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A NOTE ON AN OPEN PROBLEM

MIAO-QING AN

Abstract. The function
Γ(x+1)

1
x

(x+β)α is logarithmically completely monotonic on

(0,∞) for α ≥ 1 and 0 ≤ β ≤ 1, and is logarithmically completely monotonic

in (−1, 0) for 0 < α ≤ 2β
1+2β

and β > 1. This gives an answer to an open

problem proposed by Feng Qi.

The classical gamma function

Γ(x) =
∫ ∞

0

tx−1e−t dt (x > 0) (1)

is one of the most important functions in analysis and its applications. The history
and development of this function are described in detail [2]. The psi or digamma
function ψ(x) = Γ′(x)

Γ(x) , the logarithmic derivative of the gamma function, and the
polygamma functions can be expressed[6, p.16] as

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
dt, (2)

ψ(k)(x) = (−1)k+1

∫ ∞

0

tke−xt

1− e−t
dt (3)

for x > 0 and k = 1, 2, . . ., where γ = 0.57721566490153286 . . . is the Euler-
Mascheroni constant.

We recall that a function f : (0,∞) −→ R is said to be completely monotonic if
f has derivatives of all orders and

(−1)nf (n)(x) ≥ 0 (4)

for x > 0 and n = 0, 1, 2, . . . . If f is nonconstant and completely monotonic, then
the inequality (4) is strict, see [3]. Let C denote the set of completely monotonic
functions.

A function f is said to be logarithmically completely monotonic on (0,∞) if f
is positive and, for all n ∈ N,

0 ≤ (−1)n[log f(x)](n) <∞, (5)

see[1, 7]. If inequality (5) is strict for all x ∈ (0,∞) and for all n ≥ 1, then f is said
to be strictly logarithmically completely monotonic. Let L on (0,∞) stand for the
set of logarithmically completely monotonic functions.

The notion that logarithmically completely monotonic function was posed explic-
itly in [8] and published formally in [7] and a much useful and meaningful relation
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L ⊂ C between the completely monotonic functions and the logarithmically com-
pletely monotonic functions was proved in[7, 8].

In [5], H. Minc and L. Sathre proved that, if n is a positive integer and φ(n) =
(n!)

1
n , then

1 <
φ(n+ 1)
φ(n)

<
n+ 1
n

, (6)

which can be rearranged as

[Γ(n+ 1)]1/n < [Γ(n+ 2)]1/(n+1)

and
[Γ(n+ 1)]1/n

n
>

[Γ(n+ 2)]1/(n+1)

n+ 1
,

since Γ(n+ 1) = n!.
In [4], the following monotonicity results for the Gamma function were estab-

lished. The function
[
Γ(1 + 1

x )
]x decreases with x > 0 and x

[
Γ(1 + 1

x )
]x increases

with x > 0, which recover the inequalities in (6) which refer to integer values of n.
These are equivalent to the function [Γ(1 + x)]1/x being increasing and [Γ(1+x)]1/x

x
being decreasing on (0,∞), respectively. In addition, it was proved that the func-
tion x1−γ

[
[Γ(1 + 1

x )x
]

decreases for 0 < x < 1, which is equivalent to [Γ(1+x)]1/x

x1−γ

being increasing on (1,∞).
In[9], Qi and Chen showed that the function [Γ(x+1)]1/x

x+1 is strictly decreasing

and strictly logarithmically convex in (0,∞), and the function [Γ(x+1)]1/x

√
x+1

is strictly
increasing and strictly logarithmically concave in (0,∞). Using the monotonicity
of above functions, Qi and Chen presented the following double inequality

x+ 1
y + 1

<
[Γ(x+ 1)]1/x

[Γ(y + 1)]1/y
<

√
x+ 1
y + 1

for 0 < x < y, see Corollary 1 of [9].
In [8], Qi and Guo proposed an open problem

Open Problem 1. Find conditions about α and β such that the ratio

F (x) =
[Γ(x+ 1)]

1
x

(x+ β)α
(7)

is completely (absolutely, regularly) monotonic (convex) with x > −1.

In this paper , we give an answer to this problem and establish new inequalities.

Theorem 1. The function F (x) defined by (7) is strictly logarithmically completely
monotonic in (0,∞) for α ≥ 1 and 0 ≤ β ≤ 1. Moreover, the function F (x) is
strictly completely monotonic in (0,∞) for α ≥ 1 and 0 ≤ β ≤ 1.

Proof.Taking the logarithm of F (x) defined by (7),

logF (x) =
log Γ(x+ 1)

x
− α log(x+ β)

, g(x)− α log(x+ β). (8)
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Using Leibnitz’ rule

[u(x)v(x)](n) =
n∑

k=0

(
n

k

)
u(k)(x)v(n−k)(x), (9)

we have

g(n)(x) =
1

xn+1

n∑
k=0

(−1)n−kn!xkψ(k−1)(x+ 1)
k!

,
hn(x)
xn+1

. (10)

h
′

n(x) = xnψ(n)(x+ 1){
> 0, if n is odd and x ∈ (0,∞),
≤ 0, if in is odd and x ∈ (−1, 0) and n is even and x ∈ (−1,∞),

(11)

where ψ(−1)(x+ 1) = log Γ(x+ 1) and ψ(0)(x+ 1) = ψ(x+ 1).

(−1)n (logF (x))(n) =
1

xn+1

[
(−1)nhn(x) +

(n− 1)!αxn+1

(x+ β)n

]
,

vα,β(x)
xn+1

Using the representations
(n− 1)!
(x+ 1)n

=
∫ ∞

0

tn−1e−(x+1)t dt, x > 0, n = 1, 2, . . . , (12)

and (3), we conclude

v
′

α,β(x) = (−1)nxnψ(n)(x+ 1) +
n!xnαβ

(x+ β)n+1
+

(n− 1)!xnα

(x+ β)n

= xn

∫ ∞

0

[
α(et − 1) + αβt(et − 1)− teβt

] tn−1e−(x+β)t

et − 1
dt

, xn

∫ ∞

0

φ(t)
tn−1e−(x+β)t

et − 1
dt (13)

where

φ(t) = αβt(et − 1)− teβt + α(et − 1)

= (α− 1)t+
∞∑

m=2

[α+mβ(α− βm−2)]
tm

m!
.

If α ≥ 1 and 0 ≤ β ≤ 1, then φ(t) > 0 and v′α,β(x) > 0. Hence, vα,β(x) >

vα,β(0) = 0 and (−1)n (logF (x))(n)
> 0, and thus, the function F (x) is strictly

logarithmically completely monotonic . The proof of Theorem 1 is complete.

Corollary 1. For α ≥ 1 and 0 ≤ β ≤ 1 ,

Γ(x+ 1)
1
x

Γ(y + 1)
1
y

>

(
x+ β

y + β

)α

, (14)

in which 0 < x < y.
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Theorem 2. The function F (x) defined by (7) is strictly logarithmically completely
monotonic in (−1, 0) for 0 < α ≤ 2β

1+2β and β > 1. Moreover, the function F (x) is
strictly completely monotonic in (−1, 0) for 0 < α ≤ 2β

1+2β and β > 1.

Proof. By (13),

φ(t) = αβt(et − 1)− teβt + α(et − 1)

φ(0) = 0

φ
′
(t) = et(α+ αβ + αβt)− αβ − eβt(1 + βt)

φ
′
(0) = α− 1

φ
′′
(t) = et

[
α+ 2αβ + αβt− βe(β−1)t(2 + βt)

]
, etu(t)

u(0) = α+ 2αβ − 2β

u′(t) = αβ − β(β − 1)e(β−1)t(2 + βt)− β2e(β−1)t

u
′
(0) = −3β2 + αβ + 2β

u
′′
(t) = e(β−1)t

[
−β2(β − 1)2t− 2β(β − 1)(2β − 1)

]
If 0 < α ≤ 2β

1+2β and β > 1, then u
′′
(t) < 0 and u

′
(t) is strictly decreasing .

So u
′
(t) < u

′
(0) < 0 and u(t) is strictly decreasing. Hence, u(t) < u(0) < 0 and

φ
′′
(t) < 0. Since 0 < α ≤ 2β

1+2β , we have φ
′
(t) < φ

′
(0) < 0. So we conclude that

φ(t) < φ(0) = 0.
If n is odd, then v

′

α,β(x) > 0 on (−1, 0), and then, vα,β(x) > vα,β(0) = 0 and

(−1)n (logF (x))(n)
> 0. If n is even, then v

′

α,β(x) < 0 on (−1, 0), and then,

vα,β(x) < vα,β(0) = 0 and (−1)n (logF (x))(n)
> 0 on (−1, 0).

This means that the function F (x) is strictly logarithmically completely mono-
tonic on (−1, 0). The proof of Theorem 2 is complete.

Corollary 2. For 0 < α ≤ 2β
1+2β and β > 1 ,

Γ(x+ 1)
1
x

Γ(y + 1)
1
y

>

(
x+ β

y + β

)α

, (15)

in which −1 < x < y < 0.

Motivated by the open problem , we established a new function

G(x) =
[Γ(x+ α)]

1
x

(x+ β)γ
(16)

in which α, β, γ are nonnegative. Our Theorem 3 consider its logarithmically com-
pletely monotonicity.
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Theorem 3. The function G(x) defined by (16) is strictly logarithmically com-
pletely monotonic in (0,∞) for α ∈ (0, 1] ∪ [2,∞), α − 1 ≤ β ≤ α and γ ≥
max

{
1
β , 1

}
. Moreover, the function G(x) is strictly completely monotonic in (0,∞)

for α ∈ (0, 1] ∪ [2,∞), α− 1 ≤ β ≤ α and γ ≥ max
{

1
β , 1

}
.

Proof. Using (9), we obtain

(logG(x))(n) =
n∑

k=0

(
n

k

)(
1
x

)(n−k)

[log Γ(x+ α)](k) − (−1)n−1γ(n− 1)!
(x+ β)n

=
(

1
x

)(n)

log Γ(x+ α) +
n∑

k=1

(
n

k

)(
1
x

)(n−k)

ψ(k−1)(x+ α) +
(−1)nγ(n− 1)!

(x+ β)n

=
(−1)nn!
xn+1

log Γ(x+ α) +
n∑

k=1

n!
k!

(−1)n−k

xn−k+1
ψ(k−1)(x+ α) +

(−1)nγ(n− 1)!
(x+ β)n

, (−1)n 1
xn+1

δ(x),

and

δ′(x) = xn

(
(−1)nψ(n)(x+ α) +

n!βγ
(x+ β)n+1

+
(n− 1)!γ
(x+ β)n

)
.

Using (3) and (12) for x > 0 and n ∈ N, we conclude

1
xn
δ′(x) = (−1)nψ(n)(x+ α) +

n!βγ
(x+ β)n+1

+
(n− 1)!γ
(x+ β)n

=
∫ ∞

0

[
γ(et − 1) + βγt(et − 1)− te(β−α+1)t

] tn−1e−(x+β)t

et − 1
dt

,
∫ ∞

0

u(t)
tn−1e−(x+β)t

et − 1
dt,

where

u(t) = βγt(et − 1)− te(β−α+1)t + γ(et − 1)

= (γ − 1)t+
∞∑

m=2

{
γ +m

[
βγ − (β − α+ 1)m−1

]} tm
m!
.

If α − 1 ≤ β ≤ α and γ ≥ max
{

1
β , 1

}
, then u(t) > 0 and δ′(x) > 0. Notice

that Γ(α) ≥ 1 for α ∈ (0, 1] ∪ [2,∞) . Hence, δ(x) > δ(0) = n! log Γ(α) ≥ 0 and
(−1)n (logG(x))(n)

> 0 in (0,∞) , and thus, the function G(x) is strictly logarith-
mically completely monotonic . The proof of Theorem 3 is complete.

Corollary 3. For α ∈ (0, 1] ∪ [2,∞), α− 1 ≤ β ≤ α and γ ≥ max
{

1
β , 1

}
,

Γ(x+ α)
1
x

Γ(y + α)
1
y

>

(
x+ β

y + β

)γ

, (17)

in which 0 < x < y.
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