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A FUNCTIONAL ASSOCIATED WITH TWO BOUNDED LINEAR
OPERATORS IN HILBERT SPACES AND RELATED

INEQUALITIES

S.S. DRAGOMIR

Abstract. In this paper several inequalities for the functional µ (A, B) :=
sup‖x‖=1 {‖Ax‖ ‖Bx‖} under various assumptions for the operators involved,

including operators satisfying the uniform (α, β)-property and operators for
which the transform Cα,β (·, ·) is accretive, are given.

1. Introduction

Let (H; 〈·, ·〉) be a complex Hilbert space. The numerical range of an operator
T is the subset of the complex numbers C given by [9, p. 1]:

W (T ) = {〈Tx, x〉 , x ∈ H, ‖x‖ = 1} .

The numerical radius w (T ) of an operator T on H is given by [9, p. 8]:

(1.1) w (T ) = sup {|λ| , λ ∈ W (T )} = sup {|〈Tx, x〉| , ‖x‖ = 1} .

It is well known that w (·) is a norm on the Banach algebra B (H) of all bounded
linear operators T : H → H. This norm is equivalent to the operator norm. In fact,
the following more precise result holds [9, p. 9]:

(1.2) w (T ) ≤ ‖T‖ ≤ 2w (T ) ,

for any T ∈ B (H)
For other results on numerical radii, see [10], Chapter 11. For some recent and

interesting results concerning inequalities for the numerical radius, see [11] and [12].
If A,B are two bounded linear operators on the Hilbert space (H, 〈·, ·〉) , then

(1.3) w (AB) ≤ 4w (A) w (B) .

In the case that AB = BA, then

(1.4) w (AB) ≤ 2w (A) w (B) .

The following results are also well known [9, p. 38]:
If A is a unitary operator that commutes with another operator B, then

(1.5) w (AB) ≤ w (B) .

If A is an isometry and AB = BA, then (1.5) also holds true.
We say that A and B double commute if AB = BA and AB∗ = B∗A. If the

operators A and B double commute, then [9, p. 38]

(1.6) w (AB) ≤ w (B) ‖A‖ .
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As a consequence of the above, we have [9, p. 39]:
Let A be a normal operator commuting with B, then

(1.7) w (AB) ≤ w (A) w (B) .

For other results and historical comments on the above see [9, p. 39–41].
For two bounded linear operators A,B in the Hilbert space (H, 〈·, ·〉) we define

the functional

(1.8) µ (A,B) := sup
‖x‖=1

{‖Ax‖ ‖Bx‖} (≥ 0) .

It is obvious that µ is symmetric and sub-additive in each variable, µ (A,A) =
‖A‖2

, µ (A, I) = ‖A‖ , where I is the identity operator, µ (αA, βB) = |αβ|µ (A,B)
and µ (A,B) ≤ ‖A‖ ‖B‖ . We also have the following inequalities

(1.9) µ (A,B) ≥ w (B∗A)

and

(1.10) µ (A,B) ‖A‖ ‖B‖ ≥ µ (AB,BA) .

The inequality (1.9) follows by the Schwarz inequality ‖Ax‖ ‖Bx‖ ≥ |〈Ax, Bx〉| ,
x ∈ H, while (1.10) can be obtained by multiplying the inequalities ‖ABx‖ ≤
‖A‖ ‖Bx‖ and ‖BAx‖ ≤ ‖B‖ ‖Ax‖ .

From (1.9) we also get

(1.11) ‖A‖2 ≥ µ (A,A∗) ≥ w
(
A2

)
for any A.

Motivated by the above results we establish in this paper several inequalities for
the functional µ (·, ·) under various assumptions for the operators involved, includ-
ing operators satisfying the uniform (α, β)−property and operators for which the
transform Cα,β (·, ·) is accretive.

2. General Inequalities

The following result concerning some general power operator inequalities may
be stated:

Theorem 1. For any A,B ∈ B (H) and r ≥ 1 we have the inequality

(2.1) µr (A,B) ≤ 1
2
‖(A∗A)r + (B∗B)r‖ .

The constant 1
2 is best possible.

Proof. Utilising the arithmetic mean - geometric mean inequality and the convexity
of the function f (t) = tr for r ≥ 1 we have successively

‖Ax‖ ‖Bx‖ ≤ 1
2

[〈A∗Ax, x〉+ 〈B∗Bx, x〉](2.2)

≤
[
〈A∗Ax, x〉r + 〈B∗Bx, x〉r

2

] 1
r

,

for any x ∈ H.
It is well known that, if P is a positive operator, then for any r ≥ 1 and x ∈ H

with ‖x‖ = 1 we have the inequality (see for instance [13])

(2.3) 〈Px, x〉r ≤ 〈P rx, x〉 .
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Applying this inequality to the positive operators A∗A and B∗B we deduce that

(2.4)
[
〈A∗Ax, x〉r + 〈B∗Bx, x〉r

2

] 1
r

≤
〈

[(A∗A)r + (B∗B)r]x
2

, x

〉 1
r

,

for any x ∈ H with ‖x‖ = 1.
Now, on making use of the inequalities (2.2) and (2.4) we get

(2.5) ‖Ax‖ ‖Bx‖ ≤
〈

[(A∗A)r + (B∗B)r]x
2

, x

〉 1
r

,

for any x ∈ H with ‖x‖ = 1. Taking the supremum over x ∈ H with ‖x‖ = 1 we
obtain the desired result (2.1).

For r = 1 and B = A we get in both sides of (2.1) the same quantity ‖A‖2 which
shows that the constant 1

2 is best possible in general in the inequality (2.1).

Corollary 1. For any A ∈ B (H) and r ≥ 1 we have the inequality

(2.6) µr (A,A∗) ≤ 1
2
‖(A∗A)r + (AA∗)r‖

and the inequality

(2.7) ‖A‖r ≤ 1
2
‖(A∗A)r + I‖ ,

respectively.

The following similar result for powers of operators can be stated as well:

Theorem 2. For any A,B ∈ B (H) , any α ∈ (0, 1) and r ≥ 1 we have the
inequality

(2.8) µ2r (A,B) ≤
∥∥∥α · (A∗A)r/α + (1− α) · (B∗B)r/(1−α)

∥∥∥ .

The inequality is sharp.

Proof. Observe that, for any α ∈ (0, 1) we have

‖Ax‖2 ‖Bx‖2 = 〈(A∗A) x, x〉 〈(B∗B) x, x〉(2.9)

=
〈[

(A∗A)1/α
]α

x, x
〉 〈[

(B∗B)1/(1−α)
]1−α

x, x

〉
,

where x ∈ H.
It is well known that (see for instance [13]), if P is a positive operator and

q ∈ (0, 1) , then

(2.10) 〈P qx, x〉 ≤ 〈Px, x〉q .

Applying this property to the positive operators (A∗A)1/α and (B∗B)1/(1−α)
, where

α ∈ (0, 1) , we have

(2.11)
〈[

(A∗A)1/α
]α

x, x
〉 〈[

(B∗B)1/(1−α)
]1−α

x, x

〉
≤

〈
(A∗A)1/α

x, x
〉α 〈

(B∗B)1/(1−α)
x, x

〉1−α

,

for any x ∈ H with ‖x‖ = 1.
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Now, on utilising the weighted arithmetic mean-geometric mean inequality, i.e.,

aαb1−α ≤ αa + (1− α) b, where α ∈ (0, 1) and a, b ≥ 0;

we get

(2.12)
〈
(A∗A)1/α

x, x
〉α 〈

(B∗B)1/(1−α)
x, x

〉1−α

≤ α ·
〈
(A∗A)1/α

x, x
〉

+ (1− α) ·
〈
(B∗B)1/(1−α)

x, x
〉

,

for any x ∈ H with ‖x‖ = 1.
Moreover, by the elementary inequality

αa + (1− α) b ≤ (αar + (1− α) br)1/r
, where α ∈ (0, 1) and a, b ≥ 0;

we have successively

α ·
〈
(A∗A)1/α

x, x
〉

+ (1− α) ·
〈
(B∗B)1/(1−α)

x, x
〉

(2.13)

≤
[
α ·

〈
(A∗A)1/α

x, x
〉r

+ (1− α) ·
〈
(B∗B)1/(1−α)

x, x
〉r] 1

r

≤
[
α ·

〈
(A∗A)r/α

x, x
〉

+ (1− α) ·
〈
(B∗B)r/(1−α)

x, x
〉] 1

r

,

for any x ∈ H with ‖x‖ = 1, where for the last inequality we have used the property
(2.3) for the positive operators (A∗A)1/α and (B∗B)1/(1−α)

.
Now, on making use of the identity (2.9) and the inequalities (2.11)-(2.13) we

get

‖Ax‖2 ‖Bx‖2 ≤
[〈[

α · (A∗A)r/α + (1− α) · (B∗B)r/(1−α)
]
x, x

〉] 1
r

,

for any x ∈ H with ‖x‖ = 1. Taking the supremum over x ∈ H with ‖x‖ = 1 we
deduce the desired result (2.8).

Notice that the inequality is sharp since for r = 1 and B = A we get in both
sides of (2.8) the same quantity ‖A‖4

.

Corollary 2. For any A ∈ B (H) , any α ∈ (0, 1) and r ≥ 1, we have the inequali-
ties

µ2r (A,A∗) ≤
∥∥∥α · (A∗A)r/α + (1− α) · (AA∗)r/(1−α)

∥∥∥ ,

‖A‖2r ≤
∥∥∥α · (A∗A)r/α + (1− α) · I

∥∥∥
and

‖A‖4r ≤
∥∥∥α · (A∗A)r/α + (1− α) · (A∗A)r/(1−α)

∥∥∥ ,

respectively.

The following reverse of the inequality (1.9) maybe stated as well:

Theorem 3. For any A,B ∈ B (H) we have the inequality

(2.14) (0 ≤) µ (A,B)− w (B∗A) ≤ 1
2
‖A−B‖2

and the inequality

(2.15) µ

(
A + B

2
,
A−B

2

)
≤ 1

2
w (B∗A) +

1
2
‖A−B‖2

,

respectively.
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Proof. We have

‖Ax−Bx‖2 = ‖Ax‖2 + ‖Bx‖2 − 2 Re 〈B∗Ax, x〉(2.16)

≥ 2 ‖Ax‖ ‖Bx‖ − 2 |〈B∗Ax, x〉| ,

for any x ∈ H, ‖x‖ = 1, which gives the inequality

‖Ax‖ ‖Bx‖ ≤ |〈B∗Ax, x〉|+ 1
2
‖Ax−Bx‖2

,

for any x ∈ H, ‖x‖ = 1.
Taking the supremum over ‖x‖ = 1 we deduce the desired result (2.14).
By the parallelogram identity in the Hilbert space H we also have

‖Ax‖2 + ‖Bx‖2 =
1
2

(
‖Ax + Bx‖2 + ‖Ax−Bx‖2

)
≥ ‖Ax + Bx‖ ‖Ax−Bx‖ ,

for any x ∈ H.
Combining this inequality with the first part of (2.16) we get

‖Ax + Bx‖ ‖Ax−Bx‖ ≤ ‖Ax−Bx‖2 + 2 |〈B∗Ax, x〉| ,
for any x ∈ H. Taking the supremum in this inequality over ‖x‖ = 1 we deduce the
desired result (2.15).

Corollary 3. Let A ∈ B (H) . If Re (A) := A+A∗

2 and Im (A) := A−A∗

2i are the real
and imaginary parts of A, then we have the inequality

(0 ≤) µ (A,A∗)− w
(
A2

)
≤ 2 · ‖Im (A)‖2

and
µ (Re (A) , Im (A)) ≤ 1

2
w

(
A2

)
+ 2 · ‖Im (A)‖2

,

respectively.
Moreover, we have

(0 ≤)µ (Re (A) , Im (A))− w (Re (A) Im (A)) ≤ 1
2
‖A‖2

.

Corollary 4. For any A ∈ B (H) and λ ∈ C with λ 6= 0 we have the inequality
(see also [6])

(2.17) (0 ≤) ‖A‖ − w (A) ≤ 1
2 |λ|

‖A− λI‖2
.

For a bounded linear operator T consider the quantity ` (T ) := inf‖x‖=1 ‖Tx‖ .
We can state the following result as well.

Theorem 4. For any A,B ∈ B (H) with A 6= B and such that ` (B) ≥ ‖A−B‖
we have

(2.18) (0 ≤) µ2 (A,B)− w2 (B∗A) ≤ ‖A‖2 ‖A−B‖2
.

Proof. Denote r := ‖A−B‖ > 0. Then for any x ∈ H with ‖x‖ = 1 we have
‖Bx‖ ≥ r and by the first part of (2.16) we can write that

(2.19) ‖Ax‖2 +
(√

‖Bx‖2 − r2

)2

≤ 2 |〈B∗Ax, x〉| ,

for any x ∈ H with ‖x‖ = 1.
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On the other hand we have

(2.20) ‖Ax‖2 +
(√

‖Bx‖2 − r2

)2

≥ 2 · ‖Ax‖
√
‖Bx‖2 − r2,

for any x ∈ H with ‖x‖ = 1.
Combining (2.19) with (2.20) we deduce

‖Ax‖
√
‖Bx‖2 − r2 ≤ |〈B∗Ax, x〉|

which is clearly equivalent with

(2.21) ‖Ax‖2 ‖Bx‖2 ≤ |〈B∗Ax, x〉|2 + ‖Ax‖2 ‖A−B‖2
,

for any x ∈ H with ‖x‖ = 1. Taking the supremum in (2.21) over x ∈ H with
‖x‖ = 1, we deduce the desired inequality (2.18).

Corollary 5. For any A ∈ B (H) a non self adjoint operator and such that ` (A∗)
≥ 2 · ‖Im (A)‖ we have

(2.22) (0 ≤) µ2 (A,A∗)− w2
(
A2

)
≤ 4 · ‖A‖2 ‖Im (A)‖2

.

Corollary 6. For any A ∈ B (H) and λ ∈ C with λ 6= 0 and |λ| ≥ ‖A− λI‖ we
have the inequality (see also [6])

(0 ≤) ‖A‖2 − w2 (A) ≤ 1
|λ|2

· ‖A‖2 ‖A− λI‖2

or, equivalently,

(0 ≤)

√
1− ‖A− λI‖2

|λ|2
≤ w (A)

‖A‖
(≤ 1) .

3. Inequalities for Operators Satisfying the Uniform (α, β)-property

The following result that may be of interest in itself, holds:

Lemma 1. Let T ∈ B (H) and α, β ∈ C with α 6= β. The following statements are
equivalent:

(i) We have

(3.1) Re 〈βy − Tx, Tx− αy〉 ≥ 0,

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1;
(ii) We have

(3.2)
∥∥∥∥Tx− α + β

2
· y

∥∥∥∥ ≤ 1
2
|α− β| ,

for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.

Proof. Follows by the following identity

Re 〈βy − Tx, Tx− αy〉 =
1
4
|α− β|2 −

∥∥∥∥Tx− α + β

2
· y

∥∥∥∥2

,

that holds for any x, y ∈ H with ‖x‖ = ‖y‖ = 1.
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Remark 1. For any operator T ∈ B (H) if we choose α = a ‖T‖ (1 + 2i) and
β = a ‖T‖ (1− 2i) with a ≥ 1, then

α + β

2
= a ‖T‖ and

|α− β|
2

= 2a ‖T‖

showing that ∥∥∥∥Tx− α + β

2
· y

∥∥∥∥ ≤ ‖Tx‖+
∣∣∣∣α + β

2

∣∣∣∣ ≤ ‖T‖+ a ‖T‖

≤ 2a ‖T‖ =
1
2
· |α− β| ,

that holds for any x, y ∈ H with ‖x‖ = ‖y‖ = 1, i.e., T satisfies the condition (3.1)
with the scalars α and β given above.

Definition 1. For given α, β ∈ C with α 6= β and y ∈ H with ‖y‖ = 1, we say that
the operator T ∈ B (H) has the (α, β, y)-property if either (3.1) or, equivalently,
(3.2) holds true for any x ∈ H with ‖x‖ = 1. Moreover, if T has the (α, β, y)-
property for any y ∈ H with ‖y‖ = 1, then we say that this operator has the
uniform (α, β)-property.

Remark 2. The above Remark 1 shows that any bounded linear operator has the
uniform (α, β)-property for infinitely many (α, β) appropriately chosen. For a given
operator satisfying an (α, β)-property, it is an open problem to find the possibly
nonzero lower bound for the quantity |α− β| .

The following results may be stated:

Theorem 5. Let A,B ∈ B(H) and α, β, γ, δ ∈ K with α 6= β and γ 6= δ . For
y ∈ H with ‖y‖ = 1 assume that A∗ has the (α, β, y)-property while B∗ has the
(γ, δ, y)-property, then

(3.3) |‖Ay‖ ‖By‖ − ‖BA∗‖| ≤ 1
4
|β − α| |γ − δ| .

Moreover, if A∗ has the uniform (α, β)-property and B∗ has the uniform (γ, δ)-
property, then

(3.4) |µ (A,B)− ‖BA∗‖| ≤ 1
4
|β − α| |γ − δ| .

Proof. Since A∗ has the (α, β, y)-property while B∗ has the (γ, δ, y)-property, then
on making use of Lemma 1 we have that∥∥∥∥A∗x− α + β

2
· y

∥∥∥∥ ≤ 1
2
|β − α|

and ∥∥∥∥B∗z − γ + δ

2
· y

∥∥∥∥ ≤ 1
2
|γ − δ|

for any x, z ∈ H, with ‖x‖ = ‖z‖ = 1.
Now, we make use of the following Grüss type inequality for vectors in inner

product spaces obtained by the author in [1] (see also [2] or [7, p. 43]):
Let (H, 〈·, ·〉) be an inner product space over the real or complex number field

K, u, v, e ∈ H, ‖e‖ = 1, and α, β, γ, δ ∈ K such that

(3.5) Re 〈βe− u, u− αe〉 ≥ 0, Re 〈δe− v, v − γe〉 ≥ 0
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or, equivalently,

(3.6)
∥∥∥∥u− α + β

2
e

∥∥∥∥ ≤ 1
2
|β − α| ,

∥∥∥∥v − γ + δ

2
e

∥∥∥∥ ≤ 1
2
|δ − γ| ,

then

(3.7) |〈u, v〉 − 〈u, e〉 〈e, v〉| ≤ 1
4
|β − α| |δ − γ| .

Applying (3.7) for u = A∗x, v = B∗z and e = y we deduce

(3.8) |〈BA∗x, z〉 − 〈x,Ay〉 〈z,By〉| ≤ 1
4
|β − α| |δ − γ| ,

for any x, z ∈ H, ‖x‖ = ‖z‖ = 1, which is an inequality of interest in itself.
Observing that

||〈BA∗x, z〉| − |〈x,Ay〉 〈z,By〉|| ≤ |〈BA∗x, z〉 − 〈x,Ay〉 〈z,By〉| ,

then by (3.7) we deduce the inequality

||〈BA∗x, z〉| − |〈x,Ay〉 〈z,By〉|| ≤ 1
4
|β − α| |δ − γ| ,

for any x, z ∈ H, ‖x‖ = ‖z‖ = 1. This is equivalent with the following two inequal-
ities

(3.9) |〈BA∗x, z〉| ≤ |〈x,Ay〉 〈z,By〉|+ 1
4
|β − α| |δ − γ|

and

(3.10) |〈x, Ay〉 〈z,By〉| ≤ |〈BA∗x, z〉|+ 1
4
|β − α| |δ − γ| ,

for any x, z ∈ H, ‖x‖ = ‖z‖ = 1.
Taking the supremum over x, z ∈ H, ‖x‖ = ‖z‖ = 1 in (3.9) and (3.10) we get

the inequalities

(3.11) ‖BA∗‖ ≤ ‖Ay‖ ‖By‖+
1
4
|β − α| |δ − γ|

and

(3.12) ‖Ay‖ ‖By‖ ≤ ‖BA∗‖+
1
4
|β − α| |δ − γ| ,

which are clearly equivalent with (3.3).
Now, if A has the uniform (α, β)-property and B has the uniform (γ, δ)-property,

then the inequalities (3.11) and (3.12) hold for any y ∈ H with ‖y‖ = 1. Taking
the supremum over y ∈ H with ‖y‖ = 1 in these inequalities we deduce

‖BA∗‖ ≤ µ (A,B) +
1
4
|β − α| |δ − γ|

and

µ (A,B) ≤ ‖BA∗‖+
1
4
|β − α| |δ − γ|

which are equivalent with (3.4).



A FUNCTIONAL ASSOCIATED WITH TWO BOUNDED LINEAR OPERATORS 9

Corollary 7. Let A ∈ B(H) and α, β, γ, δ ∈ K with α 6= β and γ 6= δ. For
y ∈ H with ‖y‖ = 1 assume that A has the (α, β, y)-property while A∗ has the
(γ, δ, y)-property, then∣∣‖A∗y‖ ‖Ay‖ −

∥∥A2
∥∥∣∣ ≤ 1

4
|β − α| |γ − δ| .

Moreover, if A has the uniform (α, β)-property and A∗ has the uniform (γ, δ)-
property, then ∣∣µ (A,A∗)−

∥∥A2
∥∥∣∣ ≤ 1

4
|β − α| |γ − δ| .

The following results may be stated as well:

Theorem 6. Let A,B ∈ B(H) and α, β, γ, δ ∈ K with α + β 6= 0 and γ + δ 6= 0.
For y ∈ H with ‖y‖ = 1 assume that A∗ has the (α, β, y)-property while B∗ has the
(γ, δ, y)-property, then

(3.13) |‖Ay‖ ‖By‖ − ‖BA∗‖|

≤ 1
4
· |β − α| |δ − γ|√

|β + α| |δ + γ|

√
(‖A‖+ ‖Ay‖) (‖B‖+ ‖By‖).

Moreover, if A∗ has the uniform (α, β)-property and B∗ has the uniform (γ, δ)-
property, then

(3.14) |µ (A,B)− ‖BA∗‖| ≤ 1
2
· |β − α| |δ − γ|√

|β + α| |δ + γ|

√
‖A‖ ‖B‖.

Proof. We make use of the following inequality obtained by the author in [5] (see
also [7, p. 65]):

Let (H, 〈·, ·〉) be an inner product space over the real or complex number field
K, u, v, e ∈ H, ‖e‖ = 1, and α, β, γ, δ ∈ K with α + β 6= 0 and γ + δ 6= 0 and such
that

Re 〈βe− u, u− αe〉 ≥ 0, Re 〈δe− v, v − γe〉 ≥ 0

or, equivalently,∥∥∥∥u− α + β

2
e

∥∥∥∥ ≤ 1
2
|β − α| ,

∥∥∥∥v − γ + δ

2
e

∥∥∥∥ ≤ 1
2
|δ − γ| ,

then

(3.15) |〈u, v〉 − 〈u, e〉 〈e, v〉|

≤ 1
4
· |β − α| |δ − γ|√

|β + α| |δ + γ|

√
(‖u‖+ |〈u, e〉|) ((‖v‖+ |〈v, e〉|)).

Applying (3.15) for u = A∗x, v = B∗z and e = y we deduce

|〈BA∗x, z〉 − 〈x,Ay〉 〈z,By〉|

≤ 1
4
· |β − α| |δ − γ|√

|β + α| |δ + γ|

√
(‖A∗x‖+ |〈x, Ay〉|) ((‖B∗z‖+ |〈z,By〉|)),

for any x, y, z ∈ H, ‖x‖ = ‖y‖ = ‖z‖ = 1.
Now, on making use of a similar argument to the one from the proof of Theorem

5, we deduce the desired results (3.13) and (3.14). The details are omitted.
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Corollary 8. Let A ∈ B(H) and α, β, γ, δ ∈ K with α 6= β and γ 6= δ . For
y ∈ H with ‖y‖ = 1 assume that A has (α, β, y)-property while A∗ has the (γ, δ, y)-
property, then∣∣‖A∗y‖ ‖Ay‖ −

∥∥A2
∥∥∣∣ ≤ 1

4
· |β − α| |δ − γ|√

|β + α| |δ + γ|

√
(‖A‖+ ‖A∗y‖) (‖A‖+ ‖Ay‖).

Moreover, if A has the uniform (α, β)-property and A∗ has the uniform (γ, δ)-
property, then ∣∣µ (A,A∗)−

∥∥A2
∥∥∣∣ ≤ 1

2
· |β − α| |δ − γ|√

|β + α| |δ + γ|
‖A‖ .

4. The Transform Cα,β (·, ·) and Other Inequalities

For two given operators T,U ∈ B (H) and two given scalars α, β ∈ C consider
the transform

Cα,β (T,U) = (T ∗ − ᾱU∗) (βU − T ) .

This transform generalizes the transform Cα,β (T ) := (T ∗ − ᾱI) (βI − T ) = Cα,β (T, I) ,
where I is the identity operator, which has been introduced in [8] in order to pro-
vide some generalizations of the well known Kantorovich inequality for operators
in Hilbert spaces.

We recall that a bounded linear operator T on the complex Hilbert space (H, 〈·, ·〉)
is called accretive if Re 〈Ty, y〉 ≥ 0 for any y ∈ H.

Utilizing the following identity

Re 〈Cα,β (T,U)x, x〉 = Re 〈Cβ,α (T,U) x, x〉(4.1)

=
1
4
|β − α|2 ‖Ux‖2 −

∥∥∥∥Tx− α + β

2
· Ux

∥∥∥∥2

,

that holds for any scalars α, β and any vector x ∈ H, we can give a simple charac-
terization result that is useful in the following:

Lemma 2. For α, β ∈ C and T,U ∈ B(H) the following statements are equivalent:
(i) The transform Cα,β (T,U) (or, equivalently, Cβ,α (T,U)) is accretive;
(ii) We have the norm inequality

(4.2)
∥∥∥∥Tx− α + β

2
· Ux

∥∥∥∥ ≤ 1
2
|β − α| ‖Ux‖ ,

for any x ∈ H.

As a consequence of the above lemma we can state

Corollary 9. Let α, β ∈ C and T,U ∈ B(H). If Cα,β (T,U) is accretive, then

(4.3)
∥∥∥∥T − α + β

2
· U

∥∥∥∥ ≤ 1
2
|β − α| ‖U‖ .

Remark 3. In order to give examples of operators T,U ∈ B(H) and numbers
α, β ∈ C such that the transform Cα,β (T,U) is accretive, it suffices to select two
bounded linear operator S and V and the complex numbers z, w (w 6= 0) with the
property that ‖Sx− zV x‖ ≤ |w| ‖V x‖ for any x ∈ H, and, by choosing T = S,
U = V, α = 1

2 (z + w) and β = 1
2 (z − w) we observe that T and U satisfy (4.2),

i.e., Cα,β (T,U) is accretive.
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We are able now to give the following result concerning other reverse inequalities
for the case when the involved operators satisfy the accretivity property described
above.

Theorem 7. Let α, β ∈ C and A,B ∈ B(H). If Cα,β (A,B) is accretive, then

(4.4) (0 ≤) µ2 (A,B)− w2 (B∗A) ≤ 1
4
· |β − α|2 ‖B‖4

.

Moreover, if α + β 6= 0, then

(4.5) (0 ≤) µ (A,B)− w (B∗A) ≤ 1
4
· |β − α|2

|β + α|
‖B‖2

.

In addition, if Re
(
αβ̄

)
> 0, then also

(4.6) (1 ≤)
µ (A,B)
w (B∗A)

≤ 1
2
· |β + α|√

Re
(
αβ̄

)
and

(4.7) (0 ≤) µ2 (A,B)− w2 (B∗A) ≤
(
|β + α| − 2 ·

√
Re

(
αβ̄

))
w (B∗A) ‖B‖2

,

respectively.

Proof. By Lemma 2, since Cα,β (A,B) is accretive, then

(4.8)
∥∥∥∥Ax− α + β

2
·Bx

∥∥∥∥ ≤ 1
2
|β − α| ‖Bx‖ ,

for any x ∈ H.
We utilize the following reverse of the Schwarz inequality in inner product spaces

obtained by the author in [3] (see also [7, p. 4]):
If γ, Γ ∈ K (K = C, R) and u, v ∈ H are such that

(4.9) Re 〈Γv − u, u− γv〉 ≥ 0

or, equivalently,

(4.10)
∥∥∥∥u− γ + Γ

2
· v

∥∥∥∥ ≤ 1
2
|Γ− γ| ‖v‖ ,

then

(4.11) 0 ≤ ‖u‖2 ‖v‖2 − |〈u, v〉|2 ≤ 1
4
|Γ− γ|2 ‖v‖4

.

Now, on making use of (4.11) for u = Ax, v = Bx, x ∈ H, ‖x‖ = 1 and
γ = α, Γ = β we can write the inequality

‖Ax‖2 ‖Bx‖2 ≤ |〈B∗Ax, x〉|2 +
1
4
|β − α|2 ‖Bx‖4

,

for any x ∈ H, ‖x‖ = 1. Taking the supremum over ‖x‖ = 1 in this inequality
produces the desired result (4.4).

Now, by utilizing the result from [5] (see also [7, p. 29]), namely:
If γ, Γ ∈ K with γ+Γ 6= 0 and u, v ∈ H are such that either (4.9) or, equivalently,

(4.9) holds true, then

(4.12) 0 ≤ ‖u‖ ‖v‖ − |〈u, v〉| ≤ 1
4
· |Γ− γ|2

|Γ + γ|
‖v‖2

.
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Now, on making use of (4.12) for u = Ax, v = Bx, x ∈ H, ‖x‖ = 1 and
γ = α, Γ = β and using the same procedure outlined above, we deduce the second
inequality (4.5).

The inequality (4.6) follows from the result presented below obtained in [4] (see
also [7, p. 21]):

If γ, Γ ∈ K with Re (Γγ̄) > 0 and u, v ∈ H are such that either (4.9) or, equiva-
lently, (4.9) holds true, then

(4.13) ‖u‖ ‖v‖ ≤ 1
2
· |Γ + γ|√

Re (Γγ̄)
|〈u, v〉| ,

by choosing u = Ax, v = Bx, x ∈ H, ‖x‖ = 1 and γ = α, Γ = β and taking the
supremum over ‖x‖ = 1.

Finally, on making use of the inequality (see [6])

(4.14) ‖u‖2 ‖v‖2 − |〈u, v〉|2 ≤
(
|Γ + γ| − 2

√
Re (Γγ̄)

)
|〈u, v〉| ‖v‖2

that is valid provided γ, Γ ∈ K with Re (Γγ̄) > 0 and u, v ∈ H are such that either
(4.9) or, equivalently, (4.9) holds true, we obtain the last inequality (4.7). The
details are omitted.

Remark 4. Let M > m > 0 and A,B ∈ B(H). If Cm,M (A,B) is accretive, then

(0 ≤) µ2 (A,B)− w2 (B∗A) ≤ 1
4
· (M −m)2 ‖B‖4

,

(0 ≤) µ (A,B)− w (B∗A) ≤ 1
4
· (M −m)2

m + M
‖B‖2

,

(1 ≤)
µ (A,B)
w (B∗A)

≤ 1
2
· m + M√

mM
and

(0 ≤)µ2 (A,B)− w2 (B∗A) ≤
(√

M −
√

m
)2

w (B∗A) ‖B‖2
,

respectively.

Corollary 10. Let α, β ∈ C and A ∈ B(H). If Cα,β (A,A∗) is accretive, then

(0 ≤) µ2 (A,A∗)− w2
(
A2

)
≤ 1

4
· |β − α|2 ‖A‖4

.

Moreover, if α + β 6= 0, then

(0 ≤) µ (A,A∗)− w
(
A2

)
≤ 1

4
· |β − α|2

|β + α|
‖A‖2

.

In addition, if Re
(
αβ̄

)
> 0, then also

(1 ≤)
µ (A,A∗)
w (A2)

≤ 1
2
· |β + α|√

Re
(
αβ̄

)
and

(0 ≤) µ2 (A,A∗)− w2
(
A2

)
≤

(
|β + α| − 2 ·

√
Re

(
αβ̄

))
w

(
A2

)
‖A‖2

,

respectively.
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Remark 5. In a similar manner, if N > n > 0, A ∈ B(H) and Cn,N (A,A∗) is
accretive, then

(0 ≤) µ2 (A,A∗)− w2
(
A2

)
≤ 1

4
· (N − n)2 ‖A‖4

,

(0 ≤) µ (A,A∗)− w
(
A2

)
≤ 1

4
· (N − n)2

n + N
‖A‖2

,

(1 ≤)
µ (A,A∗)
w (A2)

≤ 1
2
· n + N√

nN
and

(0 ≤)µ2 (A,A∗)− w2
(
A2

)
≤

(√
N −

√
n
)2

w
(
A2

)
‖A‖2

,

respectively.
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