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A GENERAL GENERALIZATION OF JORDAN’S INEQUALITY
AND A REFINEMENT OF L. YANG’S INEQUALITY

FENG QI, DA-WEI NIU, AND JIAN CAO

ABSTRACT._In this article, for ¢t > 2, a generia_.], generalization of Jordan’s
inequality  J_; py 0F —z? k<“nrfq'29§ r_jwg 0F —xt FforneN
and 0 € (0,7] is established, where the coefficients pj; and wy defined by
recursing formulas (11) and (12) are the best possible. As an application,

L. Yang’s inequality is refined.

1. INTRODUCTION

The well known Jordan’s inequality (see [2 6], [4, p. 143], [8, p. 269] and [11
p. 33]) states that

<1 (1)

for 0 < |z| < 5. The equality in (I) is valid if and only if 2 = 7.
Jordan’s inequality has important applications in analysis and other branches of
mathematics. Therefore, many mathematicians have struggled to refine, generalize
and apply it. For more detailed information, please refer to [8, pp. 274-275] and
[, 15, 6,17, 91, (10, (1T, (12} 113, (14} 116, [17, 118 [10) 20, 21, 22, 23| 24], 25| 26, 28, 311, 32, 33],
especially [15], and the references therein.
In [T, 10, 14} 16}, 17, 18], 19], among other things, Jordan’s inequality had been

refined as
-2

%x(wQ — 4x2) <sinz — %x < T x(wQ — 43@2). (2)

In [33], a stronger sharp double inequality for z € (0, g} was obtained:

12 — 72 2 _sinz 2 1 T™—3 2
]_67'(5 (772 — 41’2) < 7 — ; — g(ﬂ'z — 4&32) < ?(71'2 — 4.132) . (3)

Recently in [12], the following general refinement of Jordan’s inequality was showed:

i (7% — 4a? k, (4)

2 n
- +Zak(7r2 741'2)16 < sin

>Hw

where the constants
k k+1 7 .
2 k+1
ap = 47r kk' E ( ) el sm( 5 7r> (5)
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and

with
(7)

in (4) are the best possible.
In [26], as a generalization of Jordan’s inequality (1), the following sharp in-
equality

Lola (22 cos) — osing| (1- L 2

5.2 7 cos sin o
< sinx sinf 1 /sinf 0 x
=% "5 g U

sinf 1 /siné 27\ 2
< _ I _ . _ -
< [1 7 3 < 7 coS 0)] (1 o ) (8)

was obtained for 0 < 2z < 6 € (O7 g], 7> 2and 7 < A < 27. The equalities in
(8) holds if and only if z = 6. The coefficients of the term (1 — g—:)z are the best
possible. If 1 < 7 < g and either A # 0 or A > 27 then inequality (8) is reversed.

Specially, when 6 = 7, inequality (8) becomes

AN+ 4 — 72 2 o sinzx 2 2 7r’\—2Ax)‘)

AT — 2\ — 2
AW27+1

(ﬂ_T _ QTIT)Q

(9)

for0 <z <5, 7>2and 7 <\ <27, IflSTSgandeither/\;éOor/\ZZT
then inequality (9) is reversed. If taking (7, A) = (2,2) in (9), then inequality (3)
can be deduced.

For recent developments of the refinements, generalizations and applications of
Jordan’s inequality, please refer to the expository and summary article [15].

The first aim of this paper is to generalize inequalities (4) and (8). One of the

main results of this paper is the following Theorem [1.

Theorem 1. For0 <z <0 <m, neN andt > 2, inequality

oo o) < T <Y (o) (10)
k=1 k=1

holds with the equalities if and only if © = 6, where the constants

~1F & ikt kti—1
e = (k:'t’)“ Zafﬁlﬁk ikt sm<9+ 27r> (11)
T
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and
]—sinf _ 07
wy = ’ GEZ L , k=n (12)
Ik 1<k<n
with
AV i+ (B-1D)(t—D]ar!, 0<i<k
at = {1, i=0 (13)
0, i>k

in (10) are the best possible.

Remark 1. Taking t = 2 in (10)) yields inequality (4). Letting n = 2 in (10)) leads
o (8) for A\ =71 =2.

The second aim of this paper is to apply Theorem [1lto refine L. Yang’s inequality
[27] as follows.

Theorem 2. LetO§A§1,0<x§9<ﬂ',t22andAi>Owich?:1Ai§7r
forneN. If m € N and n > 2, then

Lin(n,A) € H(n,A) € Ryn(n, \), (14)

where
9 ? A
_ (" a2 sin =kt (216" t_t\k 2
Ly (n,\) = (2> [ E 2 k(200 — Airt) 1 cos (271'), (15)

H(n,A)=(n-1) 20052()\Ak) — 2 cos(Am) Z cos(AA4;) cos(AA;),  (16)

k=1 1<i<j<n

2
Rm(n,A) _ (2>>\2 2 [SIHQ 22 kt 2t9t )\tﬂ_t)k‘| COS2<;\7T>, (17)

and i and wy, are defined by (1 )

2. LEMMAS

To prove our main results, the following lemmas are necessary.

Lemma 1. For z > 0, let up(z) = 2% and uy(z) = u;‘;i(aj) for ke Nandr>1.
Then

k+1 z+k 1
a ;. sin (w + 7T)
Uk(.’E) = Z pkr+i ’ (18)
i=1

where a¥ is defined by (13).

Proof. It is apparent that uq(z) = a:’r(b”””)/ =gz ' "cosx — 72 " sinz, which
tells us that formula (18) is valid for k = 1.
Now assume formula (I8) holds for some given k > 1. Direct computation by
using (13) gives
k+1

E+i—1
N P ST
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1 . k+i1—1
—WSIH CL’+T7T

k k k k+1
= _ % cos (33 + 271-) M bln(x 4 ]{17'(')

ghrtr+l phrrtkT2
k_laf(kr+1+i)+a§+1 _ k+i
a Z kTt it2 sin| x + TW
i=0
k+1 k+1
__% k+1 Qi1 .
= xerrrJrlbln<x+ 5 Tt iRz sin[z + (k + 1))

lc+1 .
k+i+2
z : 2+1
+ xkr+’r‘+2+2 sin <.'L' + 271—)

_k+2 k+1 ki
ZIkT+Z+TSID xr + 5 T .

By mathematical induction, Lemma (1] is proved. ([l

Lemma 2. For z >0 and k € N, let vy(z) = 14 ab a1 sin(x + E+i=lr)
and vjy1(z) = %v;(x) for j € N. Then

k—j+1 . .
. o k -1
_ E b_g$k—l—J+1 sin(m + _|_Z_|2_’]ﬂ-) (19)

is valid for 7 € N, where b1 =ak, b] =1 and
bo=b" - (k—i—j 43, 0<i<k-j+1, j>1 (20)

Proof. When j = 1, formula (19)) is valid clearly.
By induction, suppose that formula (19) holds for some j > 1. Since k—j+1 >

k—(j+1)+1, it deduced from (20) that bfréﬂ—bfc i1 bkij—O Thus,
1 ’“*jbj o i k+itj—1
vjﬂ(x)—; ; k—i—j+ 1Dz sin x—i—fw

L k+i+j—1 j
+ k79 cos (z + ]W)] + b?c—j-i—l cos(z + kﬁ)}

2
= b)a"I sin <x + tJ 77)

2
k—j—1 . .
; i k 1

+ Z o (k—i—j+ l)bﬂxkﬂ*jﬂ sin(z + Jrl;r]jLﬂ')

i=0

; k+j & k+i+j+1

:b(ﬂjxk*j sin<x+2‘77r> + Z sz_rllxk 1—j+1 S1H<$+2J7T>
1=0

—j
:Z pi+1 ki Jsm( +k+z+] >
2
=0

By mathematical induction, formula (19) is proved. O
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Lemma 3 ([3]). Let f and g be continuous on [a,b] and differentiable in (a,b) such

that ¢'(xz) # 0 in (a,b). If 5 f/(I) is 1 ing (or decreasing) in (a,b), then the
functions J;Ei;:i;((g)) nd fgg 5((;)) are also increasing (or decreasing) in (a,b).

Lemma 4. Let 0 < x <0 <7 and t > 2, then inequality

1/sinf cos@ sinx sinf 1 sin 0
t(61+t r )(F)txt) < — < <9t 91+t>(9txt) (21)

T

holds with the equalities if and only if © = 0, where the constants
1/sinf cosf 1 sinf
\amme — g ) md i~ g

are the best possible.

Proof. Let f(z) = S22 — si8l g(3) = gt — 2!, fi(z) = zcosz —sinz and g;(z) =
—tz1*t, Then

flx) _ fz) - f(0) f'x) _ file) = £1(0) filz)  sinz
glx)  g@)—g(0)" g g(z)=g(0)  gi(x) HL+t)at
Since Si;f is decreasing in (0, 7], then ,E 2) s decreasing, and then, in virtue of

ch (@ ; is decreasing, further i g ; is decreasing in (() 7], thus,

and the two constants are the best possible. (I

o1+t ot

3. PROOFS OF THEOREMS

Proof of Theorem (1. If n = 1, inequality (10) becomes (21) in Lemma /4.
Forn>2lett=r+1,

n—1

o) = sinx Sln9 Z’“ gr+1 _ r-‘,—l) . () = (9r+1 _xrﬂ)n7
o1(a) = “"if), pin@) =D ey =Yy )= B,
where 2 < i <n. Then for 1 <k <n-—2,
~ (i + k)!

(0 2t

n—k—1
on(w) = wn(w) = [=(r + D] Ry Z

Prn-1(2) = un1(z) = (n = DU=(r + D" pn1 and - pp(2) = un(2),

where ug(z) for 1 < k < n is defined by (18).

In view of (18), it is deduced that [—(147)]*klus, = uy(0) for 1 < k < n—1, hence
©i(0) =0for 1 <i <n—1. A simple calculation gives 1;(x) = [—(1+7)]* 2 é(n—
)07t — gm =t for 1 < i < n, consequently ¢;(f) =0 for 1 <i<n-—1. Asa
result, for 1 <i<n—1,

px) _ ox) — o(6) o) _ pi(x) — (0

() (@) —¥(0) W'(x)  Pi(e) —a(6)

¢i(@) _ (@) = pir1(6) Pno1(2) _en(@)  un(2)
Vi) i (@) — i (0) no1(@)  n(x)  nl[=(r+1)]
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Let hy(x) = 2™ and hiq(z) = Thj(z) for 1 < i < n and n € N. Then
it is easy to see that hit1(x) = [[j_,(nr +n — 20+ 3)z" T2+ for 1 < 4§ < n.
Utilization of Lemma (1l and Lemma 2| leads to

ol _1(x) _ Sttar 2 sin(z + 2L ) _ v1(z)
Y1 (2) nl[=(1 4 r)]rarntntt =14 7)]"h (z)
and, since v;(0) = h;(0) =0for 1 <i<n+1,
vi(z) _ vi(z) — U1( ) v} () _ vj11(2) — v41(0)
hi(x) — hi(z) —hi(0)  Bj(x)  hjpa(z) — hja(0)
v (1) Upy1(®) — vng1(0) (=1)"sinx

W () hna(z) - n+1(0) Hz 1(nr+n — 204 3)gnr—rtl

for 1 < j<n-—1. Since % and 771 ig decreasing on (0, 7), then the func-

tion xffi’ffﬂ is decreasing and (2),7:)(30 is deceasing. Accordingly, from Lemma

3, it follows that the functions = 1}3,(2)(1) nd &2° U’( 1)(37 for 2 < i < n are de-
k3 1

creasing. Thus, the functions (_z),n&/l)(x) and & 1h)1 (1;1)@) are decreasing, and then
1

W"‘l(i) is decreasing in (0, 7). Utilizing Lemma 3 again reveals that the functions

P@) L eh@)
T and G

ingly monotonicity of % in (O7 7). By L’Hospital’s rule, it is easy to deduce that

limg g 521) = limg - % = limg .o ZE?Z; = n'[uﬁ(ﬁ)l" =pnforl <i<n—1

and limg g4 wgm; Wy, which implies pu, < ig; < w, and the constants p; and

for 2 < j < n — 1 are decreasing, which implies the deceas-

wy, are the best possible.
By the mathematical induction, inequality (10)) is proved. O

Proof of Theorem 2. Tt was proved in [29] and [30} (2.13)] that
sin®(Ar) < cos?(AA;) + cos®(AA;) — 2 cos(AA;) cos(AA;) cos(Ar)
£ H;; < 4 sin® (;\71'> (22)

Summing up (22)) for 1 < i < j < n yields

(;l) sin?(Ar) < Y Hij=H(n,\) < 4<2> sm2(/2\71')- (23)

1<i<j<n

By virtue of inequality (10) in Theorem (1]
A 0 ’
2 2_o|sin kt,, t t_t\k
4 sin (27r> < \°7 [ E 2- 2 0" — X\ 7r) 1 , (24)

A A
sin?(\7) = 4 cos® (27r> sin? (27r>

2
Sind o~ k A
o + Z 275 g (276" — N7t) ] cos? <27r>.

> \272
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Substituting (24) and (25) into (23) leads to (14). The proof of Theorem (2| is
complete. (I
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