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Abstract

Let n be a positive integer, let p > q, and let 0 < a < b.

It is proved that the maximum of

ap
1 + · · ·+ ap

n

n
−

(
aq

1 + · · ·+ aq
n

n

) p
q

when a1, . . . , an ∈ [a, b] is attained if and only if k of the

variables a1, . . . , an are equal to a and n− k are equal to b, where

k is either [
bq −Dq

p,q(a, b)
bq − aq

· n
]

or [
bq −Dq

p,q(a, b)
bq − aq

· n
]

+ 1,

and Dp,q(a, b) denotes the Stolarsky mean of a and b. Moreover,

if n, p and q are fixed, then

lim
b↘a

k

n
=

1
2
.
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1 Introduction and main results

Given the positive real numbers a and b and the real numbers p and

q, the difference or Stolarsky mean Dp,q(a, b) of a and b is defined by (see,

for instance, [6] or [3]).

Dp,q(a, b) :=



(
q(ap − bp)

p(aq − bq)

) 1
p−q

if pq(p− q)(b− a) 6= 0,(
ap − bp

p(ln a− ln b)

) 1
p

if p(a− b) 6= 0, q = 0,(
q(ln a− ln b)

(aq − bq)

)− 1
q

if q(a− b) 6= 0, p = 0,

exp
(
−1

p
+ ap ln a−bp ln b

ap−bp

)
if q(a− b) 6= 0, p = q,

(ab)
1
2 if a− b 6= 0, p = q = 0,

a if a− b = 0.

Note that D2p,p(a, b) is the power mean of order p of a and b:

D2p,p(a, b) = Mp(a, b) :=


(

ap + bp

2

) 1
p

if p 6= 0

(ab)
1
2 if p = 0.

The power mean can be defined not only for two numbers, but for any

finite set of nonnegative real numbers. Given a1, . . . , an ∈ [0,∞[, and
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p ∈ R, the power mean Mp(a1, . . . , an) of a1, . . . , an is defined by

Mp(a1, . . . , an) =



(
ap

1 + · · ·+ ap
n

n

) 1
p

if p 6= 0

(a1 · · · an)
1
n if p = 0

It is well known (see for instance [1],[5], [4] or [2]), that for fixed

a1, . . . , an, the function p ∈ R 7→ Mp(a1, . . . , an) ∈ R is nondecreasing.

Moreover, if q < p, then Mq(a1, . . . , an) < Mp(a1, . . . , an), unless a1 =

· · · = an. This result implies that for every p > q one has

ap
1 + · · ·+ ap

n

n
−

(
aq

1 + · · ·+ aq
n

n

) p
q

≥ 0,

with equality if and only if a1 = · · · = an. Therefore, for fixed p and q such

that p > q, the function f : [0,∞]n → R defined by (1.1)f(a1, . . . , an)=

ap
1 + · · ·+ ap

n

n
−

(
aq

1 + · · ·+ aq
n

n

) p
q

,

satisfies f(a1, . . . , an) ≥ 0 for all a1, . . . , an ∈ [0,∞).

Having in mind that the minimum of f over [0,∞)n is 0 and it is

attained when a1 = · · · = an, it is natural to ask when is attained the

maximum of f . Since

sup
a1,...,an∈[0,∞[

f(a1, . . . , an) = ∞,

this question is relevant only when all the variables a1, . . . , an of f are

restricted to a compact interval [a, b] ⊆ [0,∞[. The answer is given in

the next theorem:
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Theorem 1. Given the positive integer n, the real numbers p > q > 0

and 0 < a < b, and the function f : [a, b]n → R, defined by (1.1), the

following assertions are true:

1◦. The function f attains its maximum if and only if

a1 = · · · = ak = a and ak+1 = · · · = an = b, where k is either[
bq −Dq

p,q(a, b)

bq − aq
· n

]
or [

bq −Dq
p,q(a, b)

bq − aq
· n

]
+ 1.

2◦. If n,p and q are held fixed, then it holds that

lim
b↘a

k

n
=

1

2
.

As an application of Theorem 1, we solve the following problem, (see

[1],p.70-72): given the positive integer n, determine the smallest value of

α such that

(1.2)

a2
1 + · · ·+ a2

n

n
−

(
a1 + · · ·+ an

n

)2

≤ α max
1≤i≤j≤n

(ai − aj)
2

holds true for all positive real numbers a1, . . . , an.

Theorem 2. Given the positive integer n, the smallest value of α such

that (1.2) holds true for all positive real numbers a1, . . . , an is

α =
[n

2

] [
n + 1

2

]
.
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2 Proofs

Proof of Theorem 1

1◦ Since f is continuous on the compact interval [a, b]n, there is a point

(a1, . . . , an) ∈ [a, b]n at which f attains its maximum. If (a1, . . . , an) is

an interior point of [a, b]n, then

∂f
∂ai

(a1, . . . , an) = 0 for all i = 1, . . . , n.

Therefore

p · ai
p−1

n
− p

q
· qai

q−1

n

(
a1

q + · · ·+ an
q

n

) p
q
−1

= 0,

whence

ai =

(
a1

q + · · ·+ an
q

n

) 1
q

for all i = 1, . . . , n.

But, if a1 = · · · = an, then f(a1, . . . , an) = 0 and f cannot attain its

maximum at (a1, . . . , an). Consequently, (a1, . . . , an) lies on the boundary

of [a, b]n. Taking into account that f is symmetric in its variables, and

that

f(a, . . . , a︸ ︷︷ ︸
n

) = f(b, . . . , b︸ ︷︷ ︸
n

) = 0, it follows that there exist k ∈

{1, . . . , n− 1} and l ∈ {k + 1, . . . , n} such that

a1 = · · · = ak = a and ak+1 = · · · = al = b.

If l < n then al+1, . . . , an ∈ (a, b).
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We consider the function gl : (a, b)n−l → R, defined by

gl(al+1, . . . , an) = f(a, . . . , a︸ ︷︷ ︸
k

, b, . . . , b︸ ︷︷ ︸
l−k

, al+1, . . . , an).

Note that gl attains its maximum at (al+1, . . . , an), which is an interior

point of [a, b]n−l.

By virtue of the Fermat theorem, we deduce that for all i ∈

l + 1, . . . , n one has

∂gl

∂ai
(al+1, . . . , an) = 0 for all i = l + 1, . . . , n, that is

p · ai
p−1

n
− p

q
· qai

q−1

n

(
a1

q + · · ·+ an
q

n

) p
q
−1

= 0,

hence

ai =

(
a1

q + · · ·+ an
q

n

) 1
q

= c,

where c satisfies

cq =
kaq + (l − k)bq + (n− l)cq

n
.

A simple computation shows that

cq =
kaq + (l − k)bq

l
.

We have

gl(c, . . . , c︸ ︷︷ ︸
n−l

) =
kap + (l − k)bp + (n− l)cp

n
− cp

=

k(ap − bp) + l

[
bp −

(
bq − k

l
(bq − aq)

) p
q

]
n

= Mk.
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Consider now the function h : [k + 1, n] → R, defined by

h(x) = x

[
bp −

(
bq − k

x
(bq − aq)

) p
q

]
.

We claim that h is increasing. Indeed, one has

h′(x) =

[
bp −

(
bq − k

x
(bq − aq)

) p
q

]

−x · p

q

(
bq − k

x
(bq − aq)

) p
q
−1

k

x2
(bq − aq)

= bp −
[
bq − k

x
(bq − aq)

] p
q

− p

q
· k

x
(bq − aq)

[
bq − k

x
(bq − aq)

] p
q
−1

.

Let α = bq − aq, η =
k

x
< 1, and let

ϕ(η) := bp − (bq − αη)
p
q − p

q
αη(bq − αη)

p
q
−1

Since

aq < bq − αη = bq − k

x
(bq − aq) < bq,

it follows that h′(x) > 0. Therefore h is increasing as claimed. Finally,

we get

max gl =
k(ap − bp) + h(l)

n
≤ k(ap − bp) + h(n)

n

=
kap + (n− k)bp

n
−

[
kaq + (n− k)bq

n

] p
q

= Mk.

Our problem is now reduced to the one of finding the k ∈ [0, . . . , n]

for which Mk attains its maximum, where

Mk =
ap − bp

n
k + bp −

(
aq − bq

n
k + bq

) p
q

.
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To do this, we consider the function g : [0, n] → R, defined by

g(x) =
ap − bp

n
x + bp −

(
aq − bq

n
x + bq

) p
q

.

It is clear that our function satisfies

g(k) := Mk, fork ∈ [0, . . . , n]

We find first the extremal points of g which lie in the interior of the

interval [0, n].

In these points, due to the Theorem of Fermat we have that

g′(x) =
ap − bp

n
− p

q
· aq − bq

n

(
aq − bq

n
x + bq

) p
q
−1

= 0,

that is

q (ap − bp)

p (aq − bq)
=

(
aq − bq

n
x + bq

) p
q
−1

hence, as we have seen in the definition of the Stolarski mean that we

are using in our case,

Dp−q
p,q (a, b) =

[
aq − bq

n
x + bq

] p−q
q

and from here,

x∗ =
bq −Dq

p,q(a, b)

bq − aq
· n,

is the only extremal point contained in the interior of [0, n].

Taking into account that the second derivative of g is :

g′′(x) = −p

q
· (p

q
− 1) ·

(
aq − bq

n

)2

·
(

aq − bq

n
x + bq

) p
q
−2

< 0,
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we get that the extremal point x∗ we have just found, is a point of

maximum for g.

This relation also tells us that the function g′ is decreasing on the

interval (0,n). Because g′(x∗) = 0, we get then that g′(y) > 0 for y ∈

(0, x∗), and also that g′(y) < 0 for y ∈ (x∗, n).

Finally this means that g is increasing on (0, x∗) and decreasing on

(x∗, n).

We conclude that:

g(1) < g(2) < · · · < g([x∗])

and

g(n) < g(n− 1) < · · · < g([x∗] + 1).

¿From here we get that in order to obtain the maximum for Mk, k has

to take one of the values [x∗] and [x∗] + 1, where

x∗ =
bq −Dq

p,q(a, b)

bq − aq
· n.

Remark. Because in our case

pq(p− q)(b− a) 6= 0,

the Stolarsky mean has the property that a < Dq
p,q(a, b) < b, so we clearly

have that 0 < x < n.

2◦ Let

` = lim
b↘a

k

n
= lim

b↘a

bq −
[
q(bp − ap)

p(bq − aq)

] q
p−q

bq − aq
.

Using l’Hospital’s rule we get
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` = lim
b↘a

qbq−1 − q

p− q

[
q(bp − ap)

p(bq − aq)

] q
p−q

−1

· q

p
· `

qbq−1

But

lim
b↘a

bp − ap

bq − aq
=

p

q
· ap−q,

so,

` = lim
b↘a

{
1− q

(p− q)p
a2q−p · `

}
where

` = lim
b↘a

pbp−1(bq − aq)− qbq−1(bp − ap)

bq−1(bq − aq)2

= lim
b↘a

(p− q)bp − pbp−qaq + qap

(bq − aq)2
.

Using l’Hospital’s rule we get

` = lim
b↘a

p(p− q)bp−1 − p(p− q)bp−q−1aq

2qbq−1(bq − aq)

= lim
b↘a

p(p− q)bp−q − p(p− q)bp−2qaq

2q(bq − aq)

= lim
b↘a

p(p− q)(p− q)bp−q−1 − p(p− q)(p− 2q)bp−2q−1aq

2q2bq−1

=
p

2q2
(p− q)qap−2q =

1

2
(p− q)

p

q
.

Finally,

` = 1− q

(p− q)p
· 1

2
(p− q)

p

q
=

1

2
.

In conclusion, lim
b↘a

k

η
=

1

2
, for any p > q.

Remark. The proofs are the same in the dcase when 0 > q > p. In

this case we have the next theorem.
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Theorem 3. Given the positive integer n, the real numbers |p| > |q| > 0

and 0 < a < b, and the function f : [a, b]n → R, defined by (1.1), the

following assertions are true:

1◦. The function f attains its maximum if and only if

a1 = · · · = ak = a and ak+1 = · · · = an = b, where k is either[
bq −Dq

p,q(a, b)

bq − aq
· n

]
or [

bq −Dq
p,q(a, b)

bq − aq
· n

]
+ 1.

2◦. If n,p and q are held fixed, then it holds that

lim
b↘a

k

n
=

1

2
.

Remark. From the monotonicity of function p 7→ Mp(a1, . . . , an), we

could see that for p > q:(
ap

1 + · · ·+ ap
n

n

) 1
p

≥
(

aq
1 + · · ·+ aq

n

n

) 1
q

,

with equality if and only of a1 = · · · = an. It follows clearly that the

inequality mentioned before, is equivalent to:

ap
1 + · · ·+ ap

n

n
−

(
aq

1 + · · ·+ aq
n

n

) p
q

≥ 0.

Proof of Theorem 2

Considering p = 2, q = 1 in Theorem 1, we can see that:

D2,1(a, b) =
1

2
· b2 − a2

b− a
=

1

2
(b + a)
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and it follows that

k

n
=

b− 1

2
(b + a)

b− a
=

1

2
.

From here, we get immediately the best constant α for which:

a2
1 + · · ·+ a2

n

n
−

(
a1 + · · ·+ an

n

)2

≤ α max
1≤i≤j≤n

(ai − aj)
2.

Following the steps mentioned before, the function gets the maximum

for a1 = · · · = ak = a,

ak+1 = · · · = an = b,

where k =
[n

2

]
, or k =

[
n + 1

2

]
.

We have that

a2
1 + · · ·+ a2

n

n
−

(
a1 + · · ·+ an

n

)2

≤ (b− a)2

n2
(nk − k2).

So the best constant α will be

α =
[n

2

] [
n + 1

2

]
.
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