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A NOTE ON THE VOLUME OF SECTIONS OF Bn
p

PENG GAO

Abstract. Let Bn
p denote the unit ball in `n

p with p ≥ 1. We prove that Voln−1(H ∩ Bn
p ) ≥(

Voln(Bn
p )

)(n−1)/n

for any (n−1)-dimensional subspace H of Rn. This is a consequence of bounding

the isotropy constant of Bn
p above by 1/

√
12 and we show that one can replace 1/

√
12 by a possibly

smaller number for n ≥ 2.

1. Introduction

A symmetric convex body K in Rn is said to be in isotropic position if there is a constant (the
isotropy constant) LK such that∫

K
xixjdx = L2

Kδij

(
Voln(K)

)(n+2)/n
, (1 ≤ i, j ≤ n),

where δij is the Kronecker symbol. A well-known conjecture is that there exists a universal constant
c > 0 such that LK < c for all convex centrally symmetric bodies in all dimensions. The best
estimate known to date is due to Bourgain [9] that

LK < cn
1
4 lnn.

In addition, the conjecture was verified for large classes of bodies (see [16], [7], [13], [14]) and it
is equivalent to the famous hyperplane conjecture, which states that there is a universal constant
c > 0 such that, for any convex centrally symmetric body K ⊂ Rn, there is an (n− 1)-dimensional
subspace H for which

(1.1) Voln−1(H ∩K) ≥ c ·
(
Voln(K)

)(n−1)/n
.

Now let K be the unit ball Bn
p in `np with p ≥ 1, that is,

Bn
p =

{
(x1, . . . , xn) ∈ Rn :

n∑
i=1

|xi|p ≤ 1
}
, 1 ≤ p < +∞,

Bn
∞ =

{
(x1, . . . , xn) ∈ Rn : max

1≤i≤n
|xi| ≤ 1

}
.

In this case Meyer and Pajor [15] proved (1.1) (in fact for any (n−1)-dimensional subspace H) with
c = 1 for p = 1 and p ≥ 2. Later Schmuckenschläger [18] gave a proof for the case 1 < p < 2 with
c = 1 but the proof of the inequality he proposed was not correct and this was fixed by Bastero,
Galve, Peña and Romance in [8]. The approach of Schmuckenschläger and Bastero et al. is based
on an estimation of LBn

p
, for which there is an explicit expression involving the gamma function

Γ(x). It is the goal of this paper to extend their results to all p ≥ 1 via this approach and also to
do it in a way that involves less direct computations.
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2. Gamma and Polygamma Functions

The digamma (or psi) function ψ(x) for x > 0 is defined as the logarithmic derivative of Γ(x) and
the derivatives of ψ(x) are known as polygamma functions. We note here that ψ′(x) is completely
monotonic on (0,+∞). (A function f(x) is said to be completely monotonic on (a, b) if it has
derivatives of all orders and (−1)nf (n)(x) ≥ 0, x ∈ (a, b), n = 0, 1, 2, . . .).

We now collect here a few facts about the gamma and polygamma functions, these can be found,
for example, in [1, (7.1)], [2, (1.1)-(1.5), (3.39)].

Lemma 2.1. For x > 0 we have

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
dt,(2.1)

(−1)n+1ψ(n)(x) =
∫ ∞

0
e−xt tn

1− e−t
dt = n!

∞∑
k=0

1
(x+ k)n+1

, n ≥ 1,(2.2)

ψ(n)(x+ 1) = ψ(n)(x) + (−1)n n!
xn+1

, n ≥ 0,(2.3)

ln Γ(x) = (x− 1
2
) lnx− x+

1
2

ln(2π) +O

(
1
x

)
, x→ +∞,(2.4)

ψ(x) = lnx− 1
2x
− 1

12x2
+O

(
1
x3

)
, x→ +∞,(2.5)

(−1)n+1ψ(n)(x) =
(n− 1)!
xn

+
n!

2xn+1
+O

(
1

xn+2

)
, n ≥ 1, x→ +∞,(2.6)

ψ′(x) <
1
x

+
1

2x2
+

1
6x3

,(2.7)

where γ = 0.57721 . . . denotes Euler’s constant.

Many interesting inequalities arise from the study of the asymptotic behavior of the polygamma
functions. For example, one sees from (2.6) that xn(−1)n+1ψ(n)(x) is asymptotically (n−1)!, hence
it’s natural to ask how it approaches this constant. For n = 1, a result of Ronning [17] asserts
that xψ′(x) is strictly decreasing. We note here this is also equivalent to a result of Alzer [2,
Lemma 2.4], which asserts that ψ(ex) is strictly concave on (−∞,+∞). The cases n > 1 have
been studied in [11] and [3]. One can certainly ask a more general question on the behavior of
fa,n(x) = xn(−1)n+1ψ(n)(x + a) for any non-negative number a. When a = 1 and n = 1, this
was investigated by Anderson and Qiu [5] and later proved to be strictly increasing for x > −1 by
Elbert and Laforgia [12]. Borwein et al. showed that [10, Lemma 2.1] f1,1(x) is even completely
monotonic on (0,+∞). Alzer and Ruehr [4] showed that fa,1(x) is strictly increasing for a ≥ 1/2.
We now summarize these results in the following lemma.

Lemma 2.2. For fixed n ≥ 1, a ≥ 0, the function fa,n(x) = xn(−1)n+1ψ(n)(x+ a) is increasing on
[0,+∞) if and only if a ≥ 1/2. Also, f0,n(x) is decreasing on (0,+∞).

Proof. From (2.6) we see that

f ′a,n(x)
xn−1

= n(−1)n+1ψ(n)(x+ a)− x(−1)n+2ψ(n+1)(x+ a)

=
n!(a− 1/2)
(x+ a)n+1

+O

(
1

(x+ a)n+2

)
, x→ +∞.

It then follows that it is necessary to have a ≥ 1/2 for fa,n(x) to be increasing on [0,+∞).
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Assume now a ≥ 1/2, we use the integral representation in (2.2) for (−1)n+1ψ(n)(x) to deduce
that

fa,n(x) =
∫ ∞

0
e−(x+a)t (xt)n

1− e−t
dt.

It follows from this that f ′a,n(0) = 0. For x > 0, we make a change of variable xt = s in the above
integral to get

fa,n(x) =
∫ ∞

0
e−ssn−1 re−ar

1− e−r
ds,

where r = s/x. We then obtain for x > 0,

f ′a,n(x) =
∫ ∞

0
e−ssn

e−(a+1)r
(

(ar − 1) (er − 1) + r
)

(
x(1− e−r)

)2 ds,

One then checks easily that (ar− 1)(er − 1) + r ≥ 0 for r ≥ 0, a ≥ 1/2 and this implies f ′a,n(x) ≥ 0
for x > 0, a ≥ 1/2. Similarly, one shows that f ′0,n(x) ≤ 0 for x > 0 and this completes the proof. �

Before we proceed to prove our main result in the next section, we state more auxiliary results
here.

Lemma 2.3. Let 0 ≤ x ≤ 1/4 and y ≥ 0. The function

u(x, y) = ψ(1 + xy)− ψ
(
1 + (y + 2)x

)
+

(y + 2)x
2

ψ′(1 + xy)− xy

2
ψ′
(
1 + (y + 2)x

)
is non-positive. Moreover, u(1/2, y) < 0 for y ≥ 0 and u(1, y) ≤ 0 for y ≥ 1.

Proof. We have

(y + 2)x
2

ψ′(1 + xy)− xy

2
ψ′
(
1 + (y + 2)x

)
=

xy + 1/2
2

ψ′(1 + xy)− x(y + 2) + 1/2
2

ψ′
(
1 + (y + 2)x

)
+(x− 1

4
)ψ′(1 + xy) + (x+

1
4
)ψ′
(
1 + (y + 2)x

)
≤ (x− 1

4
)ψ′(1 + xy) + (x+

1
4
)ψ′
(
1 + (y + 2)x

)
,

where the inequality above follows from the case n = 1, a = 1/2 of Lemma 2.2. Also by Cauchy’s
mean value theorem, we obtain

(2.8) ψ(1 + xy)− ψ
(
1 + (y + 2)x

)
< −2xψ′

(
1 + (y + 2)x

)
.

These estimations yield

u(x, y) ≤ (x− 1
4
)

(
ψ′(1 + xy)− ψ′

(
1 + (y + 2)x

))
≤ 0,

for 0 ≤ x ≤ 1/4 and y ≥ 0.
In the case x = 1/2, we obtain by setting z = y/2 that

u(1/2, y) = ψ(1 + z)− ψ(1 + z + 1) +
z + 1

2
ψ′(1 + z)− z

2
ψ′(1 + z + 1)

= − 1
1 + z

+
1
2
ψ′(1 + z) +

z

2(1 + z)2
,
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where we have used (2.3) for n = 0, 1 above. We now use the bound (2.7) for ψ′(x) to get for z ≥ 0:

2u(1/2, y) < − 1
2(1 + z)2

+
1

6(1 + z)3
< 0.

Lastly, we use (2.3) to express u(1, y) as

u(1, y) = − 1
y + 1

− 1
y + 2

+ ψ′(1 + y) +
y

2(y + 1)2
+

y

2(y + 2)2
.

We further apply (2.7) to get

u(1, y) ≤ 1
2(y + 1)

− 1
2(y + 2)

− 1
(y + 2)2

+
1

6(y + 1)3

=
(y + 2)2 − 3y(y + 1)2

6(y + 1)3(y + 2)2
≤ 0,

where the last inequality follows since 3y ≥ y+ 2 and (y+ 1)2 ≥ y+ 2 for y ≥ 1 and this completes
the proof. �

Lemma 2.4. Let 1/2 ≤ x ≤ 1 and y ≥ 0. The function

v(x, y) = ψ(1 + xy)− ψ
(
1 + (y + 2)x

)
+ (y + 2)xψ′(1 + xy)− (y + 2)xψ′

(
1 + (y + 2)x

)
is non-negative.

Proof. Let R = [1/2, 1]× [0,+∞) and we need to show v(x, y) ≥ 0 for (x, y) ∈ R. Let (x0, y0) ∈ R
be the point in which the absolute minimum of v(x, y) is reached and assume first that (x0, y0) is
an interior point of R, then we obtain

∂v

∂x
(x0, y0) =

∂v

∂y
(x0, y0) = 0.

Calculations yield
1
x

∂v

∂y
= 2ψ′(1 + xy)− 2ψ′

(
1 + (y + 2)x

)
+ x(y + 2)ψ′′(1 + xy)− x(y + 2)ψ′′

(
1 + (y + 2)x

)
,

∂v

∂x
= 2(y + 1)ψ′(1 + xy)− 2(y + 2)ψ′

(
1 + (y + 2)x

)
+ xy(y + 2)ψ′′(1 + xy)

−x(y + 2)2ψ′
(
1 + (y + 2)x

)
.

We then deduce from the above that

ψ′(1 + x0y0) + x0(y0 + 2)ψ′′(1 + x0y0) = 0.

Note from Lemma 2.2 for the case n = 1, a = 0 we also have

ψ′(1 + x0y0) + (1 + x0y0)ψ′′(1 + x0y0) ≤ 0 = ψ′(1 + x0y0) + x0(y0 + 2)ψ′′(1 + x0y0),

which implies
(1− 2x0)ψ′′(1 + x0y0) ≤ 0,

a contradiction. Thus we conclude that (x0, y0) is a boundary point of R. Hence we need to check
v(x, y) ≥ 0 for the cases x = 1/2, 1 or y = 0, y → +∞. It follows from the asymptotic expressions
(2.6) and (2.5) that

lim
y→+∞

v(x, y) = 0.

Now for x = 1/2, using the relation (2.3) for n = 0, 1 and by setting z = y/2, we obtain

v(1/2, 2z) = v(1/2, y) = ψ(1 + z)− ψ(1 + z + 1) + (1 + z)ψ′(1 + z)− (1 + z)ψ′(1 + z + 1)

= − 1
1 + z

+ (1 + z)
1

(1 + z)2
= 0.
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Similarly, for x = 1, we have

v(1, y) = − 1
y + 2

− 1
y + 1

+ (y + 2)
( 1

(y + 2)2
+

1
(y + 1)2

)
> 0.

It remains to check the case y = 0 and we get

v(x, 0) = ψ(1)− ψ(1 + 2x) + 2xψ′(1)− 2xψ′(1 + 2x),

and that
1
2
∂v

∂x
(x, 0) = ψ′(1)− 2ψ′(1 + 2x)− 2xψ′′(1 + 2x)

= ψ′(1)− ψ′(1 + 2x) + ψ′′(1 + 2x)−
(
ψ′(1 + 2x) + (1 + 2x)ψ′′(1 + 2x)

)
≥ ψ′(1)− ψ′(1 + 2x) + ψ′′(1 + 2x),

where the last inequality follows from the case n = 1, a = 0 of Lemma 2.2. Now by Cauchy’s mean
value theorem, we have

ψ′(1)− ψ′(1 + 2x) ≥ −2xψ′′(1 + 2x),
which implies that

1
2
∂v

∂x
(x, 0) ≥ (1− 2x)ψ′′(1 + 2x) ≥ 0.

Thus
v(x, 0) ≥ v(1/2, 0) = 0,

and this completes the proof. �

Lemma 2.5. Let 0 ≤ x ≤ 1 and y > 0. For fixed x, the function

f(x, y) = (1 +
2
y
) ln Γ(1 + xy)− ln Γ

(
1 + (y + 2)x

)
is a decreasing function of y for y > 0 when 0 ≤ x ≤ 1/2 and for y ≥ 2 when 1/2 < x ≤ 1.

Proof. We define

g(x, y) := y2∂f

∂y
= −2 ln Γ(1 + xy) + y(y + 2)xψ(1 + xy)− xy2ψ

(
1 + (y + 2)x

)
.

It suffices to show g(x, y) ≤ 0 for 0 ≤ x ≤ 1/2, y ≥ 0 and 1/2 < x ≤ 1, y ≥ 2. We show first that
g(x, y) ≤ 0 for 0 ≤ x ≤ 1/4 and y ≥ 0. Since g(0, y) = g(x, 0) = 0, we may assume x, y > 0 and
note that

1
2xy

∂g

∂y
= u(x, y),

1
y2

∂g

∂x
= v(x, y),

where u(x, y), v(x, y) are as defined in Lemma 2.3 and Lemma 2.4, respectively. By Lemma 2.3,
u(x, y) ≤ 0 for 0 ≤ x ≤ 1/4, y ≥ 0 and it follows that g(x, y) ≤ g(x, 0) = 0 for 0 ≤ x ≤ 1/4, y ≥ 0.

Now let D = [1/4, 1/2] × [0,+∞). To show g(x, y) ≤ 0 for (x, y) ∈ D, we let (x0, y0) ∈ D be
the point in which the absolute maximum of g(x, y) is reached and assume first that (x0, y0) is an
interior point of D, then we obtain

∂g

∂x
(x0, y0) =

∂g

∂y
(x0, y0) = 0.

From our expressions for u(x, y) and v(x, y), one deduces that

(y0 + 2)x0ψ
′(1 + x0y0) = (y0 + 4)x0ψ

′
(
1 + (y0 + 2)x0

)
,

which further implies that
1

2x0y0

∂g

∂y
(x0, y0) = ψ(1 + x0y0)− ψ

(
1 + (y0 + 2)x0

)
+ 2x0ψ

′
(
1 + (y0 + 2)x0

)
= 0,
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which is certainly impossible in view of (2.8). Thus we conclude that (x0, y0) is a boundary point
of D. Hence we need to check g(x, y) ≤ 0 for the cases x0 = 1/4, 1/2 or y = 0, y → +∞. The
cases g(x, 0) = 0 and g(1/4, y) ≤ 0 follow from our discussion on the situation x ≤ 1/4, y ≥ 0 above
and for the case y → +∞, using the asymptotic expression (2.4) and (2.5), we deduce via simple
calculations that as y → +∞,

g(x, y) = − ln y +O(1) < 0.

It thus remains to check the case x = 1/2. In this case it follows from Lemma 2.3 that u(1/2, y) < 0
so that g(1/2, y) ≤ g(1/2, 0) = 0.

Lastly, we need to show that g(x, y) ≤ 0 for 1/2 < x ≤ 1 and y ≥ 1. We note by Lemma 2.4
that in this case g(x, y) ≤ g(1, y) and also by Lemma 2.3 that g(1, y) is a decreasing function of y.
Hence it suffices to check that g(1, 2) ≤ 0. In this case one checks easily by using the well-known
fact Γ(n+ 1) = n!, relation (2.3) and the observation that ψ(1) = −γ from (2.1) that

g(1, 2)
2

= 3− ln 2− 2γ − 1/2− 2/3 < 0,

and this completes the proof. �

3. Volume of sections of Bn
p

We now apply Lemma 2.5 to estimate the volume of sections of Bn
p .

Theorem 3.1. Let n ∈ N, n ≥ 2, p ≥ 1 and let H be any (n − 1)-dimensional subspace in Rn.
Then

(3.1)
Voln−1(H ∩Bn

p )(
Voln(Bn

p )
)(n−1)/n

≥

√√√√Γ(1 + 4
p)Γ(1 + 1

p)3

Γ(1 + 2
p)2Γ(1 + 3

p)
≥ 1.

Proof. Let H be a hyperplane in Rn. A well-known result (see [6, (11)]) ensures that

Voln−1(H ∩Bn
p )LBn

p
≥ 1√

12

(
Voln(Bn

p )
)(n−1)/n

where LBn
p

is (see [18], [8])

L2
Bn

p
=

Γ(1 + 3
p)Γ(1 + n

p )1+2/n

12Γ(1 + n+2
p )Γ(1 + 1

p)3
.

Now it follows from Lemma 2.5 with x = 1/p, y = n that for n ≥ 2,

L2
Bn

p
≤ L2

B2
p
,

from which one deduces the first inequality of (3.1). The second inequality of (3.1) now follows
from Lemma 2.5 for the case p ≥ 2 and [8, Proposition 1.2] for the case 1 ≤ p < 2. �

We remark here Theorem 3.1 recovers [18, Proposition 3.1] for the case 1 < p < 2.
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