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A best approximation for the difference of

expressions related to the power means

Ovidiu Bagdasar

Abstract

Let n be a positive integer, let p > ¢, and let 0 < a < b.

It is proved that the maximum of

a§+---+a2_(a‘{+---+a%>§

n n

when ay,...,a, € [a,b] is attained if and only if k of the
variables a1, ..., a, are equal to a and n — k are equal to b, where
k is either

b? — D} ,(a,b) .
b4 — g4

or
[bq — D} 4(a,b)

bi — ad n:|+1a

and Dy 4(a,b) denotes the Stolarsky mean of a and b. Moreover,

if n,p and ¢ are fixed, then
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1 Introduction and main results

Given the positive real numbers a and b and the real numbers p and
q, the difference or Stolarsky mean D,, ,(a, b) of a and b is defined by (see,

for instance, [6] or [3]).

q pq .
(p aq_bq> if pg(p — q)(b—a) # 0,
a?l — P )
( lna—lnb) if pla —b) # 0,9 =0,
qlna—lnb .
D, ,(a,b) = (o —bq if g(a—b) #0,p=0,
exp( +“ph;,‘f Zﬁlnb> if gla—b) #0,p=gq,
(ab)% ifa—b#0,p=q=0,
\ a ifa—b=0.

Note that D, ,(a,b) is the power mean of order p of a and b:

1
p P
(a ;_bp> itp#0

(ab)z if p=0.

Doy, (a,b) = My(a,b) :=

The power mean can be defined not only for two numbers, but for any

finite set of nonnegative real numbers. Given ay,...,a, € [0,00[, and



p € R, the power mean M,(ay,...,a,) of ai,...,a, is defined by

ai +---+ab
n

)p itp#0
M

p(al, Ce ,an) =
(a1 ap)* if p=0
It is well known (see for instance [1],[5], [4] or [2]), that for fixed
ai,...,an, the function p € R — M,(ay,...,a,) € R is nondecreasing.

Moreover, if ¢ < p, then M,(ay,...,a,) < My(as,...,a,), unless a; =

-+« = a,. This result implies that for every p > ¢ one has

ap+...+ap aq+...+aq %
n n

with equality if and only if a; = - - - = a,,. Therefore, for fixed p and ¢ such
that p > ¢, the function f : [0, 00]" — R defined by (1.1) f(ay,...,a,)=

n n

ai +---+ab (a({%—---—irafl)z
satisfies f(aq,...,a,) >0 for all aq,...,a, € [0,00).
Having in mind that the minimum of f over [0,00)" is 0 and it is

attained when a; = --- = a,, it is natural to ask when is attained the

maximum of f. Since

sup flay,...,a,) = 0,
at,...,an€[0,00[

this question is relevant only when all the variables a4, ...,a, of f are
restricted to a compact interval [a,b] C [0, c0[. The answer is given in

the next theorem:



Theorem 1. Given the positive integer n, the real numbers p > q > 0
and 0 < a < b, and the function f : [a,b]" — R, defined by (1.1), the
following assertions are true:
1°. The function f attains its maximum if and only if
ap=---=ar=a and a1 = --- = a, = b, where k is either

he — Dgg(a, b) .
b1 — q4
or
b? — Di (a,b)
b1 — q4

2°. If n,p and q are held fized, then it holds that

n} + 1.

.k 1
lim — = —.
bN\a n

As an application of Theorem 1, we solve the following problem, (see
[1],p.70-72): given the positive integer n, determine the smallest value of
a such that

(1.2)

< C—a;)?
_alsl?s%‘én(az %)

A+ tad (atta)
n n

holds true for all positive real numbers a4, ..., a,.

Theorem 2. Given the positive integer n, the smallest value of v such

that (1.2) holds true for all positive real numbers ay, ..., a, is

=[5 [




2 Proofs

Proof of Theorem 1

1° Since f is continuous on the compact interval [a, b]", there is a point
(@y,...,a,) € [a,b]" at which f attains its maximum. If (@y,...,a,) is
an interior point of [a, b]", then

%(51,...,6n) =0foralli=1,...,n.

Therefore

a’t p oqatt (@4 + @, fl_o
n g n n -
whence
1
<alq + ... +anQ) q
L n
foralle=1,...,n.
But, if @, = --- = @, then f(a,...,a,) = 0 and f cannot attain its
maximum at (@, ..., a,). Consequently, (@i, ..., a,) lies on the boundary

of [a,b]™. Taking into account that f is symmetric in its variables, and

that

Gy=--=a,=a and G =---=a=Db.

If I <n then @1, ...,a, € (a,b).



We consider the function g : (a,b)"~' — R, defined by

glaist, - an) = fla,...;a,b,... b,aiiq,. .., ap).
k I—k

Note that g; attains its maximum at (@41, . .., @,), which is an interior
point of [a, b]" .

By virtue of the Fermat theorem, we deduce that for all i €
[+ 1,...,n one has

g_gi(al_’_l,n"an):Oforaﬂ'i:l—l—L...,?’L, that is

az.p—l P qaiq—l (51q 4+ .4 antI> %—1 _0

hence

where ¢ satisfies

_ka? 4+ (1= k)b + (n — 1)
" .

4

A simple computation shows that

 kat + (I — k)b

4

l
We have

kaP? + (I — kK)O® + (n — )P

gl<C,...,C): ( ) ( ) -
AR n
n—I
k i
k(a? —bP) +1 b”—(bq—j(bq—aq)> ]
n



Consider now the function h : [k + 1,n] — R, defined by

hz) =z [P — <bq _ R aq))

T

2
q

We claim that h is increasing. Indeed, one has

M@ﬁ:w—(w-ﬂw_wg

xz

2
q

_ _Pufwmwﬂg—§§W—ﬂﬂw—ﬂw—w}1-

T

k
Let a=b7—a? n=-—<1, andlet
x

Since
k
a? < b —an =10 — —(b? —a?) < b,
x
it follows that h'(x) > 0. Therefore h is increasing as claimed. Finally,

we get

max g; = k(a” = b7) + (1) < k(a? — bP) + h(n)

n n

D
q

= M.

_ ka4 (n— k) [k;aq +(n— k)bq]

Our problem is now reduced to the one of finding the k € [0,...,n]

for which M, attains its maximum, where

P

p_pp a_ pa q
M, =2 k+bp—<a k+b‘1>.

n n
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To do this, we consider the function ¢ : [0,n] — R, defined by

p

p_pp q_ pa q
g(a:):a x+bp—(a :L'+bq) :

n n

It is clear that our function satisfies

g(k) :== My, fork € [0,...,n]
We find first the extremal points of g which lie in the interior of the
interval [0, n].
In these points, due to the Theorem of Fermat we have that

p_pp R N R X' !
Jay=2L=2 2.2 ( x+bq> o,

n q n n

that is

Q(ap—bp):(aq_bq >5—1

p(a® —b9) n
hence, as we have seen in the definition of the Stolarski mean that we

are using in our case,

P—q

ad — b KR

n

D¥-(a,b) = [ T+ bq]

and from here,
_ b — Df (a,b) ‘

bq_aq

*

T

)

is the only extremal point contained in the interior of [0, n].
Taking into account that the second derivative of ¢ is :

a_pa\? a_pa @2
g”(x):—]—j-(]—)—l)- (a ) -(a :B—i—bq) <0,

q q n n




we get that the extremal point x* we have just found, is a point of
maximum for g.

This relation also tells us that the function ¢’ is decreasing on the
interval (0,n). Because ¢'(z*) = 0, we get then that ¢'(y) > 0 for y €
(0,2*), and also that ¢'(y) < 0 for y € (z*,n).

Finally this means that g is increasing on (0, z*) and decreasing on
(x*,n).

We conclude that:

g(1) <g(2) <--- <g([z"])
and
g(n) <gln—1) <--- <g([z*] +1).

JFrom here we get that in order to obtain the maximum for My, k has
to take one of the values [z*] and [z*] + 1, where

VDb

bq — ad
Remark. Because in our case
pq(p —q)(b—a) #0,

the Stolarsky mean has the property that a < D¢ (a,b) < b, so we clearly

have that 0 < z < n.

2° Let .
o {q(bﬁ - ap)} =
/= lim — = lim p(b? — a?)
Nan b\a b1 — a

Using I'Hospital’s rule we get



But

S0,

where

pb? = (b1 — at) — gt (b — a”)
b\a bi—1(b? — a?)?
_(p—q)b" — pbP~%a? + ga?
= lim .
b\a (b7 — a9)?
Using I'Hospital’s rule we get

_ _ -1 _ _ —q—1,q
7= i PP =¥ —pp— )" a
b\a 2qbq_1<bq - aq)
_ —q _ _ —2q ,q
_ i P2 = @~ plp — )" *a
b\a 2q(b? — a9)
i PP D = W — p(p — g)(p — 2q)07 1 a
Cb\a 2¢%be—1

_ 1 p
p—@wp%Z—@—wg

~ 2! 2

Finally,
q 1 1

p—_
@—@ﬁﬁw_wg_?
k

In conclusion, lim — = —, for any p > q.
bN\a 1 2
Remark. The proofs are the same in the dcase when 0 > ¢ > p. In

(=1-

this case we have the next theorem.
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Theorem 3. Given the positive integer n, the real numbers |p| > |q| > 0
and 0 < a < b, and the function f : [a,b]" — R, defined by (1.1), the
following assertions are true:
1°. The function f attains its maximum if and only if
ap=---=ar=a and a1 = --- = a, = b, where k is either

[bq - D, (a,b) n]

b1 — q4

or
{bq_"ngQ“b)-n]+-L
b1 — a4

2°. If n,p and q are held fized, then it holds that

. k1
lim — = —.
bN\a n 2
Remark. From the monotonicity of function p — M,(a4,...,a,), we

could see that for p > ¢:

1 1
ﬁ+m+ﬁ5> al+---+al\
n - n ’

with equality if and only of a; = --- = a,. It follows clearly that the

inequality mentioned before, is equivalent to:

ap+...+ap aq++aq %
1 n_( 1 n> ZO
n n

Proof of Theorem 2

Considering p = 2, ¢ = 1 in Theorem 1, we can see that:

b? — a?

b—a

1
Dsa(a,b) = =50 +a)

N —
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and it follows that

1

n b—a 2

From here, we get immediately the best constant a for which:

2 2 2
aj+---+a a+---+ay
1 ”—( ! ) <a max (a; — a;)’.

n n 1<i<j<n

Following the steps mentioned before, the function gets the maximum

fora; =---=ar =a,
Qps = - = ap = b,
1
where k = [g],ork: {n;— 1

We have that

So the best constant o will be

-y
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