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REVERSE TRIANGLE INEQUALITY FOR HILBERT C*-MODULES
M. KHOSRAVI!, H. MAHYAR? AND M. S. MOSLEHIAN?

ABSTRACT. We prove several versions of reverse triangle inequality in Hilbert C*-modules

based on some works of S. S. Dragomir. In particular, we show that if ey,--- ,e,, are
vectors in a Hilbert module X over a C*-algebra 2 such that (e;,e;) =0 (1 <i# j < m)
and |le;|| =1 (1 <i<m), and also 7, pr € R (1 <k <m) and z1,--- ,z, € X satisfy

0 < rillzsll < Re(rrer,z;), 0 < pillz;ll < Im{prer, z;) ,

then

1

2 n n
J

Dol < |
j=1

—

[zm% )

k=1

and the equality holds if and only if

n n m
> ap ="l Y (e +iprer
j=1 j=1 k=1

1. INTRODUCTION AND PRELIMINARIES

The triangle inequality is one of the most fundamental inequalities in mathematics. Several
mathematician have been investigated its generalizations and reverses.

Petrovitch [I5] in 1917, proved that for complex number zy, - - | z,, we have

n n
DI
j=1 j=1

where 0 < § < 7 and a — 0 < arg z; < a +0 (1 < j < n) for a real number a.
This inequality can be found also in Karamata’s book [8]. The first generalization of the
triangle inequality in Hilbert space was given by Diaz and Matcalf [4]. They proved that for
x1,- -+ ,x, in a Hilbert space H, if e be a unit vector H such that 0 < r < RT|<;1”6> for some

r € R and each 1 < j <n, then

n n
e Nzl < 1Yl
j=1 j=1
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and the equality holds if and only if Y77 z; =r> "7 [[2;le.

Recently, a number of mathematicians have represented several refinements of the reverse
triangle inequality in Hilbert spaces and normed spaces. See [1}, 2, [3] [6], [7], 9, 12| [14].

Our aim is to give some generalizations of results in Hilbert spaces to the framework of
Hilbert C*-modules. For this purpose, first we recall some fundamental definitions in the
theory of Hilbert modules. We also use the elementary C*-algebra theory, in particular we

1/2

utilize this property that if a < b then a'/? < b2, where a,b are positive elements of a

C*-algebra 2. We also repeatedly apply the following known relation:

%(aa* +a*a) = (Rea)? + (Ima)?, ()
where a is an arbitrary element of 2. For details on C*-algebra theory we referred the readers
to [13].

Suppose that 2 is a C*-algebra and X is a linear space which is an algebraic right 2A-
module. The space X is called a pre-Hilbert 2-module (or an inner product A-module) if
there exists an 2A-valued inner product (.,.) : X x X — 2 with the following properties:

(i) (z,xz) > 0 and (z,z) =0 if and only if x =0

(i) (z, Ay + 2) = Nz, y) + (z, 2)

(iii) (z,ya) = (z,y)a

(iv) (@, 9)" = (y,2)

for all z,y,2z € X, a € A, A € C. By (ii) and (iv), (.,.) is conjogate linear in the first
variable. Using the Cauchy—Schwartz inequality (y,x){z,y) < ||{z,x)|{y,y) [10, Page 5], it
follows that ||z|| = ||(z,z)||z is a norm on X making it into a right normed module. The
pre-Hilbert module X is called a Hilbert 2-module if it is complete with respect to this
norm. Notice that the inner structure of a C*-algebra is essentially more complicated than
complex numbers. For instance, the notations such as orthogonality and theorems such as
Riesz’ representation in the complex Hilbert space theory cannot simply be generalized or
transferred to the theory of Hilbert C*-modules.

One may define an “A-valued norm” |.| by |z| = (z,z)'/2. Clearly, || |z| || = ||z| for each
x € X. It is known that |.| does not satisfy the triangle inequality in general. See [10, [11]

for more information on Hilbert C*-modules.

2. MAIN RESULTS

Utilizing some C*-algebraic techniques we present our first result as a generalization of [6,
Theorem 2.3].
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Theorem 2.1. Let A be a C*-algebra with unit 1, let X be a Hilbert A-module and let
Ty, ,x, € X. If there exist real numbers ki, ko > 0 with

0 < Fillzgll < Ree,zz), 0 < kallzyl| < Imfe, zj)

for some e € X with |e|] <1 and all 1 < j <mn, then

(k482 Dl < || (2.1)
j=1 j=1
Proof. Applying the Cauchy—Schwarz inequality, we get
" 2 n 2
(e Y zy)* < <Dl -
j=1 j=1
and
N 2 " 2
(D ze)l’ < el < |[D_ ||
j=1 j=1
whence
|| =4 (e S + (S a0?)
= 3 (e ) e, oy ) + (g g, @) (K @)
= (Ree, 327_ #))* + (Im(e, 327, ;) (by (0))
= Re}_7_i(e,2;))* + (Im 327 (e, z;))?
> ki (o sl + k3 (325 M)
= (K + k3) (251 llyl)? -
O

Using the same argument as in the proof of Theorem one can obtain the following

result, where k1, ks are hermitian elements of 2.
Theorem 2.2. [f the vectors zy,--- ,x, € X satisfy the conditions
0 < kfllzy)|* < (Rele,2;))*, 0 < E3llayl® < (Imle, z;))?,

for some hermitian elements ki, ks in A, some e € X with |e|] <1 and all 1 < j < n then
the inequality holds.

One may observe an integral version of inequality (2.1)) as follows:
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Corollary 2.3. Let X be a Hilbert module over a C*-algebra A with unit 1 and let f : |a,b] —
X be strongly measurable such that the Lebesque integral f; | f(t)||dt ezist and be finite. If

there exist self-adjoint elements ay,as in A with
atllfOI* < Re(f(t),€)*, a3 f(O)* < Im{f(t),e)* (ae.t€[ab]),
where e € X with |e| < 1, then
s a1 [ b
@+t [Irwlae<) [ s
Now we prove a useful lemma which is frequently applied in the next theorems.

Lemma 2.4. Let X be a Hilbert A-module and let x,y € X. If |{z,y)| = ||z||||ly||, then

Proof. For x,y € X we have

syt sy sley)
0= ‘y el | = Y g Y T g
=W y) — v o), y) + mEly o) (e, 2)(e,y) — mply o) (e, y)
< y]* — i@l =yl — e lzlPlyl?
= lyl> = llyl* <0,
whence ‘y — m\\fﬁ? = 0. Hence y = x||<::\7|g>‘ d

Using the Cauchy-Schwarz inequality, we have the following theorem for Hilbert modules,
which is similar to [I, Theorem 2.5].

Theorem 2.5. Let ey, -, e, be a family of vectors in a Hilbert C*-module X such that
(€i,e;) =0 (1 <i#j<m)and|el| =1 (1 <i<m). Suppose that ry,pr € R (1 <k <m)
and that the vectors x1,--- ,x, € X satisfy

0 < rillzsll < Re(rrer, z;), 0 < pilla;ll < Imlprex, ;)

Then

[Z(rimi) leﬂfjll < ) (2.2)

k=1

n
2
i=1
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and the equality holds if and only if

o= Ml Y (e +ion)er (2.3)
j=1 j=1 k=1

Proof. There is nothing to prove if >, (r? + p2) = 0. Assume that > - (r7 + p2) # 0.
From the hypothesis we have

(i o) (o llal)” < (Re(Tiy rven, o7y @) + Im(0 pren, o)y 7))

= (Re(327 i, S (e + ipi)ex)”

(by Im(a) = Re(ia*),Re(a*) = Re(a) (a € Ql))
< IO, ok (e +ipr)er) )

HOTR (e Fipr)er, Y5 )P (by (o))
) 1l Zj:l ;P10 (e + ok )ex]?

+|| > e (e +ipr)el?] 35—, @57

<2y w1 1k (e + iw e

(by la| <[la] (a€2))
= |1 220 w2 ke (e 4 dpr)ers Doy (7 + ipi)er) |
= || 2252 =112 220 I+ dpowllex
= {1225 P 2o (0 + k) -

Hence

m n 2
[z 2 anju S,
k=1 j=1

By taking square roots the desired result follows.
Clearly we have equality in [2.2]if condition 2.3 holds. To see the converse, first note that if
equality holds in[2.2] then all 1nequa11tles in the above relations should be equality. Therefore

rillzill = Re(rier, x;),  pillzsll = Im{prer, z;)

Zﬂfg,z Tk + ipk)€k) Z%az Tk +ipr)er)
j=1 k=1 J=1 k=1
and also

1O e+ ioe, Y S an)l =1zl (re + ipw)el|
k=1 j=1 Jj=1 k=1
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From Lemma and these equalities we have
Sierws = T (S e + e T )
- %WRde (e +ipr)er, 25—, x5)
= R s S 03l + il )

= S gl S e+ i )e

which is the desired result. O

From now on we assume that X is a right Hilbert module over a C*-algebra A, which is

an algebraic left A-module subject to

(z,ay) = afz,y) (v,y € X,a ). (f)

For example if 2 is a C*-algebra and J be a commutative right ideal of A, then J is a right

Hilbert module over 2 and
(x,ay) = 2" (ay) = az’y = a(z,y) (r,y €T, ac ).

The next theorem is a refinement of [6 Theorem 2.1]. To prove it we need the following

lemma.

Lemma 2.6. Let X be a Hilbert A-module and ey,--- ,e, € X be a family of vectors such
that (e;,e;) =0 (i # j) and |le;]| = 1. If x € X, then

3

n
o> =) Kew )P and |2 =) [ en)].
k=1

Proof. The first result follows from the following inequality:
0 <]z =3 enler,2)* = (v =200 exler, ), 0 — D7 e5{ej, 1))
= <l‘, :L‘> + ZZzl Z?:1<ek7 x>*<€k7 €j><€j’ ZL‘> —2 ZZzl |<6k’ £E>|2
(2, 2) + 325 (ew, @) (er, ex) (e, @) — 2350 [{en, )]
< ol + 3k (e, @) (e, @) — 2305 [{ew, )
= |2[* = 325t ew, o)

By considering |z — > 7_, (e, x)ex|?, similarly, we have the second one. O

Now we are able to prove the next theorem without using the Cauchy—Schwarz inequality.
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Theorem 2.7. Let ey, - e, € X be a family of vectors with (e;,e;) =0 (1 <i# j < m)
and |le;|| =1 (1 < i <m). If the vectors xy,--- ,x, € X satisfy the conditions

0 < rillzjll < Refer, ), 0 < pillasll < Imlex, z;) (1 <j<n1<k<m), (24)
where ry, pr € [0,00) (1 <k < m), then

[Z e+ p7)

k=1

Z 1 < Zl‘g

x;, we obtain

(2.5)

Proof. Applying the previous lemma for x = Z;’L:1

> 1 (S0 Kew Xy )P + Sy {30 en)?)

= o7 & (e gy ) ens Yoy @) + (o @ ) (g v )
= > (Refer, 220y ) + (Im{er, 227y 25))*  (by (o))

= Sy (Re STy {ens @) + (Im X7 (e )2

> DI Il + A ) (r €3)

R D )2

2
‘2?21 Lj

<

O

Proposition 2.8. In Theorem if {ex,ex) = 1, then the equality holds in (2.5)) if and
only if

> wi= O ) D (e +io)e (2.6)
j=1 j=1 k=1

Proof. If (2.6 holds, then inequality in (2.5 turns trivially into equality.
Next, assume that equality holds in ([2.5). Then two inequalities in the proof of Theorem
should be equality. Hence

n m n n m n
> =D Wew > P and [ alP=> [ zjen)),
j=1 k=1 =1 j=1 k=1  j=1

which is equivalent to

m n n

;%‘ :Zzek<€k,$3 ZZ(ek,xj>ek,

k=1 j=1 k=1 j=1
and also

rillzi|l = Refer, ;) pwllz;|| = Im{ey, z;) .
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So

m n m n n

ij = Zzek<€k,$j> = Zzek i +ipr) ||zl = Z lz;1) Z et ipr)e
j=1 k=1

k=1 j=1 k=1 j=1 j=1

O

There are some versions of additive reverse of triangle inequality. In [5], S. S. Dragomir

established the following theorem:

Theorem 2.9. Let {ex}ir, be a family of orthonormal vectors in Hilbert space H and
M, >0 (1<i<n,1<k<m) such that

|z;]] — Refe, xj) < My,
foreach1 <i<nand1 <k <m. Then

Sl € =l Sl + 303 M
j=1 j=1

=1 k=1

and the equality holds if and only if

ZII%II > —ZZ

=1 k=1
and
S, (ZH%H——ZZ )
Jj=1 j=1 k=1 k=1

Now we extend this theorem for Hilbert modules.

Theorem 2.10. Let {e;}7, be a family of vectors in Hilbert A-module X with |egx| <1 (1 <
k< m) and (e;,e;) =0(1 <i#j<m)andz; € X (1 <i<mn). If for some scalars
Mj;>0(1<i<n,1<k<m),

|z;|| — Relex, xj) < My (1<i<n1<k<m), (2.7)
then

n 1 n 1 n m
;iju S\/—EH;%HJFEZZMM- (2:8)

j=1 k=1

Moreover, if |ey| =1 (1 < k < m), then the equality in ([2.8) holds if and only if

ZII%II > —ZZ (2.9)

7=1 k=1
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and

jz:;xj: (Z H%H——ZZ )Z (2.10)

7j=1 k=1 k=1

Proof. Taking the summation in (2.7) over i from 1 to n, we obtain

> llajll < Relew, Yy )+ My,
j=1 j=1 j=1

for each k € {1,--- ,m}. Summing these inequalities over k from 1 to m, we deduce
Z ;1 < Re Zek,Zx] +— ZZMJk (2.11)
k 1 j=1

Using the Cauchy—SChwarz we obtain

(Re{Sy o6 Sy ) < SUCSEL 6 Sy a2+ Sy 0 Sy ) ) (by (9)
< %(“Z?:l ex|? ‘Zj:l wil? + 1 20 enl? Hijl ) (2.12)
< | X enlPl g

< mll 325l

IN

since

m m m m m
1D el =10 ew Y emll =1 (eweadl = \|Z|€k| | <m.
k=1

— k=1 k=1 k=1 I=1
Using (2.12)) in (2.11]), we deduce the desired inequality.

If (2.9) and (2.10) hold, then
= o (e all = & %05 o M) Iy el
= 2 sl = o 200 2o My,
and then the equality in 2.8 holds true.
Conversely, if the equality holds in (2.8)), then obviously (2.9) is valid and we have equalities

all over in the above proof. This means that

\/Lﬁ HZ;L=1 l.]

|lz;]| — Re(ex, x;) = Mjy,

Re(Y e o) = (e Yo ),
k=1 j=1 k=1 j=1
and

m n m n
1O ew Yzl =1 el Yl
k=1 j=1 k=1 j=1
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Now from Lemma and these relations, we have

[1]
2]
[3]

[4]

[10]

[11]

[12]

[13]
[14]

[15]

YT = e (i e Y )
= S S Re(Y T e, Y @)
= iz s S (gl — M)
= (5 ol = & Xy oy M) S e
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