

A Note on the Volume of Sections of Bⁿp

This is the Published version of the following publication

Gao, Peng (2005) A Note on the Volume of Sections of Bⁿp. Research report collection, 8 (4).

The publisher's official version can be found at

Note that access to this version may require subscription.

Downloaded from VU Research Repository https://vuir.vu.edu.au/18959/

A NOTE ON THE VOLUME OF SECTIONS OF B_p^n

PENG GAO

ABSTRACT. Let B_p^n denote the unit ball in ℓ_p^n with $p \geq 1$. We prove that $\operatorname{Vol}_{n-1}(H \cap B_p^n) \geq \left(\operatorname{Vol}_n(B_p^n)\right)^{(n-1)/n}$ for any (n-1)-dimensional subspace H of \mathbb{R}^n . This is a consequence of bounding the isotropy constant of B_p^n above by $1/\sqrt{12}$ and we show that one can replace $1/\sqrt{12}$ by a possibly smaller number for $n \geq 2$.

1. Introduction

A symmetric convex body K in \mathbb{R}^n is said to be in isotropic position if there is a constant (the isotropy constant) L_K such that

$$\int_{K} x_{i} x_{j} dx = L_{K}^{2} \delta_{ij} \left(\operatorname{Vol}_{n}(K) \right)^{(n+2)/n}, \quad (1 \leq i, j \leq n),$$

where δ_{ij} is the Kronecker symbol. A well-known conjecture is that there exists a universal constant c > 0 such that $L_K < c$ for all convex centrally symmetric bodies in all dimensions. The best estimate known to date is due to Bourgain [9] that

$$L_K < cn^{\frac{1}{4}} \ln n.$$

In addition, the conjecture was verified for large classes of bodies (see [16], [7], [13], [14]) and it is equivalent to the famous hyperplane conjecture, which states that there is a universal constant c > 0 such that, for any convex centrally symmetric body $K \subset \mathbb{R}^n$, there is an (n-1)-dimensional subspace H for which

(1.1)
$$\operatorname{Vol}_{n-1}(H \cap K) \ge c \cdot \left(\operatorname{Vol}_n(K)\right)^{(n-1)/n}.$$

Now let K be the unit ball B_p^n in ℓ_p^n with $p \geq 1$, that is,

$$B_p^n = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : \sum_{i=1}^n |x_i|^p \le 1 \right\}, \quad 1 \le p < +\infty,$$

$$B_\infty^n = \left\{ (x_1, \dots, x_n) \in \mathbb{R}^n : \max_{1 \le i \le n} |x_i| \le 1 \right\}.$$

In this case Meyer and Pajor [15] proved (1.1) (in fact for any (n-1)-dimensional subspace H) with c=1 for p=1 and $p\geq 2$. Later Schmuckenschläger [18] gave a proof for the case 1< p< 2 with c=1 but the proof of the inequality he proposed was not correct and this was fixed by Bastero, Galve, Peña and Romance in [8]. The approach of Schmuckenschläger and Bastero et al. is based on an estimation of $L_{B_p^n}$, for which there is an explicit expression involving the gamma function $\Gamma(x)$. It is the goal of this paper to extend their results to all $p\geq 1$ via this approach and also to do it in a way that involves less direct computations.

Date: November 7, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 52A21, 33B15.

Key words and phrases. Isotropy constant, hyperplane conjecture, gamma function.

2 PENG GAO

2. Gamma and Polygamma Functions

The digamma (or psi) function $\psi(x)$ for x > 0 is defined as the logarithmic derivative of $\Gamma(x)$ and the derivatives of $\psi(x)$ are known as polygamma functions. We note here that $\psi'(x)$ is completely monotonic on $(0, +\infty)$. (A function f(x) is said to be completely monotonic on (a, b) if it has derivatives of all orders and $(-1)^n f^{(n)}(x) \ge 0, x \in (a, b), n = 0, 1, 2, \ldots$).

We now collect here a few facts about the gamma and polygamma functions, these can be found, for example, in [1, (7.1)], [2, (1.1)-(1.5), (3.39)].

Lemma 2.1. For x > 0 we have

(2.1)
$$\psi(x) = -\gamma + \int_0^\infty \frac{e^{-t} - e^{-xt}}{1 - e^{-t}} dt,$$

$$(2.2) (-1)^{n+1}\psi^{(n)}(x) = \int_0^\infty e^{-xt} \frac{t^n}{1 - e^{-t}} dt = n! \sum_{k=0}^\infty \frac{1}{(x+k)^{n+1}}, \quad n \ge 1,$$

(2.3)
$$\psi^{(n)}(x+1) = \psi^{(n)}(x) + (-1)^n \frac{n!}{x^{n+1}}, \quad n \ge 0,$$

(2.4)
$$\ln \Gamma(x) = (x - \frac{1}{2}) \ln x - x + \frac{1}{2} \ln(2\pi) + O\left(\frac{1}{x}\right), \quad x \to +\infty,$$

(2.5)
$$\psi(x) = \ln x - \frac{1}{2x} - \frac{1}{12x^2} + O\left(\frac{1}{x^3}\right), \quad x \to +\infty,$$

$$(2.6) (-1)^{n+1}\psi^{(n)}(x) = \frac{(n-1)!}{x^n} + \frac{n!}{2x^{n+1}} + O\left(\frac{1}{x^{n+2}}\right), \quad n \ge 1, \quad x \to +\infty,$$

(2.7)
$$\psi'(x) < \frac{1}{x} + \frac{1}{2x^2} + \frac{1}{6x^3},$$

where $\gamma = 0.57721...$ denotes Euler's constant.

Many interesting inequalities arise from the study of the asymptotic behavior of the polygamma functions. For example, one sees from (2.6) that $x^n(-1)^{n+1}\psi^{(n)}(x)$ is asymptotically (n-1)!, hence it's natural to ask how it approaches this constant. For n=1, a result of Ronning [17] asserts that $x\psi'(x)$ is strictly decreasing. We note here this is also equivalent to a result of Alzer [2, Lemma 2.4], which asserts that $\psi(e^x)$ is strictly concave on $(-\infty, +\infty)$. The cases n>1 have been studied in [11] and [3]. One can certainly ask a more general question on the behavior of $f_{a,n}(x) = x^n(-1)^{n+1}\psi^{(n)}(x+a)$ for any non-negative number a. When a=1 and n=1, this was investigated by Anderson and Qiu [5] and later proved to be strictly increasing for x>-1 by Elbert and Laforgia [12]. Borwein et al. showed that $f_{a,1}(x)$ is strictly increasing for $a \ge 1/2$. We now summarize these results in the following lemma.

Lemma 2.2. For fixed $n \ge 1$, $a \ge 0$, the function $f_{a,n}(x) = x^n(-1)^{n+1}\psi^{(n)}(x+a)$ is increasing on $[0,+\infty)$ if and only if $a \ge 1/2$. Also, $f_{0,n}(x)$ is decreasing on $(0,+\infty)$.

Proof. From (2.6) we see that

$$\frac{f'_{a,n}(x)}{x^{n-1}} = n(-1)^{n+1}\psi^{(n)}(x+a) - x(-1)^{n+2}\psi^{(n+1)}(x+a)$$
$$= \frac{n!(a-1/2)}{(x+a)^{n+1}} + O\left(\frac{1}{(x+a)^{n+2}}\right), \quad x \to +\infty.$$

It then follows that it is necessary to have $a \ge 1/2$ for $f_{a,n}(x)$ to be increasing on $[0, +\infty)$.

Assume now $a \ge 1/2$, we use the integral representation in (2.2) for $(-1)^{n+1}\psi^{(n)}(x)$ to deduce that

$$f_{a,n}(x) = \int_0^\infty e^{-(x+a)t} \frac{(xt)^n}{1 - e^{-t}} dt.$$

It follows from this that $f'_{a,n}(0) = 0$. For x > 0, we make a change of variable xt = s in the above integral to get

$$f_{a,n}(x) = \int_0^\infty e^{-s} s^{n-1} \frac{re^{-ar}}{1 - e^{-r}} ds,$$

where r = s/x. We then obtain for x > 0,

$$f'_{a,n}(x) = \int_0^\infty e^{-s} s^n \frac{e^{-(a+1)r} \left((ar-1) \left(e^r - 1 \right) + r \right)}{\left(x(1 - e^{-r}) \right)^2} ds,$$

One then checks easily that $(ar-1)(e^r-1)+r\geq 0$ for $r\geq 0, a\geq 1/2$ and this implies $f'_{a,n}(x)\geq 0$ for $x>0, a\geq 1/2$. Similarly, one shows that $f'_{0,n}(x)\leq 0$ for x>0 and this completes the proof. \square

Before we proceed to prove our main result in the next section, we state more auxiliary results here.

Lemma 2.3. Let $0 \le x \le 1/4$ and $y \ge 0$. The function

$$u(x,y) = \psi(1+xy) - \psi\left(1+(y+2)x\right) + \frac{(y+2)x}{2}\psi'(1+xy) - \frac{xy}{2}\psi'\left(1+(y+2)x\right)$$

is non-positive. Moreover, u(1/2, y) < 0 for $y \ge 0$ and $u(1, y) \le 0$ for $y \ge 1$.

Proof. We have

$$\frac{(y+2)x}{2}\psi'(1+xy) - \frac{xy}{2}\psi'\Big(1+(y+2)x\Big)
= \frac{xy+1/2}{2}\psi'(1+xy) - \frac{x(y+2)+1/2}{2}\psi'\Big(1+(y+2)x\Big)
+(x-\frac{1}{4})\psi'(1+xy) + (x+\frac{1}{4})\psi'\Big(1+(y+2)x\Big)
\le (x-\frac{1}{4})\psi'(1+xy) + (x+\frac{1}{4})\psi'\Big(1+(y+2)x\Big),$$

where the inequality above follows from the case n = 1, a = 1/2 of Lemma 2.2. Also by Cauchy's mean value theorem, we obtain

(2.8)
$$\psi(1+xy) - \psi(1+(y+2)x) < -2x\psi'(1+(y+2)x).$$

These estimations yield

$$u(x,y) \le (x - \frac{1}{4}) \left(\psi'(1+xy) - \psi'(1+(y+2)x) \right) \le 0,$$

for $0 \le x \le 1/4$ and $y \ge 0$.

In the case x = 1/2, we obtain by setting z = y/2 that

$$u(1/2,y) = \psi(1+z) - \psi(1+z+1) + \frac{z+1}{2}\psi'(1+z) - \frac{z}{2}\psi'(1+z+1)$$
$$= -\frac{1}{1+z} + \frac{1}{2}\psi'(1+z) + \frac{z}{2(1+z)^2},$$

4 PENG GAO

where we have used (2.3) for n=0,1 above. We now use the bound (2.7) for $\psi'(x)$ to get for $z\geq 0$:

$$2u(1/2,y) < -\frac{1}{2(1+z)^2} + \frac{1}{6(1+z)^3} < 0.$$

Lastly, we use (2.3) to express u(1, y) as

$$u(1,y) = -\frac{1}{y+1} - \frac{1}{y+2} + \psi'(1+y) + \frac{y}{2(y+1)^2} + \frac{y}{2(y+2)^2}.$$

We further apply (2.7) to get

$$u(1,y) \leq \frac{1}{2(y+1)} - \frac{1}{2(y+2)} - \frac{1}{(y+2)^2} + \frac{1}{6(y+1)^3}$$
$$= \frac{(y+2)^2 - 3y(y+1)^2}{6(y+1)^3(y+2)^2} \leq 0,$$

where the last inequality follows since $3y \ge y+2$ and $(y+1)^2 \ge y+2$ for $y \ge 1$ and this completes the proof.

Lemma 2.4. Let $1/2 \le x \le 1$ and $y \ge 0$. The function

$$v(x,y) = \psi(1+xy) - \psi\Big(1+(y+2)x\Big) + (y+2)x\psi'(1+xy) - (y+2)x\psi'\Big(1+(y+2)x\Big)$$

is non-negative.

Proof. Let $R = [1/2, 1] \times [0, +\infty)$ and we need to show $v(x, y) \ge 0$ for $(x, y) \in R$. Let $(x_0, y_0) \in R$ be the point in which the absolute minimum of v(x, y) is reached and assume first that (x_0, y_0) is an interior point of R, then we obtain

$$\frac{\partial v}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0) = 0.$$

Calculations yield

$$\frac{1}{x}\frac{\partial v}{\partial y} = 2\psi'(1+xy) - 2\psi'\Big(1+(y+2)x\Big) + x(y+2)\psi''(1+xy) - x(y+2)\psi''\Big(1+(y+2)x\Big),$$

$$\frac{\partial v}{\partial x} = 2(y+1)\psi'(1+xy) - 2(y+2)\psi'\Big(1+(y+2)x\Big) + xy(y+2)\psi''(1+xy)$$

$$-x(y+2)^2\psi'\Big(1+(y+2)x\Big).$$

We then deduce from the above that

$$\psi'(1+x_0y_0) + x_0(y_0+2)\psi''(1+x_0y_0) = 0.$$

Note from Lemma 2.2 for the case n = 1, a = 0 we also have

$$\psi'(1+x_0y_0)+(1+x_0y_0)\psi''(1+x_0y_0)\leq 0=\psi'(1+x_0y_0)+x_0(y_0+2)\psi''(1+x_0y_0),$$

which implies

$$(1 - 2x_0)\psi''(1 + x_0y_0) \le 0,$$

a contradiction. Thus we conclude that (x_0, y_0) is a boundary point of R. Hence we need to check $v(x, y) \ge 0$ for the cases x = 1/2, 1 or $y = 0, y \to +\infty$. It follows from the asymptotic expressions (2.6) and (2.5) that

$$\lim_{y \to +\infty} v(x, y) = 0.$$

Now for x = 1/2, using the relation (2.3) for n = 0, 1 and by setting z = y/2, we obtain

$$v(1/2,2z) = v(1/2,y) = \psi(1+z) - \psi(1+z+1) + (1+z)\psi'(1+z) - (1+z)\psi'(1+z+1)$$
$$= -\frac{1}{1+z} + (1+z)\frac{1}{(1+z)^2} = 0.$$

Similarly, for x = 1, we have

$$v(1,y) = -\frac{1}{y+2} - \frac{1}{y+1} + (y+2)\left(\frac{1}{(y+2)^2} + \frac{1}{(y+1)^2}\right) > 0.$$

It remains to check the case y = 0 and we get

$$v(x,0) = \psi(1) - \psi(1+2x) + 2x\psi'(1) - 2x\psi'(1+2x),$$

and that

$$\frac{1}{2}\frac{\partial v}{\partial x}(x,0) = \psi'(1) - 2\psi'(1+2x) - 2x\psi''(1+2x)
= \psi'(1) - \psi'(1+2x) + \psi''(1+2x) - (\psi'(1+2x) + (1+2x)\psi''(1+2x))
\ge \psi'(1) - \psi'(1+2x) + \psi''(1+2x),$$

where the last inequality follows from the case n = 1, a = 0 of Lemma 2.2. Now by Cauchy's mean value theorem, we have

$$\psi'(1) - \psi'(1+2x) \ge -2x\psi''(1+2x),$$

which implies that

$$\frac{1}{2}\frac{\partial v}{\partial x}(x,0) \ge (1-2x)\psi''(1+2x) \ge 0.$$

Thus

$$v(x,0) \ge v(1/2,0) = 0,$$

and this completes the proof.

Lemma 2.5. Let $0 \le x \le 1$ and y > 0. For fixed x, the function

$$f(x,y) = (1 + \frac{2}{y}) \ln \Gamma(1 + xy) - \ln \Gamma(1 + (y+2)x)$$

is a decreasing function of y for y > 0 when $0 \le x \le 1/2$ and for $y \ge 2$ when $1/2 < x \le 1$.

Proof. We define

$$g(x,y) := y^2 \frac{\partial f}{\partial y} = -2\ln\Gamma(1+xy) + y(y+2)x\psi(1+xy) - xy^2\psi\Big(1+(y+2)x\Big).$$

It suffices to show $g(x,y) \le 0$ for $0 \le x \le 1/2, y \ge 0$ and $1/2 < x \le 1, y \ge 2$. We show first that $g(x,y) \le 0$ for $0 \le x \le 1/4$ and $y \ge 0$. Since g(0,y) = g(x,0) = 0, we may assume x,y > 0 and note that

$$\frac{1}{2xy}\frac{\partial g}{\partial y}=u(x,y), \quad \frac{1}{y^2}\frac{\partial g}{\partial x}=v(x,y),$$

where u(x,y), v(x,y) are as defined in Lemma 2.3 and Lemma 2.4, respectively. By Lemma 2.3, $u(x,y) \le 0$ for $0 \le x \le 1/4$, $y \ge 0$ and it follows that $g(x,y) \le g(x,0) = 0$ for $0 \le x \le 1/4$, $y \ge 0$.

Now let $D = [1/4, 1/2] \times [0, +\infty)$. To show $g(x, y) \leq 0$ for $(x, y) \in D$, we let $(x_0, y_0) \in D$ be the point in which the absolute maximum of g(x, y) is reached and assume first that (x_0, y_0) is an interior point of D, then we obtain

$$\frac{\partial g}{\partial x}(x_0, y_0) = \frac{\partial g}{\partial y}(x_0, y_0) = 0.$$

From our expressions for u(x,y) and v(x,y), one deduces that

$$(y_0+2)x_0\psi'(1+x_0y_0)=(y_0+4)x_0\psi'\Big(1+(y_0+2)x_0\Big),$$

which further implies that

$$\frac{1}{2x_0y_0}\frac{\partial g}{\partial y}(x_0,y_0) = \psi(1+x_0y_0) - \psi\Big(1+(y_0+2)x_0\Big) + 2x_0\psi'\Big(1+(y_0+2)x_0\Big) = 0,$$

6 PENG GAO

which is certainly impossible in view of (2.8). Thus we conclude that (x_0, y_0) is a boundary point of D. Hence we need to check $g(x,y) \leq 0$ for the cases $x_0 = 1/4, 1/2$ or $y = 0, y \to +\infty$. The cases g(x,0) = 0 and $g(1/4,y) \leq 0$ follow from our discussion on the situation $x \leq 1/4, y \geq 0$ above and for the case $y \to +\infty$, using the asymptotic expression (2.4) and (2.5), we deduce via simple calculations that as $y \to +\infty$,

$$g(x,y) = -\ln y + O(1) < 0.$$

It thus remains to check the case x = 1/2. In this case it follows from Lemma 2.3 that u(1/2, y) < 0 so that $g(1/2, y) \le g(1/2, 0) = 0$.

Lastly, we need to show that $g(x,y) \leq 0$ for $1/2 < x \leq 1$ and $y \geq 1$. We note by Lemma 2.4 that in this case $g(x,y) \leq g(1,y)$ and also by Lemma 2.3 that g(1,y) is a decreasing function of y. Hence it suffices to check that $g(1,2) \leq 0$. In this case one checks easily by using the well-known fact $\Gamma(n+1) = n!$, relation (2.3) and the observation that $\psi(1) = -\gamma$ from (2.1) that

$$\frac{g(1,2)}{2} = 3 - \ln 2 - 2\gamma - 1/2 - 2/3 < 0,$$

and this completes the proof.

3. Volume of sections of B_p^n

We now apply Lemma 2.5 to estimate the volume of sections of B_p^n .

Theorem 3.1. Let $n \in \mathbb{N}$, $n \geq 2$, $p \geq 1$ and let H be any (n-1)-dimensional subspace in \mathbb{R}^n . Then

(3.1)
$$\frac{\operatorname{Vol}_{n-1}(H \cap B_p^n)}{\left(\operatorname{Vol}_n(B_p^n)\right)^{(n-1)/n}} \ge \sqrt{\frac{\Gamma(1+\frac{4}{p})\Gamma(1+\frac{1}{p})^3}{\Gamma(1+\frac{2}{p})^2\Gamma(1+\frac{3}{p})}} \ge 1.$$

Proof. Let H be a hyperplane in \mathbb{R}^n . A well-known result (see [6, (11)]) ensures that

$$\operatorname{Vol}_{n-1}(H \cap B_p^n) L_{B_p^n} \ge \frac{1}{\sqrt{12}} \left(\operatorname{Vol}_n(B_p^n) \right)^{(n-1)/n}$$

where $L_{B_n^n}$ is (see [18], [8])

$$L_{B_p^n}^2 = \frac{\Gamma(1+\frac{3}{p})\Gamma(1+\frac{n}{p})^{1+2/n}}{12\Gamma(1+\frac{n+2}{p})\Gamma(1+\frac{1}{p})^3}.$$

Now it follows from Lemma 2.5 with x = 1/p, y = n that for $n \ge 2$,

$$L_{B_p^n}^2 \le L_{B_p^2}^2$$

from which one deduces the first inequality of (3.1). The second inequality of (3.1) now follows from Lemma 2.5 for the case $p \ge 2$ and [8, Proposition 1.2] for the case $1 \le p < 2$.

We remark here Theorem 3.1 recovers [18, Proposition 3.1] for the case 1 .

ACKNOWLEDGEMENT

The author would like to thank the American Institute of Mathematics for its generous support and hospitality.

References

- [1] H. Alzer, On some inequalities for the gamma and psi functions, Math. Comp., 66 (1997), 373–389.
- [2] H. Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math., 16 (2004), 181–221.
- [3] H. Alzer, C. Berg and S. Koumandos, On a conjecture of Clark and Ismail, J. Approx. Theory, 134 (2005), 102–113.
- [4] H. Alzer and O. G. Ruehr, A submultiplicative property of the psi function, J. Comput. Appl. Math., 101 (1999), 53-60.
- [5] G. D. Anderson and S.-L. Qiu, A monotoneity property of the gamma function, Proc. Amer. Math. Soc., 125 (1997), 3355–3362.
- [6] K. Ball, Logarithmically concave functions and sections of convex sets in Rⁿ, Studia Math., 88 (1988), 69–84.
- [7] K. Ball, Normed spaces with a weak Gordon-Lewis property, Lecture notes in Mathematics 1470, Springer, Berlin, 1991, 36-47.
- [8] J. Bastero, F. Galve, A. Peña and M. Romance, Inequalities for the gamma function and estimates for the volume of sections of B_p^n , *Proc. Amer. Math. Soc.*, **130** (2002), 183–192.
- [9] J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, *Lecture notes in Mathematics* **1469**, Springer, Berlin, 1991, 127-137.
- [10] D. Borwein, J. Borwein, G. Fee and R. Girgensohn, Refined convexity and special cases of the Blaschke-Santalo inequality, Math. Inequal. Appl., 4 (2001), 631–638.
- [11] W.E. Clark and M.E.H. Ismail, Inequalities involving gamma and psi functions, Anal. Appl. (Singap.), 1 (2003), 129–140.
- [12] Á. Elbert and A. Laforgia, On some properties of the gamma function, Proc. Amer. Math. Soc., 128 (2000), 2667–2673.
- [13] M. Junge, Hyperplane conjecture for quotient spaces of L_p , Forum Math., 6 (1994), 617–635.
- [14] H. König, M. Meyer and A. Pajor, The isotropy constants of the Schatten classes are bounded, Math. Ann., 312 (1998), 773–783.
- [15] M. Meyer and A. Pajor, Sections of the unit ball of L_p^n , J. Funct. Anal., 80 (1988), 109–123.
- [16] V.D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, Lecture notes in Mathematics 1376, Springer, Berlin, 1989, 64–104.
- [17] G. Ronning, On the curvature of the trigamma function, J. Comput. Appl. Math., 15 (1986), 397-399.
- [18] M. Schmuckenschläger, Volume of intersections and sections of the unit ball of l_p^n , Proc. Amer. Math. Soc., 126 (1998), 1527-1530.

AMERICAN INSTITUTE OF MATHEMATICS, 360 PORTAGE AVE., PALO ALTO, CA 94306 E-mail address: penggao@aimath.org