 0. But, from (3.60), this implies that fα(x) >
fα(x + 1) for x > 0, and so fα(x) > fα(x + n). Take the limit as n → ∞ to give
the result that fα(x) > 1, which can be rewritten as the left-hand side inequality
in (3.57). The corresponding upper bound can be verified by a similar argument
when α = s+1

2 , the only difference being that in this case fα strictly increases to
unity.

To prove the double inequality (3.56) define

G(x) =
gβ(x)

gβ(x + 1)
=

x + s

x + 1

(
x + β + 1

x + β

)1−s

, (3.62)

from which it follows that
G′(x)
G(x)

=
(1− s)[(β2 + β − s) + (2β − s)x]
(x + 1)(x + s)(x + β)(x + β + 1)

.

This will leads to
(1) if β = s

2 , then G′(x) < 0 for x > 0;

(2) if β = − 1
2 +

(
s + 1

4

)1/2, then G′(x) > 0 for x > 0.
The same arguments which were used on F can now be used on G to give the

double inequality (3.56). ¤

Remark 3.11.1. The limits in (3.60) can also be derived by using (1.10).

Remark 3.11.2. Since the limits in (3.60) hold, the left-hand side inequality in (3.56)
and the right-hand side inequality in (3.57) are immediate consequences of the fact
that f(s+1)/2 and gs/2 are decreasing on (0,∞).

Remark 3.11.3. The spirit of Kershaw’s proof is similar to Chu’s in [36, Theorem 1].
See also Section 2.5.
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Remark 3.11.4. The method used by Kershaw in [64] to prove (3.56) and (3.57) was
utilized to construct many similar inequalities in several papers such as [50, 69, 76].
See Remark 3.13.1.

Remark 3.11.5. It is easy to see that the inequality (3.56) refines and extends the
inequality (2.6), say nothing of (2.20).

Remark 3.11.6. Since the function Q(x) defined by (2.23) was proved in [119, The-
orem 2] to be strictly decreasing on (−1,∞), the functions

h1;s(x) = eψ(x+
√

s ) −
(

x +
s

2

)
= eψ(x+

√
s ) − (

x +
√

s − 1
)− s

2
+
√

s − 1

for x > −√s and

h2;s(x) = eψ(x+(s+1)/2) −
[
x− 1

2
+

(
s +

1
4

)1/2]

= eψ(x+(s+1)/2) −
(

x +
s + 1

2
− 1

)
−

(
s +

1
4

)1/2

+
s

2

for x > − s+1
2 , where 0 < s < 1, are both strictly deceasing. From (2.24), it follows

that

lim
x→∞

h1;s(x) =
√

s − s + 1
2

< 0 and lim
x→∞

h2;s(x) =
s + 1

2
−

(
s +

1
4

)1/2

< 0

for 0 < s < 1. It is apparent that

h1;s(0) = eψ(
√

s ) − s

2
, h1(s)

and

h2;s(0) = eψ((s+1)/2) +
1
2
−

(
s +

1
4

)1/2

, h2(s)

for 0 < s < 1. Direct computation gives

lim
s→1−

h1(s) = e−γ − 1
2

> 0 and lim
s→0+

h2(s) = eψ(1/2) > 0.

These calculations show that neither (3.56) nor (3.57) is the outright winner. When
x is large enough, the lower bound in (3.57) is not better than the one in (3.56),
but the upper bound in (3.57) is better than the one in (3.56).

Remark 3.11.7. Kershaw proved in [64] that if 2x + s ≥ 1 and 0 < s < 1 then the
lower bound in Kershaw’s first double inequality (3.56) is an improvement over the
lower bound in (3.45).

Remark 3.11.8. In [64], Kershaw compared his upper bounds with Erber’s inequal-
ity (3.15), but it is sure that there may be some wrong with his arguments.

3.12. Lorch’s double inequality. In 1984, by initially unaware utilization of Ker-
shaw’s method in [64], see also Section 3.11, Lorch gave in [76] the following results:
For non-negative integers k ≥ 0, the upper bound in the inequality

(
k +

s

2

)s−1

<
Γ(k + s)
Γ(k + 1)

< (k + s)s−1 (3.63)
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is valid for all s > 1, the lower bound in (3.63) is valid for 1 < s < 2, the left-hand
side inequality in (3.63) reverses for s > 2, the double inequality (3.63) reverses for
0 < s < 1.

Remark 3.12.1. For 0 < s < 1, the double inequality (3.63) is not better than (3.56)
for 0 < s < 1, but the range of the parameter s was extended.

Remark 3.12.2. In the special case in which s = 1
2 , the inequalities in (3.63) had

been established first by Kazarinoff in [62] and then by Watson in [156]. From
Watson’s monotonicity result in Section 3.1, the upper bounds in (3.56) for s = 1

2
and (3.63) may be derived.

Remark 3.12.3. The motivation of Lorch’s in [76] was to refine an inequality for
ultra-spherical polynomials. Inequalities in (3.63) were used in [76] to obtain a very
interesting sharpened inequality for ultra-spherical polynomials:

(sin θ)λ
∣∣P (λ)

n (cos θ)
∣∣ <

21−λ

Γ(λ)
(n + λ)λ−1, (3.64)

where θ ∈ [0, π] and

P (λ)
n (x) =

[n/2]∑

k=0

(−1)k Γ(n− k + λ)
Γ(λ)Γ(k + 1)Γ(n− 2k + 1)

(2x)n−2k (3.65)

for n ≥ 0 being an integer and λ > 0 being a real number. The inequality (3.64)
refines the Bernstein inequality

(sin θ)λ
∣∣P (λ)

n (cos θ)
∣∣ <

21−λ

Γ(λ)
nλ−1 (3.66)

for n ≥ 0, 0 < λ < 1 and 0 ≤ θ ≤ π. Earlier in 1975, Durand generalized in [40]
the Bernstein inequality (3.66) and, as a consequence of (23) in [40], the following
inequality may be derived

(sin θ)λ
∣∣P (λ)

n (cos θ)
∣∣ <

Γ(n/2 + λ)
Γ(λ)Γ(n/2 + 1)

(3.67)

for n ≥ 0, 0 < λ < 1 and 0 ≤ θ ≤ π. For more information on further refinements
of the Bernstein inequality (3.66), please refer to [48, pp. 388–389] and the related
references therein.

3.13. Laforgia’s inequalities. In 1984, starting from [47, 64, 76, 156] and em-
ploying more carefully Kershaw’s and Lorch’s method in [64, 76], by discussing
the monotonicity of the function G(x) defined by (3.62) more delicately, Laforgia
constructed in [69] a number of inequalities of the type

(x + α)α−1 <
Γ(x + s)
Γ(x + 1)

< (x + β)α−1 (3.68)

for s > 0 and real number x ≥ 0.

Remark 3.13.1. As in [69], thorough analyses of Kershaw’s and Lorch’s method had
been carried out continuously in [49, 50, 95] and [48, pp. 389–390] respectively.

Remark 3.13.2. By discussing (3.61) subtly, the double inequality (3.57) was ex-
tended on s in [50, Section 5].
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3.14. Dutka’s double inequality. In 1985, some of the extensive previous back-
ground of the papers [62, 156] associated with bounding Wallis’s cosine formula or
Wallis’ product formula was outlined in [39].

On the other hand, by using continued fraction expansions for the quotient of
beta functions, several bounds for the sequence θ(n) defined by (2.12), or the func-
tion θ(x) defined by (3.2), or the function θα(x) defined by (3.48) were established
in [39]: For n ∈ N,

(
1 +

1
2n

)1/2

<
θ(n)
n

+ 1 <

(
1− 1

2n

)−1/2

, (3.69)

4n + 3
2(8n + 5)

< θ(n) <
2n

8n− 1
, (3.70)

8n2 + 13n + 6
32n2 + 48n + 19

< θ(n) <
8n + 3

8(4n + 1)
, (3.71)

and inequalities in (2.7) and (2.26) were recovered.

Remark 3.14.1. The left-hand side inequality in (3.4) and (3.70) is better than the
one in (3.69), the right-hand side inequalities in (3.69) and (3.70) are better than
the corresponding one in (3.4), and the right-hand side inequality in (3.70) is better
than the corresponding one in (3.69).

3.15. Ismail-Lorch-Muldoon’s monotonicity results. In 1986, the logarith-
mically completely monotonic properties of three functions related to the gamma
function or its ratio were obtained in [60, Theorem 2.1, Theorem 2.4 and Theo-
rem 2.6]:

(1) The function

xαΓ(x)
(

e

x

)x

(3.72)

is logarithmically completely monotonic on (0,∞) if and only if α ≤ 1
2 , so

is the reciprocal of the function (3.72) if and only if α ≥ 1;
(2) The function

xb−a Γ(x + a)
Γ(x + b)

(3.73)

for a > b ≥ 0 is logarithmically completely monotonic on (0,∞) if and only
if a + b ≥ 1;

(3) Let
tx

δ

Γ(xδ + 1)
= e−h(x) (3.74)

for 0 < t ≤ e−γ .
(a) For 0 < δ ≤ 1

2 , the function h(x) is positive and h′(x) is completely
monotonic on (0,∞);

(b) For δ = 1, the functions h(x) and h′(x) are both positive and h′′(x) is
completely monotonic on (0,∞).

It was conjectured in [60, p. 8] that h′′(x) remains completely monotonic for at
least some values of δ > 1.

Remark 3.15.1. The logarithmically completely monotonic properties of the func-
tion (3.72) was also proved in [91] early in 1978. See also [61, Theorem 2.1].



BOUNDS FOR THE RATIO OF TWO GAMMA FUNCTIONS 31

Remark 3.15.2. It is clear that the logarithm of the function (3.72) for α = 1
2

or 1 equals the function (3.43). Therefore, the monotonic properties of the func-
tion (3.72) may be used to derive the double inequality (3.44) for b > a > 0 and to
show the best possibilities of the constants 1

2 and 1 in (3.44).

Remark 3.15.3. Since the limit (1.10) is valid, from the decreasingly monotonic
property of the function (3.73), it follows that

xa−b <
Γ(x + a)
Γ(x + b)

<
xa−b

xa−b
0

· Γ(x0 + a)
Γ(x0 + b)

(3.75)

for a > b ≥ 0 and a + b ≥ 1 holds on [x0,∞) for any x0 > 0. It is obvious that this
extends the left-hand side inequalities in (2.6), (2.19) and (2.20).

Remark 3.15.4. The conclusions in [60], mentioned above, were not stated using
the terminology “logarithmically completely monotonic function”, since the authors
were not aware of the paper [14] and related papers such as [19, 112, 118, 124, 125,
136] have not been published then.

3.16. Bustoz-Ismail’s monotonicity results. In 1986, it was revealed in [23]
that

(1) the function

f(x) =
1

(x + c)1/2
· Γ(x + 1)
Γ(x + 1/2)

, x > max
{
−1

2
,−c

}
(3.76)

is logarithmically completely monotonic on (−c,∞) if c ≤ 1
4 , so is the

reciprocal of (3.76) on
[− 1

2 ,∞)
if c ≥ 1

2 ;
(2) the function

(x + c)a−b Γ(x + b)
Γ(x + a)

(3.77)

for 1 ≥ b − a > 0 is logarithmically completely monotonic on the in-
terval (max{−a,−c},∞) if c ≤ a+b−1

2 , so is the reciprocal of (3.77) on
(max{−b,−c},∞) if c ≥ a;

(3) the functions

Γ(x + s)
Γ(x + 1)

exp
[
(1− s)ψ

(
x +

s + 1
2

)]
(3.78)

and
Γ(x + s)
Γ(x + 1)

(
x +

s

2

)s−1

(3.79)

for 0 < s < 1 are logarithmically completely monotonic on (0,∞);
(4) the functions

Γ(x + 1)
Γ(x + s)

exp
(
(s− 1)ψ

(
x +

√
s
))

(3.80)

and (
x− 1

2
+

√
s +

1
4

)1−s
Γ(x + s)
Γ(x + 1)

(3.81)

for 0 < s < 1 are strictly decreasing on (0,∞).

Remark 3.16.1. The monotonic properties of the function (3.76) implies inequali-
ties (3.4) and (3.70).
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Remark 3.16.2. These monotonicity results generalize, extend and refine inequali-
ties (2.6), (2.19), (2.20), (3.56), (3.57), monotonic properties of the function (3.73),
and so on.

3.17. Alzer’s monotonicity result. In 1993, it was obtained in [8, Theorem 1]
that

Γ(x + s)
Γ(x + 1)

(x + 1)x+1/2

(x + s)x+s−1/2
exp

(
s− 1 +

ψ′(x + 1 + α)− ψ′(x + s + α)
12

)
(3.82)

for α > 0 and s ∈ (0, 1) is logarithmically completely monotonic on (0,∞) if and
only if α ≥ 1

2 , so is the reciprocal of (3.82) for α ≥ 0 and s ∈ (0, 1) if and only if
α = 0.

In [74, Theorem 3], a slight extension of [8, Theorem 1] was presented: The
function

Γ(x + s)
Γ(x + t)

(x + t)x+t−1/2

(x + s)x+s−1/2
exp

(
s− t +

ψ′(x + t + α)− ψ′(x + s + α)
12

)
(3.83)

for 0 < s < t and x ∈ (0,∞) is logarithmically completely monotonic if and only if
α ≥ 1

2 , so is the reciprocal of (3.83) if and only if α = 0.
The decreasingly monotonic properties of (3.83) and its reciprocal imply that

exp
(

t− s +
ψ′(x + s + β)− ψ′(x + t + β)

12

)
≤ Γ(x + s)

Γ(x + t)
(x + t)x+t−1/2

(x + s)x+s−1/2

≤ exp
(

t− s +
ψ′(x + s + α)− ψ′(x + t + α)

12

)
(3.84)

for α > β ≥ 0 are valid for 0 < s < t and x ∈ (0,∞) if and only if β = 0 and α ≥ 1
2 .

Remark 3.17.1. The inequality (3.84) is a slight extension of the double inequal-
ity (2.6) in [8, Corollary 2].

Remark 3.17.2. In [8, Theorem 4], Kečkić-Vasić’s double inequality (3.44) for b >
a > 1 was refined and sharpened. For detailed information see Section 5.2.

3.18. Ismail-Muldoon’s monotonicity result. In 1994, it was obtained in [61,
Corollary 2.4] that: For a > 0, the function

xα−xΓ(x)
(x + a)α−x−aΓ(x + a)

(3.85)

is logarithmically completely monotonic on (0,∞) if and only if α ≤ 1
2 , and so is

the reciprocal of (3.85) if and only if α ≥ 1.

3.19. Elezović-Giordano-Pečarić’s results.

3.19.1. A standard argument shows that the inequality (3.56) can be rearranged
as

s

2
<

[
Γ(x + 1)
Γ(x + s)

]1/(1−s)

− x <

√
s +

1
4
− 1

2
. (3.86)

Therefore, monotonic and convex properties of the general function

zs,t(x) =





[
Γ(x + t)
Γ(x + s)

]1/(t−s)

− x, s 6= t

eψ(x+s) − x, s = t

(3.87)
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for x ∈ (−α,∞), where s and t are two real numbers and α = min{s, t}, was
considered in [43, Theorem 1] and obtained the following theorem.

Theorem 3.1. The function zs,t(x) is either convex and decreasing for |t− s| < 1
or concave and increasing for |t− s| > 1.

As consequences of Theorem 3.1, the following useful conclusions are derived:
(1) The function

eψ(x+t) − x (3.88)

for all t > 0 is decreasing and convex from (0,∞) onto
(
eψ(t), t− 1

2

)
.

(2) For all x > 0,
ψ′(x)eψ(x) < 1. (3.89)

(3) For all x > 0 and t > 0,

ln
(

x + t− 1
2

)
< ψ(x + t) < ln

(
x + eψ(t)

)
. (3.90)

(4) For x > −α, the inequality
[

Γ(x + t)
Γ(x + s)

]1/(t−s)

<
t− s

ψ(x + t)− ψ(x + s)
(3.91)

holds if |t− s| < 1 and reverses if |t− s| > 1.

Remark 3.19.1. Direct computation yields

z′′s,t(x)
zs,t(x) + x

=
[
ψ(x + t)− ψ(x + s)

t− s

]2

+
ψ′(x + t)− ψ′(x + s)

t− s
. (3.92)

To prove the positivity of the function (3.92), the following formula and inequality
are used as basic tools in the proof of [43, Theorem 1]:

(1) For x > −1,

ψ(x + 1) = −γ +
∞∑

k=1

(
1
k
− 1

x + k

)
. (3.93)

(2) If a ≤ b < c ≤ d, then
1
ab

+
1
cd

>
1
ac

+
1
bd

. (3.94)

Remark 3.19.2. In [126], a new proof for [43, Theorem 1] were supplied by making
use of (1.28) and Theorem 1.2 on the logarithmically convex properties of qα,β(t).

Note that a similar proof to [126] for [43, Theorem 1] in the case of |s− t| < 1
was also given in [25].

Remark 3.19.3. Actually, the function (3.92) is completely monotonic under some
conditions about s and t. This was verified in [100, 107, 121], and so several new
proofs for [43, Theorem 1] were supplied again. See Section 6.2.

Remark 3.19.4. The inequality (3.89) was recovered in [18, Lemma 1.2].

Remark 3.19.5. It is easy to see that Elezović-Giordano-Pečarić’s first main result
generalizes Watson’s monotonicity result in [156] and Lazarević-Lupaş’s convexity
result in [71]. See Section 3.1 and Section 3.9.
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Remark 3.19.6. In fact, the function (3.88) is deceasing and convex on (−t,∞) for
all t ∈ R. See [119, Theorem 2].

Remark 3.19.7. It is clear that the double inequality (3.90) can be deduced di-
rectly from the decreasingly monotonic property of (3.88). Furthermore, from the
decreasingly monotonic and convex properties of (3.88) on (−t,∞), the inequality
(3.89) and

ψ′′(x) + [ψ′(x)]2 > 0 (3.95)

on (0,∞) can be derived straightforwardly.

Remark 3.19.8. The inequality (3.89) and (3.95) were recovered [7, p. 208] and
[18, Lemma 1.1]. The inequality (3.95) has been generalized to the completely
monotonic properties of divided differences of ψ(x) and ψ′(x) in [100, 107, 121].
See Section 6.2.

3.19.2. It is easy to see that inequality (3.57) can be rewritten for s ∈ (0, 1) and
x ≥ 1 as

exp
[
ψ

(
x +

√
s
)]

<

[
Γ(x + 1)
Γ(x + s)

]1/(1−s)

< exp
[
ψ

(
x +

s + 1
2

)]
. (3.96)

Now it is natural to ask: What are the best constants δ1(s, t) and δ2(s, t) such that

exp[ψ(x + δ1(s, t))] ≤
[

Γ(x + t)
Γ(x + s)

]1/(t−s)

≤ exp[ψ(x + δ2(s, t))] (3.97)

holds for x > −min{s, t, δ1(s, t), δ2(s, t)}? where s and t are two real numbers.
Elezović-Giordano-Pečarić’s answer is [43, Theorem 4]: If the integral ψ-mean

of s and t is denoted by

Iψ = Iψ(s, t) = ψ−1

(
1

t− s

∫ t

s

ψ(u) du

)
, (3.98)

then the inequality

ψ
(
x + Iψ(s, t)

)
<

1
t− s

∫ t

s

ψ(x + u) du < ψ

(
x +

s + t

2

)
(3.99)

is valid for every x ≥ 0 and positive numbers s and t.

Remark 3.19.9. It is clear that Elezović-Giordano-Pečarić’s second main result [43,
Theorem 4] is not the outright winner surely, since the ranges of s and t in (3.99) is
restricted to be positive and the lower bound in (3.99) can not be calculated easily.

Remark 3.19.10. The question (3.97) was also investigated in [97, 115] and has been
generalized in [102, 106, 130, 131, 137]. See Section 6.4.1 and Section 6.4.2.

3.19.3. The function (3.78) and its monotonic properties were generalized in [43,
Theorem 5] and [126, Proposition 5] as follows: The function

[
Γ(x + t)
Γ(x + s)

]1/(s−t)

exp
(

ψ

(
x +

s + t

2

))
(3.100)

is logarithmically completely monotonic for x ∈ (−α,∞), where s and t are two
real numbers and α = min{s, t}.
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Remark 3.19.11. In [126, Proposition 5], as a consequence of the logarithmically
complete property of the function (3.100), the right-hand side inequality in (3.96)
was extended as

exp
[
ψ

(
x +

s + t

2

)]
>

[
Γ(x + t)
Γ(x + s)

]1/(t−s)

. (3.101)

3.20. Some results from the viewpoint of means. It may be worthwhile men-
tioning the paper [105] in which some monotonic properties and inequalities for the
gamma and incomplete gamma functions were constructed by using properties of ex-
tended mean values E(r, s; x, y) or generalized weighted mean values Mf,g(r, s;x, y).
For example, the inequality

eγx < Γ(x + 1) < exψ(x+1) (3.102)

is valid for x > 0 and the functions
[
Γ(s, x)
Γ(r, x)

]1/(s−r)

and
[
γ(s, x)
γ(r, x)

]1/(s−r)

(3.103)

are increasing in r > 0, s > 0 and x > 0, where Γ(s, x) and γ(s, x) denote the
incomplete gamma functions with usual notation.

Remark 3.20.1. The right-hand side inequality in (3.102) is valid for x > −1 and
takes an equality at x = 0. Moreover, it can be rearranged by (1.2) and (1.3) as

xΓ(x) ≤ exψ(x)+1, x > −1. (3.104)

But this inequality is not better than those in [52] for bounding the gamma function
Γ(x).

3.21. Batir’s double inequality. It is clear that the double inequality (3.57) can
be rearranged as

ψ
(
x +

√
s
)

<
ln Γ(x + 1)− ln Γ(x + s)

1− s
< ψ

(
x +

s + 1
2

)
(3.105)

for 0 < s < 1 and x > 1. The middle term in (3.105) can be regarded as a divided
difference of the function ln Γ(t) on the interval (x + s, x + 1). Motivated by this,
Batir generalized and extended in [16, Theorem 2.7] the double inequality (3.105)
as

−
∣∣ψ(n+1)(L−(n+2)(x, y))

∣∣ <

∣∣ψ(n)(x)
∣∣−

∣∣ψ(n)(y)
∣∣

x− y
< −

∣∣ψ(n+1)(A(x, y))
∣∣ (3.106)

which bounds the divided differences of the polygamma functions, where x and
y are positive numbers, n a positive integer, A(x, y) and Lp(a, b) are defined by
(1.29).

Remark 3.21.1. In [17, Theorem 2.4], the following incorrect double inequality was
obtained:

e(x−y)ψ(L(x+1,y+1)−1) ≤ Γ(x)
Γ(y)

≤ e(x−y)ψ(A(x,y)), (3.107)

where x and y are positive real numbers, and L(x, y) and A(x, y) are mean values
defined in Section 1.6.4.

Remark 3.21.2. Inequalities in (3.106) and (3.107) have been corrected and refined
in [102, 106, 130, 131, 137] respectively. See Section 6.4.2.
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3.22. Further remarks.

Remark 3.22.1. In [163, 164], by using a method of the geometric convexity for
functions, the authors presented some known and new results on the ratio of two
gamma functions, including a refinement of (3.6).

Remark 3.22.2. In [28], the authors investigated some general cases seemingly re-
lated with the ratio of two gamma functions but essentially similar to the f -means
in [44] and some results appeared in [16, 17, 18].

4. Merkle’s methods and inequalities

It is known that M. Merkle did many researches on bounding the ratio of two
gamma functions and has his own particular methods, approaches and notations,
therefore, this section is devoted to summarize his results and to present his methods
on this topic.

M. Merkle himself said in [85] that his method is founded on certain general
convexity results, as well as on integral representations of error terms in some
classical and related inequalities.

4.1. The β-transform. This transform has been known since [21, 142, 153, 154],
see the inequality (3.22) in Section 3.4 and the inequalities (3.50) and (3.51) in
Section 3.10.

The inequality

A(x, β) ≤ Γ(x + β)
Γ(x)

(4.1)

implies, replacing x by x + β and β by 1− β,

A(x + β, 1− β) ≤ Γ(x + 1)
Γ(x + β)

, (4.2)

and therefore
Γ(x + β)

Γ(x)
≤ x

A(x + β, 1− β)
, (4.3)

so, only the lower bound (4.1) is enough, or vice versa. It is said that the inequal-
ity (4.3) is derived from (4.1) by a β-transform.

4.2. The πn-transform. This transform was firstly applied in [142, 153], see also
Section 3.5 and Section 3.6. It works for inequalities of both the ratio of two gamma
functions and Gurland’s ratio.

For n ∈ N, let

II(x, β, n) =
x(x + 1) · · · (x + n− 1)

(x + β)(x + β + 1) . . . (x + β + n− 1)
. (4.4)

Start from the inequality
Γ(x + β)

Γ(x)
≤ B(x, β), (4.5)

write it for x + n and β and then apply the recurrence (1.2), to obtain

Γ(x + β)
Γ(x)

≤ B(x + n, β) II(x, β, n), (4.6)
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Similarly, for an inequality

Γ(x)Γ(y)
[Γ((x + y)/2)]2

≤ B(x, y) (4.7)

one obtains
Γ(x)Γ(y)

[Γ((x + y)/2)]2
≤ B(x + n, y + n)ρ(x, y, n), (4.8)

where

ρ(x, y, n) =
(x + y)2(x + y + 2)2 · · · (x + y + 2n− 2)2

22nx(x + 1) · · · (x + n− 1)y(y + 1) · · · (y + n− 1)
. (4.9)

Remark 4.2.1. The β-transform and the πn-transform are connected closely. The
techniques among these transforms are essentially the same, that is, using the
formula (1.2) iteratively.

4.3. Convexities used by Merkle. The following texts are the main conclusions
that M. Merkle used in his papers bounding the ratio of two gamma functions.

4.3.1. Let f : I ⊆ R→ R have a continuous derivative f ′ and let

F (x, y) =
f(y)− f(x)

y − x
(4.10)

on I2 for x 6= y, and F (x, x) = f ′(x). Then it was obtained in [81, pp. 273–274]
that the following conclusions are equivalent to each other:

(1) f ′ is convex on I.
(2) f ′

(
x+y

2

) ≤ F (x, y) for all x, y of I.
(3) F (x, y) ≤ f ′(x)+f ′(y)

2 for all x, y of I.
(4) F is convex on I2.
(5) F is Schur-convex on I2.

4.3.2. The function

ln Γ(x)−
(

x− 1
2

)
ln x + x− 1

2
ln(2π)−

n∑

k=1

B2k

2k(2k − 1)x2k−1
(4.11)

is convex on (0,∞) if n is even and it is concave if n is odd. See [86, p. 372].

Remark 4.3.1. The completely monotonic properties of the function (4.11) were
proved in [6, p. 383, Theorem 8] and [67].

4.3.3. The following convex properties were proved by [83, Theorem 1]: If

Fa(x) = lnΓ(x)−
(

x− 1
2

)
ln x− 1

12
ψ′(x + a), (4.12)

then the function F0(x) is strictly concave and the function Fa(x) for a ≥ 1
2 is

strictly convex on (0,∞).

4.4. Discrete inequalities produced by convexities. By utilizing the above
convex properties or their corresponding concave properties, the following discrete
inequalities for bounding the ratio of two gamma functions were demonstrated in
term of Merkle’s own expressions, notations and style.
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4.4.1. In 1996, the following recurrent conclusions were obtained by using the
convexity of the function (4.11) in [86, Theorem 2]: Let B2k be Bernoulli numbers,
L0(x) = 0,

L(x) = L2n(x) = −
2n∑

k=1

B2k

2k(2k − 1)x2k−1
, n ∈ N, (4.13)

R(x) = R2n+1(x) = −
2n+1∑

k=1

B2k

2k(2k − 1)x2k−1
, n ∈ N ∪ {0}, (4.14)

U(x, β, S) = S(x)− βS(x− 1 + β)− (1− β)S(s + β), (4.15)

V (x, β, S) = −U(x + β, 1− β, S) = (1− β)S(x) + βS(x + 1)− S(x + β), (4.16)

A(x, β) =

[
(x− 1 + β)β(x + β)1−β

]x−1/2+β

xx−1/2
, x > 1− β, (4.17)

B(x, β) =
x

A(x + β, 1− β)
=

(x + β)x+β−1/2xβ

x(1−β)(x−1/2)(x + 1)β(x+1/2)
, x > 0. (4.18)

Then for β ∈ [0, 1] and x > 1− β, we have

eU(x,β,L(x))A(x, β) ≤ Γ(x + β)
Γ(x)

≤ eV (x,β,L(x))B(x, β), (4.19)

eV (x,β,R(x))B(x, β) ≤ Γ(x + β)
Γ(x)

≤ eU(x,β,R(x))A(x, β). (4.20)

With equalities if and only if β = 0 and β = 1. As x → ∞, the absolute and
relative error in all four inequalities tends to zero.

In [86, Theorem 3], it was obtained that: For x ≥ 1−β
2 and β ∈ [0, 1],

Γ(x + β)
Γ(x)

≥
(

x− 1− β

2
+

1− β2

24x + 12

)β

, (4.21)

with equality if and only if β = 0 and β = 1.

4.4.2. In 1998, by the convexity of ln Γ(x) and convex properties mentioned in
Section 4.3.1, the following inequalities were obtained in [81]:

(1) For positive numbers x and y,

ψ(x) + ψ(y)
2

≤ ln Γ(y)− ln Γ(x)
y − x

=
1

y − x

∫ y

x

ψ(u) du ≤ ψ

(
x + y

2

)
. (4.22)

If letting y = x + β for β > 0 in (4.22), then

exp
(

β[ψ(x) + ψ(x + β)]
2

)
≤ Γ(x + β)

Γ(x)
≤ exp

(
βψ

(
x +

β

2

))
. (4.23)

(2) For x > 0 and 0 ≤ β ≤ 1,

Γ(x + β)
Γ(x)

≥ x(1+β)(2−β)/2(x + 1)β(1+β)/2

x + β
(4.24)

The equalities in (4.24) hold for β = 0 and β = 1.
(3) For x > 0 and 0 ≤ β ≤ 1,

Γ(x + β)
Γ(x)

≥ xβ2
eβ(1−β)ψ(x). (4.25)
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(4) For x > 0 and β < 1
2 ,

Γ(x + β)
Γ(x)

≤ x−β2/(1−2β) exp
(

β(1− β)
1− 2β

ψ(x + β)
)

. (4.26)

(5) For x > 0 and β > 0,

Γ(x + 3β)
Γ(x)

≤
(

Γ(x + 2β)
Γ(x + β)

)2

. (4.27)

(6) For x > 0,

ln
(

x− 1
2

)
≤ ψ ≤ ln x− 1

2x
. (4.28)

Remark 4.4.1. The lower bound in (4.25) is closer than the one in (4.23). The
upper bound in (4.23) was also obtained in [47]. The lower bound in (4.23) is closer
than a lower bound in [47].

4.4.3. The inequality in the right-hand side of (2.19), the double inequality (3.57)
and (3.84) for t = 1 are rewritten in [83] as

Γ(x + β)
Γ(x)

< exp(βψ(x + β)), 0 < β < 1, x > 0; (4.29)

exp
(
βψ

(
x + β − 1 +

√
1− β

))
<

Γ(x + β)
Γ(x)

< exp
(

βψ

(
x +

β

2

))
(4.30)

for 0 < β < 1 and x− 1 + β > 0; and

(x + β)x+β−1/2

xx−1/2
exp

(
−β +

ψ′(x + β)− ψ′(x)
12

)
<

Γ(x + β)
Γ(x)

<
(x + β)x+β−1/2

xx−1/2
exp

(
−β +

ψ′(x + β + a)− ψ′(x + a)
12

)
(4.31)

for β ∈ (0, 1), x− 1 + β > 0 and a ≥ 1
2 .

By using the convex properties of Fa(x) defined by (4.12) and the mean value
theorem for derivative, the double inequality (4.31) was extended in [83, Corollary 1]
to x > 0, β > 0 and a ≥ 1

2 .
By making use of the convex properties of Fa(x) defined by (4.12) and Jensen’s

inequality for convex functions, the following double inequalities were presented in
[83, Corollary 2]:

(1) If β ∈ (0, 1) and s ≥ 1
2 , then

A(x, β) exp
(

βψ′(x + a− 1 + β) + (1− β)ψ′(x + a + β)− ψ′(x + a)
12

)
<

Γ(x + β)
Γ(x)

< A(x, β) exp
(

βψ′(x− 1 + β) + (1− β)ψ′(x + β)− ψ′(x)
12

)
(4.32)

holds for x > 1− β, where A(x, β) is defined by (4.17).
(2) If β ∈ (0, 1) and s ≥ 1

2 , then

B(x, β) exp
(

ψ′(x + β)− (1− β)ψ′(x)− βψ′(x + 1)
12

)
<

Γ(x + β)
Γ(x)

< B(x, β) exp
(

ψ′(x + a + β)− (1− β)ψ′(x + a)− βψ′(x + a + 1)
12

)
(4.33)
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holds for x > 0, where B(x, β) is defined by (4.18).
(3) If β > 1, then the reversed inequalities of (4.32) and (4.33) hold for x > 0.

In [83, Theorem 1], it was proved that the double inequality (4.33) for β ∈ (0, 1)
and x > 0 is sharper than (4.31).

It is pointed out that an advantage of inequalities based on convexity is that they
can be infinitely sharpened. As an example, the following inequality was showed in
[83, Theorem 3]: For any x > 0 and β ∈ (0, 1), the inequality

Γ(x + β)
Γ(x)

<
x(x + 1) · · · (x + n− 1)A(x + n, β)

(x + β)(x + β + 1) · · · (x + β + n− 1)
×

exp
(

βψ′(x + n− 1 + β) + (1− β)ψ′(x + n + β)− ψ′(x + n)
12

)
(4.34)

holds for n ∈ N.
By proving the fact that the function (4.10) applied to f(x) = lnΓ(x) is Schur-

convex for x > 0 and y > 0, the inequality (4.23) was recovered in [83, Corollary 3]
and was proved in [83, Theorem 5] to be sharper than (4.30).

4.4.4. In 1999, Merkle used in [88, Section 4] only the convex property of ln Γ(x)
to discover the left-hand side of Wendel’s double inequality (2.6) and

Γ(x + β)
Γ(x)

≤ (x + n)β II(x, β, n), x > 0, β ∈ [0, 1]; (4.35)

Γ(x + β)
Γ(x)

≥ (x− 1 + β)β , x > 0, β ∈ [0, 1]; (4.36)

Γ(x + β)
Γ(x)

≥ (x + n− 1 + β)β II(x, β, n), x > 0, β ∈ [0, 1]; (4.37)

Γ(x + β)
Γ(x)

≥ [x(x− 1 + β)]β/2, x > 0, β ∈ [0, 1]; (4.38)

Γ(y)
Γ(x)

≥ [(x− 1)y](y−x)/2, 0 < x < y. (4.39)

It is easy to see that (4.38) is sharper than (4.36) and (4.39); however, (4.39) is not
restricted to y − x ≤ 1.

4.4.5. In [82], the author rediscovered by the same method as in [81, 83, 86] the
inequalities (4.28), (4.23), (4.27) and gave by using the β-transform the following
inequalities

II(x, n, β) exp
(

β[ψ(x + n) + ψ(x + n + β)]
2

)
≤ Γ(x + β)

Γ(x)

≤ II(x, n, β) exp
(

βψ

(
x + n +

β

2

))
(4.40)

and

ln
(

x + n− 1
2

)
−

n−1∑

k=0

1
x + k

≤ ψ(x) ≤ ln(x + n)− 1
2(x + n)

−
n−1∑

k=0

1
x + k

. (4.41)
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4.5. Further remarks.

Remark 4.5.1. Actually, a wonderful survey of Merkle’s methods, tools and tech-
niques which can be used to produce inequalities for the gamma function has been
given in [85]. Therefore, the readers should refer to [85] for the very real ideas and
spirits of Professor M. Merkle.

5. Refinements and extensions of Kečkić-Vasić’s inequality

Due to the importance of Kečkić-Vasić’s double inequality (3.44) and the enrich-
ment of results on it, now we devote this special section to this topic.

5.1. An extension and the sharpness. In Section 3.7, Kečkić-Vasić’s double
inequality (3.44) obtained in [63] was introduced. An extension and the sharpness
of (3.44), followed by the decreasingly monotonic property of the function (3.72)
considered in [60], has been claimed in Remark 3.15.2.

5.2. Alzer’s refinement and sharpness. In 1993, Kečkić-Vasić’s double inequal-
ity (3.44) was rearranged in [8, p. 342] as

(
b

a

)1/2 Γ(b)
Γ(a)

< [I(a, b)]b−a <
b

a
· Γ(b)
Γ(a)

(5.1)

for b > a ≥ 1, where

I(a, b) =
1
e

(
bb

aa

)1/(b−a)

(5.2)

for a > 0 and b > 0 with a 6= b is the so-called identric or exponential mean,
see [22, 103, 108]. This provides a relationship between the identric and the gamma
function.

H. Alzer in [8, Theorem 4] sharpened the inequality (5.1) as
(

b

a

)α Γ(b)
Γ(a)

< [I(a, b)]b−a <

(
b

a

)β Γ(b)
Γ(a)

(5.3)

for b > a ≥ 1 if and only if α ≤ 1
2 and β ≥ γ.

If setting b = x + 1 and a = x + s, then inequality (5.3) with α = 1
2 and β = γ

yields
(x + 1)x+1−γ

(x + s)x+s−γ
es−1 <

Γ(x + 1)
Γ(x + s)

<
(x + 1)x+1/2

(x + s)x+s−1/2
es−1 (5.4)

for all real numbers x and s satisfying s < 1 and x + s ≥ 1.

Remark 5.2.1. The lower bound in (5.4) improves the corresponding one in (3.45).

Remark 5.2.2. The double inequality (5.4) is not better than (3.84).

5.3. ABRVV’s monotonic and log-convex functions. In 1995, by using the
monotonicity of Θ1(x) defined by (1.34), it was proved with no any application
in [12, Theorem 3.2] that the function x1/2−xexΓ(x) is decreasing and logarith-
mically convex from (0,∞) onto

(√
2π ,∞)

and that the function x1−xexΓ(x) is
increasing and logarithmically concave from (0,∞) onto (1,∞).

It is remarked in [12, p. 1720] that a result similar to the above monotonic and
log-convex properties appears in [77, p. 17].
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Remark 5.3.1. These conclusions extend the corresponding results in [63], are par-
ticular cases of properties of the function (3.72) in [60], and may be used to establish
the double inequality (3.44) for b > a > 0.

Remark 5.3.2. The convex properties of these two functions can be applied to obtain
bounds for Gurland’s ratio (3.13), as done in [157] and mentioned in Section 5.5.2
below.

5.4. Alzer’s necessary and sufficient conditions. In 1997, the monotonic and
convex properties of the function (3.72) were slightly extended in [6, p. 376, Theo-
rem 2]: For c ≥ 0, the function (3.72) is decreasing on (c,∞) if and only if α ≤ 1

2
and increasing on (c,∞) if and only if

α ≥
{

Θ1(c) if c > 0,

1 if c = 0.
(5.5)

Remark 5.4.1. From these monotonic properties, Kečkić-Vasić’s double inequal-
ity (3.44) may be generalized as follows: If b > a > c ≥ 0, then the double
inequality (5.3) holds if and only if α ≤ 1

2 and β ≥ Θ1(c).

5.5. Chen-Qi’s necessary and sufficient conditions. In 2006, the following
necessary and sufficient conditions were demonstrated in [33]: For α ∈ R and
β ≥ 0, the function

fα,β(x) =
exΓ(x + β)

xx+β−α
(5.6)

is logarithmically completely monotonic on (0,∞) if 2α ≤ 1 ≤ β; the function
fα,1(x) is logarithmically completely monotonic on (0,∞) if and only if 2α ≤ 1; so
is the function [fα,1(x)]−1 on (0,∞) if and only if α ≥ 1.

From monotonic properties of f1/2,1(x) and [f1,1(x)]−1, Kečkić-Vasić’s double
inequality (3.44) obtained in [63] was extended in [33] from b > a > 1 to b > a > 0.

Remark 5.5.1. The functions defined by (3.43) and (3.72) and discussed in [12,
Theorem 3.2] are particular cases of the function fα,β(x) defined by (5.6).

Remark 5.5.2. From convex properties of f1/2,1(x) and [f1,1(x)]−1 and Jensen’s
inequality (1.26), bounds for Gurland’s ratio (3.13) were established in [157]: For
positive numbers x and y,

xx−1/2yy−1/2

[(x + y)/2]x+y−1
≤ T (x, y) ≤ xx−1yy−1

[(x + y)/2]x+y−2
. (5.7)

The left-hand side inequality in (5.7) is same as the corresponding one in [84,
Theorem 1], but their upper bounds do not include each other.

5.6. Guo-Qi-Srivastava’s double inequality. For β ∈ R, let

gβ(x) =
exΓ(x + 1)
(x + β)x+β

(5.8)

in the interval (max{0,−β},∞). In [53, 55], it was showed that the function gβ(x)
is logarithmically completely monotonic if and only if β ≥ 1 and that the function
[gα,β(x)]−1 is logarithmically completely monotonic if and only if β ≤ 1

2 .
As consequences of the monotonicity results of the function gβ(x), the following

two-sided inequality was derived in [55]:

(x + 1)x+1

(y + 1)y+1
ey−x <

Γ(x + 1)
Γ(y + 1)

<
(x + 1/2)x+1/2

(y + 1/2)y+1/2
ey−x (5.9)
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or, equivalently,

I

(
x +

1
2
, y +

1
2

)
<

[
Γ(x + 1)
Γ(y + 1)

]1/(x−y)

< I(x + 1, y + 1) (5.10)

for y > x > 0, where the constants 1 and 1
2 in the very left and the very right sides

of the two-sided inequalities (5.9) and (5.10) cannot be replaced, respectively, by
smaller and larger ones.

Remark 5.6.1. By convex properties of gβ(x) and Jensen’s inequality (1.26), a new
double inequality for a generalization of Gurland’s ratio (3.13) may be deduced:
For n ∈ N, xk > 0 for 1 ≤ k ≤ n, and pk ≥ 0 satisfying

∑n
k=1 pk = 1, the inequality

(∑n
k=1 pkxk

)∏n
k=1(xk + b)pk(xk+b)

[∑n
k=1 pk(xk + b)

]∑n
k=1 pk(xk+b) ∏n

k=1 xpk

k

<

∏n
k=1[Γ(xk)]pk

Γ
(∑n

k=1 pkxk

)

<

(∑n
k=1 pkxk

) ∏n
k=1(xk + a)pk(xk+a)

[∑n
k=1 pk(xk + a)

]∑n
k=1 pk(xk+a) ∏n

k=1 xpk

k

(5.11)

holds if and only if a ≤ 1
2 and b ≥ 1. In particular, Gurland’s ratio (3.13) can be

bounded by

2x+y+2b−2(x + y)2(x + b)x+b(y + b)y+b

xy(x + y + 2b)x+y+2b
< T (x, y)

<
2x+y+2a−2(x + y)2(x + a)x+a(y + a)y+a

xy(x + y + 2a)x+y+2a
(5.12)

if and only if a ≤ 1
2 and b ≥ 1, where x and y are positive numbers.

5.7. Some more Kečkić-Vasić type inequalities.

5.7.1. In 2008, some new conclusions of the function fα,β(x) were procured in [56]:

(1) If β ∈ (0,∞) and α ≤ 0, then fα,β is logarithmically completely monotonic
on (0,∞);

(2) If β ∈ (0,∞) and fα,β is a logarithmically completely monotonic function
on (0,∞), then α ≤ min

{
β, 1

2

}
;

(3) If β ≥ 1, then fα,β is logarithmically completely monotonic on (0,∞) if
and only if α ≤ 1

2 .

As direct consequences of monotonic properties above, a Kečkić-Vasić type in-
equality is deduced immediately: If a and b are positive numbers with a 6= b, then

(1) the inequality

I(a, b) >

[(
a

b

)α−β Γ(a + β)
Γ(b + β)

]1/(a−b)

(5.13)

holds true for β ≥ 1 if and only if α ≤ 1
2 ;

(2) the inequality (5.13) holds true also for β ∈ (0,∞) if α ≤ 0.
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5.7.2. Subsequently, a necessary and sufficient condition and a necessary condition
for [fα,β(x)]−1 to be logarithmically completely monotonic on (0,∞) were estab-
lished in [54] as follows.

Theorem 5.1 ([54]). If the function [fα,β(x)]−1 is logarithmically completely mono-
tonic on (0,∞), then either β > 0 and α ≥ max

{
β, 1

2

}
or β = 0 and α ≥ 1.

Theorem 5.2 ([54]). If β ≥ 1
2 , the necessary and sufficient condition for the

function [fα,β(x)]−1 to be logarithmically completely monotonic on (0,∞) is α ≥ β.

As the first application of Theorem 5.2, the following inequalities are derived by
using logarithmically completely monotonic properties of the functions [fα,β(x)]±1

on (0,∞).

Theorem 5.3 ([54]). Let β be a positive number.
(1) For k ∈ N, double inequalities

ln x− 1
x
≤ ψ(x) ≤ ln x− 1

2x
(5.14)

and
(k − 1)!

xk
+

k!
2xk+1

≤ (−1)k+1ψ(k)(x) ≤ (k − 1)!
xk

+
k!

xk+1
(5.15)

hold on (0,∞).
(2) When β > 0, inequalities

ψ(x + β) ≤ ln x +
β

x
(5.16)

and

(−1)kψ(k−1)(x + β) ≥ (k − 2)!
xk−1

− β(k − 1)!
xk

(5.17)

hold on (0,∞) for k ≥ 2.
(3) When β ≥ 1

2 , inequalities

ψ(x + β) ≥ ln x and (−1)kψ(k−1)(x + β) ≤ (k − 2)!
xk−1

(5.18)

hold on (0,∞) for k ≥ 2.
(4) When β ≥ 1, inequalities

ψ(x + β) ≤ ln x +
β − 1/2

x
(5.19)

and

(−1)kψ(k−1)(x + β) ≥ (k − 2)!
xk−1

− (β − 1/2)(k − 1)!
xk

(5.20)

holds on (0,∞) for k ≥ 2.

As the second application of Theorem 5.2, the following inequalities are derived
by using logarithmically convex properties of the function [fα,β(x)]±1 on (0,∞).

Theorem 5.4 ([54]). Let n ∈ N, xk > 0 for 1 ≤ k ≤ n, pk ≥ 0 satisfying∑n
k=1 pk = 1. If either β > 0 and α ≤ 0 or β ≥ 1 and α ≤ 1

2 , then
∏n

k=1[Γ(xk + β)]pk

Γ
(∑n

k=1 pkxk + β
) ≥

∏n
k=1 x

pk(xk+β−α)
k(∑n

k=1 pkxk

)∑n
k=1 pkxk+β−α

. (5.21)

If α ≥ β ≥ 1
2 , then the inequality (5.21) reverses.
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As the final application of Theorem 5.2, the following inequality may be derived
by using the decreasingly monotonic property of the function [fα,β(x)]−1 on (0,∞).

Theorem 5.5 ([54]). If α ≥ β ≥ 1
2 , then

I(x, y) <

[(
x

y

)α−β Γ(x + β)
Γ(y + β)

]1/(x−y)

(5.22)

holds true for x, y ∈ (0,∞) with x 6= y.

Remark 5.7.1. The double inequality (5.15) and its sharpness can also be deduced
from [109, Thorem 1.3].

5.8. Guo-Zhang-Qi’s inequality. In 2008, by using the monotonicity and con-
vexity of the function Θ1(x) defined by (1.34), it was showed in [52] that the
function

h(x) =
exΓ(x)

xx−Θ1(x)
(5.23)

on (0,∞) has a unique maximum e at x = 1, with the following two limits

lim
x→0+

h(x) = 1 and lim
x→∞

h(x) =
√

2π . (5.24)

As consequences of the monotonicity of the function h(x), it was concluded in
[52] that the following inequality:

I(x, y) <

[
xΘ1(x)Γ(x)
yΘ1(y)Γ(y)

]1/(x−y)

(5.25)

holds true for x ≥ 1 and y ≥ 1 with x 6= y. If 0 < x ≤ 1 and 0 < y ≤ 1 with x 6= y,
the inequality (5.25) is reversed.

5.9. Further remarks.

Remark 5.9.1. The above discusses show that Kečkić-Vasić type inequalities and
bounds for Gurland’s ratio (3.13) may be established respectively from the mono-
tonic and convex properties of the same functions: Kečkić-Vasić type inequalities
follow from the monotonic properties while bounds for Gurland’s ratio (3.13) do
from the convex properties.

6. Qi and his coauthors’ results

Beginning from 2005, a large part of my academic attention was concentrated
on bounding the ratio of two gamma functions.

6.1. Proofs of Elezović-Giordano-Pečarić’s monotonicity result. In [126],
by making use of the convolution theorem (1.28) for Laplace transform and Theo-
rem 1.2 on logarithmic convex properties of the function qα,β(x) defined by (1.35),
a new proof of [43, Theorem 1], that is, Theorem 3.1 in Section 3.19.1, was given.

By a similar approach to the one in [126], a concise proof for [43, Theorem 1]
was presented in [116] recently.
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6.2. Completely monotonic properties of divided differences. After giving
a new proof for [43, Theorem 1], completely monotonic properties of the function
(3.92), which involves divided differences of the digamma and trigamma functions,
were considered in [100, 107, 121] by employing one of the main results in [99].

Our main results can be stated as follows.

Theorem 6.1. Let s and t be two real numbers and α = min{s, t}. Define

δs,t(x) =





ψ(x + t)− ψ(x + s)
t− s

− 2x + s + t + 1
2(x + s)(x + t)

, s 6= t

ψ′(x + s)− 1
x + s

− 1
2(x + s)2

, s = t

(6.1)

on x ∈ (−α,∞). Then the functions δs,t(x) for |t− s| < 1 and −δs,t(x) for |t− s| >
1 are completely monotonic on x ∈ (−α,∞).

Theorem 6.2. Let s and t be two real numbers and α = min{s, t}. Define

∆s,t(x) =





[
ψ(x + t)− ψ(x + s)

t− s

]2

+
ψ′(x + t)− ψ′(x + s)

t− s
, s 6= t

[ψ′(x + s)]2 + ψ′′(x + s), s = t

(6.2)

on x ∈ (−α,∞). Then the functions ∆s,t(x) for |t− s| < 1 and −∆s,t(x) for
|t− s| > 1 are completely monotonic on x ∈ (−α,∞).

Theorem 6.3. Let k be a nonnegative integer and θ > 0 a constant.
If a > 0 and b > 0, then

k∑

i=0

1
(a + θ)i+1(b + θ)k−i+1

+
k∑

i=0

1
ai+1bk−i+1

> 2
k∑

i=0

1
(a + θ)i+1bk−i+1

(6.3)

holds for b− a > −θ and reveres for b− a < −θ.
If a < −θ and b < −θ, then inequalities

2k∑

i=0

1
(a + θ)i+1(b + θ)2k−i+1

+
2k∑

i=0

1
ai+1b2k−i+1

> 2
2k∑

i=0

1
(a + θ)i+1b2k−i+1

(6.4)

and
2k+1∑

i=0

1
(a + θ)i+1(b + θ)2k−i+2

+
2k+1∑

i=0

1
ai+1b2k−i+2

< 2
2k+1∑

i=0

1
(a + θ)i+1b2k−i+2

(6.5)

hold for b− a > −θ and reverse for b− a < −θ.
If −θ < a < 0 and −θ < b < 0, then inequality (6.4) holds and inequality (6.5)

is valid for a + b + θ > 0 and is reversed for a + b + θ < 0.
If a < −θ and b > 0, then inequality (6.4) holds and inequality (6.5) is valid for

a + b + θ > 0 and is reversed for a + b + θ < 0.
If a > 0 and b < −θ, then inequality (6.4) is reversed and inequality (6.5) holds

for a + b + θ < 0 and reverses for a + b + θ > 0.
If b = a− θ, then inequalities (6.3), (6.4) and (6.5) become equalities.

Theorem 6.4. The inequality (6.3) for positive numbers a and b is equivalent to
Theorem 6.1.
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Remark 6.2.1. One of the key tools or ideas used in the proofs of Theorem 6.1
and Theorem 6.2 is: If f(x) is a function defined on an infinite interval I and
satisfies limx→∞ f(x) = δ and f(x) − f(x + ε) > 0 for x ∈ I and some fixed
number ε > 0, then f(x) > δ. This lemma has been validated in [99, 100, 107] and
related references therein to be especially successful in proving the monotonicity, the
complete monotonicity and the logarithmically complete monotonicity of functions
involving the gamma, psi and polygamma functions.

Remark 6.2.2. It is clear that the completely monotonic properties of the functions
δs,t(x) and ∆s,t(x) in Theorem 6.1 and Theorem 6.2 generalize the positivity and
completely monotonic properties of the function

ψ′(x)− 1
x
− 1

2x2
(6.6)

on (0,∞), presented in [42, 113] and [109, Thorem 1.3], and the inequality (3.95),
obtained initially and respectively in [7, p. 208] and [18, Lemma 1.1].

Remark 6.2.3. Along another direction, results on the convex and completely mono-
tonic properties for the generalization of the function (6.6) was procured in [6,
p. 383, Theorem 8] and [86, p. 370, Theorem 1] by different approaches respec-
tively. Recently, a new proof for it was published in [67].

6.3. Necessary and sufficient conditions. For real numbers a, b and c, denote
ρ = min{a, b, c} and let

Ha,b,c(x) = (x + c)b−a Γ(x + a)
Γ(x + b)

(6.7)

for x ∈ (−ρ,∞).
Making use of monotonic properties of qα,β(t) on (0,∞), see Theorem 1.1 pro-

cured in [104, 120] and Section 1.7 in this paper, sufficient and necessary condi-
tions such that the function Ha,b,c(x) is logarithmically completely monotonic on
(−ρ,∞), which extend or generalize [60, Theorem 2.4], [98, Theorem 1] and other
known results mentioned in Section 3.16, are presented as follows.

Theorem 6.5 ([122]). Let a, b and c be real numbers and ρ = min{a, b, c}. Then

(1) Ha,b,c(x) is logarithmically completely monotonic on (−ρ,∞) if and only if

(a, b, c) ∈ D1(a, b, c) , {(a, b, c) : (b− a)(1− a− b + 2c) ≥ 0}
∩ {(a, b, c) : (b− a)(|a− b| − a− b + 2c) ≥ 0}

\ {(a, b, c) : a = c + 1 = b + 1} \ {(a, b, c) : b = c + 1 = a + 1}, (6.8)

(2) Hb,a,c(x) is logarithmically completely monotonic on (−ρ,∞) if and only if

(a, b, c) ∈ D2(a, b, c) , {(a, b, c) : (b− a)(1− a− b + 2c) ≤ 0}
∩ {(a, b, c) : (b− a)(|a− b| − a− b + 2c) ≤ 0}

\ {(a, b, c) : b = c + 1 = a + 1} \ {(a, b, c) : a = c + 1 = b + 1}. (6.9)

From Theorem 6.5, the following double inequality for divided differences of the
psi and polygamma functions can be deduced readily.
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Theorem 6.6 ([123]). Let b > a ≥ 0 and k ∈ N. Then the double inequality

(k − 1)!
(x + α)k

≤ (−1)k−1
[
ψ(k−1)(x + b)− ψ(k−1)(x + a)

]

b− a
≤ (k − 1)!

(x + β)k
(6.10)

for x ∈ (0,∞) holds if and only if α ≥ max
{
a, a+b−1

2

}
and 0 ≤ β ≤ min

{
a, a+b−1

2

}
.

Remark 6.3.1. It is unthought-of that taking b− a = 1 in (6.10) leads to

ψ(k−1)(x + a + 1)− ψ(k−1)(x + a) = (−1)k−1 (k − 1)!
(x + a)k

(6.11)

for a ≥ 0, x > 0 and k ∈ N, which is equivalent to the recurrence formula

ψ(n)(z + 1)− ψ(n)(z) = (−1)nn!z−n−1 (6.12)

for z > 0 and n ≥ 0, listed in [1, p. 260, 6.4.6]. This has been showed in [101] by a
different manner from here.

Remark 6.3.2. The logarithmically completely monotonic properties of the function
Ha,0,0(x) was demonstrated in [139, Theorem 1.3].

6.4. Some results on Gautschi-Kershaw’s second double inequality. Up to
now, results on refinements or generalizations of the right-hand side inequality in
(2.19) and the double inequality (3.57) are the logarithmically completely mono-
tonic properties of the functions (3.78), (3.80) and (3.100) and inequalities in (3.99),
(3.101) and (3.106).

6.4.1. Monotonicity results on Gautschi-Kershaw’s second double inequality. Moti-
vated by the problem (3.97), the following results on logarithmically completely
monotonic properties of functions related to the double inequality (3.97) were
demonstrated.

Theorem 6.7 ([97, Theorem 1]). Let a, b, c be real numbers and ρ = min{a, b, c}.
Define

Fa,b,c(x) =





[
Γ(x + b)
Γ(x + a)

]1/(a−b)

exp[ψ(x + c)], a 6= b

exp[ψ(x + c)− ψ(x + a)], a = b 6= c

(6.13)

for x ∈ (−ρ,∞). Furthermore, let θ(t) be an implicit function defined by equation

et − t = eθ(t) − θ(t) (6.14)

on (−∞,∞). Then θ(t) is decreasing and tθ(t) < 0 for θ(t) 6= t, and

(1) Fa,b,c(x) is logarithmically completely monotonic on (−ρ,∞) if

(a, b, c) ∈ {c ≥ a, c ≥ b} ∪ {c ≥ a, 0 ≥ c− b ≥ θ(c− a)}
∪ {c ≤ a, c− b ≥ θ(c− a)} \ {a = b = c}; (6.15)

(2) [Fa,b,c(x)]−1 is logarithmically completely monotonic on (−ρ,∞) if

(a, b, c) ∈ {c ≤ a, c ≤ b} ∪ {c ≥ a, c− b ≤ θ(c− a)}
∪ {c ≤ a, 0 ≤ c− b ≤ θ(c− a)} \ {a = b = c}. (6.16)
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Theorem 6.8 ([115, Theorem 1]). For real numbers s and t with s 6= t and θ(s, t)
a constant depending on s and t, define

νs,t(x) =
1

exp
[
ψ

(
x + θ(s, t)

)]
[

Γ(x + t)
Γ(x + s)

]1/(t−s)

. (6.17)

(1) If θ(s, t) ≤ min{s, t}, then νs,t(x) is logarithmically completely monotonic
on (−θ(s, t),∞).

(2) The function [νs,t(x)]−1 is logarithmically completely monotonic on the in-
terval (−min{s, t},∞) if and only if θ(s, t) ≥ s+t

2 .

6.4.2. Refinements of Gautschi-Kershaw’s second double inequality. Stimulated by
the left-hand side inequality in (3.107), although it is not correct, several refinements
and generalizations related to Gautschi-Kershaw’s second double inequality were
established.

Theorem 6.9 ([102, Theorem 1]). For positive numbers a and b with a 6= b, the
inequality

eψ(L(a,b)) <

[
Γ(a)
Γ(b)

](a−b)

< eψ(A(a,b)), (6.18)

is valid.

Theorem 6.10 ([102, Theorem 2]). For s, t ∈ R with s 6= t, the function
[
Γ(x + s)
Γ(x + t)

]1/(s−t) 1
eψ(L(s,t;x))

(6.19)

is decreasing and [
Γ(x + s)
Γ(x + t)

]1/(t−s)

eψ(A(s,t;x)) (6.20)

is logarithmically completely monotonic in x > −min{s, t}, where

L(s, t; x) = L(x + s, x + t) and A(s, t;x) = A(x + s, x + t).

Theorem 6.11 ([130, 131]). Inequalities
[
Γ(a)
Γ(b)

]1/(a−b)

≤ eψ(I(a,b)) (6.21)

and
(−1)n

[
ψ(n−1)(a)− ψ(n−1)(b)

]

a− b
≤ (−1)nψ(n)(I(a, b)) (6.22)

for a > 0 and b > 0, hold true.

Theorem 6.12 ([106, Theorem 1] and [137, Theorem 1]). For real numbers s > 0
and t > 0 with s 6= t and an integer i ≥ 0, the inequality

(−1)iψ(i)(Lp(s, t)) ≤ (−1)i

t− s

∫ t

s

ψ(i)(u) du ≤ (−1)iψ(i)(Lq(s, t)) (6.23)

holds if p ≤ −i− 1 and q ≥ −i.

Theorem 6.13 ([106, Theorem 2] and [137, Theorem 2]). The double inequality

eψ(Lp(a,b)) <

[
Γ(a)
Γ(b)

]1/(a−b)

< eψ(Lq(a,b)) (6.24)

for a > 0 and b > 0, holds if p ≤ −1 and q ≥ 0.
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Theorem 6.14 ([106, Theorem 3] and [137, Theorem 3]). For i ≥ 0 being an
integer and s, t ∈ R with s 6= t and x > −min{s, t}, the function

(−1)i

[
ψ(i)(Lp(s, t;x))− 1

t− s

∫ t

s

ψ(i)(x + u) du

]
(6.25)

is increasing in x if either p ≤ −(i+2) or p = −(i+1) and decreasing in x if p ≥ 1,
where

Lp(s, t; x) = Lp(x + s, x + t).

Remark 6.4.1. The proofs of Theorem 6.11 and Theorem 6.12 need to use the main
results in [133] on monotonic properties of some functions involving the psi and
polygamma functions.

6.5. Generalizations of Lew-Frauenthal-Keyfitz’s double inequality. In 2006,
in order to improve

2Γ
(

n +
1
2

)
≤ Γ

(
1
2

)
Γ(n + 1) ≤ 2nΓ

(
n +

1
2

)
(6.26)

for n ≥ 1, see [37, p. 213] and [72], it was proved in [150] by using (2.2) that

√
x ≤ Γ(x + 1)

Γ(x + 1/2)
≤

√
x +

1
2

. (6.27)

It is clear that the double inequality (6.27) is weaker than (3.56) for s = 1
2 and the

right-hand side inequality in (6.27) is also weaker than an inequality obtained in
[69].

Observe that the inequality (6.26) can be rearranged for n > 1 as

1 ≤
[
Γ(1/2)Γ(n + 1)

2Γ(n + 1/2)

]1/(n−1)

≤ 2. (6.28)

The middle term in (6.28) hints us to define

g(x) =





[
Γ(1/2)Γ(x + 1)

2Γ(x + 1/2)

]1/(x−1)

, x 6= 1

exp
[
1− γ − ψ

(
3
2

)]
, x = 1

(6.29)

for x ∈ (− 1
2 ,∞)

, where γ = 0.57721566 · · · be the Euler-Mascheroni constant, and
to consider its logarithmically complete monotonicity.

Theorem 6.15 ([111] and [139, Theorem 1.1]). The function g(x) ∈ L[(− 1
2 ,∞)]

with
lim

x→−(1/2)+
g(x) = ∞ and lim

x→∞
g(x) = 1, (6.30)

where L[I] stands for the set of logarithmically completely monotonic functions on
an interval I ⊆ R.

The left-hand side inequality in (2.2) reminds us to introduce

ha(x) =
(x + a)1−aΓ(x + a)

xΓ(x)
=

(x + a)1−aΓ(x + a)
Γ(x + 1)

(6.31)

for x > 0 and a > 0 and to discuss its logarithmically complete monotonicity.
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Theorem 6.16 ([111] and [139, Theorem 1.2]). The function ha(x) has the follow-
ing properties:

(1) ha(x) ∈ L[(0,∞)] if 0 < a < 1.
(2) [ha(x)]−1 ∈ L[(0,∞)] if a > 1.
(3) For any a > 0,

lim
x→0+

ha(x) =
Γ(a + 1)

aa
and lim

x→∞
ha(x) = 1. (6.32)

As a straightforward consequence of combining Theorem 6.5 for Ha,0,0(x) and
Theorem 6.16, the following refinement of the upper bound in inequality (2.2) is
established.

Theorem 6.17 ([111] and [139, Theorem 1.4]). Let x ∈ (0,∞). If 0 < a < 1, then
(

x

x + a

)1−a

<
Γ(x + a)
xaΓ(x)

<





Γ(a + 1)
aa

(
x

x + a

)1−a

≤ 1, 0 < x ≤ ap(a)
1− p(a)

,

1,
ap(a)

1− p(a)
< x < ∞,

(6.33)

where

p(x) =





[
xx

Γ(x + 1)

]1/(1−x)

, x 6= 1,

e−γ , x = 1.

(6.34)

If a > 1, the reversed inequality of (6.33) holds.

Now rewrite inequality (6.26) or (6.28) for n > 1 as

1 ≤
[
Γ(1 + 1/2)
Γ(1 + 1)

· Γ(n + 1)
Γ(n + 1/2)

]1/(n−1)

≤ 2. (6.35)

The definition (6.29) of g(x) and inequality (6.35) motivate us to introduce a new
function hβ(x) as follows: Let s and t be two real numbers with s 6= t, α = min{s, t}
and β > −α. For x ∈ (−α,∞), define

hβ(x) =





[
Γ(β + t)
Γ(β + s)

· Γ(x + s)
Γ(x + t)

]1/(x−β)

, x 6= β,

exp[ψ(β + s)− ψ(β + t)], x = β.

(6.36)

Theorem 6.18 ([109, Theirem 1.1]). The following two conclusions are valid:
(1) If s > t, then hβ(x) ∈ L[(−α,∞)] with

lim
x→−α

hβ(x) = ∞ and lim
x→∞

hβ(x) = 1. (6.37)

(2) If s < t, then [hβ(x)]−1 ∈ L[(−α,∞)] with

lim
x→−α

hβ(x) = 0 and lim
x→∞

hβ(x) = 1. (6.38)

In [111] and [139, Theorem 1.5], the logarithmically complete monotonicity of
p(x) was proved: p(x) ∈ L[(0,∞)] with limx→0+ p(x) = 1 and limx→∞ p(x) = 1

e .
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Motivated by the inequality (6.35) and the definition of hβ(x) in (6.36), a more
general function than p(x) can be introduced: For x ∈ (0,∞) and α > 0, let

pα(x) =





[
Γ(α + 1)

αα
· xx

Γ(x + 1)

]1/(α−x)

, x 6= α,

exp[ψ(α + 1)− 1]
α

, x = α.

(6.39)

Theorem 6.19 ([109, Theirem 1.4]). For any fixed α > 0, pα(x) ∈ L[(0,∞)] with

lim
x→0+

pα(x) =
α
√

Γ(α + 1)
α

and lim
x→∞

pα(x) =
1
e
. (6.40)

Remark 6.5.1. The functions h(x, y) = hy(x) and p(x, y) = py(x) satisfy h(x, y) =
h(y, x) and p(x, y) = p(y, x) and so their Schur-convex properties can be considered.

Remark 6.5.2. It is clear that the papers [109, 111, 139] take a different direction
from [150] to generalize and refine inequalities in (6.26).

Remark 6.5.3. The logarithmically completely monotonic properties of the function
x
√

Γ(x+1)

x and several similar ones have been researched and applied in [118] and its
unpublished revised version.

7. Related problems

7.1. Monotonicity results for the ratio of two q-gamma functions. The
known results obtained by many mathematicians show that most of properties of
the ratio of two gamma functions may be replanted to cases of the ratio of two
q-gamma functions.

Let a, b and c be real numbers and ρ = min{a, b, c}, define

Hq;a,b;c(x) =
(

1− qx+c

1− q

)a−b Γq(x + b)
Γq(x + a)

(7.1)

for x ∈ (−ρ,∞), where Γq(x) for 0 < q < 1 is the q-gamma function defined by
(1.14).

In [61, Theorem 2.5], the following logarithmically completely monotonic prop-
erties of Hq;a,b;c(x) were obtained: For a < b ≤ a + 1, the function Hq;a,b;c(x) is
logarithmically completely monotonic on (−c,∞) if 0 ≤ c ≤ a+b−1

2 , so is its recip-
rocal on (−a,∞) if c ≥ a ≥ 0. Note that the proof in [61, Theorem 2.5] for the
conclusion “Neither is completely monotonic for a+b−1

2 < c < a” is not convincible.
In virtue of monotonic properties of qα,β(t) on (0,∞), it is not difficult to see that

[61, Theorem 2.5] can be extended to and [60, Theorem 2.5] and [61, Theorem 2.6]
can be included in the following Theorem 7.1 easily and thoroughly, which is an
analogue of Theorem 6.5.

Theorem 7.1 ([120]). Let a, b and c be real numbers and ρ = min{a, b, c}.
(1) The function Hq;a,b;c(x) is logarithmically completely monotonic on (−ρ,∞)

if and only if

(a, b; c) ∈ D1(a, b; c) , {(a, b; c) : (a− b)(1− a− b + 2c) ≥ 0}
∩ {(a, b; c) : (a− b)(|a− b| − a− b + 2c) ≥ 0}

\ {(a, b; c) : a = c + 1 = b + 1 or b = c + 1 = a + 1}, (7.2)
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(2) The function Hq;b,a;c(x) is logarithmically completely monotonic on (−ρ,∞)
if and only if

(a, b; c) ∈ D2(a, b; c) , {(a, b; c) : (a− b)(1− a− b + 2c) ≤ 0}
∩ {(a, b; c) : (a− b)(|a− b| − a− b + 2c) ≤ 0}

\ {(a, b; c) : b = c + 1 = a + 1 or a = c + 1 = b + 1}. (7.3)

Similar to Theorem 6.6, we have the following double inequality for divided
differences of the q-psi function ψq(x) for 0 < q < 1, which may be derived from
Theorem 7.1.

Theorem 7.2 ([120]). Let b > a ≥ 0, k ∈ N and 0 < q < 1. If 0 ≤ c ≤
min

{
a, a+b−1

2

}
, then

(−1)k−1
[
ψ

(k−1)
q (x + b)− ψ

(k−1)
q (x + a)

]

b− a
≤ (−1)k dk−1

dxk−1

(
qx+c

1− qx+c

)
ln q (7.4)

holds for x ∈ (0,∞); If c ≥ max
{
a, a+b−1

2

}
, the inequality (7.4) reverses on (0,∞).

Consequently, the identity

ψ(k−1)
q (x + 1)− ψ(k−1)

q (x) = − dk−1

dxk−1

(
qx

1− qx

)
ln q (7.5)

holds for x ∈ (0,∞) and k ∈ N.

7.2. Monotonicity results for the ratio of products of gamma functions.

7.2.1. Bounds for Gurland’s ratio. There have been a lot of literature on bounding
Gurland’s ratio T (x, y) defined by (3.13). Gurland’s ratio and the ratio of two
gamma functions are nearly a couple of companion, therefore, to find results on
bounding Gurland’s ratio possibly as long as to find those bounding the ratio of
two gamma functions, see [23, 45, 85] and related references therein.

There are a lot of literature provided in [84] on bounding Gurland’s ratio.

7.2.2. Monotonicity results for the ratio of products of gamma functions. As a gen-
eralization of Gurland’s ratio, the function

Γ(x)Γ(x + a + b)
Γ(x + a)Γ(x + b)

(7.6)

for non-negative numbers a and b, related with Gauss’s Theorem expressed by
(1.13), was proved in [23, Theorem 6] to be logarithmically completely monotonic
on (0,∞).

In [6], a more general result was obtained: The function
n∏

k=1

Γ(x + ak)
Γ(x + bk)

(7.7)

is logarithmically completely monotonic on (0,∞) provided

0 ≤ a1 ≤ a2 ≤ · · · ≤ an, 0 ≤ b1 ≤ b2 ≤ · · · ≤ bn, (7.8)
k∑

i=1

ai ≤
k∑

i=1

bi for 1 ≤ k ≤ n− 1, and
n∑

i=1

ai =
n∑

i=1

bi. (7.9)
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In [51, Theorem 1.2], it was presented that the functions

Fn(x) =
Γ(x)

∏[n/2]
k=1

[∏
m∈Pn,2k

Γ
(
x +

∑2k
j=1 amj

)]

∏[(n+1)/2]
k=1

[∏
m∈Pn,2k−1

Γ
(
x +

∑2k−1
j=1 amj

)] (7.10)

for any ak > 0 and k ∈ N are logarithmically completely monotonic on (0,∞) and
that any product of functions of the type (7.10) with different parameters ak is
logarithmically completely monotonic as well, where Pn,k for 1 ≤ k ≤ n is the set
of all vectors m = (m1, . . . , mk) whose components are natural numbers such that
1 ≤ mν < mµ ≤ n for 1 ≤ ν < µ ≤ k and Pn,0 is the empty set.

Let ai and bi for 1 ≤ i ≤ n be real numbers and ρn = min1≤i≤n{ai, bi}. For
x ∈ (−ρn,∞), define

ha,b;n(x) =
n∏

i=1

Γ(x + ai)
Γ(x + bi)

, (7.11)

where a and b denote (a1, a2, . . . , an) and (b1, b2, . . . , bn) respectively. By recurring
to monotonic properties of qα,β(t) on (0,∞), the following new sufficient conditions
for ha,b;n(x) to be logarithmically completely monotonic on (0,∞) are devised.

Theorem 7.3 ([120]). If

(bi − ai)(1− ai − bi) ≥ 0 and (bi − ai)(|ai − bi| − ai − bi) ≥ 0 (7.12)

hold for 1 ≤ i ≤ n and
n∑

i=1

bi ≥
n∑

i=1

ai, (7.13)

then the function ha,b;n(x) is logarithmically completely monotonic on (−ρn,∞).
If inequalities in (7.12) and (7.13) are reversed, then the function hb,a;n(x) is log-
arithmically completely monotonic on (−ρn,∞).

Remark 7.2.1. The beta function B(p, q) is defined by

B(p, q) =
Γ(p)Γ(q)
Γ(p + q)

. (7.14)

It is a ratio among three gamma functions.
The ratios among four gamma functions have hypergeometric functions (1.13)

and Gurland’s ratio (3.13).

7.3. Monotonicity results for the ratio of products of q-gamma functions.
In [51, Theorem 3.2 and Theorem 3.3] and [61, Theorem 4.1], logarithmically com-
pletely monotonic properties for ratios of products of q-gamma functions were dis-
cussed.

The q-analogue of Theorem 7.3 is as follows.

Theorem 7.4 ([120]). Let ai and bi for 1 ≤ i ≤ n be real numbers and ρn =
min1≤i≤n{ai, bi}. For x ∈ (−ρn,∞), define

hq;a,b;n(x) =
n∏

i=1

Γq(x + ai)
Γq(x + bi)

(7.15)

for 0 < q < 1, where a and b denote (a1, a2, . . . , an) and (b1, b2, . . . , bn) respectively.
If inequalities in (7.12) and (7.13) hold, then the function hq;a,b;n(x) is logarith-
mically completely monotonic on (−ρn,∞). If inequalities in (7.12) and (7.13) are
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reversed, then the function hq;b,a;n(x) is logarithmically completely monotonic on
(−ρn,∞).

7.4. Bounds for Wallis’ formula. Bounding Wallis’ formula (1.5) has a long
history, as mentioned in Section 2.2–2.3 and Section 2.5. For more information,
please refer to related contents in [68], [89, pp. 192–193 and p. 287] and [34].

In this section, we would like to review concisely recent developments on it.

7.4.1. Recovery and various proofs. As mentioned in Section 3.1.6, the double in-
equality (3.6) and its sharpness were recovered and proved once and again in some
papers such as [26, 27, 29, 30, 31, 32, 34, 35, 114, 155] and [162, Theorem 2], be-
cause of either without being aware of and finding out the original version of the
paper [156], or making use of various approaches and subtle techniques, or repeat-
ing some existed routines. Moreover, almost of them were not devoted to improve
the bounds in (3.6).

7.4.2. Bounds for Wallis’ formula and the probability integral. The following theo-
rem connects bounds for Wallis’ formula with the probability integral.

Theorem 7.5 ([24]). For n ∈ N,
√

π

2
√

n + 9π/16− 1
≤ (2n)!!

(2n + 1)!!
<

√
π

2
√

n + 3/4
. (7.16)

The constants 9π
16 − 1 and 3

4 in (7.16) are the best possible.
For all natural number n,

√
π√

1 + (9π/16− 1)/n
≤

∫ √
n

−√n

e−x2
dx <

√
π√

1− 3/4n
. (7.17)

In particular, taking n →∞ in (7.17) leads to
∫ ∞

−∞
e−x2

dx =
√

π . (7.18)

7.4.3. Koumandos’ generalization. Influenced by the iterative work in [34], S. Kouman-
dos established in [66] the following general double inequality.

Theorem 7.6 ([66]). Let 0 < α < 1, n ∈ N and

dn(α) =
(1− α)n

n!
=





1, n = 0,
Γ(n + 1− α)
n!Γ(1− α)

, n ≥ 1.
(7.19)

For all natural numbers n,
1

Γ(1− α)(n + c2)α
≤ dn(α) <

1
Γ(1− α)(n + c1)α

, (7.20)

where the constants

c1 = c1(α) =
1− α

2
and c2 = c2(α) =

1
[
Γ(2− α)

]1/α
− 1 (7.21)

are the best possible.

Remark 7.4.1. The double inequality (7.20) for α = 1
2 coincides with (3.6).
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7.4.4. Zhao’s refinement. In [165], the double inequality (3.6) was refined as follows:
For n ∈ N,

1√
πn[1 + 1/(4n− 1/2)]

<
(2n− 1)!!

(2n)!!
<

1√
πn[1 + 1/(4n− 1/3)]

. (7.22)

Remark 7.4.2. The double inequality (7.22) is better than (2.9), say nothing of
(2.13) and (3.6).

Remark 7.4.3. By (1.6), the inequality (7.22) may be rewritten as
√

k +
k

4k − 1/3
<

Γ(k + 1)
Γ(1 + 1/2)

<

√
k +

k

4k − 1/2
, k ∈ N. (7.23)

7.4.5. Zhang’s refinements. In [162, Theorem 1], the double inequality (7.22) was
refined as

1√
π{n + 1/[4− 4/(8n + 3)]} <

(2n− 1)!!
(2n)!!

<
1√

π{n + 1/[4− 1/(2n + 1)]} . (7.24)

Remark 7.4.4. The right-hand side inequality in (7.24) is same as the corresponding
one in (3.53) for x = k, and the left-hand side inequality in (7.24) refines the lower
bound of (3.53) for x = k.

Remark 7.4.5. In virtue of (1.6), the double inequality (7.24) may be rearranged
as

√
k +

1
4− 1/(2k + 1)

<
Γ(k + 1)

Γ(1 + 1/2)
<

√
k +

1
4− 4/(8k + 3)

, k ∈ N. (7.25)

7.4.6. Zhao-Wu’s refinements and generalizations. In [166, 167], the following re-
finements and generalizations of inequalities on Wallis’ formula were established.

Theorem 7.7. For 0 < z < 1 and n > 1,

1
nz[1 + (1− z)/2(n− 1)]zΓ(1− z)

<
(1− z)(2− z) · · · (n− z)

n!

<
1

nz[1 + (1− z)/(2n + 1− z)]zΓ(1− z)
; (7.26)

For 0 < z < 1 and n ≥ 22,

(1− z)(2− z) · · · (n− z)
n!

<
1

nz[1 + (1− z)/2n]zΓ(1− z)
; (7.27)

For n ≥ 1, the left-hand side inequality in (7.22) is valid; For n ≥ 1 and 0 < ε < 1
2 ,

(2n− 1)!!
(2n)!!

<
1√

nπ[1 + 1/(4n− 1/2 + ε)]
(7.28)

holds for n > n∗ if n∗ is the maximal root of

32εn2 + 4ε2n + 32εn− 17n + 4ε2 − 1 = 0. (7.29)

Remark 7.4.6. Inequalities in (3.6) and (7.22) can be deduced from Theorem 7.7.
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7.5. Inequalities for the volume of unit ball in Rn. Let

Ωn =
πn/2

Γ(1 + n/2)
(7.30)

denote the volume of the unit ball in Rn. In [4], among other things, it was
demonstrated for n ≥ 1 that

√
n + 1/2

2π
<

Ωn−1

Ωn
≤

√
n + π/2− 1

2π
(7.31)

by recovering the decreasingly monotonicity of θ(x) defined by (3.2) on [0,∞). The
constants both 1

2 and π
2 − 1 in (7.31) are the best possible.

It is easy to see that the ratio of the volumes of two unit balls in Rn−1 and Rn

for n ∈ N is related with the ratio of two gamma functions.
For more information on inequalities of volumes of unit balls in Rn, please see

[4, 7, 11], [73, Theorem 1] and [84, Theorem 5] and related references therein.
In [11], it was proved that the sequence Ω1/(n ln n)

n for n ≥ 2 is decreasing and
converges to e−1/2 as n →∞. In [5, Theorem 2], it was presented that the double
inequality

exp
(

a

n(ln n)2

)
≤ Ω1/(n ln n)

n

Ω1/[(n+1) ln(n+1)]
n+1

< exp
(

b

n(lnn)2

)
(7.32)

holds for n ≥ 2 if and only if

a ≤ ln 2 ln π − 2(ln 2)2 ln(4π/3)
3 ln 3

and b ≥ 1 + ln(2π)
2

. (7.33)

Recently, the author obtained the following stronger results than the ones in [5,
Theorem 2] and [11].

Theorem 7.8. For n ≥ 2, the sequence Ω1/(n ln n)
n is logarithmically convex and

the sequence
Ω1/(n ln n)

n

Ω1/[(n+1) ln(n+1)]
n+1

(7.34)

is decreasing.

7.6. A new ratio of two gamma functions. By using a geometrical method,
the following double inequality was proved in [3]:

1
n!
≤ [Γ(1 + x)]n

Γ(1 + nx)
≤ 1 (7.35)

for x ∈ [0, 1] and n ∈ N.
By analytical arguments in [149], it was presented that the function

f(x, y) =
[Γ(1 + x)]y

Γ(1 + xy)
(7.36)

for all y ≥ 1 is decreasing in x ≥ 0. From this, it is deduced that

1
Γ(1 + y)

≤ [Γ(1 + x)]y

Γ(1 + xy)
≤ 1 (7.37)

for all y ≥ 1 and x ∈ [0, 1], which is a generalization of inequality (7.35).
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In [93], It was showed that if f is a differentiable and logarithmically convex
function on [0,∞), then the function [f(x)]a

f(ax) for a ≥ 1 (or 0 < a ≤ 1 respectively) is
decreasing (or increasing respectively) on [0,∞). As one of applications to inequal-
ities involving gamma function, Riemann’s zeta function and the complete elliptic
integrals of the first kind, inequalities (7.35) and (7.37) were deduced.

In [80], an inequality involving a positive linear operator acting on the composi-
tion of two continuous functions is presented and, as applications of this inequality,
some new inequalities involving the beta, gamma and Riemann’s zeta functions and
a large family of functions which are Mellin transforms are produced. In particular,
for β > δ > 0, αβ > −1 and αδ > −1, if either α < 0 or α > 1, then the inequality

[Γ(1 + δ)]α

Γ(1 + αδ)
>

[Γ(1 + β)]α

Γ(1 + αβ)
(7.38)

holds true; if 0 < α ≤ 1, the inequality (7.38) is reversed. It is not difficult to
see that the left-hand sides in inequalities (7.35) and (7.37) are special cases of the
inequality (7.38).

In [135, 140], the following logarithmically complete monotonicities, as general-
izations of the decreasingly monotonic property in [149], are presented:

(1) For given y > 1, the function f(x, y) defined by (7.36) is decreasing and
logarithmically concave with respect to x ∈ (0,∞), and 1

f(x,y) is a logarith-
mically completely monotonic function of second order in x ∈ (0,∞).

(2) For given 0 < y < 1, the function f(x, y) defined by (7.36) is increasing
and logarithmically convex with respect to x ∈ (0,∞), and f(x, y) is a log-
arithmically completely monotonic function of second order in x ∈ (0,∞).

(3) For given x ∈ (0,∞), the function f(x, y) defined by (7.36) is logarithmi-
cally concave with respect to y ∈ (0,∞), and 1

f(x,y) is a logarithmically
completely monotonic function of first order in y ∈ (0,∞).

(4) For given x ∈ (0,∞), let

Fx(y) =
Γ(1 + y)[Γ(1 + x)]y

Γ(1 + xy)
(7.39)

on ∈ (0,∞). If 0 < x < 1, then Fx(y) is a logarithmically completely
monotonic function of second order on (0,∞); if x > 1, then 1

Fx(y) is a
logarithmically completely monotonic function of second order on (0,∞).

In [20, Theorem 2.1], it was proved that the function

Gs,t(x) =
[Γ(1 + tx)]s

[Γ(1 + sx)]t
(7.40)

is decreasing (or increasing respectively) in x ∈ [0,∞) if either s ≥ t > 0 or 0 > s ≥ t
(or both s > 0 and t < 0 respectively) such that 1 + sx > 0 and 1 + tx > 0. This
result generalized and extended the corresponding conclusions in [3, 80, 149].

In [127, 128], the following logarithmically complete monotonicity, logarithmi-
cally absolute monotonicity and logarithmically absolute convexity of Gs,t(x) de-
fined by (7.40) are verified: The function Gs,t(x) for x, s, t ∈ R such that 1+sx > 0
and 1 + tx > 0 with s 6= t has the following properties:

(1) For t > s > 0 and x ∈ (0,∞), Gs,t(x) is an increasing function and a
logarithmically completely monotonic function of second order in x;
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(2) For t > s > 0 and x ∈ (− 1
t , 0

)
, Gs,t(x) is a logarithmically completely

monotonic function in x;
(3) For s < t < 0 and x ∈ (−∞, 0), Gs,t(x) is a decreasing function and a

logarithmically absolutely monotonic function of second order in x;
(4) For s < t < 0 and x ∈ (

0,− 1
s

)
, Gs,t(x) is a logarithmically completely

monotonic function in x;
(5) For s < 0 < t and x ∈ (− 1

t , 0
)
, Gt,s(x) is an increasing function and a

logarithmically absolutely convex function in x;
(6) For s < 0 < t and x ∈ (

0,− 1
s

)
, Gt,s(x) is a decreasing function and a

logarithmically absolutely convex function in x.

As generalizations of [128, Theorem 1.4] and the main results in [140], the fol-
lowing i-log convex properties for i ∈ N are established in [132] and its simplified
version [134, Theorem 1.2].

Theorem 7.9. Let a and b be two real numbers, f(x) a positive function on an
interval I, and

ga,b(x) =
[f(bx)]a

[f(ax)]b
(7.41)

defined for ax ∈ I and bx ∈ I. For i ∈ N, the function ga,b(x) has the following
properties:

(1) For either b > a > 0 and x > 0 or 0 > b > a and x > 0,
(a) if the function ui−1[ln f(u)](i) for all i ∈ N is increasing on I, then

ga,b(x) is i-log-convex;
(b) if the function ui−1[ln f(u)](i) for all i ∈ N is decreasing on I, then

ga,b(x) is i-log-concave.
(2) For b > 0 > a and x > 0,

(a) if the function ui−1[ln f(u)](i) for all i ∈ N is increasing on I, then
ga,b(x) is i-log-concave;

(b) if the function ui−1[ln f(u)](i) for all i ∈ N is decreasing on I, then
ga,b(x) is i-log-convex.

(3) For either b > a > 0 and x > 0 or 0 > b > a and x < 0,
(a) if the function ui−1[ln f(u)](i) for all i ∈ N is increasing on I, then

ga,b(x) is (2i− 1)-log-concave and (2i)-log-convex;
(b) if the function ui−1[ln f(u)](i) for all i ∈ N is decreasing on I, then

ga,b(x) is (2i− 1)-log-convex and (2i)-log-concave.
(4) For b > 0 > a and x < 0,

(a) if the function ui−1[ln f(u)](i) for all i ∈ N is increasing on I, then
ga,b(x) is (2i− 1)-log-convex and (2i)-log-concave;

(b) if the function ui−1[ln f(u)](i) for all i ∈ N is decreasing on I, then
ga,b(x) is (2i− 1)-log-concave and (2i)-log-convex.

Remark 7.6.1. Most results in [65, 79, 151, 152] are simple and direct consequences
of Theorem 7.9.

Remark 7.6.2. Some proofs in [127, 128, 132, 134] need to use the main results in
[133] on monotonic properties of some functions involving the psi and polygamma
functions.
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