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A GENERAL GENERALIZATION OF JORDAN’S INEQUALITY
AND A REFINEMENT OF L. YANG’S INEQUALITY

FENG QI, DA-WEI NIU, AND JIAN CAO

Abstract. In this article, for t ≥ 2, a general generalization of Jordan’s

inequality
Pn

k=1 µk

�
θt − xt

�k ≤ sin x
x

− sin θ
θ

≤Pn
k=1 ωk

�
θt − xt

�k
for n ∈ N

and θ ∈ (0, π] is established, where the coefficients µk and ωk defined by
recursing formulas (11) and (12) are the best possible. As an application,
L. Yang’s inequality is refined.

1. Introduction

The well known Jordan’s inequality (see [2, 6], [4, p. 143], [8, p. 269] and [11,
p. 33]) states that

2
π
≤ sin x

x
< 1 (1)

for 0 < |x| ≤ π
2 . The equality in (1) is valid if and only if x = π

2 .
Jordan’s inequality has important applications in analysis and other branches of

mathematics. Therefore, many mathematicians have struggled to refine, generalize
and apply it. For more detailed information, please refer to [8, pp. 274–275] and
[1, 5, 6, 7, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 31, 32, 33],
especially [15], and the references therein.

In [1, 10, 14, 16, 17, 18, 19], among other things, Jordan’s inequality had been
refined as

1
π3

x
(
π2 − 4x2

) ≤ sin x− 2
π

x ≤ π − 2
π3

x
(
π2 − 4x2

)
. (2)

In [33], a stronger sharp double inequality for x ∈ (
0, π

2

]
was obtained:

12− π2

16π5

(
π2 − 4x2

)2 ≤ sin x

x
− 2

π
− 1

π3

(
π2 − 4x2

) ≤ π − 3
π5

(
π2 − 4x2

)2
. (3)

Recently in [12], the following general refinement of Jordan’s inequality was showed:

2
π

+
n∑

k=1

αk

(
π2 − 4x2

)k ≤ sin x

x
≤ 2

π
+

n∑

k=1

βk

(
π2 − 4x2

)k
, (4)

where the constants

αk =
(−1)k

(4π)kk!

k+1∑

i=1

(
2
π

)i

ck
i−1 sin

(
k + i

2
π

)
(5)
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and

βk =





1− 2
π −

∑n−1
i=1 αiπ

2i

π2n
, k = n

αk, 1 ≤ k < n
(6)

with

ck
i =

{
(i + k − 1)ck−1

i−1 + ck−1
i , 0 < i ≤ k

1, i = 0
(7)

in (4) are the best possible.
In [26], as a generalization of Jordan’s inequality (1), the following sharp in-

equality

1
2τ2

[
(1 + λ)

(
sin θ

θ
− cos θ

)
− θ sin θ

](
1− xτ

θτ

)2

≤ sin x

x
− sin θ

θ
− 1

λ

(
sin θ

θ
− cos θ

)(
1− xλ

θλ

)

≤
[
1− sin θ

θ
− 1

λ

(
sin θ

θ
− cos θ

)](
1− xτ

θτ

)2

(8)

was obtained for 0 < x ≤ θ ∈ (
0, π

2

]
, τ ≥ 2 and τ ≤ λ ≤ 2τ . The equalities in

(8) holds if and only if x = θ. The coefficients of the term
(
1 − xτ

θτ

)2 are the best
possible. If 1 ≤ τ ≤ 5

3 and either λ 6= 0 or λ ≥ 2τ then inequality (8) is reversed.
Specially, when θ = π

2 , inequality (8) becomes

4λ + 4− π2

4τ2π2τ+1

(
πτ − 2τxτ

)2 ≤ sin x

x
− 2

π
− 2

λπλ+1

(
πλ − 2λxλ

)

≤ λπ − 2λ− 2
λπ2τ+1

(
πτ − 2τxτ

)2 (9)

for 0 < x ≤ π
2 , τ ≥ 2 and τ ≤ λ ≤ 2τ . If 1 ≤ τ ≤ 5

3 and either λ 6= 0 or λ ≥ 2τ
then inequality (9) is reversed. If taking (τ, λ) = (2, 2) in (9), then inequality (3)
can be deduced.

For recent developments of the refinements, generalizations and applications of
Jordan’s inequality, please refer to the expository and summary article [15].

The first aim of this paper is to generalize inequalities (4) and (8). One of the
main results of this paper is the following Theorem 1.

Theorem 1. For 0 < x ≤ θ < π, n ∈ N and t ≥ 2, inequality

n∑

k=1

µk

(
θt − xt

)k ≤ sin x

x
− sin θ

θ
≤

n∑

k=1

ωk

(
θt − xt

)k (10)

holds with the equalities if and only if x = θ, where the constants

µk =
(−1)k

k!tk

k+1∑

i=1

ak
i−1θ

k−i−kt sin
(

θ +
k + i− 1

2
π

)
(11)
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and

ωk =





1− sin θ
θ −∑n−1

i=1 µiθ
ti

θtn
, k = n

µk, 1 ≤ k < n
(12)

with

ak
i =





ak−1
i + [i + (k − 1)(t− 1)]ak−1

i−1 , 0 < i ≤ k

1, i = 0
0, i > k

(13)

in (10) are the best possible.

Remark 1. Taking t = 2 in (10) yields inequality (4). Letting n = 2 in (10) leads
to (8) for λ = τ = 2.

The second aim of this paper is to apply Theorem 1 to refine L. Yang’s inequality
[27] as follows.

Theorem 2. Let 0 ≤ λ ≤ 1, 0 < x ≤ θ < π, t ≥ 2 and Ai > 0 with
∑n

i=1 Ai ≤ π
for n ∈ N. If m ∈ N and n ≥ 2, then

Lm(n, λ) ≤ H(n, λ) ≤ Rm(n, λ), (14)

where

Lm(n, λ) =
(

n

2

)
λ2π2

[
sin θ

θ
+

m∑

k=1

2−ktµk

(
2tθt − λtπt

)k

]2

cos2
(

λ

2
π

)
, (15)

H(n, λ) = (n− 1)
n∑

k=1

cos2(λAk)− 2 cos(λπ)
∑

1≤i<j≤n

cos(λAi) cos(λAj), (16)

Rm(n, λ) =
(

n

2

)
λ2π2

[
sin θ

θ
+

m∑

k=1

2−ktωk

(
2tθt − λtπt

)k

]2

cos2
(

λ

2
π

)
, (17)

and µk and ωk are defined by (11).

2. Lemmas

To prove our main results, the following lemmas are necessary.

Lemma 1. For x > 0, let u0(x) = sin x
x and uk(x) = u′k−1(x)

xr for k ∈ N and r ≥ 1.
Then

uk(x) =
k+1∑

i=1

ak
i−1 sin

(
x + i+k−1

2 π
)

xkr+i
, (18)

where ak
i is defined by (13).

Proof. It is apparent that u1(x) = x−r
(

sin x
x

)′ = x−1−r cos x − x−2−r sin x, which
tells us that formula (18) is valid for k = 1.

Now assume formula (18) holds for some given k > 1. Direct computation by
using (13) gives

uk+1 =
k+1∑

i=1

ak
i−1

[
1

xkr+i+r
cos

(
x +

k + i− 1
2

π

)
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− 1
xkr+i+r+1

sin
(

x +
k + i− 1

2
π

)]

=
ak
0

xkr+r+1
cos

(
x +

k

2
π

)
− (kr + k + 1)ak

k

xkr+r+k+2
sin(x + kπ)

−
k−1∑

i=0

ak
i (kr + 1 + i) + ak

i+1

xkr+r+i+2
sin

(
x +

k + i

2
π

)

=
ak+1
0

xkr+r+1
sin

(
x +

k + 1
2

π

)
+

ak+1
k+1

xkr+r+k+2
sin[x + (k + 1)π]

+
k−1∑

i=0

ak+1
i+1

xkr+r+i+2
sin

(
x +

k + i + 2
2

π

)

=
k+2∑

i=1

ak+1
i−1

xkr+i+r
sin

(
x +

k + i

2
π

)
.

By mathematical induction, Lemma 1 is proved. ¤

Lemma 2. For x > 0 and k ∈ N, let v1(x) =
∑k+1

i=1 ak
i−1x

k−i+1 sin
(
x + k+i−1

2 π
)

and vj+1(x) = 1
xv′j(x) for j ∈ N. Then

vj(x) =
k−j+1∑

i=0

bj
ix

k−i−j+1 sin
(

x +
k + i + j − 1

2
π

)
(19)

is valid for j ∈ N, where b1
i = ak

i , bj
0 = 1 and

bj
i = bj−1

i − (k − i− j + 3)bj−1
i−1 , 0 < i ≤ k − j + 1, j > 1. (20)

Proof. When j = 1, formula (19) is valid clearly.
By induction, suppose that formula (19) holds for some j > 1. Since k− j +1 >

k − (j + 1) + 1, it deduced from (20) that bj+1
k−j+1 = bj

k−j+1 − bj
k−j = 0. Thus,

vj+1(x) =
1
x

{
k−j∑

i=0

bj
i

[
(k − i− j + 1)xk−i−j sin

(
x +

k + i + j − 1
2

π

)

+ xk−i−j+1 cos
(

x +
k + i + j − 1

2
π

)]
+ bj

k−j+1 cos(x + kπ)

}

= bj
0x

k−j sin
(

x +
k + j

2
π

)

+
k−j−1∑

i=0

[
bj
i+1 − (k − i− j + 1)bj

i

]
xk−i−j+1 sin

(
x +

k + i + j + 1
2

π

)

= bj
0x

k−j sin
(

x +
k + j

2
π

)
+

k−j−1∑

i=0

bj+1
i+1xk−i−j+1 sin

(
x +

k + i + j + 1
2

π

)

=
k−j∑

i=0

bj+1
i xk−i−j sin

(
x +

k + i + j

2
π

)
.

By mathematical induction, formula (19) is proved. ¤
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Lemma 3 ([3]). Let f and g be continuous on [a, b] and differentiable in (a, b) such
that g′(x) 6= 0 in (a, b). If f ′(x)

g′(x) is increasing (or decreasing) in (a, b), then the

functions f(x)−f(b)
g(x)−g(b) and f(x)−f(a)

g(x)−g(a) are also increasing (or decreasing) in (a, b).

Lemma 4. Let 0 < x ≤ θ < π and t ≥ 2, then inequality
1
t

(
sin θ

θ1+t
− cos θ

θt

)(
θt − xt

) ≤ sin x

x
− sin θ

θ
≤

(
1
θt
− sin θ

θ1+t

)(
θt − xt

)
(21)

holds with the equalities if and only if x = θ, where the constants
1
t

(
sin θ

θ1+t
− cos θ

θt

)
and

(
1
θt
− sin θ

θ1+t

)

are the best possible.

Proof. Let f(x) = sin x
x − sin θ

θ , g(x) = θt − xt, f1(x) = x cos x− sin x and g1(x) =
−tx1+t. Then

f(x)
g(x)

=
f(x)− f(0)
g(x)− g(0)

,
f ′(x)
g′(x)

=
f1(x)− f1(0)
g1(x)− g1(0)

,
f ′1(x)
g′1(x)

=
sin x

t(1 + t)xt
.

Since sin x
xt is decreasing in (0, π], then f ′1(x)

g′1(x) is decreasing, and then, in virtue of

Lemma 3, the function f ′(x)
g′(x) is decreasing, further f(x)

g(x) is decreasing in (0, π], thus,

1
t

(
sin θ

θ1+t
− cos θ

θt

)
= lim

x→θ−

f(x)
g(x)

≤ f(x)
g(x)

≤ lim
x→0+

f(x)
g(x)

=
1
θt

(
1− sin θ

θ

)

and the two constants are the best possible. ¤

3. Proofs of theorems

Proof of Theorem 1. If n = 1, inequality (10) becomes (21) in Lemma 4.
For n ≥ 2, let t = r + 1,

ϕ(x) =
sinx

x
− sin θ

θ
−

n−1∑

k=1

µk

(
θr+1 − xr+1

)k
, ψ(x) =

(
θr+1 − xr+1

)n
,

ϕ1(x) =
ϕ(x)
xr

, ϕi+1(x) =
ϕ′i(x)
xr

, ψ1(x) =
ψ′(x)
xr

, ψi+1(x) =
ψ′i(x)
xr

,

where 2 ≤ i ≤ n. Then for 1 ≤ k ≤ n− 2,

ϕk(x) = uk(x)− [−(r + 1)]kk!µk −
n−k−1∑

i=1

(i + k)!
i!

µi+k

(
θ1+r − x1+r

)i
,

ϕn−1(x) = un−1(x)− (n− 1)![−(r + 1)]n−1µn−1 and ϕn(x) = un(x),

where uk(x) for 1 ≤ k ≤ n is defined by (18).
In view of (18), it is deduced that [−(1+r)]kk!µk = uk(θ) for 1 ≤ k ≤ n−1, hence

ϕi(θ) = 0 for 1 ≤ i ≤ n−1. A simple calculation gives ψi(x) = [−(1+r)]i
∏i−1

`=0(n−
`)(θr+1 − xr+1)n−i for 1 ≤ i ≤ n, consequently ψi(θ) = 0 for 1 ≤ i ≤ n − 1. As a
result, for 1 ≤ i ≤ n− 1,

ϕ(x)
ψ(x)

=
ϕ(x)− ϕ(θ)
ψ(x)− ψ(θ)

,
ϕ′(x)
ψ′(x)

=
ϕ1(x)− ϕ1(θ)
ψ1(x)− ψ1(θ)

,

ϕ′i(x)
ψ′i(x)

=
ϕi+1(x)− ϕi+1(θ)
ψi+1(x)− ψi+1(θ)

,
ϕ′n−1(x)
ψ′n−1(x)

=
ϕn(x)
ψn(x)

=
un(x)

n![−(r + 1)]n
.
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Let h1(x) = xnr+n+1 and hi+1(x) = 1
xh′i(x) for 1 ≤ i ≤ n and n ∈ N. Then

it is easy to see that hi+1(x) =
∏i

`=1(nr + n − 2` + 3)xnr+n−2i+1 for 1 ≤ i ≤ n.
Utilization of Lemma 1 and Lemma 2 leads to

ϕ′n−1(x)
ψ′n−1(x)

=
∑n+1

i=1 an
i−1x

n−i+1 sin
(
x + n+i−1

2 π
)

n![−(1 + r)]nxrn+n+1
=

v1(x)
n![−(1 + r)]nh1(x)

and, since vi(0) = hi(0) = 0 for 1 ≤ i ≤ n + 1,

v1(x)
h1(x)

=
v1(x)− v1(0)
h1(x)− h1(0)

,
v′j(x)
h′j(x)

=
vj+1(x)− vj+1(0)
hj+1(x)− hj+1(0)

,

v′n(x)
h′n(x)

=
vn+1(x)− vn+1(0)
hn+1(x)− hn+1(0)

=
(−1)n sinx∏i

`=1(nr + n− 2` + 3)xnr−n+1

for 1 ≤ j ≤ n − 1. Since sin x
x and x−n(r−1) is decreasing on (0, π), then the func-

tion sin x
xnr−n+1 is decreasing and (−1)nv′n(x)

h′n(x) is deceasing. Accordingly, from Lemma

3, it follows that the functions (−1)nv′i(x)
h′i(x) and (−1)nv′i−1(x)

h′i−1(x) for 2 ≤ i ≤ n are de-

creasing. Thus, the functions (−1)nv′1(x)
h′1(x) and (−1)nv1(x)

h1(x) are decreasing, and then
ϕ′n−1(x)

ψ′n−1(x) is decreasing in (0, π). Utilizing Lemma 3 again reveals that the functions
ϕ′j(x)

ψ′j(x) and ϕ′j−1(x)

ψ′j−1(x) for 2 ≤ j ≤ n − 1 are decreasing, which implies the deceas-

ingly monotonicity of ϕ(x)
ψ(x) in

(
0, π). By L’Hôspital’s rule, it is easy to deduce that

limx→θ−
ϕ(x)
ψ(x) = limx→θ−

ϕ′(x)
ψ′(x) = limx→θ−

ϕ′i(x)
ψ′i(x) = un(θ)

n![−(1+r)]n = µn for 1 ≤ i ≤ n−1

and limx→0+
ϕ(x)
ψ(x) = ωn, which implies µn ≤ ϕ(x)

ψ(x) ≤ ωn and the constants µk and
ωk are the best possible.

By the mathematical induction, inequality (10) is proved. ¤

Proof of Theorem 2. It was proved in [29] and [30, (2.13)] that

sin2(λπ) ≤ cos2(λAi) + cos2(λAj)− 2 cos(λAi) cos(λAj) cos(λπ)

, Hij ≤ 4 sin2

(
λ

2
π

)
. (22)

Summing up (22) for 1 ≤ i < j ≤ n yields
(

n

2

)
sin2(λπ) ≤

∑

1≤i<j≤n

Hij = H(n, λ) ≤ 4
(

n

2

)
sin2

(
λ

2
π

)
. (23)

By virtue of inequality (10) in Theorem 1,

4 sin2

(
λ

2
π

)
≤ λ2π2

[
sin θ

θ
+

m∑

k=1

2−ktωk

(
2tθt − λtπt

)k

]2

, (24)

sin2(λπ) = 4 cos2
(

λ

2
π

)
sin2

(
λ

2
π

)

≥ λ2π2

[
sin θ

θ
+

m∑

k=1

2−ktµk

(
2tθt − λtπt

)k

]2

cos2
(

λ

2
π

)
.

(25)
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Substituting (24) and (25) into (23) leads to (14). The proof of Theorem 2 is
complete. ¤
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[8] J.-Ch. Kuang, Chángyòng Bùděngsh̀ı (Applied Inequalities), 3rd ed., Shāndōng Kēxué J̀ıshù
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