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A NOTE ON THE VOLUME OF SECTIONS OF Bj

PENG GAO

ABSTRACT. Let B, denote the unit ball in ¢, with p > 1. We prove that Vol,_1(H N By) >

(n—1)/n
(Voln (Bg)) for any (n—1)-dimensional subspace H of R™. This is a consequence of bounding

the isotropy constant of B} above by 1/1/12 and we show that one can replace 1/4/12 by a possibly
smaller number for n > 2.

1. INTRODUCTION

A symmetric convex body K in R™ is said to be in isotropic position if there is a constant (the
isotropy constant) Lx such that

n+2)/n
)" a<ig<m),

/ zijdv = Ly (Vol(K)
K

where ¢;; is the Kronecker symbol. A well-known conjecture is that there exists a universal constant
¢ > 0 such that Lxg < ¢ for all convex centrally symmetric bodies in all dimensions. The best
estimate known to date is due to Bourgain [9] that

1
L <cntlnn.

In addition, the conjecture was verified for large classes of bodies (see [16], [7], [13], [14]) and it
is equivalent to the famous hyperplane conjecture, which states that there is a universal constant
¢ > 0 such that, for any convex centrally symmetric body K C R", there is an (n — 1)-dimensional
subspace H for which

(n=1)/n
(1.1) Vol,_1(HNEK) > c- (Voln(K)) .
Now let K be the unit ball B) in £;; with p > 1, that is,
By = {(ml,...,mn) eR": Z|xi|p < 1}, 1 <p< 400,
i=1
B, = {(:1:1,...,:6”) € R": max |z;] < 1}.
1<i<n

In this case Meyer and Pajor [15] proved (1.1) (in fact for any (n—1)-dimensional subspace H) with
c¢=1for p=1 and p > 2. Later Schmuckenschldger [18] gave a proof for the case 1 < p < 2 with
c = 1 but the proof of the inequality he proposed was not correct and this was fixed by Bastero,
Galve, Pena and Romance in [8]. The approach of Schmuckenschliger and Bastero et al. is based
on an estimation of L By, for which there is an explicit expression involving the gamma function
['(z). It is the goal of this paper to extend their results to all p > 1 via this approach and also to
do it in a way that involves less direct computations.
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9 PENG GAO

2. GAMMA AND POLYGAMMA FUNCTIONS

The digamma (or psi) function ¢ (z) for > 0 is defined as the logarithmic derivative of I'(z) and
the derivatives of ¢ (x) are known as polygamma functions. We note here that ¢'(x) is completely
monotonic on (0,+00). (A function f(z) is said to be completely monotonic on (a,b) if it has
derivatives of all orders and (—1)"f™(z) > 0,z € (a,b),n =0,1,2,...).

We now collect here a few facts about the gamma and polygamma functions, these can be found,
for example, in [1, (7.1)], [2, (1.1)-(1.5), (3.39)].

Lemma 2.1. For x > 0 we have

[e'e) eft _ ef:rt
(2.1) ) =
n+1,,(n > —x " = 1
(22) (—1) + /l/}( )(w) = A e tl—e_tdt:nlzm’ 'fLZ 1,
k=0
(n) _ e
(2.3) PP +1) = ) + (1) g, 20,
(2.4) Inl(z) = (z— %) Inx —x+ %1n(27r) + O(é), T — 400,
1 1 1
(2.5) Y(x) = lnaz—%—w—i—O(;), x — 400,
_1\n+1,,(n) _ (7’L — 1)' n! 1
(2.6) (- (x) = o + ST +0 — n>1 = — +oo,
1 1 1
(2.7) P(z) < —+

where v = 0.57721 ... denotes Euler’s constant.

Many interesting inequalities arise from the study of the asymptotic behavior of the polygamma
functions. For example, one sees from (2.6) that z™(—1)""14(™) () is asymptotically (n—1)!, hence
it’s natural to ask how it approaches this constant. For n = 1, a result of Ronning [17] asserts
that xv/(z) is strictly decreasing. We note here this is also equivalent to a result of Alzer [2,
Lemma 2.4], which asserts that (e”) is strictly concave on (—oo,400). The cases n > 1 have
been studied in [11] and [3]. One can certainly ask a more general question on the behavior of
fan(z) = 2(=1)""1™) (2 + a) for any non-negative number a. When a = 1 and n = 1, this
was investigated by Anderson and Qiu [5] and later proved to be strictly increasing for x > —1 by
Elbert and Laforgia [12]. Borwein et al. showed that [10, Lemma 2.1] f; ;(x) is even completely
monotonic on (0,400). Alzer and Ruehr [4] showed that fq1(x) is strictly increasing for a > 1/2.
We now summarize these results in the following lemma.

Lemma 2.2. For fizedn > 1,a > 0, the function fo,(x) = 2™(=1)"T1™) (2 + a) is increasing on
[0, +00) if and only if a > 1/2. Also, fon(x) is decreasing on (0, +00).

Proof. From (2.6) we see that

an ()
xn—l

= (Y e+ ) - a(-1) 20D a4 a)
_ n!(a—1/2)+0< 1

(x+a)"+1 (,7;—|—a)”+2>7 xr — +00.

It then follows that it is necessary to have a > 1/2 for f,,(x) to be increasing on [0, +00).
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Assume now a > 1/2, we use the integral representation in (2.2) for (—1)"*t14((z) to deduce

that
o0 n
fan () = / e~ T4
0

It follows from this that f; ,(0) = 0. For 2 > 0, we make a change of variable zt = s in the above
integral to get

ar

> re”
fa,n(x) — / e—ssn—li
0

where r = s/z. We then obtain for = > 0,

fan() =

One then checks easily that (ar —1)(e" —1) +7 >0 for 7 > 0,a > 1/2 and this implies f; ,,(x) >0
for x > 0,a > 1/2. Similarly, one shows that fj ,(z) < 0 for z > 0 and this completes the proof. [J

Before we proceed to prove our main result in the next section, we state more auxiliary results
here.

Lemma 2.3. Let 0 <z <1/4 and y > 0. The function

u(e,y) = 001+ o9) v (1+ @+ 2) + DT ) - P (14 (4 2)0)

is non-positive. Moreover, u(1/2,y) <0 for y >0 and u(1l,y) <0 fory > 1.
Proof. We have

(y+2)x

(L ay) - %w’(l +(y+ 2)q;)

+(x — i)w’(l +zy) + (v + i)i/}'(l + (y+ 2)93)

< - pPtay) + @+ (14 @+ 2e),

where the inequality above follows from the case n = 1,a = 1/2 of Lemma 2.2. Also by Cauchy’s
mean value theorem, we obtain

(2.8) (1 + zy) — ¢(1 +(y+ 2):[;) < —2x1,//<1 +(y+ 2)x).

These estimations yield

"(1+ zy)

u(z.y) < (- ) (wl +ay) =/ (1+(y+ 2>x)) <0,

for0 <z <1/4and y > 0.
In the case z = 1/2, we obtain by setting z = y/2 that

w(l/2,y) = YA +2z2)—v(Q+2z+1)+ %Hw’(l +2)— %zp’(l +z+4+1)
1

L,
= —— +J'(1
1+Z+2w(+z)+

z
2(1+ 2)%’
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where we have used (2.3) for n = 0, 1 above. We now use the bound (2.7) for ¢/(z) to get for z > 0:
2u(l/2,y) < — ! + ! <0
21+ 2)2  6(1+2)3
Lastly, we use (2.3) to express u(1,y) as
! ! 1 SN —
y+1 y+2 200 +1)2 2y +2)?
We further apply (2.7) to get

u(l,y) < 1 B 1 B 1 N 1
T 20w+1) 20w+2) (y+2)? 6y +1)°
(y+2)° - 3y(y + 1)?
6y +1)3(y+2)2 ~ 7
where the last inequality follows since 3y >y +2 and (y+1)? > y +2 for y > 1 and this completes
the proof. O

Lemma 2.4. Let 1/2<x <1 andy > 0. The function

v(@,y) = v+ ay) = (14 (y+2)2) + (y + 220/ (1 + ) — (v + Do’ (1+ (y + 2)a)
18 mon-negative.

Proof. Let R=1[1/2,1] x [0,+00) and we need to show v(x,y) > 0 for (z,y) € R. Let (x9,y0) € R
be the point in which the absolute minimum of v(x,y) is reached and assume first that (zg,yo) is
an interior point of R, then we obtain

ov ov
%(%,yo) = 87’/(%&0) =0.

Calculations yield

ig; = 2/(1+ay) - 2¢’<1 +(y+ 2)x> +aly + 29" (1 +ay) — a(y + 2)¢”<1 +(y+ 2):0),
O~ oyt (14 ay) — 2y + 200 (14 (4 2)2) +ayly + 201+ a)

—a(y+ 2% (1+ (y +2)a).
We then deduce from the above that
V' (1 4 zoyo) + zo(yo + 2)¢" (1 + zoyo) = 0.

Note from Lemma 2.2 for the case n = 1,a = 0 we also have

W' (1+ zoyo) + (1 + zoyo)y" (1 + zoyo) < 0= ' (1 4 xoyo) + zo(yo + 2)¥" (1 + zoyo),
which implies
(1 — 20)8" (1 + zoy0) < 0,
a contradiction. Thus we conclude that (zg, o) is a boundary point of R. Hence we need to check

v(x,y) > 0 for the cases x = 1/2,1 or y = 0,y — +o00. It follows from the asymptotic expressions
(2.6) and (2.5) that

yEEIrloo v(z,y) =0.

Now for z = 1/2, using the relation (2.3) for n = 0,1 and by setting z = y/2, we obtain
v(1/2,22) = v(1/2,y) =1 +2)— YA +2z+ 1)+ 1 +2)0(1+2)—(1+2)'(1+2+1)

1 1
R G sunpar
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Similarly, for x = 1, we have
1 1 1 1
Ly =——— - ——=+y+2)( + ) >o.
v(dy) y+2 y+1 (y+2) (y+2)2  (y+1)2

It remains to check the case y = 0 and we get
0(@,0) = $(1) = (1 +22) + 209/ (1) — 209 (1 + 22),

and that
10v

5%(3«"70)

W'(1) = 20/ (1 + 22) — 220" (1 + 22)

= /(1) —'(1+22) + 9" (1 + 22) — (w’(l +22) + (14 22)y"(1+ Qx))
> (1) = (14 22) + 4" (1 + 22),

where the last inequality follows from the case n = 1,a = 0 of Lemma 2.2. Now by Cauchy’s mean
value theorem, we have
(1) — ' (1 + 22) > 229" (1 + 2x),

which implies that

;gZ(x,O) > (1= 22)0"(1 4 22) > 0.

Thus
v(z,0) > v(1/2,0) =0,
and this completes the proof. ([l

Lemma 2.5. Let 0 <z <1 andy > 0. For fized x, the function
2
flzyy) =1+ g)lnF(l + zy) — lnF(l +(y+ 2)30)
is a decreasing function of y for y > 0 when 0 < x <1/2 and fory > 2 when 1/2 <z < 1.

Proof. We define

0

85 = —2InT(1 + 2y) + y(y + 2)ay(1 + zy) — 2y (1 +(y+ 2)96)-

It suffices to show g(z,y) <0for 0 <z <1/2;y >0and 1/2 <z < 1,y > 2. We show first that
g(z,y) <0for 0 <z <1/4 and y > 0. Since ¢g(0,y) = g(z,0) = 0, we may assume z,y > 0 and
note that

9(z,y) = y*

1 dg 1dg

%% - u(x,y), ?% -

where u(z,y),v(z,y) are as defined in Lemma 2.3 and Lemma 2.4, respectively. By Lemma 2.3,

u(z,y) <0 for 0 <z <1/4, y >0 and it follows that g(z,y) < g(z,0) =0for 0 <z <1/4, y > 0.

Now let D = [1/4,1/2] x [0,+0o0). To show g(z,y) < 0 for (z,y) € D, we let (zg,y0) € D be

the point in which the absolute maximum of g(z,y) is reached and assume first that (x,yo) is an
interior point of D, then we obtain

0 0
8796(96072/0) = 87:3(1;07y0) = 0.

v(z,y),

From our expressions for u(z,y) and v(z,y), one deduces that

(90 + D)0t/ (1 + moy0) = (o + Dot (1 + (yo +2)a0 )

which further implies that

21‘1}1/0 gZ(ZE(]a yo) = (1 + zoyo) — ZD(l + (yo + 2)x0) + 2m0¢'(1 + (yo + 2)g;0> =0,
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which is certainly impossible in view of (2.8). Thus we conclude that (zg, o) is a boundary point
of D. Hence we need to check g(z,y) < 0 for the cases g = 1/4,1/2 or y = 0,y — +o00. The
cases g(z,0) = 0 and g(1/4,y) < 0 follow from our discussion on the situation x < 1/4,y > 0 above
and for the case y — +o00, using the asymptotic expression (2.4) and (2.5), we deduce via simple
calculations that as y — o0,

g(x,y) =—Iny+ O(1) < 0.
It thus remains to check the case x = 1/2. In this case it follows from Lemma 2.3 that u(1/2,y) < 0
so that g(1/2,y) < ¢g(1/2,0) = 0.
Lastly, we need to show that g(z,y) < 0 for 1/2 < x < 1 and y > 1. We note by Lemma 2.4
that in this case g(z,y) < g(1,y) and also by Lemma 2.3 that g(1,y) is a decreasing function of y.

Hence it suffices to check that g(1,2) < 0. In this case one checks easily by using the well-known
fact I'(n + 1) = n!, relation (2.3) and the observation that ¢ (1) = —v from (2.1) that

9(1,2)
2

and this completes the proof. O

—3-In2-2y—-1/2—-2/3<0,

3. VOLUME OF SECTIONS OF B;‘

We now apply Lemma 2.5 to estimate the volume of sections of B.

Theorem 3.1. Letn € N, n > 2, p > 1 and let H be any (n — 1)-dimensional subspace in R".
Then

51) Vo, 1(HNBp) [T+ HIA+3)°
’ (n—1)/n — 2)2 3y —
(Voln(B)) P+ 3T +3)
Proof. Let H be a hyperplane in R". A well-known result (see [6, (11)]) ensures that
" 1 o\ (n=1D/n
Vol,_1(H N B}) Ly > ﬁ<voln(3p))

where Lpn is (see [18], [8])

3 n\14+2/
23 F(1+p)F(1+p) n

P 1ar(l+ HE(1 1 L)

Now it follows from Lemma 2.5 with 2 = 1/p,y = n that for n > 2,
2 2
L g S LB§7

from which one deduces the first inequality of (3.1). The second inequality of (3.1) now follows
from Lemma 2.5 for the case p > 2 and [8, Proposition 1.2] for the case 1 <p < 2. O

We remark here Theorem 3.1 recovers [18, Proposition 3.1] for the case 1 < p < 2.
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