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ON WEIGHTED MEAN MATRICES WHOSE lp NORMS ARE DETERMINED
ON DECREASING SEQUENCES

PENG GAO

Abstract. We give a condition on weighted mean matrices so that their lp norms are determined
on decreasing sequences when the condition is satisfied. We apply our result to give a proof of a
conjecture of Bennett and discuss some related results.

1. Introduction

Suppose throughout that p 6= 0, 1
p + 1

q = 1. For p ≥ 1, let lp be the Banach space of all complex
sequences a = (an)n≥1 with norm

||a||p := (
∞∑

n=1

|an|p)1/p < ∞.

The celebrated Hardy’s inequality ([17, Theorem 326]) asserts that for p > 1,

(1.1)
∞∑

n=1

∣∣∣ 1
n

n∑
k=1

ak

∣∣∣p ≤ ( p

p− 1

)p
∞∑

n=1

|an|p.

Hardy’s inequality can be regarded as a special case of the following inequality:

(1.2)
∣∣∣∣∣∣C · a

∣∣∣∣∣∣p
p

=
∞∑

n=1

∣∣∣ ∞∑
k=1

cn,kak

∣∣∣p ≤ Up

∞∑
n=1

|an|p,

in which C = (cn,k) and the parameter p > 1 are assumed fixed, and the estimate is to hold for all
complex sequences a ∈ lp. The lp operator norm of C is then defined as

||C||p,p = sup
||a||p=1

∣∣∣∣∣∣C · a
∣∣∣∣∣∣

p
.

It follows that inequality (1.2) holds for any a ∈ lp when U
1/p
p ≥ ||C||p,p and fails to hold for some

a ∈ lp when U
1/p
p < ||C||p,p. Hardy’s inequality thus asserts that the Cesáro matrix operator C,

given by cn,k = 1/n, k ≤ n and 0 otherwise, is bounded on lp and has norm ≤ p/(p−1). (The norm
is in fact p/(p− 1).)

We say a matrix A = (an,k) is a lower triangular matrix if an,k = 0 for n < k and a lower
triangular matrix A is a summability matrix if an,k ≥ 0 and

∑n
k=1 an,k = 1. We say a summability

matrix A is a weighted mean matrix if its entries satisfy:

(1.3) an,k = λk/Λn, 1 ≤ k ≤ n; Λn =
n∑

i=1

λi, λi ≥ 0, λ1 > 0.

We shall also say that a weighted mean matrix A is generated by {λn}∞n=1 (resp. {λn}N
n=1) when

A is an infinite weighted mean matrix (resp. finite N × N weighted mean matrix) whose entries
are given by (1.3).
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Hardy’s inequality (1.1) motivates one to determine the lp operator norm of an arbitrary summa-
bility or weighted mean matrix A. In the weighted mean matrix case, as the diagonal entries
{λn/Λn} uniquely determine one such a matrix, one certainly expects to obtain a bound for its
norm using only the diagonal terms. In [16], the author proved the following result:

Theorem 1.1. Let 1 < p < ∞ be fixed. Let A be a weighted mean matrix generated by {λn}∞n=1 .
If for any integer n ≥ 1, there exists a positive constant 0 < L < p such that

(1.4)
Λn+1

λn+1
≤ Λn

λn

(
1− Lλn

pΛn

)1−p
+

L

p
,

then ||A||p,p ≤ p/(p− L).

It is easy to see that the above result implies the following well-known result of Cartlidge [9] (see
also [2, p. 416, Theorem C]):

Theorem 1.2. Let 1 < p < ∞ be fixed. Let A be a weighted mean matrix generated by {λn}∞n=1 .
If

(1.5) L = sup
n

(Λn+1

λn+1
− Λn

λn

)
< p ,

then ||A||p,p ≤ p/(p− L).

The above result of Cartlidge is often very handy to apply for determining lp norms of certain
weighted mean matrices, when combined with a result of Cass and Kratz [10], which says that for a
weighted mean matrix A generated by {λn}∞n=1, with the λn’s generated by a positive logarithmico-
exponential function (for details, see [14]) and satisfying limn→∞ Λn/(nλn) = L < p, then ||A||p,p ≥
p/(p − L). As an example, we note the following two inequalities were claimed to hold (with no
proofs supplied) by Bennett ( [4, p. 40-41]; see also [5, p. 407]):

∞∑
n=1

∣∣∣ 1
nα

n∑
i=1

(iα − (i− 1)α)ai

∣∣∣p ≤
( αp

αp− 1

)p
∞∑

n=1

|an|p,(1.6)

∞∑
n=1

∣∣∣ 1∑n
i=1 iα−1

n∑
i=1

iα−1ai

∣∣∣p ≤
( αp

αp− 1

)p
∞∑

n=1

|an|p,(1.7)

whenever p > 1, αp > 1. We note here the constant (αp/(αp− 1))p is best possible by the result of
Cass and Kratz (or see [6]).

Straightforward applications of Theorem 1.2 allow the author [14] to prove inequalities (1.6) for
p > 1, α ≥ 1 and (1.7) for p > 1, α ≥ 2 or 0 < α ≤ 1, αp > 1. The same result was obtained for
(1.7) by Bennett himself [6] independently and his proof also relies on Cartlidge’s result. Using a
different approach, Bennett was able to prove (1.6) for the full range of α (see [6, Theorem 1] with
β = 1 there). Using the result of Theorem 1.1, the author [16] has shown that inequality (1.7)
holds for p ≥ 2, 1 < α < 2 (in fact, as pointed out in [16], for fixed 1 < p < 2, one can also prove
(1.7) for some cases of 1 < α < 2).

We note here that by a change of variables ak → a
1/p
k in (1.1) and on letting p → +∞, one obtains

the following well-known Carleman’s inequality [8], which asserts that for convergent infinite series∑
an with non-negative terms, one has

∞∑
n=1

(
n∏

k=1

ak)
1
n ≤ e

∞∑
n=1

an,

with the constant e being best possible.
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It is then natural to study the following weighted version of Carleman’s inequality:

(1.8)
N∑

n=1

( n∏
k=1

a
λk/Λn

k

)
≤ EN

N∑
n=1

an,

where the notations are as in (1.3) and N ≥ 1 is an integer or N = ∞. The task here is to determine
the best constant EN so that inequality (1.8) holds for any (convergent when N = ∞) series

∑
an

with non-negative terms. Note that (1.8) can be regarded as the p → +∞ case of the following
inequality (once again by a change of variables):

(1.9)
N∑

n=1

( n∑
k=1

λk

Λn
ak

)p
≤ Up,N

N∑
n=1

ap
n,

where Up,N is a positive constant, an ≥ 0 and λn,Λn’s are given as in (1.3).
Note that Cartlidge’s result (Theorem 1.2) implies that when (1.5) is satisfied, then for any

a ∈ lp, inequality (1.9) holds for any N with Up,N = (p/(p−L))p. Similar to our discussions above,
by a change of variables ak → a

1/p
k in (1.9) and on letting p → +∞, one obtains inequality (1.8)

with EN = eL as long as (1.5) is satisfied with p replaced by +∞ there.
In connection to (1.7), Bennett [6, p. 829] further conjectured that inequality (1.8) holds for

λk = kα for α > −1 with E∞ = e1/(α+1). As the cases −1 < α ≤ 0 or α ≥ 1 follow directly
from the known cases of inequalities (1.7) upon changes of variables α → α + 1, ak → a

1/p
k and on

letting p → +∞, the only nontrivial cases are when 0 < α < 1. As these cases are the limits of
the corresponding lp cases and the author [16] has shown (1.7) hold for p ≥ 2, 1 < α < 2 using
Theorem 1.1, it follows that Bennett’s conjecture is true.

Motivated by the study of inequalities (1.6)-(1.7), we seek for extra inputs that may lead to a
resolution of the remaining case of (1.7) for 1 < p < 2, 1 < α < 2. For this, we note the following
natural question related to the lp norms of any matrix asked by Bennett [5, Problem 7.23]: When
is the norm of a matrix determined by its action on decreasing sequences? In other words, when
do we have

(1.10) ||C||p,p = sup
{
||C · a||p : ||a||p = 1 and a decreasing

}
?

For weighted mean matrices, it is known that [2, p. 422] that sequences a, with an/λ
1/(p−1)
n

decreasing in n, are sufficient to determine the norm. Note that this certainly implies (1.10) when
the λn’s are decreasing. A slightly generalization of this later case is given in the following lemma:

Lemma 1.1. [11, Lemma 2.4] Let p > 1 and C = (cn,k)n,k≥1 be an arbitrary lower triangular
matrix. If cn,k ≥ cn,k+1 ≥ 0 for all n ≥ 1, 1 ≤ k ≤ n− 1, then (1.10) holds.

We refer the reader to the articles [12] and [13] for more recent developments in this area. It is
our goal in this paper to give a condition on weighted mean matrices in Section 2 so that (1.10) will
hold. As an application, we will give another proof of the above mentioned Bennett’s conjecture.

We note that Cartlidge’s result (Theorem 1.2) only allows one to prove (1.6) with some restric-
tions on the α’s, as in [14], leaving alone the cases 1/p < α ≤ 1. However, for these cases, Lemma
1.1 implies that (1.10) holds for the corresponding matrices. This extra information can be used
to give a proof of these cases and in fact we shall prove a more general result in Section 3.

In [16], the author has shown that several approaches in the literature concerning the lp norms
of weighted mean matrices are equivalent. In Section 4, we will consider another approach to the
lp norms of weighted mean matrices, namely the Schur’s test. We will show that Schur’s test is
equivalent to the other approaches mentioned in [16] and we shall point out how Bennett’s proof
of (1.6) can be rewritten using Schur’s test. We shall also apply Schur’s test to give extensions of
(1.6) which in turn allows us to view both inequalities (1.6) and (1.7) as special cases of a family
of inequalities.
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2. On the validity of (1.10) for weighted mean matrices

In this section, we want to first present a result regarding the validity of (1.10) for weighted
mean matrices. Since one can often reduce the questions of finding the norms of infinite weighted
mean matrices to that of finite ones, we consider only finite weighted mean matrices here. Thus
instead of (1.2), we consider (1.9) instead and we have

Theorem 2.1. Let p > 1 be fixed and let N ≥ 1 be a fixed integer and A a weighted mean matrix
generated by {λn}N

n=1. Suppose that (1.9) is satisfied for some positive constant Up,N . If for any
1 ≤ k ≤ N − 1, the following condition

(2.1)
1
Λk

≥ Up,N

( 1
λk

− 1
λk+1

)
is satisfied, then (1.10) holds for C = A in this case.

Proof. Since our matrix A is of finite dimension, it is easy to see that in this case we have

µ
1/p
p,N := ||A||p,p = max

||a||p=1

∣∣∣∣∣∣A · a
∣∣∣∣∣∣

p
.

Thus without loss of generality, we may assume that the maximum is reached at some a with
||a||p = 1. It is shown in [16] that in this case we have an > 0 for all 1 ≤ n ≤ N and on setting

An =
n∑

k=1

λkak

Λn
,

we also have

(2.2) µp,N (
ap−1

k

λk
−

ap−1
k+1

λk+1
) =

Ap−1
k

Λk
, 1 ≤ k ≤ N − 1; µp,N

ap−1
N

λN
=

Ap−1
N

ΛN
;

N∑
n=1

ap
n = 1.

We now show by induction on k that if (2.1) is satisfied, then the sequence a satisfying (2.2)
must be decreasing. First, it is easy to see that a1 ≥ a2 using the relation k = 1 in (2.2) and noting
that A1 = a1 and 0 < µp,N ≤ Up,N by assumption. It now follows by induction that Ak ≥ ak

for k ≥ 1 and that ak ≥ ak+1 now follows from the k-th relation in (2.2) and this establishes our
assertion. �

We note here that one sees from (2.2) that that sequence a with an/λ
1/(p−1)
n decreasing in n, are

sufficient to determine the norm, this is mentioned in Section 1.
Now to apply Theorem 2.1, one needs to find some constant Up,N so that (1.9) holds. This is

not a problem in many cases, as one can apply Theorem 1.1 or Theorem 1.2. For example, if we
use Theorem 1.2, then we can deduce the following result from Theorem 2.1:

Corollary 2.1. Let p > 1 be fixed and let N ≥ 1 be a fixed integer and A a weighted mean matrix
generated by {λn}N

n=1. Suppose that (1.5) is satisfied and for any 1 ≤ k ≤ N − 1, we have

(2.3)
(
1− L

p

)p
≥ Λk

( 1
λk

− 1
λk+1

)
,

then (1.10) holds for C = A in this case.

We note that the left-hand side expression of (2.3) is an increasing function of p for fixed L.
Thus if L < 1, then upon taking p = 1, we see that (1.10) holds for any p > 1 as long as

(2.4) inf
n

(Λn+1

λn+1
− Λn

λn

)
≥ L.

One should compare the above with (1.5). Interestingly enough, (2.4) tells us that if the condition
(1.5) fails in the worst possible way (so that (2.4) holds), then Cartlidge’s result (Theorem 1.2)
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does not help in determining the norm but then we can have an extra input by knowing that in this
case (1.10) holds, provided that we know the norm is bounded by p/(p−L). In particular, we point
out here that if inequalities (1.7) were true for p > 1, 1 < α < 2 (note that it is shown in [16] that
this is the case when p ≥ 2), then Theorem 2.1 implies that one may focus on decreasing sequences
when trying to prove (1.7), since in this case (2.4) holds with λk = kα−1 and L = 1/α (see [6,
Theorem 6]). Of course one is not able to apply (2.1) using the constant Up,N = (αp/(αp − 1))p

for the unknown cases of (1.7). However, for the case of p being large, one may hope to find a
coarse bound Up,N so that (1.7) hold with the constant (αp/(αp− 1))p replaced by Up,N and (2.1)
is also satisfied and hopefully the extra information (that one may focus on decreasing sequences)
will allow one to give a proof of (1.7) for the cases 1 < α < 2 and p large. We shall not worry
about finding such a coarse bound here but we will show later in this section that the p → +∞ case
(corresponding to the conjecture of Bennett mentioned in Section 1) follows from this approach.

By looking at the case k = 1 of (2.2), we see that the case k = 1 of (2.1) with Up,N replaced by
µp,N is a necessary condition for a2 ≥ a1. When A = (ai,j) is an infinite weighted mean matrix,
then we denote AN = (ai,j)1≤i,j≤N and let µp,N = ||AN ||pp,p and note that we have µp,N−1 ≤ µp,N

for N ≥ 2 (one sets aN = 0 in (1.9) to see this), thus the sequence {µp,N}∞N=1 is increasing and
thus we have µp,N → ||A||pp,p as N → +∞, which allows us to deduce immediately the following

Corollary 2.2. Let p > 1 be fixed and A a weighted mean matrix generated by {λn}N
n=1. A

necessary condition for (1.10) to hold for C = A is

1
λ1

≥ ||A||pp,p

( 1
λ1
− 1

λ2

)
.

If moreover, the sequence {Λn/λn}∞n=1 is convex, then the above condition is also sufficient.

We note here by a result of Bennett [6, Theorem 2], we know that the sequence {Λn/λn}∞n=1 is
convex when λn = nα for α ≥ 1 or α ≤ 0 and is concave for 0 ≤ α ≤ 1.

We now consider two analogues of Theorem 2.1 here. First we note that we have a similar result
concerning inequality (1.8), namely,

Theorem 2.2. Let N ≥ 1 be a fixed integer and suppose that EN is the best possible constant to
make (1.8) hold. If for any 1 ≤ k ≤ N − 1, inequality (2.1) is satisfied with Up,N replaced by E′

N
for some constant E′

N ≥ EN there, then to prove (1.8), it suffices to establish it for decreasing
sequences.

Next, we note that one can also study inequality (1.9) when p < 0 and one often expects to get
result analogue to the case p > 0. To be precise, we consider the following inequality for an ≥ 0
and p < 0,

(2.5)
N∑

n=1

( n∑
k=1

λk

Λn
a

1/p
k

)p
≤ Up,N

N∑
n=1

an.

Here we define the value of the left-hand side expression above to be 0 when one or more of the
an’s is zero. This makes the left-hand side expression above a continuous function on the compact
set {

∑N
n=1 an = 1|an ≥ 0} and therefore we have Up,N < ∞. From now on, for a weighted mean

matrix A generated by {λn}N
n=1 (N finite or infinite) and a fixed p < 0, we shall denote ||A||pp,p

for the supreme of the left-hand side expression of (2.5), over the set {
∑N

n=1 an = 1|an ≥ 0}. We
now have the following analogue of Cartlidge’s result for p < 0, which can be easily established by
following the proof for the case p > 1 given in [15] by noting that the case n = 1 of (1.5) implies
L ≥ 0.
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Theorem 2.3. Let p < 0 be fixed and A a weighted mean matrix generated by {λn}N
n=1. Then

∞∑
n=1

Ap
n ≥

p

p− L

∞∑
n=1

anAp−1
n ,

where L is given as in (1.5). In particular, inequality (2.5) holds with ||A||pp,p ≤ (p/(p− L))p.

Now, analogue to Theorem 2.1, we have

Theorem 2.4. Let p < 0 be fixed and N ≥ 1 a fixed integer and A a weighted mean matrix generated
by {λn}N

n=1 and suppose that (2.5) holds for some constant Up,N . If for any 1 ≤ k ≤ N−1, inequality
(2.1) is satisfied with Up,N , then ||A||pp,p is determined on an increasing sequence.

Now, we want to see what can be said about the lp norm of a given matrix, taking into the
account that (1.10) holds for such a matrix. One strategy is to find a matrix whose lp norm (or
an upper bound of it) is known, say by Cartlidge’s result. Then one can make a comparison of the
two matrices, thanks to the following result:

Lemma 2.1. [5, Lemma 2.1] Let u,v be n-tuples with non-negative entries with n ≥ 1 and
k∑

i=1

ui ≤
k∑

i=1

vi, 1 ≤ k ≤ n− 1;
n∑

i=1

ui =
n∑

i=1

vi.

then
n∑

i=1

uiai ≤
n∑

i=1

viai,

for any decreasing n-tuple a and the above inequality reverses when a is increasing.

We note that the above lemma is given in [5, Lemma 2.1] for a slightly general statement, but
only for the case when a is decreasing and the case of a being increasing follows by applying the
previous case to −a.

The above lemma allows us to deduce the following result:

Theorem 2.5. Let A,A′ be two weighted mean matrix generated by {λn}N
n=1 and {λ′n}N

n=1 respec-
tively. Suppose that Λn/λn ≤ Λ′n/λ′n for all n. Then for fixed p > 1, if (1.10) holds for C = A,
we have ||A||p,p ≤ ||A′||p,p. Similarly, for fixed p < 0, if ||A||pp,p is determined on an increasing
sequence, we have ||A||pp,p ≤ ||A′||pp,p.

Proof. Since the proofs are similar, we will only prove the p > 1 case here. In this case as (1.10)
holds for C = A, it follows from Lemma 2.1 that ||A||p,p ≤ ||A′||p,p as long as one can show that
for any k ≤ n,

Λk

Λn
≤

Λ′k
Λ′n

.

By induction, it suffices to establish the above inequality for k = n− 1 and one sees easily in this
case the above inequality is equivalent to Λn/λn ≤ Λ′n/λ′n and this completes the proof. �

We note here the above theorem can be regarded as in the spirit of Bennett’s “right is tight
principle” (see page 409 of [5]) concerning the lp norms of summability matrices. According to the
above theorem, we can interpret this principle for the weighted mean matrices as saying that for
two given weighted mean matrices, the one with termwise larger diagonal entries has smaller norm,
provided its norm is determined on decreasing sequences.

As a concrete example of an application of the above theorem, we consider (1.7) for the cases
p > 1, 1 < α < 2. As we mentioned earlier, if we assume (1.7) hold for those cases, then (1.10)
holds for the corresponding matrix and in fact this is the case at least for p ≥ 2, 1 < α < 2 as (1.7)
are known to hold for these cases. Now assume (1.10) does hold for the corresponding matrix for
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the cases p > 1, 1 < α < 2 of (1.7), then in order to apply Theorem 2.5 to establish (1.7), we need
to find a weighted mean matrix A′ (we may again focus on the finite matrices) whose lp norm is
bounded by αp/(αp− 1). Now for the cases 1 < α < 2 of (1.7), we consider the following choice of
the matrix A′ generated by {λ′n}N

n=1, satisfying

λ′1 = 1,
Λ′n
λ′n

=
n + α/2

α
, n ≥ 2.

Note that this defines the λ′n’s uniquely and λ′n > 0 for all n. For a fixed 1 < α < 2, we now apply
Theorem 1.1 to conclude ||A′||p,p ≤ αp/(αp − 1) for p > 1/(α − 1)2 by noting that it suffices to
prove the case n = 1 of (1.4) with L = 1/α and this case follows when we bound (1 − 1/(pα))1−p

from below by 1− (1− p)/(pα) + (1− 1/p)/(2α2). It is also easy to check that for n ≥ 2,∑n
k=1 kα−1

nα−1
≤ n + α/2

α
.

One can similarly discuss the case p < 0, 1 < α < 2 using the following analogue of Theorem 1.1:

Theorem 2.6. Let p < 0 be fixed. Let A be a weighted mean matrix generated by {λn}N
n=1. If for

any integer n ≥ 1, there exists a positive constant L > 0 such that
Λn+1

λn+1
≤ Λn

λn

(
1− Lλn

pΛn

)1−p
+

L

p
,

then ||A||pp,p ≤ (p/(p− L))p.

Apply the above theorem to A′ defined above, we see that ||A′||pp,p ≤ (αp/(αp−1))p and we then
deduce immediately from Theorem 2.5 the following

Corollary 2.3. Inequalities (1.7) hold for p < 0, 1 < α < 2 for any increasing sequence a.

Now, Corollary 2.3 allows us to give another proof of the nontrivial cases 0 < α < 1 of Bennett’s
conjecture and in fact we shall prove a slightly general version by first establishing

Theorem 2.7. Let p < 0 be fixed and N an integer and A a weighted mean matrix generated by
{λn}N

n=1. Suppose that the sequence {Λn/λn}∞n=1 is concave and that limn→+∞ Λn/(nλn) = L. If
we have

(2.6) eλ1/λ2(1− L) < 1,

then ||A||pp,p is determined on an increasing sequence.

Proof. As {Λn/λn}∞n=1 is concave and that limn→+∞ Λn/(nλn) = L, a result of Bennett [6, Lemma
2] implies that L ≤ Λn+1/λn+1 − Λn/λn ≤ Λ2/λ2 − Λ1/λ1 = λ1/λ2. It follows from Theorem 2.3
that ||A||pp,p ≤ (p/(p−λ1/λ2))p for p < 0. Thus inequality (2.5) holds with Up,N = (p/(p−λ1/λ2))p.
As limp→−∞(p/(p − λ1/λ2))p = eλ1/λ2 and (p/(p − λ1/λ2))p is a decreasing function of p < 0, we
see that inequality (2.1) holds with Up,N = (p/(p − λ1/λ2))p by (2.6). Now our assertion follows
from Theorem 2.4. �

We now apply the above theorem to λn = nα for 0 < α < 1, in which case (2.6) is equivalent to

1 +
1
α

> e1/2α
.

As e1/2α
< e when 0 < α < 1, it follows that the above inequality holds for α < 1/(e− 1) ≈ 0.58.

Thus we may assume that 1/2 ≤ α < 1 and in this case e1/2α
< e1/

√
2 and by repeating the above

argument, we see that we may further assume that 0.8 ≤ α < 1 but then the above inequality
holds since e1/20.8

< 2. Therefore, combined with Corollary 2.3, we see that inequalities (1.7) hold
for p < 0, 1 < α < 2 and for the other positive α’s, we can apply Theorem 2.3 to conclude that
inequalities (1.7) hold as well and we summarize our result in the following
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Corollary 2.4. Inequalities (1.7) hold for p < 0, α > 0.

We note here that the above corollary implies the nontrivial cases 0 < α < 1 of Bennett’s
conjecture, which one obtains by taking p → −∞ of the corresponding cases of (1.7).

3. A generalization of a result of Bennett

As we mentioned in the introduction, the validity of (1.10) will allow us to deduce the cases
1/p < α ≤ 1 of inequalities (1.6). In this section, we shall generalize a result of Bennett which in
turn implies these cases. We shall assume all the infinite sums converge and we start by noting the
following result of Bliss [7]:

Theorem 3.1. Let r > p > 1 and let α be a real number satisfying (α+1)p > 1. Let f(x) be a non-
negative measurable function on [0,+∞) such that f ∈ Lp(0,+∞). Then the integral

∫ x
0 f(t)tαdt

is finite for every x and∫ ∞

0

( ∫ x

0
f(t)tαdt

)r dx

x(α+1)r−s
≤ Kr,s,α

( ∫ ∞

0
f(x)pdx

)r/p
,

where

s = r/p− 1, Kr,s,α =
1

(r − s− 1)(1 + αq)r−s

( sΓ(r/s)
Γ(1/s)Γ((r − 1)/s)

)s
.

We note here Bliss only proved the case α = 0 in [7] but the general case can be obtained by
some changes of variables. Based on the above result, we now prove the following

Theorem 3.2. Let r > s > 1 and s/r < α ≤ 1. Let u,v,a be sequences with positive entries. Let
Vn =

∑n
k=1 vk for n ≥ 1 and V0 = 0. If for m ≥ 1,

m∑
n=1

unV αr
n ≤ V s

m.

Then
∞∑

n=1

un

( n∑
k=1

(V α
k − V α

k−1)ak

)r
≤ sαrKr,s−1,α−1

( ∞∑
n=1

vnar/s
n

)s
.

Proof. The proof is almost identical to the proof of Theorem 2 in [3], taking account into Theorem
3.1, as long as one can show (see also the proof of Theorem 1 in [2]) that for 1 ≤ i < j, ai < aj ,

(V α
i − V α

i−1)ai + (V α
j − V α

j−1)aj

(V α
i − V α

i−1) + (V α
j − V α

j−1)
≤ viai + vjaj

vi + vj
.

The above inequality follows from Lemma 2.1 (note that aj > ai here) provided that
V α

j − V α
j−1

Vj − Vj−1
≤

V α
i − V α

i−1

Vi − Vi−1
.

The above inequality holds by the mean value theorem, since the right-hand side is no less than
αV α−1

i and the left-hand side is no greater than αV α−1
j−1 and this completes the proof. �

We now take un = (V s
n − V s

n−1)/V αr
n in the above theorem and make a change of variables

an → a
s/r
n and let r → +∞ to deduce that

Corollary 3.1. Let s > 1 and 0 < α ≤ 1. Let v,a be sequences with positive entries. Let
Vn =

∑n
k=1 vk for n ≥ 1 and V0 = 0. Then

∞∑
n=1

(V s
n − V s

n−1)
( n∏

k=1

a
V α

k −V α
k−1

k

)s/V α
n ≤ e−(α−1)s/α

α1−s

s

s− 1

( s− 1
Γ(1/(s− 1))

)s−1( ∞∑
n=1

vnan

)s
.
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Note that we will get back Carleman-type inequalities on letting s → 1+ in the above corollary.
We can also take vn = 1 and un = (ns − (n− 1)s)/nαr in Theorem 3.1 to deduce that

Corollary 3.2. Let r > s > 1 and s/r < α ≤ 1. Let a be sequences with positive entries. Then
∞∑

n=1

(ns − (n− 1)s)
( 1

nα

n∑
k=1

(kα − (k − 1)α)ak

)r
≤ sαrKr,s−1,α−1

( ∞∑
n=1

vnar/s
n

)s
.

Note that we get back the cases 1/p < α ≤ 1 of (1.6) on setting r = p and letting s → 1+ in the
above corollary.

4. Schur’s Test and Some Generalizations of inequalities (1.6) and (1.7)

In this section we first state a discrete version of Schur’s test concerning the norms of linear
operators:

Lemma 4.1. Let p > 1 be fixed and let A = (αj,i)1≤i,j≤N be a matrix with non-negative entries.
If there exist positive numbers U1, U2 and two positive sequences c = (ci), 1 ≤ i ≤ N ;d = (di), 1 ≤
i ≤ N , such that

N∑
i=1

αj,ic
1/p
i ≤ U1d

1/p
j , 1 ≤ j ≤ N ;(4.1)

N∑
j=1

αj,id
1/q
j ≤ U2c

1/q
i , 1 ≤ i ≤ N.(4.2)

Then
||A||p,p ≤ U

1/q
1 U

1/p
2 .

We now point out that Schur’s test is equivalent to the approaches mentioned in [16] in deter-
mining the operator norms of weighted mean matrices. It suffices to show that it is equivalent
to the approach of Kaluza and Szegö. To see this, note that our goal in general is to find some
(smallest possible) constant Up,N so that for a weighted mean matrix generated by {λn}N

n=1 (we
may assume λn > 0 for all n), inequality (1.9) holds for any integer N ≥ 1 and any a ∈ lp. We now
apply Lemma 4.1 with αj,i = λi/Λj for i ≤ j and αj,i = 0 for i > j with

ci =
(wi

λi

)p
, dj =

(∑j
k=1 wk

Λj

)p
,

where the auxiliary sequence {wn}∞n=1 is of positive terms and to be determined later. The choice
of the ci’s and dj ’s is to make inequality (4.1) satisfied with U1 = 1 (it becomes an identity) and
inequality (4.2) becomes

(4.3)
N∑

j=i

λi

Λp
j

( j∑
k=1

wk

)p−1
≤ U2

(wi

λi

)p−1
.

Suppose now one can find for each p > 1 a positive constant U2, a sequence w of positive terms
with wp−1

n /λp
n decreasing to 0, such that for any integer n ≥ 1,

(w1 + · · ·+ wn)p−1 < U2Λp
n(

wp−1
n

λp
n

−
wp−1

n+1

λp
n+1

),

then inequality (4.3) will follow from this and this is exactly the starting point of Kaluza and
Szegö’s approach.
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In what follows, we will give an account of Bennett’s proof of (1.6) in the form of Schur’s test.
First we consider the case α > 1/p of (1.6) and we can replace the infinite sums by finite sums
from 1 to N with N ≥ 1 here and we note the following estimation ([6, (99)]):

(4.4)
N∑

j=i

∫ i
i−1 xα−1/pdx

jα+1/q
≤ 1

α− 1/p
.

We now apply Lemma 4.1 with αj,i = α
( ∫ i

i−1 xα−1/pdx
)1/p( ∫ i

i−1 xα−1/p−1dx
)1/q

/jα for i ≤ j and

aj,i = 0 otherwise and ci = (
∫ i
i−1 xα−1/p−1dx/

∫ i
i−1 xα−1/pdx), dj = 1/j, U1 = U2 = (αp)/(αp − 1)

to see that in this case inequality (4.1) becomes an identity and inequality (4.2) becomes exactly
(4.4). From this we deduce the following inequality for p > 1, α > 1/p and any a ∈ lp,

∞∑
n=1

∣∣∣ 1
nα

n∑
i=1

α
( ∫ i

i−1
xα−1/pdx

)1/p( ∫ i

i−1
xα−1−1/pdx

)1/q
ai

∣∣∣p ≤ ( αp

αp− 1

)p
∞∑

n=1

|an|p.

from which one deduces the corresponding cases of (1.6) easily.
We note here in Bennett’s proof of (1.6) given above, a key ingredient is inequality (4.4). We

point out here that when 1 ≤ α ≤ 1 + 1/p, a better estimation exists, namely,

(4.5)
N∑

j=i

α
(
i− 1

2

)α−1+1/q

jα+1/q
≤ αp

αp− 1
.

Inequality (4.5) can be easily deduced from the following inequality for all integers i ≥ 1 and
1 ≤ α ≤ 1 + 1/p,

i−α−1/q ≤ 1
α− 1/p

((
i− 1/2

)1−α−1/q
−

(
i + 1/2

)1−α−1/q)
=

∫ i+1/2

i−1/2
x−α−1/qdx.

The above inequality follows from the well-known Hadamard’s inequality (with h(x) = x−α−1/q, a =
i− 1/2, b = i + 1/2 below), which asserts that for a continuous convex function h(x) on [a, b],

h(
a + b

2
) ≤ 1

b− a

∫ b

a
h(x)dx ≤ h(a) + h(b)

2
.

The above inequality also allows us to see easily that inequality (4.5) improves upon (4.4) for
1 ≤ α ≤ 1 + 1/p.

Now, inequality (4.5) allows us to establish the following

Theorem 4.1. Let p > 1 be fixed, then the following inequality holds for 1 ≤ α ≤ 1 + 1/p and any
a ∈ lp,

∞∑
n=1

∣∣∣ 1
nα

n∑
i=1

α
(
i− 1

2

) 1
p
(α− 1

p
)( ∫ i

i−1
xα−1−1/pdx

)1/q
ai

∣∣∣p ≤ ( αp

αp− 1

)p
∞∑

n=1

|an|p.

Proof. We can replace the infinite sums by finite sums from 1 to N with N ≥ 1 here and we apply

Lemma 4.1 here with αj,i = α
(
i− 1

2

) 1
p
(α− 1

p
)( ∫ i

i−1 xα−1−1/pdx
)1/q

/jα for i ≤ j and 0 otherwise and

ci =
(
i − 1

2

)−(α− 1
p
)( ∫ i

i−1 xα−1−1/pdx
)
, dj = j−1 to see that estimations (4.1)-(4.2) hold by (4.5)

with U1 = U2 = αp/(αp− 1) and this completes the proof. �

To deduce interesting corollaries from Theorem 4.1, we note the following lemma:
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Lemma 4.2 ([1, Lemma 2.1]). Let a > 0, b > 0 and r be real numbers with a 6= b, and let

Lr(a, b) =
(

ar − br

r(a− b)

)1/(r−1)

(r 6= 0, 1),

L0(a, b) =
a− b

log a− log b
,

L1(a, b) =
1
e

(
aa

bb

)1/(a−b)

.

The function r 7→ Lr(a, b) is strictly increasing on R.

It readily follows from the above lemma that for 1 ≤ α ≤ 1 + 1/p, we have

iα − (i− 1)α = αLα−1
α (i, i− 1) ≤ αLα−1

2 (i, i− 1) = α
(
i− 1/2

)α−1

≤ α
(
i− 1/2

) 1
p
(α− 1

p
)( ∫ i

i−1
xα−1−1/pdx

)1/q
= αL

1
p
(α− 1

p
)

2 (i, i− 1) · L
1
q
(α−1− 1

p
)

α− 1
p

(i, i− 1).

It follows from this that Theorem 4.1 not only implies the corresponding cases of (1.6) but also the
following stronger result:

Corollary 4.1. Let p > 1 be fixed, then the following inequality holds for 1 ≤ α ≤ 1 + 1/p and any
a ∈ lp,

∞∑
n=1

∣∣∣ 1
nα

n∑
i=1

α
(
i− 1

2

)α−1
ai

∣∣∣p ≤ ( αp

αp− 1

)p
∞∑

n=1

|an|p.

As an interesting consequence of Corollary 4.1, we note for the case p = 2 we have 2α − 1 ≤ 2
for α ≤ 3/2 so that Corollary 4.1 implies the following inequality for a ∈ l2 and 1 ≤ α ≤ 3/2:

(4.6)
N∑

n=1

∣∣∣ n∑
i=1

αLα−1
2α−1(i, i− 1)

nα
ai

∣∣∣2 ≤ α2

(α− 1/2)2

N∑
i=1

|ai|2.

We now apply the duality principle [18, Lemma 2] to deduce from (4.6) the following inequality
for a ∈ l2, ai ≥ 0 and 1 ≤ α ≤ 3/2:

N∑
i,j=1

α2 min(i2α−1, j2α−1)
(2α− 1)iαjα

aiaj =
N∑

n=1

( N∑
i=n

αLα−1
2α−1(n, n− 1)

iα
ai

)2
≤ α2

(α− 1/2)2

N∑
i=1

a2
i .

We note here the case α = 1 above gives back a result of Schur in [19], who showed that for
x,y ∈ l2,

∞∑
i,j=1

xiyj

max(i, j)
≤ 4||x||2||y||2.

By the duality principle, the above inequality is equivalent to Hardy’s inequality (1.1) for the case
p = 2, even though this was not mentioned in [19] (this is actually prior to Hardy’s discovery of
(1.1)).

Our discussions above allow us to regard the cases of α ≥ 1 of inequalities (1.6) and (1.7) as
special cases of a family of inequalities. Namely, it is interesting to determine the best constant
U = U(α, β, p) so that the following inequality holds for all a ∈ lp (p > 1, β ≥ α ≥ 1):

(4.7)
∞∑

n=1

∣∣∣ 1∑n
k=1 Lα−1

β (k, k − 1)

n∑
i=1

Lα−1
β (i, i− 1)ai

∣∣∣p ≤ U
∞∑

n=1

|an|p.

Note that the case of β = α above corresponds to inequality (1.6) and the case of β → +∞ above
corresponds to inequality (1.7) by Lemma 4.2. In both cases, we expect U = (αp/(αp − 1))p (of
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course this is known except for some cases of (1.7) when 1 < p < 2, 1 < α < 2. Thanks to
Corollary 4.1 and Lemma 4.2, we also know that inequality (4.7) holds with U = (αp/(αp − 1))p

for p > 1, 1 ≤ α ≤ 1 + 1/p, α ≤ β ≤ 2.
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