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ABSTRACT

Semantics Oriented Spatial Temporal Data Mining for Water Resource Decision Support

Guangyan Huang

Doctor of Philosophy in Computer Science

Victoria University, Australia

Water resource management is becoming more complex and relies heavily on computer

software processing to help data queries for common and rare patterns for analyzing crit-

ical water events. For example, it is vital for decision makers to know if certain types of

water quality problems are isolated (e.g. rare) or ubiquitous (e.g. common) and whether

the conditions are changing spatially or temporally for a proper management plan. Already

known spatiotemporal water quality data analysis methods are generally based on statistical

techniques and spatiotemporal patterns are recognized manually or semi-manually; thus they

cannot handle a large number of water data efficiently, automatically and in detail. Besides,

state-of-the-art spatiotemporal data mining algorithms cannot directly satisfy mining water

patterns efficiently and accurately due to uncertainty and heterogeneity problems in water

quality datasets.

This thesis aims to automatically detect spatiotemporal common and rare patterns by

significantly addressing the uncertainty and heterogeneity in water quality data, in order to

enhance the accuracy and efficiency of common and rare pattern mining models underpin-

ning many of the water resource management strategies and planning decisions. There-

fore, we propose two novel semantics-oriented mining methods: the Correcting Imprecise

Readings and Compressing Excrescent Points (CIRCE) method and the Exceptional Object

Analysis for Finding Rare Environmental Events (EOAFREE) method. The CIRCE method

resolves uncertainty problems in retrieving common patterns based on spatiotemporal se-

mantic points, such as inflexions. The EOAFREE method tackles the heterogeneity problem

by summarizing raw water data into a water quality index, that is, water semantics, in discov-

ering rare patterns. We demonstrate the efficiency and effectiveness of the two methods by

using simulation and real world datasets, and then implement them in a Semantics-Oriented

Mining Application for Detecting Water Quality Events (SOMAwater) prototype system,

which is used to query spatiotemporal common and rare patterns for a real world water qual-

ity dataset of 93 sites in 10 river basins in Victoria, Australia from 1975 to 2010.
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Chapter I

Introduction

“Good tools are prerequisite to the successful execution of a job.”

–Confucius (Analects of Confucius)

Water resource management is becoming more complex and relies heavily on computer

software processing to help data queries (e.g. queries of common and rare patterns for ana-

lyzing critical water events). For example, it is vital for decision makers to know if certain

types of water quality problems are isolated (e.g. rare) or ubiquitous (e.g. common) and

whether the conditions are changing spatially or temporally is essential for a proper manage-

ment plan. Already known spatiotemporal water quality data analysis methods are generally

based on statistical techniques and spatiotemporal patterns are recognized manually or semi-

manually; thus, they cannot handle a large number of water data efficiently and in detail.

State-of-the-art spatiotemporal data mining algorithms cannot directly satisfy mining water

quality data efficiently and accurately due to uncertainty and heterogeneity problems in real

world water quality datasets.

1
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This dissertation provides semantics-oriented mining methods for automatically detect-

ing spatiotemporal common patterns and rare patterns from water datasets, which address

critical issues associated with improving the quality and completeness of the water data and

negotiate the uncertainty and heterogeneity of water data in order to enhance the accuracy

and efficiency of data processing models (e.g. common and rare pattern mining) underpin-

ning many of the water resource management strategies and planning decisions.

I.1 Background and Motivations

Water is the most important catalyst for human development [Mat02]. Rivers, as a typical

type of water resource, are the prime factors controlling the global water cycle. River Water

Pollution due to urbanization [VV01] [KLL08] [SLJ+02] [KLK+07] [Pra05] has become a

critical issue that must be mitigated to provide the suitability of water to sustain various uses

or processes (e.g. drinking, irrigation, industry etc.). Water quality can be defined as a range

of variables [Pra05] related to certain levels of physical, chemical or biological characteris-

tics of water. Water quality differs by location (spatial factor) and season (temporal factor)

[Pra05].

With the advanced tools (e.g. sensors [GQZe08] [CJ08] [VM10] and Geographical In-

formation Systems (GIS) [KJHK] [GMFC02] [MGR05]), frameworks [ATL+05] [TNGA09]

[SR08] and protocols [U.S11] for continuously and closely monitoring the environmental

parameters related to water resources, we can capture abundant physical chemical water
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quality data (such as PH, temperature, dissolved oxygen, total phosphate, nitrates, turbidity,

total dissolved solids etc.) to analyze the spatial and temporal variation in river water quality

[RA09]. However, water resource management will be more complex in the future world-

wide and relies heavily on computer software processing [Mat02], since the decision makers

may not be engineers or water resource domain experts and must be fed the right information

(or useful knowledge)[Mat02] through data queries (e.g. queries of common or rare patterns

for analyzing critical water events). For example, knowing if certain types of water quality

problems are isolated (e.g. rare) or ubiquitous (e.g. common) [KLL08] and whether the

conditions are changing spatially or temporally is essential for a proper management plan

[KLL08] [Cha08]. A response to these queries faces three challenges:

• accuracy challenge: the discrete sampled water data, which varies widely in com-

pleteness, quality, scale, scope, reliability and metadata quality due to the many inde-

pendently developed data sources and models [eW05] decreases the accuracy of data

queries.

• efficiency challenge: a large number of excrescent data exist in the continuous gener-

ated water data, which waste storage and reduce the efficiency of data queries.

• integrating heterogeneous raw data challenge: historical water data are provided by

different organizations and collected by different equipment over a long historical pe-

riod where the collecting technologies vary.
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Therefore, this dissertation aims to significantly address critical issues associated with

improving the quality and completeness of water data and negotiating the uncertainty and

heterogeneity of water data in order to enhance the accuracy and efficiency of data pro-

cessing models (e.g. common and rare pattern mining for detecting critical water events)

underpinning many of the water resource management strategies and planning decisions.

I.2 Challenges in Discovering Common and Rare Patterns

from Spatiotemporal Water Data

Data sources include sensors, manually captured monitoring data, legacy databases and

derived/predicted data (from models). It includes point and non-point sources, numerical

data, temporal and spatial data and remote sensing satellite images. The data varies widely

in completeness, quality, scale, scope, reliability and metadata quality. Continuous sensor

sampled water data or a long history of manually captured monitoring water data are often

recorded as a series of discrete points in databases [GBEe00], where useful knowledge can

be achieved through queries. We define water data as follows:

DEFINITION 1. Water data is a kind of spatiotemporal data that is sampled at chosen

places to provide water-related physical parameters (e.g., PH, temperature, dissolved oxy-

gen, total phosphate, nitrates, turbidity, total dissolved solids etc.) that change with time for

a part or a whole of water bodies (e.g. rivers, lakes, wetlands etc.). Generally, we denote

water data as a 4-tuple: (location, time, water parameter type, water parameter value).
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One of the greatest challenges facing querying useful knowledge from water data is rapid,

seamless integration of the many independently developed data sources and models [eW05].

The current approach involves manual data mapping and tuning by domain experts, which

is extremely tedious, time-consuming, non-scalable, inflexible and a bottleneck as the com-

plexity, size and scope of the data and models grow. The aim of this dissertation is to improve

the speed, rigour and adaptability of water management decisions - by focussing on services

that will improve the quality, completeness, relevance and interpretability of the data be-

ing used in the models, such as data mining models, underpinning many of these decisions

[AGBT06].

To support efficient and accurate queries on water data, we must resolve uncertainty prob-

lems when retrieving common patterns (e.g. Longest Common Curves (LCC)) and tackle

heterogeneity problems for discovering rare patterns (e.g. water pollution). A combination

of approaches will be used to improve data quality and completeness. Although advanced

ontology-based semantic mapping and syntactic and structural mapping techniques can be

employed to enable integration of disparate data sources [PZHZ07] [oI07] [SZZ06], we pre-

fer to resolving uncertainty and heterogeneity problems automatically. It will also facilitate

improved coordination of activities and decisions through faster, easier exchange of data and

information between the current agencies involved in water management.
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I.2.1 Uncertainty Problems in Retrieving Common Patterns from Spa-

tiotemporal Data

We focus on uncertainty problems and other data quality problems, such as significant

errors in datasets, are beyond the discussion range of this thesis. Even if every discrete point

is correct, the discrete points on the time series are uncertain- that is, it is not exactly like

a continuous stream since some critical points are missing due to the limited capabilities of

sensing equipment and database servers [MdB04]. On one hand, a large amount of redundant

information exists and thus storage resources are wasted, which also reduces the efficiency

of the user query. On the other hand, missing critical points make the user query inaccurate.

We call this Uncertainty due to Discrete Sampling (DS Uncertainty). Another uncertainty

problem is that sensor readings of the same situation cannot be repeated exactly when we

record them at different times or use different sensors, since different sampling errors exist;

we call it Uncertainty due to Sampling Error (SE Uncertainty). For example, we cannot

record the highest temperature of each day by sampling the temperature at a fixed time tick,

since the peak values of different days are reached at different times; though the difference

may be very small in two consecutive days.

Uncertainty due to Discrete Sampling and Uncertainty due to Sampling Error in the water

data decrease both the efficiency and accuracy of querying common patterns. For example,

we must determine whether two values are the same by tolerating their difference in an error

bound instead of exactly matching with each other.
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I.2.2 Heterogeneity Problem in Discovering Rare Patterns

Detecting when and where water quality events, such as pollution events, happen from

spatiotemporal data faces heterogeneity problems. The first type of heterogeneity problem

relates to heterogeneous raw water data with various data qualities; that is, historical water

data are provided by different organizations and collected by different equipment over a long

historical period where the collection technologies vary. For example, the collected water

parameters are different from site to site; and there is a different sampling frequency for

different sites (or different months).

The second type of heterogeneity problem is that it is difficult to detect rare patterns from

data with different water quality value ranges by using statistical analysis. For example, we

cannot find rare events (e.g., water pollution) directly by using a specific threshold (e.g.,

“poor” water quality of the river). Instead, spatiotemporal variations of the water data are

more useful. Also, we can ‘learn’ some abstract rules from the historical data but cannot

directly achieve normal values as the threshold for exception analysis. This means statistical

analysis is invalid in detecting exceptional objects from the water quality data, which we

explain as follows. Rare environmental events are generally unusual, relative to the normal

patterns of behavior of an environmental body (e.g., a river) [KJBB09].

The simplest and the most straightforward approach to detect rare events is to explore

exception analysis which identifies whether an attribute or measure value belongs to or does

not belong to a specific list of values. One limitation of this approach is that it requires
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knowledge of the normal value or what is anomalous [MSN]. Although we can “learn” the

normal values from historical data and then detect events that indicate departures from the

norm [KJBB09], the learnt knowledge may be out-of-date, since the environmental situation

is changing with time. For example, it is unreasonable to use the average value of several

sampling locations to denote the water quality of a whole river. Another limitation of the

straightforward approach is that it is only valid when rare environmental events directly lead

to an abnormal value. But it is invalid when rare environmental events produce a normal

value since the whole environmental system (e.g. a river water system) can bear a pollution

event for an extended period due to the following factors.

• First, daily water flow varies greatly in different seasons or in different rivers. A pol-

lution event may not instantly change the water quality of the whole river that has

large amount of water flow in season, since the pollution may be flushed away; al-

though a pollution event may persist for a long time and reduce the river water quality

eventually.

• Second, different rivers have a various range of water quality from “excellent” to “very

poor”, where water quality is higher, the pollution event is harder to detect. For exam-

ple, if the water quality of a river is “excellent”, it may take a long time for a pollution

event to change the water quality into a “poor” state. This means we are not aware

of the harm of this pollution event from the beginning, for example, when a factory
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drains waste water into a nearby river for an extended period of time.

I.3 Solutions: Semantics-Oriented Mining Methods for Anal-

ysis of Water Quality Events

We use data mining methods to discover semantic points, such as inflexions detected

from spatiotemporal curves, to remove uncertainties; then we simplify the spatiotemporal

curves by using semantic place IDs and change the problem of mining uncertain spatiotem-

poral curves into mining common patterns from certain ID sequences. Note that semantic

points also can help find missing points on the spatiotemporal curves.

Also, we take advantage of the water quality index, water semantics defined by domain

experts, to unify heterogenous water data curves. Then we define a new concept of water

quality changes to remove the geographical differences between any two sites and the tem-

poral differences between any two years and thus we can discover common or rare patterns

among different data sequences at different sites for different years.

By using these semantics (e.g., summarized semantic points on the curves and water

quality index semantics), we develop three methods: MicPasts and CIRCE for tackling the

uncertainty problems in the process of retrieving common patterns, and EOAFREE for re-

solving the heterogeneity problems in the processing of detecting rare events in the water

quality data curves. Finally, we implement these three methods into an SOMAwater proto-

type system for the application of detecting water quality common and rare events.
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I.3.1 Mining Common Patterns based on Spatio-Temporal Semantics

(MicPasts)

In this dissertation, we propose a novel Mining Common Patterns based on spatiotem-

poral Semantics (MicPasts) method to tackle the problem of Uncertainty due to Sampling

Error (SE Uncertainty). To resolve the SE Uncertainty problem, the MicPasts method sum-

marizes the original data streams by using inflexions, then discovers semantic places on the

spatiotemporal curves by grouping close inflexions into the same cluster, and then changes

the uncertain data streams into exact sequences of cluster IDs. Thus, the problem of min-

ing common patterns is mapped into the traditional problem of mining sequential patterns.

Particularly, to help query common patterns directly on exact ID sequences, a Discovering

Implicit Semantic Places (DISP) procedure is developed to discover the implicit semantic

regions.

I.3.2 Correcting Imprecise Readings and Compressing Excrescent Points

(CIRCE)

We then extend the MicPasts method to a novel CIRCE method by providing a novel

Correcting Imprecise Readings and Compressing Excrescent points (CIRCE) core algorithm

to tackle the Uncertainty due to Discrete Sampling problem. The CIRCE core algorithm

aims to find inflexions from a single incomplete data stream. It uses a Detecting Inflexions

and Computing Missing Inflexions (DICMI) algorithm for detecting local inflexions includ-

ing missing inflexions and then compressing an original sensor stream by a sequence of
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inflexions. Also, a novel Angle-DP algorithm is developed for finding critical points from

inflexions and then for compressing an inflexion sequence generated by the DICMI algorithm

further into a critical point sequence.

I.3.3 Mining Rare Patterns based on Water Quality Semantics

Critical events are generally rare events. There are two classes of rare event detection

methods: application-specific and general rare event detections. However, already known

application-specific rare event detection methods may not be suitable for detecting rare

events from water quality data. Besides, although data mining methods, such as cluster-

ing algorithms, which do not force every data instance to belong to a cluster can be used to

generate some data instances that could not be grouped into any cluster as rare events, the

disadvantage of such techniques is that they are not optimized to find rare patterns, since the

main aim of the underlying clustering algorithm is to find clusters.

We develop a novel Exceptional Object Analysis for Finding Rare Environmental Events

(EOAFREE) method. Particularly, a general Improved Exceptional Object Analysis based

on Noises (IEOAN) algorithm is created to distinguish those data objects (or data points)

that cannot be grouped into any clusters as exceptional objects. Interestingly, opposite to

the already known Principal Component Analysis (PCA) that ranks principal components,

our IEOAN ranks exceptional objects. The EOAFREE method preprocesses heterogeneous

spatiotemporal data through exploring water semantics and defines spatiotemporal changes
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instead of the water quality value itself as the input of the IEOAN algorithm to remove the

geographical differences between any two sites and the temporal differences between any

two years.

I.3.4 Application: Semantics-Oriented Mining Application for Detect-

ing Water Quality Events (SOMAwater) Prototype System

Finally, we implement the CIRCE method (which includes the MicPasts method for

resolving Uncertainty due to Sampling Error problem and the CIRCE core algorithm for

tackling Uncertainty due to Discrete Sampling problem) and the EOAFREE method into a

SOMAwater prototype system to query longest common curve (LCC) patterns and rare pat-

terns to support decision making for the water resources management domain. We illustrate

querying LCC patterns and several rare patterns (e.g., continual, simultaneous, seasonal and

global rare patterns) from water quality data by using extensive examples. We use a mas-

sive experimental study to demonstrate the CIRCE method for querying LCC patterns and

to demonstrate the EOAFREE method by querying spatiotemporal rare patterns.

I.4 Contributions of This Dissertation

The findings of this work include three aspects. First, our CIRCE method [HZHa] which

includes both the MicPasts method (also called LCRTurning in our paper in [HZHD11]) and

the CIRCE core algorithm, as well as our IEOAN algorithm [HZHb], are general solutions

proposed for mining common and rare patterns from spatiotemporal data. The MicPasts
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method discovers semantic regions by summarizing inflexions. The CIRCE core algorithm

is developed for improving the quality and compressing the volume of spatiotemporal data.

The IEOAN algorithm is proposed for discovering and ranking exceptional objects in a spa-

tiotemporal database. Second, the EOAFREE method [HZHb] is developed especially for

mining water quality data in order to detect critical water quality events. Third, we imple-

ment the CIRCE method and the EOAFREE method in a Semantics-Oriented Mining Ap-

plication for Water Pollution Event Detection (SOMAwater) prototype system to discover

common patterns, especially Longest Common Curves (LCC) and rare patterns (e.g. contin-

ual, simultaneous, seasonal and global rare patterns) from water quality data, and to support

decision making for effective water management. Compared to manual and semi-manual

spatiotemporal pattern analysis, SOMAwater can help decision makers to focus only on the

valuable datasets and discover spatiotemporal water patterns efficiently and automatically,

as well as in more detail.

I.5 Dissertation Structure

The rest of this dissertation is concerned with mining common and rare patterns based on

semantics in water quality data for detecting water quality events. The relations between the

major chapters are shown in Fig. I.1. In Chapter II, we introduce preliminary knowledge and

compare our methods with related work. In Chapter III, we present a novel MicPasts method.

In Chapter IV, we extend the MicPasts method to a novel CIRCE method by developing



CHAPTER I. INTRODUCTION 14

The SOMAwater Prototype System, a tool 

supporting water resource decision making 

 (Chapter )

The MicPasts Method 

(Chapter )

Preliminary and Related 

Work (Chapter )

The CIRCE Method 

(Chapter )

The EOAFREE Method 

(Chapter )

Extend 

Figure I.1: Dissertation Structure.

a CIRCE core algorithm especially for improving the quality of a single stream data. In

Chapter V, we present a novel EOAFREE method. In Chapter VI, we implement the CIRCE

method (including the MicPasts method and the CIRCE core algorithm) and the EOAFREE

method (including the IEOAN algorithm) into a SOMAwater prototype system for water

resource decision support by detecting longest common curves and rare events (e.g., water

pollution and positive factor for water quality improvement) from water quality data. In

Chapter VII, we summarize the work of this dissertation and mention some directions for

future research.



Chapter II

Preliminary and Related Work

“If you know your counterparts and know yourself, you need not fear the result of a

hundred battles.”

–Sun Tzu (The Art of War)

In this chapter, we first introduce preliminary work in spatiotemporal data mining, then

we present state-of-the-art related work from three aspects: mining spatiotemporal common

and rare patterns, as well as the data analysis method to support decision making in water

resource management domain. Meanwhile, we compare our CIRCE method, EOAFREE

method and SOMAwater prototype system with the related work to point out our contribu-

tion.

II.1 Preliminary Work in Spatio-Temporal Data Mining

It has been estimated that 80% of the available datasets have spatial components [FG01]

and are often related to temporal aspects [EMT08]. Mining spatio-temporal data is complex

15
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in terms of both the mining efficiency and the complexity of patterns that can be extracted

from spatio-temporal datasets [RL01] [Mit10]. Water quality data are typical spatiotemporal

data streams denoted by time series curves. In this section, we introduce basic techniques

that are widely used in mining general spatiotemporal datasets as preliminary knowledge.

These techniques are also adopted as a basis to develop our new techniques for mining

spatiotemporal water quality datasets. First, enormous volumes of spatiotemporal stream

data bring a great challenge for storage, transmission and computation and thus compression

techniques for water data curves are vital. Many critical points detection and data compres-

sion methods for line simplification are widely accepted and used within digital cartography.

Of them, the Douglas-Peucker (DP) algorithm [DP73] is mathematically and perceptually

superior [VW91]. In this dissertation, we modify and improve the DP algorithm to make

it suitable for compressing water data curves, considering that some critical points may be

missing in the real world application. We show that water data curves can be simplified by

the same methods used for simplifying spatial curves, particularly as the time series based

water data curves have no self-intersections and thus satisfy the criteria of many line sim-

plification methods well. Also, we discover common patterns using clustering methods and

detect rare patterns by using opposite methods, that is, to find exceptional objects that can-

not be grouped into any clusters. The Density Based Spatial Clustering of Applications with

Noise (DBSCAN) algorithm is an interesting clustering algorithm that can recognize both

common patterns (e.g. clusters) and rare patterns (e.g. noises). Finally, after compressing
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and clustering, the water data streams become concise, without any uncertainty. We then

change the problem of retrieving common curves into the problem of finding exact common

subsequence patterns that can be resolved by already known mature techniques.

Therefore, to help understand the content in this dissertation, in this section, we present

preliminary knowledge about the Douglas-Peucker line-simplification algorithm, the DB-

SCAN clustering algorithm and the mining algorithm for common subsequence patterns.

II.1.1 Douglas-Peucker Line-Simplification Algorithm

Given a continuous curve denoted by a function, we can compute all the inflexions

through derivations. Given a discrete curve denoted by a sequence of points, we can use

the DP algorithm to find the inflexions (or the turning points). The main idea of the DP

algorithm in [Whi85] is given as follows.

• Step 1: The first point and the last point of one trajectory are chosen as the anchor

point and float point, respectively.

• Step 2: For intermediate points, the cut point is the point with the maximum perpen-

dicular distance, which is greater than a pre-defined threshold, λ, to the line connecting

anchor and float points.

• Step 3: Then the cut point becomes the new float point for the first segment and the

anchor point for the second segment. If no cut point exists, it stops.
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Figure II.1: An example of the DP algorithm.

• Step 4: This procedure is recursively repeated for both segments.

The complexity of the most efficient implementation of DP is O(NlogN), where N is

the number of points on a single curve provided in [HS92].

An example discrete curve “AEGCHDIFB” is shown in Fig. II.1. First, ‘A’ and ‘B’ are

the anchor point and float point, respectively. Then ‘C’ is a cut point. For ‘AC’, ‘E’ is a cut

point. For ‘CB’, D is a cut point. Finally, for ‘DB’, ‘F’ is a cut point. All the critical points

detected by the DP algorithm are denoted by dots and other points denoted by circles can be

omitted.

II.1.2 DBSCAN Clustering Algorithm

The DBSCAN algorithm is designed to discover clusters of arbitrary shape as well as to

distinguish noise [SEKX98]. The original DBSCAN (eps, MinPts) algorithm is provided

in [EKSX96]. We summarize an implementation version of DBSCAN according to our work
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in [HHD07] [HHZS07] [HHD08a] as follows:

• Step 1. Build neighbour lists of each object. The neighbours of object q must satisfy

criteria that neighbours are in the neighbourhood circle area with location of q as the

centre and eps as the radius.

• Step 2. Build a set of core objects, I . The object, which has more than MinPts

neighbors, is marked as a core object.

• Step 3. All core objects are marked unused. For each unused core object p, put p

and p’s neighbors into cluster class id and mark the object as being used. Any core

object r in cluster class id will recruit r’s neighbors into cluster class id and the used

objects are marked.

• Step 4. Noise objects are those that are not used and are assigned into a special noise

cluster.

The complexity of DBSCAN is O(NlogN), where N is the number of points being

clustered. If the points are organized as a grid, the complexity of DBSCAN is O(N)

[SEKX98]. Two parameters: eps and MinPts control the clustering output according to

applications. Given the data structure in Fig. II.2 [HHD08a], the time spent by DBSCAN is

T (N,Eps) = N(πeps2 + qsort(πeps2)), where qsort(·) denotes the time for running qsort

function to quick sort the maximum number of points in the neighbor lists.
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struct _Neighbor 

{

float distance; 

int ID; 

};

struct _DataPoint 

{ bool core_tag;  

int class_id; 

  bool used_tag; 

int x; 

int y; 

int ID; 

int numNeighbor; 

_Neighbor NeighborList[ Eps
2]; // =3.14

} DataPoints[n];

Figure II.2: Data Structure of DBSCAN Algorithm.

An example is shown in Fig. II.3. Suppose MinPts = 4. Start at core object, q, p is a

neighbor of q, r is a neighbor of the core object, p, and thus r is also added into q’s cluster

(e.g. r and q are density-connected). Object r’s neighbor, t, cannot be added into q’s cluster,

since r is not a core object.

II.1.3 Mining Common Subsequences

A suffix tree is an efficient data structure for retrieving common sequences from multi

sequences [McC76]. We firstly introduce the suffix tree as follows. If S =< t1, t2, ...ti, ...

tn > is a string, then Ti =< ti, ti+1, ... tn > is the suffix of S that starts at position i.

The suffix tree for a string, S, with length n is defined as a tree such that (in [Dan97]):

• the paths from the root to the leaves have a one-to-one relationship with the suffixes of

S,
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Figure II.3: Density-connection concept in DBSCAN.

• edges spell non-empty strings,

• and all internal nodes (except perhaps the root) have at least two children.

An example of two sequences: ”ABCD” and ”BCDE” is shown in Fig. II.4. If min sup=2,

then ”BCD” and ”CD” are common sequences. We also build a list of supports on the nodes

of suffix tree. The algorithm retrieving all common sequences based on the suffix tree is

given in Fig. II.5.

II.2 Spatio-Temporal Data Mining for Common Patterns

In this section, we present a survey of mining spatiotemporal common patterns. Uncer-

tainty due to Discrete Sampling and Uncertainty due to Sampling Errors are major challenges

in the process of mining common patterns from spatiotemporal datasets. To the best of our
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Figure II.4: Suffix tree for retrieving all Common Sequences from multiple sequences.

Algorithm 1. Mining Common Sequences. 

Procedure SuffixTree_CS (STree)

1. flag=0; 

2. While (STree!=Null)

3. If (NMO min_sup) then /*NMO is the number of 

moving objects on STree.*/

    flag=1; 

3a. If STree is leaf then

      CSset String from root to STree;

3b.ElseIf (!SuffixTree_ CS (STree.firstChild)) then

         CSset String from root to STree;

Endif

4. STree=STree.next;

EndWhile

5. Return flag;

Figure II.5: Retrieving common subsequences.
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knowledge, no related work resolves the Uncertainty due to Discrete Sampling problem (e.g.,

correcting the missing readings) while compressing. So, we only present the already known

work that tackles Uncertainty due to Sampling Errors. We classify the solutions to over-

come Uncertainty due to Sampling Errors into two classes: non-semantic-based methods

and semantic-based methods for querying common pattern on spatiotemporal data streams,

One non-semantic-based method is to determine whether two points are the same or

not by tolerating a bounded error. Then, we can determine whether two trajectories are

the same or not by checking whether the spatial difference at every timestamp is in the

bounded error [JYZ+08] [CMC05]. Given two trajectories, it is easy to retrieve LCR patterns

with min sup = 2 using the non-semantic-based method. But given n trajectories, how to

efficiently retrieve LCR patterns with min sup = m? A MC2 (clustering moving cluster)

algorithm in [KMB05] provides a solution, that is, to cluster points at every timestamp,

taking the points in the same cluster as in a bounded error. This actually changes the problem

of clustering 3-D points (2-D location, time) of trajectories into the problem of clustering 2-

D locations. The MC2 algorithm checks the number of common moving objects between

any two clusters in two consecutive timestamps. Given two cluster sets: c1 (at T1) and

c2 (at T2), if |c1 ∩ c2| > k, then the common objects moving together between [T1, T2]

are a moving cluster. However, the MC2 algorithm runs at every timestamp and thus is

time-consuming. A CuTS (Convoy Discovery using Trajectory Simplification) algorithm has

been proposed in [JYZ+08] to improve the MC2 algorithm for retrieving convoy patterns.
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First, CuTS retrieves coarse candidate results by querying on Douglas-Peucker (DP) [DP73]

compressed trajectories; that is to cluster direct line segments between two critical points

other than clustering location points at every timestamp. The coarse searching screens a large

volume of points to be checked further and thus increases the efficiency. Then, CuTS checks

the points on the candidate results by using MC2 to ensure high accuracy. To achieve the

longest convoy, CuTS connects the sub-patterns on consecutive direct line segments together.

However, due to missing critical inflexions of original data streams, one long patterns may

be split into two sub-patterns and thus CuTS is not suitable in retrieving the longest patterns

from data streams with Uncertainty due to Discrete Sampling problem.

Another non-semantic-based method is to determine if two polygon line segments are

the same or not by testing whether they are in the same bounded rectangle region. Then,

a common trajectory is a sequence of common polygon line segments. In [CMC05], first,

a trajectory is split into a sequence of pieces based on the DP algorithm [DP73] and each

piece is compressed by direct line segments to reduce the enormous volume of data [MdB04]

[Tha89]. Then it groups similar direct line segments on DP-based trajectories into clusters.

Suppose L1 and L2 are two direct line segments that have been grouped into the same cluster.

Different from [JYZ+08], the method in [CMC05] checks whether the original polygon line

segments of L1 comply with L2, if so, L1 is defined as close to L2. Then a mean line segment

of a cluster,
−→
L , as a central line segment is used to define a rectangle region with a width

threshold. Only if L1 and L2 are not only similar but also close to
−→
L , they are supporters of
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this region. If the number of supporters is greater than a threshold min sup, the rectangle

region is a frequent one. Given IDs to rectangle regions to simplify trajectories further, the

problem is mapped into the problem of mining Sequential PAttern (SPA). However, clus-

tering direct line segments is complex and inefficient as our experiments in Chapter III will

demonstrate.

In the semantic-based methods in [GNPP07], it inputs some already known regions of

interest (RoI) to determine whether different locations are at the same RoI. There are three

types of RoIs introduced in [GNPP07]: candidate places such as restaurants, shops etc;

popular square regions visited by at least 10% of the objects; and crossroads where more

than 50% of objects change their direction. Since the predefined RoIs are limited, [GNPP07]

dynamically defines RoIs by popular region, a rectangular region with a certain density of

location instances. A popular region in [GNPP07] is discovered by processing the locations

in the whole dataset. However, the definition of popular region by the certain density of

accumulated locations cannot be discovered efficiently if the trajectories are sampled by

regular timestamps, not only because the volume of location datasets is huge but also because

large numbers of meaningless locations may hinder finding the real popular regions.

Furthermore, retrieving patterns efficiently from trajectories based on trajectory sim-

plification (e.g. the DP algorithm), as was done in [JYZ+08] and [CMC05], brings a big

challenge for accuracy, because the DP algorithm cannot correct the imprecise inflexions.

Accuracy is often measured by two metrics: false-positive rate (the percentage of incorrect
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patterns wrongly identified as positive) and false-negative rate (the percentage of correct pat-

terns that have not be retrieved). False-positive results often lead to an exponential explosion

of LCR pattern mining and thus reduce the mining efficiency [YCL+06]. The number of

false-positive results can be reduced by post-checking such as in [JYZ+08] and [GNPP07].

However, evaluating false-negative rates is more difficult in many applications and in re-

lated work, such as those in [JYZ+08], [GKS07], [GNPP07] and [CMC05], no evaluation is

undertaken to measure false-negative rates.

In order to retrieve LCR patterns efficiently, our MicPasts method, also called LCR-

Turning algorithm published in [HZHD11], adopts a semantic-based method and uses the

semantic points (or turning points) to simplify the original trajectories. If the split points

are in the same cluster, then they are denoted by the same cluster ID. Thus, we can map

the problem of mining LCR patterns from uncertain data streams mainly into the problem

of mining Longest Common Sequences (LCS) [Mai78] [BHR00] [Gre03] [MP80] [SA96]

[HS77] from exact region IDs. Also, we only cluster direct line segments without further val-

idation on the original trajectories since a sequence of semantic turning region IDs abstract

the trajectories with high precision.

The CIRCE method extends the MicPasts method and improves the accuracy of query-

ing LCR patterns further by providing a novel CIRCE core algorithm for resolving the Un-

certainty due to Sampling Errors problem. Although it is mathematically and perceptually

superior for compressing curves, the DP algorithm cannot achieve minimal number of ver-



CHAPTER II. PRELIMINARY AND RELATED WORK 27

tices [LZ11]. Thus, the CIRCE core algorithm (including Angle-DP) outperforms the DP

algorithm, since it corrects missing inflexions to resolve Uncertainty due to Discrete Sam-

pling problem while summarizing the curves into less critical points by developing a new

Angle-DP. Therefore, we achieve more accurate but less semantic points to compress data

streams. Moreover, our CIRCE method makes querying common patterns directly on com-

pressed data available by developing a DISP procedure to discover implicit semantic places

from compressed data.

We also present a survey of applying spatiotemporal data mining to water data. In

[PCE08], a data mining method is used to generate a classification model based on associa-

tion rules to classify water data. In [SWMW09], k-means clustering and graph partitioning

algorithms are used to discover patterns or connections among different variables or differ-

ent spatial locations within a data field. In [PAN05], Principal Component Analysis (PCA)

together with variance and time series analysis is used to study inter-correlation between pol-

lutants and ions. Our CIRCE method (or MicPasts) focuses on discovering longest common

curve patterns that are used to group similar locations and seasons of the water quality data

into clusters to assist decision making and thus we are interested in spatiotemporal common

patterns instead of other knowledge, such as relation rules between different water variables.
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II.3 Spatio-Temporal Data Analysis for Rare Event Detec-

tions

We classify existing algorithms for rare event detection from spatiotemporal data into

two classes: application-specific and general rare event detection.

Most existing rare event detection research either focuses on a particular application

domain or on a single research area [CBK09]. In [KJBB09] and [MKB09], uncertainty

quantification-based techniques are used to detect salinity events within oceanographic data,

particularly, a composite of the static threshold method and dynamic uncertainty quantification-

based techniques is proved to improve the event detection precision. A method to more ac-

curately detect tornadoes is developed by using Support Vector Machines (SVMs) [TTR03].

In comparison with other detection methods, such as neural networks and radial basis func-

tion networks, SVMs are found to be more effective in tornado detection. Statistical signal

processing techniques are applied to event detection in wireless sensor networks [JGS07].

Specifically, they use Principal Component Analysis (PCA) to build a model of observed

environmental phenomena that captures daily and seasonal trends within the sensor mea-

surements. The divergence between sensor measurements and model predictions is used as

an indicator of discrete events within the data stream. [Kou06] uses abnormal spatial pattern

recognition to locate extreme meteorological events such as water pollution incidents. These

rare event detection methods that are only suitable for a specific application domain may not

be suitable for detecting rare events from water quality data.
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General rare event detection algorithms may be more useful. For example, several clus-

tering algorithms, such as DBSCAN [EKSX96], ROCK [GRS00], Shared Nearest Neighbor

(SNN) clustering [ESK03] and Findout algorithm [YQLZ02], that do not force every data

instance to belong to a cluster generate some data instances that could not be grouped into

any cluster. These anomaly data instances are rare events. However, the disadvantage of

such techniques is that they are not optimized to find rare patterns, since the main aim of the

underlying clustering algorithm is to find clusters [CBK09]. Therefore, in this dissertation,

we develop a general novel Improved Exceptional Object Analysis based on Noise (IEOAN)

algorithm by taking advantage of DBSCAN clustering to detect rare patterns. Experimental

study shows that our IEOAN algorithm is far more efficient than directly recursively using

DBSCAN clustering algorithm to detect rare events. Interestingly, opposite to the already

known Principal Component Analysis (PCA) that ranks principal components, our IEOAN

ranks exceptional objects.

The most related work for rare event detection is a sensor data mining model in [VM10]

for monitoring continuously changing statio-temporal water data. In this data mining model,

two criteria, the threshold value or the probability of outstanding from the set of average

value, are used to extract outlier and semantic measures are used for the data mining methods

such as classification and association rule. Our EOAFREE method is different: first, we use

water semantics to fuse multiple raw water data curves into one water quality index curve;

then we develop an IEOAN algorithm based on DBSCAN clustering to detect exceptional
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objects (the same as outlier) from water quality index data. We not only discover recurring

and sequential patterns that are discovered in [VM10], also we define a seasonal pattern as a

novel temporal pattern. Besides, we not only analyze spatial similarity like in [VM10], also

we define spatial patterns, such as global rare patterns.

II.4 Spatiotemporal Water Quality Data Analysis to Sup-

port Decision Making

In [RA09], multivariate statistical techniques like hierarchical cluster analysis (HCA)

and principle component analysis (PCA) were used to segregate and examine the water qual-

ity data. Multivariate statistics is considered to be an appropriate and efficient tool [QMH07]

[SKSB06] [SMS+05]. HCA is used to study the spatial variation in water quality. GIS is

used to visualise spatial data, for example, geographical information related to water quality

[KKE+]. In [WXSY06], a statistics and generalized regression neural network model is pro-

posed for analyzing detailed spatial distribution of water quality. In [KLK+07] and [KLL08],

the spatial variation and temporal variation of the water quality are analyzed. However, none

of these methods detect common or rare water quality patterns.

In [CSM+08], the point sources of pollution due to lack of facilities for appropriate

treatment of domestic and industrial sewage are identified and detected by assessing water

quality variables through manual observation of the water quality curves, such as temper-

ature, conductivity, PH, dissolved oxygen and etc. However, manual pattern recognitions
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cannot analyze a large number of stream data efficiently. In this thesis, we adopt Water

Quality Index (WQI), a standard measurement used by domain experts in the water quality

management field, to detect water quality changes. Our aim is to develop efficient methods

to automatically detect common and rare patterns. We can easily validate the effectiveness

of the experimental results by manually checking WQI change.

In [EGBD06], Multiple Criteria Decision Analysis (MCDA) is used in water quality

management, where the results of action for the sustainable improvement of water quality

are evaluated. It used standard levels of water quality parameters to define economic and

ecological criteria for decision making. Our SOMAwater prototype system can assist in

defining more detailed standard levels of water quality parameters by considering spatiotem-

poral differences and thus improve the efficiency to replace the manual comparison of the

spatiotemporal differences by experts in water quality field.

In [HFK08], knowledge-based expert systems, such as rule-based reasoning and case-

based reasoning systems are incorporated to assist decision making. For instance, a rule-

based reasoning system is used to select appropriate data and a case-based reasoning system

uses knowledge gained through similar cases. Our SOMAwater prototype system can help

experts to choose the right datasets and to discover common patterns of similar cases auto-

matically and thus release experts from manual or semi-manual analysis.

In [GMFC02], spatial decision-making based on the Geographic Information System

(GIS) are used in the water management domain to manage the complex decision prob-
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lems emerging due to the increasing complexity of sustainable spatial development. Our

SOMAwater prototype system can distinguish where common or rare water events happen

while marking the event location on the river basin maps; this actually offers a potential

means to decision makers.

In [MGR05], information technologies, such as data availability and ease of use, provide

solutions for decision making systems. In this dissertation, our solutions for removing data

uncertainty and data heterogeneity as well as automatically discovering high level knowl-

edge from raw water data are more than just providing a user-friendly interface for decision

makers.

In [Liu04], the Geographic Information System (GIS) is used to display the spatially

and dynamically varied water data and an expert system is provided for decision making,

but only statistical analysis is provided. Also, in [Cha08], spatial or temporal patterns of

water quality trends of 118 sites in the Han River basin of South Korea are given; but only a

statistical analysis method is used without any new knowledge discovery. Our SOMAwater

prototype system can discover spatiotemporal common and rare patterns while grouping

similar data into clusters; this is more useful for decision making.



Chapter III

The MicPasts Method

“Originally there is no path in this world, but when there are many who have walked

upon it, then a path came into being.”

–Xun Lu (Hometown)

In this chapter, we provide a new Mining Common Patterns based on Spatial Temporal

Semantics (MicPasts) method. The MicPasts method is a general method that can discover

common patterns for any curves, including spatial curves (trajectories of moving objects) and

water quality data curves. Since many algorithms for mining common patterns are originally

provided for spatial curves, there are more tools (e.g. simulators) for spatial trajectories,

which can be used to validate the effectiveness of a new mining algorithm. Besides, spatial

curves are more complex than water quality data curves. We will show in Chapter VI that

the mining algorithm for spatial curves can be used for water quality data curves. Therefore,

in this chapter, we present the main idea of our MicPasts method for general curves and then

demonstrate its effectiveness by using spatial curves. A part of the content of this chapter

33
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has been published in [HZHD11].

As we mentioned in Chapter I, the continuous sensor stream data or historically accu-

mulated data for water quality are often recorded as a series of discrete points. However,

sensor readings or manual readings for the same physical situation cannot be repeated ex-

actly when we record them at different times or use different sensors since different sampling

errors exist. Even though already known algorithms exist, they are not accurate and efficient.

Therefore, the MicPasts method is vital to improve the accuracy and efficiency of the mining

process. To help the user understand the MicPasts method, we use moving object datasets in

this chapter to explain it and demonstrate its effectiveness.

The structure of this chapter is organized as follows. We present the overview of the

MicPasts method in Section 1 and model the basic problem in Section 2. Then a Mining

LCR patterns based on turning regions (LCRTurning) algorithm, an implemented version

of the MicPasts method for trajectories of moving objects, is provided in Section 3, while

the performance of the proposed algorithm is evaluated in Section 4. Finally, Section 5

summarizes this chapter.

III.1 Overview of The Mining Common Patterns based on

Spatiotemporal Semantics (MicPasts) Method

Continuous stream data are often recorded as a series of discrete points in a database from

which knowledge can be retrieved through queries. However, querying stream curves faces
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two challenges: the efficiency challenge due to a large number of useless points on stream

curves and the accuracy challenge due to the fact that sensor or manual readings for the same

physical situation cannot be repeated exactly when we record them at different times or use

different monitoring methods since different sampling errors exist. The MicPasts method

addresses the problem of mining Longest Common Curve (LCC) patterns efficiently and

accurately.

For spatial curves, an LCC pattern is the longest common route (LCR) pattern. Mining

LCR patterns is one of the fundamental issues in mining trajectories of moving objects.

LCR patterns are the longest LSPs (Long, Sharable Patterns) [GP09]. Thus, to retrieve LCR

patterns from spatial curves, the detailed challenges are: (1) the efficiency challenge: the

sampling interval can be very small to ensure the accuracy of trajectories but this approach

generates a large number of useless points on trajectories [JYZ+08] [GNPP07] [CMC05];

and (2) the accuracy challenge: as a trajectory of a moving object is generally represented by

a sequence of discrete locations sampled with an interval, the different trajectory instances

along the same route may be denoted by different sequences of points (location, timestamp)

[CMC05] [JYZ+08] [GKS04] [GKS07] [LDHK11]. To tackle the above two challenges,

we propose a novel mining algorithm for LCR patterns based on popular Turning regions

(LCRTurning) and explain its effectiveness using examples in Fig. III.1. We classify LCR

patterns into two classes: Polygon line based LCR (P-LCR) and Direct line based LCR (D-

LCR), as shown in Fig. III.1 (a) and (b), respectively. We observe that the turning points,
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where objects change their directions, are always critical and thus we abstract each trajectory

by using a sequence of turning points. In Fig. III.1 (a), two trajectories are simplified as

A1B1C1D1FH and A2B2C2D2EG, by using turning points. Then, we group all the turning

points on both simplified trajectories into different clusters based on their spatial proximity;

examples are cluster 1: {A1, A2}, cluster 2: {B1, B2}, cluster 3: {C1, C2} and cluster 4:

{D1, D2}. We define a popular turning region to be an area that encloses at least min sup

(minimal number of supports) points in a cluster and assume min sup = 2; examples include

regions A, B, C and D. Finally, we unify the two trajectories as two strings: ABCDFH

and ABCDEG. By the above three steps, the problem of mining LCR from trajectories is

mapped into the traditional problem of mining Longest Common Subsequences (LCS) from

strings. Obviously, the common string is ABCD in this example. Then we refine ABCD

by ABCDE and ABCDE is a P-LCS pattern in this case. Meanwhile, D-LCR patterns are

discovered by another method. For example, the moving object MO1 travels from A to B

in Fig. III.1 (b), where MO1 also passes the other four regions: E, C, D and F , but these

four points are not recorded in the trajectory of MO1. So, we retrieve common direct line

segments to find D-LCR patterns (e.g. EF in Fig. III.1 (b)). Therefore, the LCRTurning

algorithm simplifies trajectories by turning points to remove a large number of useless points

and then discovers popular turning regions to simplify trajectories further; these tackle the

efficiency challenge. Moreover, it tackles the accuracy challenge by unifying simplified

trajectories based on popular turning regions.
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(a) Polygon line based LCR pattern. . 

(b)Direct line based LCR pattern. 
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Figure III.1: Two classes of LCR patterns.
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Our LCRTurning algorithm is different from already existing algorithms and can retrieve

LCR efficiently and accurately and we explain this as follows. In [CMC05], the Douglas-

Peucker (DP) algorithm [DP73] is used to simplify the trajectories, which tackles the effi-

ciency challenge. We not only validate that the DP algorithm is effective in finding turning

points in a single trajectory, our proposed algorithm also considers the global popularity

of a turning region to simplify trajectories further. Moreover, we discover LCR patterns

mainly through clustering turning points other than mainly clustering direct line segments in

[CMC05]. In [JYZ+08], the CuTS (Convoy Discovery using Trajectory Simplification) al-

gorithm is provided, which firstly retrieves coarse candidate results based on DP-simplified

trajectories and then validates candidates by clustering locations at every timestamp. The

coarse searching screens a large volume of points to be checked further to increase efficiency,

but it did not evaluate the accuracy of CuTS since the correct patterns were unknown. In this

chapter, to evaluate both false positive rates and false negative rates of our LCRTurning

algorithm, we develop a benchmark method to denote a trajectory by using the intersec-

tions and every trajectory along the same route can be detected exactly by the sequences

of intersections. Note that our LCRTurning algorithm does not depend on any road net-

work information. In [GNPP07], the popular regions visited frequently by moving objects

are used to dynamically define regions of interests (RoIs) and then help discover trajectory

patterns. However, the popular regions cannot be discovered precisely because the large

number of meaningless locations may lead to finding false popular regions. Also, if we use
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intersections as RoIs and define a neighborhood of each intersection to help remove useless

non-intersection locations on sampled original trajectories to tackle the accuracy challenge,

it is time consuming to retrieve common patterns since there are a huge number of intersec-

tions; our experimental results validate this. The efficiency of our LCRTuring algorithm is

validated by an experimental study based on various sizes of moving objects datasets.

III.2 Problem Definition

We formally define basic terms below and then model the problem.

A model where points are sampled in a constant interval (e.g. 30 seconds once) is widely

used to sample trajectories due to its simpleness. We adopt this model and define a trajectory

as follows:

DEFINITION 2. A trajectory of moving object is a sequence of points S =< p1, ..., pu,

..., pk >, where pu = (xu, yu, tu), and tu (u = 0..k) is a timestamp for a snapshot, ∀0≤u<k,

tu < tu+1, tu+1 − tu = τ (τ is a constant), while (xu, yu) is a 2-D location.

DEFINITION 3. dlp(p,AB) is the minimal distance between a point, p, and any point on a

direct line segment, AB.

Then, we detect critical points from original points to simplify a trajectory. We take

inflexions (or turning points), defined as follows, as critical points.

DEFINITION 4. A turning point (or an inflexion) is a point, pi = (loci(xi, yi), ti), on a

trajectory S =< p1, ..., pu, ..., pk >, which satisfies one of the two conditions: (1) i=1 or k for



CHAPTER III. THE MICPASTS METHOD 40

the start or end points of the trajectory; (2) dlp(loci, locbloca) > λ (λ is a distance threshold),

where 2 ≤ b < i < a ≤ k − 1, and pb and pa are inflexions; any other point, pj (b < j < a),

a point on the original trajectory between pb and pa satisfies dlp(locj, locbloca) ≤ λ.

DEFINITION 5. A turning point simplified trajectory is a sequence of turning points

TP =< p1, ...pi, ...pw >, where pi = (xi, yi, ti) is the ith turning point.

DEFINITION 6. Interest region. Let a set of inflexion-based trajectories be Σ = {TP1,

... TPu, ... TPm} in a period of [T1, T2], where T1 and T2 are timestamps. Let A be a 2-D

region area with arbitrary shape, which encloses a set of points: F = {Q1, ..., Qi, ...Qc},

where Qi = (loci, ti) ∈ TP1 ∪ ...TPu... ∪ TPm and c = |F |.

• (1) A is a (Explicit) Popular turning region, if c ≥ min sup.

• (2) A is an Implicit popular turning region, if c < min sup but (c+ b) ≥ min sup,

where b is the number of direct line segments (on different trajectories) stabbing A.

Both explicit and implicit popular turning region are interest regions.

We also call Explicit/Implicit popular turning regions in Definition 6 as Explicit/Implicit

Semantic Places/Regions.

DEFINITION 7. Longest Common Route pattern (LCR pattern). Let a sequence of

interest regions be ζ =< r1, ..., ri, ..., rn > (n ≥ 2 and 2 ≤ i ≤ n), which is visited by a

set of moving objects, MOset = {MO1,MO2, ...,MOk}. ζ is a Longest Common Route

pattern, if the following criteria are satisfied:
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Figure III.2: An example of an LCR pattern with popular turning regions on a 2D plane.

• (1) k ≥ min sup;

• (2) k is the maximum value, no any other moving objects MOi /∈ MOset visit the

whole route: ζ;

• (3) ζ is the longest route visited by the whole set: MOset.

An example of popular turning regions for a LCR pattern is shown in Fig. III.2, given

min sup=3. Note that this LCR includes three route instances (pieces of trajectories) of

different moving objects. The points on the route instances are turning points, which project

within different popular turning regions on the 2D plane. We may give an ID to each popular

turning region.

DEFINITION 8. A Polygon line based LCR (P-LCR) pattern is an LCR pattern which

includes at least two popular turning regions.
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DEFINITION 9. A Direct line based LCR (D-LCR) pattern is an LCR pattern which in-

cludes at most one popular turning region and at least one implicit popular turning region.

DEFINITION 10. Given N sequences, an LCS is the longest subsequence with at least

min sup supports, 2 ≤ min sup ≤ N .

DEFINITION 11. dll is the minimal distance between any two points p and q, where p ∈

AB and q ∈ CD. , that is, dll=min (dpl(p, CD)), where p ∈ AB and dpl is defined in

Definition 3.

Definition 3 and Definition 11 are based on the similar definitions in [JYZ+08]. Then,

the problem of mining LCR patterns is modeled as follows. We first detect turning points

(Definition 4) by the DP algorithm and a single trajectory is denoted by a turning point sim-

plified trajectory (Definition 5). We then group all the turning points in a set of trajectories

into clusters and turning points in the same cluster are taken as in the same popular turn-

ing region (Definition 6). Thus, a trajectory can be abstracted using a sequence of popular

turning region IDs. Note that we only mark region IDs on the turning points but keep the

original locations in order to compute the distance between region IDs. Therefore, we can

discover P-LCR patterns (Definition 8) by mining LCS (Definition 10). Finally, we discover

implicit popular turning regions (Definition 6). Based on dlp (Definition 3), we compute dll

(Definition 11) of two direct line segments. Two direct line segments can be grouped into

the same cluster, if dll is in a bounded error and the angle between the two direct line seg-

ments is also in another bounded error. So, for each direct line segment cluster, we discover
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the implicit popular turning regions through analyzing the overlapping part of the direct line

segments. This is the process by which we retrieve D-LCR patterns (Definition 9). We prove

that P-LCR patterns and D-LCR patterns compose the whole set of LCR patterns (Definition

7) in Theorem 1.

THEOREM 1. Given a P-LCR pattern set SPLCR, a D-LCR pattern set SDLCR and an LCR

pattern set SLCR for the same input trajectories, then they satisfy: (1) SPLCR ∩SDLCR = Φ;

(2) SLCR = SPLCR ∪ SDLCR.

Proof. (1) We use a pair of interest region IDs, P , to denote a D-LCR pattern and a sequence

(no less than two) of interest region IDs , H , to denote a P-LCR pattern. P ∈ SDLCR and

H ∈ SPLCR. We firstly insert the implicit popular turning regions of P into H , and achieve

denoted by H ′, if P is included in a piece of segment of H and any of P ’s ID are not in H

yet. There are two cases:

Case 1: a D-LCR pattern is fully included in a P-LCR pattern, that is H ′ ⊇ P (this

means P is a subsequence of H ′), since a P-LCR pattern includes no less than two popular

turning region IDs and a D-LCR pattern includes at most one popular turning region IDs. If

H ′ 	= P , then P is not the longest common route and thus P is not an LCR; this also means

P /∈ SDLCR. Therefore, H ′ = P , a D-LCR pattern is a subsequence of a P-LCR pattern; in

this case, we neglect this D-LCR pattern.

Case 2: two lists of moving objects, MOSet1 and MOSet2 support H ′ and P , respec-

tively and a part of a D-LCR pattern is included in a P-LCR pattern, that is H ′ ∩ P ⊂ P
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or (P − H ′) ∩ H ′ = Φ. If MOSet1=MOSet2, then this produces a paradox: moving ob-

jects that support both H ′ and P not only changed direction but also went straight without

direction change. Therefore, MOSet1 	= MOSet2 and H ′ ∩ P = Φ. This proves Theorem

1(1).

(2) According to Definition 8 and 9, SPLCR ⊆ SLCR and SDLCR ⊆ SLCR. Thus, SPLCR∪

SDLCR ⊆ SLCR. Suppose, in addition to P-LCR patterns and D-LCR patterns, there is

another type of pattern, say an X pattern, which belongs to LCR pattern. Thus, SPLCR ∪

SDLCR∪SX = SLCR and SX ∩ (SPLCR∪SDLCR) = Φ. According to Definition 8, a P-LCR

pattern includes m popular turning regions, m ≥ 2. According to Definition 9, a D-LCR

pattern includes n popular turning regions, 0 ≤ n < 2. Suppose an X pattern includes k

popular turning regions. SX ∩ (SPLCR ∪SDLCR) = Φ, 0 ≤ k < 2 and (k < 0 or k ≥ 2), and

thus k < 0. This is not correct, since k ≥ 0. So, SX = φ. This proves Theorem 1 (2).

Without losing generality, a Longest Common Route (LCR) actually is a kind of spatial

Longest Common Curve (LCC) and we will formally define LCC, P-LCC and D-LCC in

Chapter VI. The flowchart of the MicPasts method is shown in Fig. III.3.

The MicPasts method includes four main steps:

• Step 1. Detect Turning Points by using the DP algorithm on a single curve.

• Step 2. Discover Semantic Places based on the DBSCAN clustering algorithm from

turning points of multiple curves.
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Figure III.3: Flowchart of MicPasts method.

• Step 3. Discover Implicit Semantic Places from turning points of multiple curves.

• Step 4. Discover Longest Common Curve Patterns.

III.3 The MicPasts Method

In this section, we present the details of the MicPasts Method.

III.3.1 Discovering Semantic Places

According to Definition 4, the DP algorithm [DP73] [Whi85] that is introduced in Chap-

ter II is suitable to detect turning points (or critical points) for trajectory simplification.

The real entity value that changes with time in the physical world would be recorded, for

example, by sensor readings. But different sensors (or the same sensor working at different

times) may generate different readings for the same real entity value due to random sam-
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pling errors and thus makes querying on sensor streams uncertain. Since random sampling

errors are generally bounded, we can group a set of critical points that actually are readings

for the same entity value into a cluster and use the expected value of the reading set as a

semantic place (e.g., given an ID) to denote the real entity value. The advantage of using the

expected value is twofold: first, it unifies uncertain sensor readings; second, it reduces the

error between the sensor reading and the real entity value.

Clustering is regarded as the segmentation of a heterogeneous population into a number

of more homogeneous subgroups and finding groups in a data set by some natural criterion

of similarity [HHZS07]. Thus, the clustering methods are useful to group turning points

for computing semantic places. The DBSCAN algorithm [EKSX96] is a popular clustering

algorithm since it can discover clusters with arbitrary shape, so we develop a Clustering

Turning Points (CTP) algorithm based on the DBSCAN algorithm to group turning points

into turning regions. Then trajectories are denoted by sequences of popular turning region

IDs.

We show in Fig. III.4 that using semantic places to summarize stream curves helps to

reduce data volume considerably.

III.3.2 Discovering the Implicit Semantic Places (DISP) Procedure

In this section, we present the DISP procedure. The main purpose of the DISP procedure

is to discover implicit semantic places and the algorithm is given in Fig. III.5. The DISP
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DP Original Semantic Region Center

Figure III.4: Example of reducing data volume: From original points, to turning points and
then to semantic place centers.
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Algorithm 1. Discovering Implicit Semantic Places. Given a set of 

direct line segments, DLSet, the procedure DISP (DLSet) detects all the 

implicit semantic places. 

Procedure DISP (DLSet)

1. Cluster_DLS DL_DBSCAN(DLSet, DL_angle, DL_eps, MinPts);

2. For each cluster i in Cluster_DLS  

CutSet DIP(Cluster_DLS(i)); /* Algorithm 2 */ 

3. Return CutSet;

Figure III.5: Discovering implicit semantic places algorithm.

procedure comprises two sub-algorithms: a DL DBSCAN algorithm (DL denotes Direct

Line segments) for clustering direct line segments based on the DBSCAN algorithm and a

Discovering Implicit Points (DIP) algorithm.

In the DL DBSCAN algorithm, there are two criteria to determine the similarity be-

tween two different direct line segments:

• Spatially close to each other;

• Similar direction.

We use an intuitive method to compute the distance between two direct line segments,

dll (Definition 11). First, we compute the distance between a point and a line segment, dlp

(Definition 3), as follows:
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dlp(A,CD) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a (α < 90o, β > 90o),

b (α > 90o, β < 90o),

h (α ≤ 90o, β < 90o)

0 (A ∈ CD)

a (α = β = 0, a < b)

b (α = β = 0, b < a)

. (III.3.1)

where h = 2
√
s(s− a)(s− b)(s− c)/c, α = ∠ACD, β = ∠ADC, a = |AC| ,b =

|AD|, c = |CD| and s = (a+ b+ c)/2. Then, dll can be computed as follows:

dll =

⎧⎨
⎩0 (Intersected)

min(dlp(A,CD),dlp(B,CD),dlp(C,AB),dlp(D,AB))(Other)

. (III.3.2)

We define the angle between two consecutive direct line segments as follows:

f(u, v) = arccos(
u • v

|u| ∗ |v|), f ∈ [0, π]. (III.3.3)

where π = 3.1415926, u and v are two vectors, and |u| and |v| denote the lengths of the

two vectors, respectively.

Given three consecutive points on a trajectory: A, B and C, according to Eq. III.3.3,

we can compute an angle ∠ABC = f(
−→
AB,

−−→
BC). There are two important parameters:

DL angle and DL eps in DL DBSCAN . DL angle is the threshold angle between two

consecutive direct line segments and DL eps is the threshold of distance between two direct

line segments.
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Algorithm 2. DIP Algorithm. Given a cluster of direct line segments, the procedure 

DIP (Cluster_DLS[i]) outputs implicit semantic places. 

Procedure DIP (Cluster_DLS[i])

1.  avAngle Average direction of Cluster_DLS[i];

2.  For each direct line segment j in Cluster_DLS[i]

2a.  RDLSCluster[j] Rotate(avAngle, Cluster_DLS[i][j]);  

2b.  CutSet RDLSCluster[j].x1’;

2c.  CutSet RDLSCluster[j].x2’;

3. Qsort(CutSet);

4.  Remove redundancy from CutSet;

5.  For each point j in CutSet

5a.  For each direct line segment k in Cluster_DLS[i]

   If ([CutSet[j],CutSet[j+1] [RDLSCluster[k].x1’, RDLSCluster[k].x2’])

CutSupport[j]+=Cluster_DLS[i][j].nSupport;

5b. If point j has no less than min_sup support  

ISPset point j; /* j is an implicit semantic place*/ 

6. Return ISPset;

Figure III.6: DIP algorithm.



CHAPTER III. THE MICPASTS METHOD 51

We then present the main idea of the DIP algorithm in Fig. III.6. Given n clusters

generated by DL DBSCAN that are denoted by Φ1 , Φ2, ..., Φn and Φ = {Φ1 ∪ Φ2 ∪

......Φn ∪ Φnoise}. First, the average direction, −→v , of each cluster of direct line segment

is computed, then we rotate the axes so that the X axis is parallel to −→v . Most related

work that handles a cluster of direct line segments is given in [LHW07] for achieving

representative trajectory. Different from them, we rotate a cluster of direct line segments

to help discover cuts (or implicit semantic places). Given a direct line segment cluster:

RDLSCluster = {AB,CD,FE}, where A(x1, y1), B(x2, y2), C(x3, y3), D(x4, y4),

E(x5, y5) and F (x6, y6) in X − Y coordinate, we can compute A′(x1′, y1′), B′(x2′, y2′),

C ′(x3′, y3′), D′(x4′, y4′), E ′(x5′, y5′) and F ′(x6′, y6′) in X ′ − Y ′ coordinate by Eq. III.3.4.

[
x,

y,

]
=

[
cosφ sinφ

− sinφ cosφ

]
×

[
x

y

]
. (III.3.4)

Thus, x6′ < x1′ < x3′ < x5′ < x4′ < x2′ as shown in Fig. III.7. For each cluster

of direct line segments as Fig. III.7 shows, we find all the cut points and sort them. The

sorted cuts are < x6′, x1′, x3′, x5′, x4′, x2′ >, so there are 5 cut sections: [x6′, x1′], [x1′, x3′],

[x3′, x5′], [x5′, x4′] and [x4′, x2′]. For each cut section [xi′, xj′] included in any line segments

in RDLSCluster, the number of supports are counted. Note that one direct line segment

may have more than one support. If a cut with supports no less than min sup, then the cut

is an implicit semantic place. For example, if min sup = 1, then all the cuts are implicit

semantic places.
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Figure III.7: Cut points in a cluster of direct line segments.

III.3.3 Discovering Longest Common Curve Patterns

Mining Longest Common Subsequences

We present an algorithm for mining LCS in Fig. III.8. First, a suffix tree is built with

a list of moving objects on the nodes of the suffix tree at line 1. After retrieving all com-

mon sequences by the procedure SuffixTree CS (see Figure II.5) at line 2, we remove

subsequences at line 3 by the procedure Remove SubSeq to only leave Longest Common

Sequences patterns.

Refining Coarse LCR Patterns Using DISP Procedure

Fig. III.1 (a) and (b) shows two typical cases of using the DISP procedure to retrieve im-

plicit semantic places and thus to refine the coarse LCR patterns or to retrieve LCR patterns
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Algorithm 3. Mining LCS. Given a set of sequences of semantic 

places: SPTR, the procedure LCS(SPTR) retrieves LCS.

Procedure LCS (SPTR)

1.  STr Build suffix tree for SPTR;

2.  SCS  SuffixTree_CS(STr);  

3.  SLCS Remove_SubSeq (SCS);

Figure III.8: Mining LCS algorithm.

that do not comprise LCS. We present the process of using the DISP procedure to complete

finding all the exact LCR patterns as follows.

• (1) We first retrieve the direct line segments that are connected to the two ends of an

LCS into two sets: EndLineSet1 and EndLineSet2. Then we use EndLineSet1 (or

EndLineSet2) as the input of the DISP procedure to achieve implicit semantic places

and choose the implicit semantic place with maximum distance to the end to extend

the LCS pattern to a full LCR pattern. Note that extensions may happen at both ends

of the LCS. Fig. III.9 shows an example of extending an LCS to a P-LCR.

• (2) Then, we remove the direct line segments that support the already retrieved LCR

patterns and put the rest of the direct line segments into a set: DirectLineSet. We use

DirectLineSet as the input of the DISP procedure to achieve implicit semantic places

and those two implicit semantic places with maximum distance is a new LCR pattern.

Fig. III.1 (b) shows an example for retrieving a D-LCR.
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B

C

D

K

Q1

Q2

Figure III.9: Example of extending an LCS: “BCD” to achieve a P-LCR.

We notice that the implicit semantic places cannot connect two LCS patterns into one

longer LCS pattern. For example, suppose we have retrieved two LCS patterns: ABCD

and FGH and we extend them to ABCDE and E ′FGH , where E and E ′ are two implicit

semantic places discovered by the DISP procedure, then E 	= E ′, supposing both ABCDE

and E ′FGH are supported by an object list {MO1,MO2,MO3}. If E = E ′, there are two

cases:

• (1)D, E and F are on a direct line since E is an implicit semantic place. But ABCDFGH

can be retrieved by an LCS and E is useless. Thus, E 	= E ′.

• (2)D, E and F are not on a direct line; that is, E is an inflexion. E should be detected

as a semantic place by the CTP algorithm. But E is an implicit semantic place. Thus,

E 	= E ′.
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III.4 Performance Evaluations

In our experiments, we used a Network-based Generator of Moving Objects [Bri02]

to generate various sizes of moving object datasets, where we chose an open road map of

Oldenburg (a city in Germany) as the network input in Fig. III.10. Each moving object has

a sensor to sample locations. A set of parameters are used to control the datasets of moving

objects, such as the number of moving objects, the number of classes of moving objects,

the maximum time (the number of timestamps), report probability (e.g. if a report is sent

every two timestamps, the probability is 50%) and maximum speed (the sum of the x- and

y-extension of the data space is divided by div for determining the maximum speed of the

objects). Note that there may be M = M1 + M2 moving objects at the beginning, where

M1 is for internal and M2 is for external objects, and m = m1 + m2 (for internal and

external objects respectively) new moving objects generated dynamically may be added into

the network. Also, the speed is limited on the edge, when the number of objects exceeds

the specified capacity [Bri03]. We set report probability of 100%, 10 classes of moving

objects at the beginning and 5 classes during the process, M1 = 1000, M2 = 10, m1 = 5,

m2 = 0 and the maximum speed is determined by div = 250. Then, we change the value of

maximum timestamps to produce various volumes of datasets as shown in Table III.1.

We introduce three metrics to evaluate the accuracy of retrieved pattern results. Firstly,

we define three concepts similar to the definitions in our work [HZSH10]: TP (True Positive)-

the true (or correct) pattern length retrieved; FP (False Positive)- the false (or wrong) pattern
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Figure III.10: Road network of Oldenburg city.

Table III.1: Moving Objects Datasets.

Parameter Test 1 Test 2 Test 3 Test 4 Test 5

Max. Timestamps 60 120 180 240 300 

Number of MOs 1,295 1,600 1,900 2,200 2,500

Number of Points 65,012 121,833 179,314 230,082 264,348

Data size (Mb) 3.2 6.2 9.2 11.7 13.8 

Total pattern length 

Benchmarks(Meter)
24470 54509 81502 103613 117839
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length retrieved; FN (False Negative)- the true (or correct) pattern length that is not retrieved.

Then, the three metrics are:

False Positive Rate =
FP

TP + FP
, (III.4.1)

False Negative Rate =
FN

TP + FN
, (III.4.2)

Total False Rate =
FP + FN

FP + TP + FN
, (III.4.3)

The total pattern length retrieved equals (TP + FP ) and the benchmark pattern length

equals (TP + FN ).

Several parameters of our algorithms are given in Table III.2. We set DL eps = eps and

MinPts = 2. We now briefly describe our experimental setup. Given the trajectories exactly

denoted by intersections provided by the simulator, we ran the MPLCR algorithm to retrieve

a set of longest common subsequences of intersections supported by at least min sup mov-

ing objects as benchmarks (shown in Table III.1), which were used to measure the accuracy

of our proposed methods. We studied three cases of proposed algorithms: DP2, DP5 and

DP10, where DPi denote using DP (λ = i) to abstract trajectories as input for the LCR-

Turning algorithm (e.g. CTP, MPLCR and MDLCR). First, we studied the optimal eps and

optimal DL angle by setting min sup = 2. Then, we observed the scalability based on

datasets with various data sizes shown in Table III.1. We adopted the same optimal values of
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Table III.2: Parameters of LCRTurning Algorithm.

Parameter Explanation Parameter Explanation 

Angle_eps Threshold angle in CL_DBSCAN Pre-defined distance threshold in DP

DL_Angle Threshold angle in DL_DBSCAN eps Threshold distance in DBSCAN

DL_eps Threshold of lld  in DL_DBSCAN min_sup Threshold number of supports for a pattern. 

MinPts In three clustering algorithms: DBSCAN, CL_DBSCAN and DL_DBSCAN.

eps and DL angle in the scalability test. We use false positive rate and false negative rate to

measure the accuracy of patterns. Given the benchmark total pattern length, L′, and the total

retrieved pattern length, L = Lc+Le, where Lc is the correct retrieved pattern length and Le

is the error retrieved pattern length. The false positive rate is Le/L
′ and false negative rate is

(L′ − Lc)/L
′. All experiments were conducted on an IBM Laptop with Microsoft Windows

XP, Genuine Intel 1.83GHz CPU and 512MB main memory. We implemented the proposed

algorithms mainly by using C++, and the suffix tree based retrieving LCS algorithm was

implemented by Java. We changed all the lengths into meters by timing 30.92 meters in

the following experiment results; this was the simplest way to achieve rough length repre-

sented by meters between locations (longitude, latitude). The parameter values depend on

the applications.

III.4.1 Optimal eps and DL angle

Given L Angle = 5o, L eps = eps and min sup=2, we ran our proposed algorithms

on dataset Test 1. The time spent on retrieving LCR patterns is plotted in Fig. III.11 (a);

it shows that the greater the value of eps, the less time spent on running algorithms DP2,



CHAPTER III. THE MICPASTS METHOD 59

DP5 and DP10. DP10 performed more efficiently than both DP2 and DP5, and DP5 was

more efficient than DP2. We analyze the accuracy of patterns shown in Fig. III.11(b)(c).

The whole trend of the three algorithms in Fig. III.11 (b) is that the lowest values of the

false positive rate are all at eps=15. Also, DP2 performs better than DP10 and DP5, with

the lowest false negative rate (4.7%) at eps=30 as shown in Fig. III.11 (c). Overall, the best

effectiveness and false negative rate is achieved at eps=30, while the best false positive rate

is achieved at eps=15. Since all three algorithms performed more efficiently at eps=30 than

at eps=15, eps=30 was the optimal one with the best effectiveness.

Given L eps = eps = 30, we studied the optimal DL angle. We plotted time changing

with angles in Fig. III.11(d), where DP2 consumes more time than DP5 and DP10. DP2

achieves the best false negative rate, near to zero at L Angle = 35 in Fig. III.11 (f). Fig.

III.11 (f) also shows that the greater the angle, the lower the value of the false negative rate,

while Fig. III.11 (e) shows that the value of the false positive rate is increased with the

angle. Overall, DP2 is more accurate but less efficient. The best false positive rate and the

best time efficiency are achieved at L Angle = 5 and the best false negative rate is achieved

at L Angle = 35.

III.4.2 Efficiency and Accuracy

Based on the results in Section 4.1, we set eps=30 and L Angle = 35o to evaluate the

efficiency and accuracy of our algorithms in various dataset sizes.
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Figure III.11: Analysis of optimal parameters.
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Our proposed algorithms are more efficient than both Benchmark and Imprecise Inter-

sections methods as shown in Fig. III.12 (b). In the Imprecise Intersections method, where

the intersections provided by the simulator are not repeated exactly, we use the CTP algo-

rithm with eps = 0.1 to group imprecise intersections into region clusters and mine LCS

of region IDs. The Imprecise Intersections method is not efficient, since a huge number of

imprecise intersections make the CTP algorithm time-consuming. The time costs of DP2,

DP5 and DP10 are all nearly linear, while the time cost of Benchmark and Imprecise Inter-

sections climbed quickly with increased data size, up to around four times and twelve times

respectively, spent on DP10. The Imprecise Intersections method, which has the worst time

efficiency, also validates that using turning regions to retrieve LCR patterns is efficient. Fig.

III.12 (a) shows in DP2, the time spent on CTP is increased around 14 times from 24s at

data size of 3.2Mb to 356s at 13.7Mb, and the time spent on MPLCR is increased around 18

times from 10s to 186s, while the time spent on MDLCR is unchanged at around 24s. The

time spent on CTP is around twice that spent on MPLCR.

The accuracy of our proposed algorithms is shown in Fig. III.13(a)(b). When data size is

increased, the false positive rate stays in the range of 30%-35%, and the false negative rate is

lower, always less than 15%. Fig. III.13(c) shows that the correct lengths of D-LCR patterns

are nearly the same in various data sizes, which also only constitute a very small part of

the total lengths. The correct length of P-LCR patterns is the major part: from 86% at data

size=3.2Mb to 98% at data size =13.7Mb. Although we evaluate our proposed algorithm by
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Figure III.12: Time Efficiency.
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using simulated traffic moving objects, the LCRTurning algorithm can be used widely on

any trajectories of moving objects that may not follow a road network, since turning regions

are discovered automatically from trajectories.

III.5 Summary

In this chapter, we have proposed a novel MicPasts method to retrieve longest common

curves. Particularly, we implement an LCRTurning algorithm based on the MicPasts method

to retrieve longest common route patterns from moving object trajectories. The LCRTurn-

ing algorithm has wide applications for any trajectories that may not follow a road network.

Experimental results validated that the LCRTurning algorithm is more efficient than the algo-

rithms that retrieve LCR patterns by using intersections while achieving reasonable accuracy.



Chapter IV

The CIRCE Method

“In this world nothing can be said to be certain, except death and taxes.”

–Benjamin Franklin (The Works of Benjamin Franklin)

We have mentioned in the previous chapter that continuous sensor or manually-captured

data streams are often recorded as a series of discrete points in a database from which knowl-

edge can be retrieved through queries. In this chapter, we focus on tackling the uncertainty

problems in mining data streams. Two classes of uncertainties inevitably happen in data

streams: DS Uncertainty (Uncertainty due to Discrete Sampling) and SE Uncertainty (Un-

certainty due to Sampling Error) that we present as follows. Even if every discrete point is

correct (actually, we can use many methods to ensure this, including our work in [HZHC11]

to improve the data quality in the gathering process), the discrete data streams is uncertain,

that is, it is not exactly like the continuous stream since some critical points are missing due

to the limited capabilities of the sensing equipment and the database server. Also, sensor

readings for the same situation cannot be repeated exactly when we record them at different

65
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times or use different sensors since different sampling errors exist. Both DS and SE Un-

certainties reduce the efficiency of querying common patterns. Already known algorithms

generally only resolve Uncertainty due to Sampling Errors (SE Uncertainty).

Recall that in Chapter III, we have proposed a MicPasts method to resolve the Uncer-

tainty due to Sampling Errors problem. The MicPasts method summarizes the original data

streams by using inflexions, then groups close inflexions into the same cluster, and thus

changes the uncertain data streams into exact sequences of cluster IDs. Particularly, to help

query common patterns directly on exact ID sequences, a DISP procedure that is developed

in the MicPasts method (see Chapter III) is used to deduce the implicit common regions.

In this chapter, we extend MicPasts method to develop a novel Correcting Imprecise

Readings and Compressing Excrescent Points (CIRCE) Method to tackle both Uncertainty

due to Discrete Sampling (DS Uncertainty) and Uncertainty due to Sampling Error (SE Un-

certainty). To resolve the Uncertainty due to Discrete Sampling, a novel CIRCE core algo-

rithm is developed in the CIRCE method to correct the missing points while compressing

the original data streams. The experimental study based on various sizes of stream datasets

validates that the CIRCE core algorithm is more efficient and more accurate than a counter-

part DP algorithm to compress data streams by using ID sequences. Also, the application for

querying Longest Common Route patterns validates the effectiveness of the CIRCE method.

The structure of this chapter is organized as follows. Firstly, we present an overview

of the CIRCE method in Section 1. Then, the CIRCE method is provided in Section 2. In
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Section 3, we introduce querying common patterns based on the CIRCE method. The per-

formance of the proposed method is evaluated in Section 4 and finally, Section 5 summarizes

this chapter.

IV.1 Overview of the Correcting Imprecise Readings and

Compressing Excrescent Points (CIRCE) Method

With the advances in satellite, RFID, GPS, wireless and video technologies, stream

database systems that manage a time series of sensor readings are becoming increasingly

more available. Continuous data streams are often recorded as a series of discrete points in

databases [GBEe00], where useful knowledge can be achieved through queries. Querying

stream databases has a wide range of applications, such as monitoring locations of mov-

ing objects (flocks [GKS07], vehicles [HLT10] [DH09] [JYZ+08] [GNPP07], cloud cluster

[LHY04], fleets [LHLG08]), surveillance of environmental physical parameters (e.g. tem-

perature [CKP07] etc.) and automatic controlling of robots through vision, sound and radio

sensors. However, the data streams are inevitably uncertain and data mining over uncertain

data streams has become a hot research topic [ZGZ09]. Different from simple queries (e.g.,

average (sum) query and nearest neighbor query) from uncertain data streams in [CKP07]

and clustering uncertain data streams [ZGZ09], we are more interested in querying common

patterns from multiple streams. Typical examples of common patterns are convoy [JYZ+08],

spatiotemporal sequential pattern [CMC05], trajectory pattern [GNPP07] and longest com-



CHAPTER IV. THE CIRCE METHOD 68

mon route (LCR) pattern [HZHD11], explained as follows. Convoy is defined in [JYZ+08]

as a group of objects which travel together. Spatiotemporal sequential pattern [CMC05] is

a Sequential PAttern (SPA) of route segments, where each route segment is visited by at

least min sup (minimal number of supports) objects. Trajectory pattern [GNPP07] is a set

of objects traveling a common route with similar sequences of durations, where a route is

denoted by a sequence of popular regions. Longest common route (LCR) pattern [HZHD11]

is a route visited by the same list of more than min sup moving objects, where the route is

denoted by a sequence of turning points. They all require data mining over uncertain data

streams.

However, the following two types of uncertainties in data streams impact the efficiency

and accuracy of queries for the above mentioned common patterns.

• Uncertainty due to Discrete Sampling (DS Uncertainty). Even if every discrete point

is correct, the discrete points on the time series is uncertain, that is, it is not exactly

like the continuous stream since some critical points are missing due to the limited

capabilities of the sensing equipment and the database server [MdB04]. On one hand,

a large amount of redundant information exists and thus storage resources are wasted,

which also reduces the efficiency of the user query. On the other hand, missing critical

points makes the user query inaccurate.

• Uncertainty due to Sampling Error (SE Uncertainty). Sensor readings of the same
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situation cannot be repeated exactly when we record them at different times or use

different sensors. The trajectories of different moving objects [CMC05] are different,

even if the objects move along the same route. For example, two moving objects

passed the same region at time t0, however, the GPS sensors record two different

location values: r1(loc(-37.6934, 144.7931), t0) and r2(loc(-37.6935, 144.7931), t0).

One solution to overcome Uncertainty due to Sampling Errors is to tolerate a bounded

error [JYZ+08]. That is, the Euclid distance between r1 and r2 (in above example) is 0.0001,

and we suppose that it is smaller than a threshold, ε = 0.0002, so, r1 and r2 are taken as being

in the same place. But to determine whether two trajectories are the same, it needs to check

if every location pairs are in the bounded error and thus, queries of common patterns directly

on original data streams are not efficient. To improve query efficiency, a scheme is developed

to split original trajectories through inflexions (or turning points) and then to use a direct line

segment between two consecutive inflexions to summarize the original trajectory piece and

finally to determine that two line segments are the same if they are in a bounded rectangle

[CMC05]. Another solution to overcome uncertainty is to discover semantic locations (e.g.

popular regions such as intersections) and summarize original trajectories by using semantic

location IDs [HZHD11][GNPP07].

However, a limitation of these methods is that it cannot tackle the Uncertainty due to

Discrete Sampling problem. That is, a common pattern may not be found since it is inevitable

that some inflexions are missing and thus queries are not accurate. An example is given in
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Fig. IV.1 (a).

In this chapter, we propose a novel Correcting Imprecise Readings and Compressing

Excrescent points (CIRCE) method to resolve both Uncertainty due to Discrete Sampling

(DS Uncertainty) and Uncertainty due to Sampling Error (SE Uncertainty) problems, which

aims to achieve efficient and accurate queries of common patterns from data streams. We

now present the main idea of the CIRCE method. In the CIRCE method, we first develop

a CIRCE core algorithm which comprises two main procedures: the Detecting Inflexions

and Computing Missing Inflexions (DICMI) procedure and the Angle-DP procedure. The

DICMI procedure detects local inflexions including missing inflexions based on four con-

secutive points on original data streams. The Angle-DP procedure compresses an inflexion

sequence generated by the DICMI procedure further into a critical point sequence. Then, the

same as in the MicPasts method, we group inflexions into clusters, take the inflexions in the

same cluster as the same region to overcome Uncertainty due to Sampling Errors, and finally

use sequences of exact cluster IDs to compress data streams. Thus, common patterns can be

queried using query methods developed for exact data, such as querying Longest Common

Subsequences (LCS). Moreover, we take advantage of the efficient Discovering Implicit Se-

mantic Places (DISP) procedure in the MicPasts method to ensure the accuracy of querying

common patterns directly from cluster ID sequences.

The CIRCE core algorithm is one of the major contributions of this chapter, since it cor-

rects the missing points as shown in Fig. IV.1 (b). This is different from already known
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(a) A common pattern is not detected by already  

known methods due to missing inflexions.  

(b) The missing inflexions are deduced by the CIRCE method  

and thus the common route pattern is detected correctly. 

Region B

Region CRegion A 

Region CRegion A 

Region B
Correct missing 

inflexions

locations on trajectory 1 

locations on trajectory 2 

trajectory 1 

trajectory 2 

trajectory 1 

trajectory 2 

Figure IV.1: Effectiveness of the CIRCE method.
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algorithms for data stream compressing that only can compress redundant data but cannot

correct missing data. Fig. IV.1 (b) shows that correcting missing inflexions helps improve

query accuracy. Meanwhile, Fig. IV.1 (a) shows that a common pattern is not detected by

already known methods due to missing inflexions. The most related work, the Douglas-

Peucker (DP) [DP73] algorithm compresses the trajectories to reduce the enormous volume

of data [MdB04] [Tha89] [CMC05], but it only removes uncritical points and it cannot cor-

rect missing points. Moreover, experimental study of this chapter demonstrates that the

CIRCE core algorithm-based query of common patterns is more accurate and efficient than

the DP-based query. Interestingly, by correcting the missing inflexions, the CIRCE method

uses less inflexions to compress a data stream, and thus achieves higher efficiency to group

less inflexions into clusters. Compared to queries on original data streams, the other con-

tributions of our CIRCE method are: (1) improving query quality; and (2) realizing highly

efficient queries. In the experimental study, we take querying longest common route (LCR)

patterns from various sizes of stream datasets as an example to validate the accuracy and

efficiency of our CIRCE method. Note that the concepts of inflexions and turning points can

be used interchangeably in this chapter.

IV.2 The CIRCE Method

In this section, we first present the framework of the CIRCE method and then introduce

the CIRCE core algorithm.
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IV.2.1 Framework of the CIRCE Method

The main purpose of the CIRCE method is to remove the uncertainty of the data streams

in the following aspects: first, the missing critical points are deduced and thus the error be-

tween sensor readings and the real entity values is reduced; second, different sensor readings

for the same entity value are grouped into the same cluster and are unified by a semantic

place ID to reduce the query uncertainty; third, a large number of noncritical points (e.g. ex-

crescent points) are also uncertain due to random sample errors, so removing them makes the

data streams more clear and thus improves the query efficiency and accuracy. The CIRCE

method comprises the following main steps:

• Step 1: A CIRCE core algorithm is developed to first detect inflexions including miss-

ing inflexions and then to compress excrescent points by replacing the original data

streams using a direct line segment between two consecutive inflexions in a bounded

error.

• Step 2: Discovering the semantic places algorithm is to remove uncertainty of data

streams by using semantic places, which cluster inflexions based on DBSCAN (Density-

Based Spatial Clustering of Applications with Noise) [EKSX96] in order to discover

semantic places and then reduce the uncertainty by unifying the data streams based on

semantic places.

• Step 3: A Discovering Implicit Semantic Places (DISP) procedure is proposed to sup-
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port efficient and accurate queries of common patterns from CIRCE-compressed data

streams.

In Step 1, the missing inflexions are corrected and the excrescent points are compressed on

a single data streams. In Step 2, semantic places are discovered from the whole set of data

streams and a group of inflexions that actually denote the same semantic place are unified and

thus the data volume is compressed further and the uncertainty of data streams is reduced

further. In Step 3, when users query on the data streams denoted by semantic places, the

DISP procedure helps to recover implicit semantic places and to make query results more

accurate.

In the CIRCE method, we use the same terms as in the MicPasts method in Chapter III

but redefine turning points (or inflexions) as follows:

DEFINITION 12. Turning point (or inflexion) is a critical point, Pi = (ei, ti) and ei is

n-dimension point (n = 1, 2, ...), on a trajectory, S =< p1, ..., pu, ..., pk > , that satisfies

one of the two conditions: (1) i = 1, k. (2) The angle between −−→papi and −−→pipb satisfies

Angle(−−→papi,−−→pipb)> ε (2 ≤ b < i < a ≤ k − 1), where ε is an angle threshold, pb and pa are

inflexions; any other non-inflexion point, pj (b < j < a) satisfies Angle(−−→papj ,−−→pjpb)≤ ε.

Also, the discovering semantic places algorithm in step 2 and the DISP procedure in step

3 are the same as those in the MicPasts method.
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IV.2.2 CIRCE Core Algorithm

The CIRCE core algorithm aims to find inflexions in single data streams, which com-

prises two steps:

• Step 1: Use a Detecting Inflexions and Computing Missing Inflexions (DICMI) algo-

rithm for detecting local inflexions including missing inflexions. Then, compress an

original data stream by a sequence of inflexions.

• Step 2: Provide a novel Angle-DP algorithm for finding critical points from inflexions.

Then, compress an inflexion sequence generated by the DICMI algorithm further into

a critical point sequence.

The CIRCE core algorithm compresses a single data stream by the above two steps. In Step

1, excrescent points that are not inflexions are removed and missing inflexions are deduced.

In Step 2, some inflexions may be removed since local inflexions may not be real inflexions

from a global view. We present the two sub-algorithms: the DICMI algorithm and the Angle-

DP algorithm as follows.

Detecting Inflexions and Computing Missing Inflexions (DICMI) Algorithm

We develop a novel DICMI algorithm to detect local inflexions and at the same time cor-

rect imprecise readings by computing missing inflexions based on local consecutive points.

We first discuss how many consecutive points are suitable to deduce missing inflexions.

To determine whether a point, p1, is a local turning point or not, we need at least one of p1’s
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direct precursors, p0, and one of p1’s direct successors, p2. If the angle between −−→p0p1 and

−−→p1p2 is greater than an angle threshold, then p1 is a local turning point. If p1 is missing, we

need at least two of p1’s direct precursors: p0 and p0′ , and two of p1’s direct successors: p2

and p2′ to determine whether p1 is a local turning point by testing whether the angle between

−−→p0p0′ and −−→p2p2′ is greater than an angle threshold. If we consider that there are more than two

consecutive precursors (or successors) of p1, which may not be strictly on a direct line, we

can choose any two points on each side of the missing inflexion (e.g., p1) to approximate the

direct line within bounded deviation error; however we have not achieved better experimental

results than four consecutive points based DICMI. Therefore, we choose four (consecutive

local points) to deduce a missing inflexion. Note that Angle-DP algorithm (in Fig. IV.5)

will check whether the local inflexions are also global inflexions and thus resist a local sharp

direction change as shown in Fig. IV.6 (c).

The simplest case is that only one turning point is missing. But, even if multiple (> 1)

consecutive turning points are missing, we can always deduce one missing turning point.

This is reasonable and we explain it as follows. The main reason for missing turning points

is that the objects move too fast and maybe pass one or multiple turning points in a constant

sampling interval, since these consecutive turning points are too close to each other. When

this happens, we only deduce one missing turning point to replace multiple missing turning

points. This actually would not impact the common patterns we retrieved. As shown in Fig.

IV.2, P1 and P
′
1 are two consecutive missing inflexions, and V is a virtual inflexion deduced
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V

P’0

P0

P2

P’2

P1
P’1

Deduced missing inflexion 

Sampled points 

Real missing inflexion 

A semantic place 

Figure IV.2: Multiple turning points are missing.

based on four consecutive points: P0, P ′
0, P2 and P

′
2. The area in the large circle is coarsely

used to represent a semantic place, where close consecutive inflexions are grouped into the

same cluster; detailed method to discover semantic place see Section III.3.1. If multiple

consecutive turning points are missing, we use one virtual missing turning point (e.g. V ) to

represent them all (e.g. P1 and P
′
1). So, deducing one missing inflexion is enough to help

find a semantic place.

The DICMI algorithm is given in Algorithm 1. Let any four successive points on a

trajectory be: A (p1), B (p2), C (p3) and D (p4). In Fig. IV.4 (a), M (p) is a missing inflexion

between
−→
AB and

−−→
CD. α = ∠MBC and β = ∠MCB are computed at line 2b in Algorithm

1. Suppose angle error tolerance is ε, the inflexions are detected at line 2c, line 2d and line

2f. In the other cases (at line 2e) as shown in Fig. IV.4 (b) and (c), no missing inflexion

exists.

We define the angle between two consecutive direct line segments as follows:
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Algorithm 1. Detecting Inflexions and Computing 

Missing Inflexions (DICMI). Given a sequence of points on a 

sensor stream: P =< iP , 1iP ,…,
jP >, where kP ( ),( kkk yxe ,

kt ) ( ],[ jik ), the procedure DICMI( P ,  , i, j) detects the 

inflexions on P , while deducing the missing inflexions. 

Procedure DICMI ( P ,  , i, j)

1. iP  and jP  are inflexions; 

2. For k= i To j-3 Step 2 

 2a. A= kP ; B= 1kP ; C= 2kP ; D= 3kP ;

2b. ),( BCABf ; ),( CDBCf ;

2c. If (  and ) B is an inflexion; 

2d. Else If (  and ) C is an inflexion; 

2e. Else If (  and ) no inflexion; 

2f. Else If (  and )

 2 If (( )< )

       M=ComputeMissingInflexion ( , , B, C); 

/* M( P ( e (x, y), t)) is a missing inflexion */ 

      If (M!=Null)

       M is an inflexion; 

      Else

       B and C are inflexions; 

 2 Else

       B and C are inflexions; 

Figure IV.3: Detecting inflexions and computing missing inflexions.
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(a)   (b)  (case 1)  (c)  (case 2). 

A( 1p )

B( 2p )

C( 3p )

D( 4p )

M( p )

A( 1p )

B( 2p )

C( 3p )

D( 4p )

A( 1p )

B( 2p )

C( 3p )

D( 4p )

Figure IV.4: Relationship among four successive points on a data stream.

f(u, v) = arccos(
u • v

|u| ∗ |v|), f ∈ [0, π]. (IV.2.1)

where π = 3.1415926, u and v are two vectors, and |u| and |v| denote the lengths of the

two vectors, respectively.

The main idea of the computeMissingInflexion procedure for computing M(p(e, t)) at

line 2fI in Algorithm 1 is given as follows. In BMC, we have

|MB|
sinβ

=
|MC|
sinα

=
|BC|

sin(π − α− β)
. (IV.2.2)

Let a = |BC|
sin(π−α−β)

, e = (x, y) can be computed by 2-tuple functions as follows:

⎧⎪⎨
⎪⎩

(x− x2)
2 + (y − y2)

2 = a2sin2β

(x− x3)
2 + (y − y3)

2 = a2sin2α

(IV.2.3)

If there is no solution to Eq. IV.2.3, then M(p) does not exist. If there are two solutions,

the one which satisfies
−→
AB and

−−→
BM is on the same straight line as the result. The length

between two successive point is computed by Euclidean distance. The average speed −→v can
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Algorithm 2. Angle-DP. Given a sequence of 

locations P =< iP , 1iP ,…, jP >,the procedure Angle-DP( P , ,

i, j) simplifies the subsequence from iP to jP .

Procedure Angle-DP( P , , i, j)

1. Find the vertex kP , which satisfies 

jki PPP  is the maximum angle; 

2. If > then  /* Split at kP  recursively. */ 

3a.   Angle-DP( P , , i, k);

3b.   Angle-DP( P , , k, j);

Else

4. Output( ji PP );/*Use ji PP  in the approximation*/

Figure IV.5: Angle-DP algorithm.

be computed by

−→v =
|MB|+ |MC|

t3 − t2
. (IV.2.4)

Thus, t = t2 + |MB|/−→v .

The DICMI algorithm is an online algorithm since it detects existing inflexions and com-

putes missing inflexions based on four consecutive points on a single data stream.

Angle-DP Algorithm

We provide a novel Angle-DP algorithm that can be fully controlled by the angle as

shown in Fig. IV.5 (Algorithm 2). We assume that the trajectories are simple without self-

intersections as in DP.
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We have presented the most related work, the DP algorithm [DP73], in Chapter II. The

difference between Angle-DP and DP is that the split points in Angle-DP make the simplified

trajectories in a bounded direction-based deviation error but split points in DP simplify tra-

jectories in a bounded distance-based deviation error. We explain the concepts of direction-

based deviation error and distance-based deviation error as follows. In Fig. IV.6 (a), if we use

AB to simplify trajectory ACB, then θ = π−∠ACB is a direction-based deviation error

brought by simplification. Then dlp(C,AB) in Fig. IV.6 (a) is a distance-based deviation

error brought by simplification, if we use AB to simplify trajectory ACB.

There are three advantages of Angle-DP. First, the output of the DICMI algorithm is the

input of the Angle-DP algorithm. Because DICMI only detects inflexions locally, it cannot

resist local sharp direction change as shown in Fig. IV.6 (c); Angle-DP can resolve this

problem. Also, one limitation of using the DP algorithm to detect turning points is that

some points may be falsely taken as turning points; an example is shown in Fig. IV.6 (a),

where the direction-based deviation error is very small but the distance-based deviation error

is great. Angle-DP can overcome this limitation of DP. Thirdly, another limitation of the

DP algorithm is that it cannot choose the inflexions with smallest direction-based deviation

error; an example is shown in Fig. IV.6 (b); we prove that Angle-DP can achieve inflexions

with the smallest direction-based deviation error in Theorem 2.

THEOREM 2. Angle−DP can achieve inflexions more accurately than DP , by choosing

the turning points with the smallest direction-based deviation errors.
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Proof. In Fig. IV.6(b), given a piece of trajectory around an inflexion: P =< P1, P2, ...,

P7 >, let θ1 = π − ∠P1P4P5 and θ2 = π − ∠P7P5P4, where π = 3.1415926. Let l1 =

dlp(P4, P1P7) and l2 = dlp(P5, P1P7). Suppose θ2 < θ1. We determine which one: P4 or

P5 is better to be a turning point. There are two cases: (1) if l2 < l1, then DP chooses

the same inflexion as Angle-DP does, since θ2 < θ1; (2) if l2 ≥ l1, then DP chooses an

inflexion different from the one Angle-DP chooses. So, we only need to prove that Angle-

DP chooses inflexions with the smallest direction-based deviation errors in the second case.

In the second case, we focus on discussion of l2 ≥ 
 ≥ l1 (
 is the distance threshold) since

other conditions can be discussed in the same way.

If we choose P5 as a turning point, then we use P1P5 to simplify P1P2P3P4P5 and the

direction-based deviation error is θ1. If we choose P4 as a turning point, then we use P7P4 to

simplify P7P6P5P4 and the direction-based deviation error is θ2. Let ε be the angle threshold

and there are three cases:

(1) If θ2 < ε < θ1 , then Angle-DP detects P4 as a turning point with the smallest

direction-based deviation error: θ2. DP detects P5 as a turning point if l2 ≥ 
 ≥ l1 and the

direction-based deviation error is θ1 (not the smallest).

(2) If θ2 < θ1 < ε, then Angle-DP detects no turning point. DP detects P5 as a turning

point if l2 ≥ 
 ≥ l1 and thus θ1 is the direction-based deviation error; but θ1 is not the

smallest direction-based deviation error. Also, this may be a false inflexion as shown in Fig.

IV.6 (a).
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(3) If ε < θ2 < θ1, then P4 and P5 are both turning points, and thus the direction-based

deviation error equals zero (e.g. the smallest). DP also detects P5 as a turning point if

l2 ≥ 
 ≥ l1, but it cannot identify P4 as a turning point; thus the direction-based deviation

error equals θ2, which is not the smallest, compared to zero.

According to Theorem 2, Angle-DP is better than DP for detecting turning points. The

simplification of trajectories with the smallest direction-based deviation error is very impor-

tant, since it can help cluster direct line segments precisely.

IV.3 Querying Common Patterns from Uncertain Data Streams

Based on the CIRCE Method

In this section, we first introduce our CIRCE package based on the CIRCE method and

then we present querying Longest Common Route patterns from data streams as a typical

example to explain how to use the CIRCE package to query common patterns.

IV.3.1 The CIRCE Package

Based on the CIRCE method, we provide a CIRCE Package to help query common pat-

terns. Fig. IV.7 shows that the CIRCE package changes a query on uncertain data streams

into a query on exact semantic data streams. First, the uncertainty of the original data streams

is removed in two steps: (1) the CIRCE core algorithm corrects the missing points and re-
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(a) 

(c)

(b)

V

l

A

B

C

P1
P7

P2

P5

l1

l2

P3

P4

P6

Figure IV.6: Three advantages of Angle-DP to discover turning points: (a) to avoid false
turning point; (b) to choose inflexions with the smallest direction-based deviation error; (c)
to resist local sharp direction change.
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Original Uncertain 

Sensor Streams  

1. CIRCE Core Algorithm.  

(Detecting infixions, correcting missing 

inflexions and removing excrescent points) 

2. CTP Algorithm.  

(Removing Uncertainty due to Sampling 

Error by Semantic Places) 

3. DISP Procedure. 

(Discovering implicit semantic 

places to support accurate 

direct querying on exact 

sequences of semantic places) 

Exact Sequences of 

Semantic Places 

The CIRCE  

Package

Figure IV.7: Querying common patterns from uncertain data streams supported by the
CIRCE package.

moves excrescent points; (2) the discovering semantic places algorithm (or CTP algorithm

in MicPasts) removes Uncertainty due to Sampling Errors by semantic places. So, the uncer-

tain original data streams are preprocessed into exact data streams denoted by sequences of

semantic places. Querying coarse common patterns can be achieved directly from exact se-

mantic data streams, since many already known methods can satisfy this kind of exact query.

But for a more accurate query, the DISP procedure in the CIRCE package is ready to refine

the coarse query results.
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IV.3.2 Application: Query of Longest Common Route Patterns

A typical application of our CIRCE method is to query LCR patterns directly from data

streams. According to the definition of LCR patterns in Chapter III, an LCR pattern is a

sequence of interest regions (e.g. semantic places and implicit semantic places). We explain

semantic places and implicit semantic places in Fig. III.1. Given two trajectories in Fig.

III.1 (a) and three trajectories in Fig. III.1 (b), where all the trajectories are simplified by the

CIRCE core algorithm and let min sup = 2, then A, B, C and D are semantic places and E

is an implicit semantic place in Fig. III.1 (a) and E, C, D and F are implicit semantic places

in Fig. III.1 (b). We give a tag with semantic place value to each inflexion on a single data

stream to help the query. Thus, an exact semantic data stream is a sequence of inflexions

with a semantic tag. Note that implicit semantic places are not tagged. Therefore, executing

the query of LCR patterns from the exact semantic data streams includes two steps: mining

Longest Common Subsequences for retrieving coarse LCR patterns and refining the coarse

result by the DISP procedure of the CIRCE package. For example, in Fig. III.1 (a), we

can retrieve the longest common subsequence: ABCD as a coarse LCR pattern and then

refine this pattern by using the DISP procedure to achieve the exact LCR pattern: ABCDE.

Another example is in Fig. III.1 (b), where no LCS is discovered but we find EF is a LCR

pattern denoted by a sequence of implicit semantic places by using the DISP procedure.
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IV.4 Performance Evaluations

In our experiments, we use the application of querying LCR patterns to validate the

efficiency and accuracy of our CIRCE method.

IV.4.1 Experimental Setup

We use the same moving objects datasets and accuracy metrics in Table III 1 in Chapter

III. Most of the parameters in the CIRCE method are the same as those in the LCRTurning

algorithm in Table III 2. ε is specially for Angle-DP algorithm in the CIRCE method.

We now briefly describe the experimental setup for evaluating the CIRCE method. We

also use the LCRTurning algorithm (mining algorithm for LCR patterns based on turning

regions) that was in our work in [HZHD11] as a counterpart for our CIRCE method. The

only difference between the CIRCE method and the LCRTurning algorithm is that we use

the CIRCE core algorithm to replace the DP algorithm to compress each single data stream.

The major aim of this experiment is to validate that the effectiveness of our CIRCE core

algorithm is better than that of the DP algorithm to compress the data stream, thereby val-

idating that the CIRCE method outperforms the LCRTurning algorithm. Before comparing

the CIRCE method and the LCRTurning algorithm, we first adjust and find the optimal pa-

rameters of them. Several parameters for both methods are given in Table IV.1. Generally,

we set DL eps = eps = a (e.g. a × 30.92 meters) and MinPts = 2. We change all

the lengths into meters by timing 30.92 meters in the following experiment results; this is a
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Table IV.1: Benchmarks based on information of intersections (Unit: meter).

min_sup Total

pattern length

2 24470 

3 18687 

4 14060 

5 10705 

min_sup=2 Total

pattern length 

Test1 24470 

Test2 54509 

Test3 81502 

Test4 103613 

simple way to achieve rough length represented by meters between locations (longitude, lat-

itude). We have found in [HZHD11] that the greater the DL Angle, the worse the total false

rate. So we set a suitable lower value: DL Angle = 5 for all of the experiments. We studied

DPλ (λ=0.1, 0.5, 1.0) and CIRCEε (ε=0.05, 0.1, 0.2) to find the optimal λ and optimal

ε that can achieve the best accuracy, while we also search for the optimal eps. Then, we

conduct two scalable tests by changing min sup and datasize respectively to validate that

the best CIRCE method (with optimal eps and ε) performs better than the best LCRTurning

algorithm (with optimal eps and λ) in terms of accuracy and efficiency. Note that in the

accuracy evaluation process, the correct length of an LCR pattern retrieved (e.g., TP ) is the

length of the LCR, where all the supporters (moving objects) must visit the same sequences

of intersections.

All experiments were also conducted on an IBM Laptop with Microsoft Windows XP,
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Genuine Intel 1.83GHz CPU and 512MB main memory. We implemented the proposed

algorithms mainly by using C++, and the algorithm based on the suffix tree to retrieve LCS

was implemented by Java.

IV.4.2 Optimal Parameters

In this subsection, we choose optimal eps and optimal ε (or optimal λ) in the CIRCE

method (or the LCRTurning algorithm) based on three accuracy metrics: false positive rate,

false negative rate and total false rate, shown in Fig. IV.8, Fig. IV.9 and Fig. IV.10, respec-

tively.

First, we analyze the results of LCRTurning based on DP to determine the optimal eps.

We can see from Fig. IV.8 (a) that the optimal (lowest) false positive rate is achieved at

eps = 10, but the optimal false negative rate is achieved at eps = 30 as shown in Fig. IV.9

(a). eps = 10 is not the optimal value, since LCRTurning achieves the worst false negative

rate at eps = 10. Actually, LCRTurning performs best in terms of total false rate at eps = 30

as shown in Fig. IV.10 (a), thus, eps = 30 is the optimal value for LCRTurning. Then,

we also determine the optimal eps based on the results of the CIRCE method. Fig. IV.8

(b) shows that the optimal false positive rate is achieved at eps = 20, but the optimal false

negative rate is achieved at eps = 40 as shown in Fig. IV.9 (b). eps = 40 is not the optimal

value, where the CIRCE method achieves worst false positive rate. eps = 20 is also not the

optimal value, where the second worst false negative rate is achieved. It is interesting to find
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Figure IV.8: False positive rate.

that the CIRCE method also achieves the optimal total false rate at eps = 30. Therefore,

eps = 30 is the optimal value for both methods.

In the same way, we determine optimal λ and ε based on the lowest total false rates.

Fig. IV.10 (a) and (b) show that DP0.5 and CIRCE0.1 achieve the optimal total false rates

at eps = 30. It is reasonable that both optimal λ and ε are not at maximum or minimum

values. The smaller the λ (or the ε) is (e.g. removing less points on data streams), the longer

total correct pattern length is retrieved. That is, the lowest false negative rate is achieved at

the lowest λ (or ε), as shown in Fig. IV.9. It is also very interesting that both DP0.5 and

CIRCE0.1 perform better than other cases in terms of false positive rate as shown in Fig.

IV.8.

We also analyze the time efficiency of DP0.5 and CIRCE0.1 in Fig. IV.11 (a) and (b).

The trend is obvious that the lower the λ (or the ε), the more efficient is the LCRTurning
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Figure IV.9: False negative rate.
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Figure IV.10: Total false rate.
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Figure IV.11: Time analysis.

algorithm (or the CIRCE method). Also, the greater is the eps, the more efficient are both

methods. Since the execution time difference brought by λ (or the ε) is very small, both

methods have a reasonable execution time at eps = 30.

IV.4.3 Accuracy

In this subsection, we compare the CIRCE method (e.g., CIRCE0.1) with the LCR-

Turning algorithm (e.g., DP0.5) in two scalable tests (e.g. changing with min sup and data

sizes) and set eps = 30. In the min sup scalable test, we use the dataset of test1. In the

datasize scalable test, we let min sup = 2.

Fig. IV.12 (a) shows that CIRCE performs better than LCRTurning in terms of false

positive rates in all cases (e.g. min sup=2, 3, 4 and 5). At the same time, CIRCE achieves

nearly the same false negative rate as LCRTurning in all cases of min sup. That is, the
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CIRCE method retrieves less wrong pattern length than the LCRTurning algorithm while

returning the same correct pattern length. This is very important for users who generally do

not want to look for correct results among a huge volume of rubbish. Besides, the CIRCE

method excels the LCRTurning algorithm in terms of total false rates. Overall trends of

all the three graphs in IV.12 show that the greater the min sup, the greater are the three

accuracy metrics. This means the query results become less accurate when the min sup

increases. In other words, we retrieve more wrong patterns and miss more real patterns

when the min sup is greater. This is inevitable in querying common patterns from uncertain

data streams. Suppose the average correct ratio of a single data stream compressed by the

CIRCE core algorithm (or DP algorithm) is µ = 90%. Let min sup = 2, the correct ratio of

the retrieved common pattern is (1−µ)min sup = 81%. But let min sup = 5, the correct ratio

decreases to (1 − µ)min sup = 59%. Therefore, the high total false rate does not mean that

the correct ratio of the data streams compressed by CIRCE core algorithm (or DP algorithm)

is low. Thus, we can compute the average correct ratio, η, achieved by CIRCE core (or DP)

by using η = min sup
√
(1− ς), where ς is a total false rate. If we take the numbers in Fig.

IV.12 (c) as an example to compute the correct ratio, we may find that the correct ratio is not

changed obviously with min sup.

The overall trends in Fig. IV.13 are that when the data size is larger, the three accuracy

metrics are slightly greater. But the changes are very small. Thus, our CIRCE method

outperforms the LCRTurning algorithm in terms of false positive rates and total false rates
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Figure IV.12: Accuracy changed with min sup.
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and performs nearly the same as the LCRTurning algorithm in false negative rates.

In summary, the two scalable tests validate that our CIRCE method achieves more accu-

rate query results than the LCRTurning algorithm dose.

IV.4.4 Time Efficiency

In this subsection, we analyze the execution time of the two methods for different sizes

of datasets. We set min sup = 2.

Fig. IV.14 (b) shows that the overall trend is that the CIRCE method executes noticeably

faster than the LCRTurning algorithm. Moreover, the greater the data size, the better the

CIRCE method performs than the LCRTurning algorithm. There are three procedures that

consume the majority of time: CTP, DISP and MLCS (Ming LCS). We use DP to denote

LCRTurning. The time distribution is shown in Fig. IV.14 (a). We can see from Fig. IV.14

(a) that CTP occupies the major part of time in the two methods, especially, when the data

size is greater. For example, the time spent by DP CTP is 96% of the total time spent by

the LCRTurning algorithm and the time spent by CirceCTP is 86% of the total time spent by

the CIRCE method at data size of 11.7MBytes. The reason that the CIRCE method is more

efficient than the LCRTurning algorithm is that the CIRCE core algorithm can compress

the original data streams by using less inflexions but more accurate inflexions than the DP

algorithm. The advantage of the CIRCE core algorithm in correcting missing inflexions

helps to reduce the number of inflexions needed to compress the streams.
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Figure IV.13: Accuracy changed with data sizes.
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(a) Time Distribution. 
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IV.5 Summary

This chapter has extended the MicPasts method in Chapter III and proposed a novel

CIRCE method to enhance the efficiency and accuracy of quering common patterns from

uncertain data streams. The major contribution of the CIRCE method is the ability to tackle

Uncertainty due to Sampling Error (SE Uncertainty) and Uncertainty due to Discrete Sam-

pling (DS Uncertainty). Uncertainty due to Sampling Errors problem has been tackled by

the MicPasts method. To resolve the Uncertainty due to Discrete Sampling problem, a novel

CIRCE core algorithm was developed in the CIRCE method to correct the missing points

while compressing the original data streams. The experimental study based on various sizes

of data stream datasets validates that the CIRCE core algorithm is more efficient and more ac-

curate than a counterpart DP algorithm to compress the data streams by using ID sequences.

To resolve the Uncertainty due to Sampling Errors problem, the CIRCE method adopts the

same technique in MicPasts method to summariz the original data streams by using inflex-

ions, then groups close inflexions into the same cluster, and thus changes the uncertain data

streams into exact sequences of cluster IDs. Particularly, to help query common patterns di-

rectly on exact ID sequences, the CIRCE method takes advantage of the DISP procedure in

MicPasts to deduce the implicit common regions. Also, the application for querying Longest

Common Route patterns validates the effectiveness of the CIRCE method.



Chapter V

The EOAFREE Method

“The road to excess leads to the palace of wisdom.”

–William Blake (The Proverbs of Hell)

This chapter proposes a novel Exceptional Object Analysis for Finding Rare Environmental

Events (EOAFREE) method. A typical application is to find water pollution events from wa-

ter quality datasets. The major contribution of our EOAFREE method is that it proposes

a general Improved Exceptional Object Analysis based on the Noises (IEOAN) algorithm

to cluster objects, and then distinguishes those data objects (or data points) that cannot be

grouped into any clusters as exceptional objects. Interestingly, opposite to the already known

Principal Component Analysis (PCA) that ranks principal components, our IEOAN ranks

exceptional objects. Another contribution is that it provides an approach to preprocess het-

erogeneous real world data through exploring domain knowledge. That is, it defines changes

instead of the water quality data value itself as the input of IEOAN algorithm to remove the

geographical differences between any two sites and the temporal differences between any

99
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two years. The effectiveness of our EOAFREE method is demonstrated by a real world ap-

plication - that is, to detect water pollution events from the water quality datasets of 93 sites

distributed in 10 river basins in Victoria, Australia between 1975 and 2010.

The structure of this chapter is organized as follows. In Section 1, we present an overview

of the EOAFREE method. In Section 2, we present a framework of the EOAFREE method.

Then, we preprocess water quality data in Section 3 and Section 4. In Section 5, we provide

novel algorithms for exceptional object analysis. In Section 6, we utilize a real world water

quality dataset to validate our method. In Section 7, we summarize this chapter.

V.1 Overview of the Exceptional Object Analysis for Find-

ing Rare Environmental Events (EOAFREE) Method

Rare event detection is very vital, since the earth’s environment can be extremely violent

and early warnings can impend natural disasters within the affected regions. For example,

Hurricane Ike devastated the city of Galveston, Texas. Due to the influence of early detection

and warning systems, the majority of the populace was safely evacuated prior to hurricane

landfall [MSN]. In the same way, it is also necessary to continuously monitor river water by

water utilities to detect purity and potential contaminants. The earth’s environment changes

with time, as a result of the forces of nature. It is the activity of humans (e.g., urbanization)

that negatively impacts the environment and causes unusual environmental events for river

water. Excluding the human factor, the environmental river water will eventually and pre-
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dictably change, this change being generally global. We assume that the earth’s environment

will be resilient for hundreds and thousands of years, thus normal environmental events that

exhibit common and predictable trends should be the norm. However, exceptional events

brought about by humans should be the minority; otherwise, the environment will soon be

totally destroyed.

Our goal in this chapter is to find rare environmental events (e.g. water pollution events)

from water quality datasets; that is, to find when and where rare environmental events hap-

pen. We define rare environmental events as follows:

DEFINITION 13. A Rare Environmental Event is an event that is unpredictable, based on

the natural environment system and is different from common environmental changes.

As they are unpredictable, rare environmental events should be detected as early as pos-

sible to minimize their negative impacts. In this chapter, we take water pollution detection

from water bodies (e.g. rivers and lakes) as a typical example for detecting rare environmen-

tal events, since water bodies are one of the most important environment components.

To detect water pollution events, we need to collect data from the water. Thanks to mod-

ern advanced tools and sophisticated protocols [ATL+05], [U.S11], [TNGA09], we are able

to closely monitor water bodies and collect water data. Water quality data is typical water

data, which includes water quality-related physical parameters, such as PH, temperature, dis-

solved oxygen, total phosphate, nitrates, turbidity, total dissolved solids etc. We use water

data to denote water quality data throughout this chapter. However, analyzing water data to
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detect when and where the water pollution events happen faces heterogeneity problems.

The first type of heterogeneity problem relates to heterogeneous raw water data with var-

ious data qualities, that is, historical water data are provided by different organizations and

collected by different equipment over a long historical period where the collecting technolo-

gies vary. For example, the collected water parameters are different from site to site and

there is a different sampling frequency for different sites (or different months).

The second type of heterogeneity problem is that it is difficult to detect rare patterns from

data with different water quality value ranges by using statistical analysis. For example, we

cannot find rare events (e.g., water pollution) directly by using a specific threshold (e.g.,

“poor” water quality of the river). Instead, spatiotemporal variations of the water data are

more useful. Also, we can ‘learn’ some abstract rules from the historical data but cannot

directly achieve the normal values as the threshold for exception analysis. This means statis-

tical analysis is invalid in detecting exceptional objects from the water quality data, which we

explain as follows. Rare environmental events are generally unusual, relative to the normal

patterns of behavior of an environmental body (e.g. a river) [KJBB09].

The simplest and the most straightforward approach to detect rare events is to explore

exception analysis which identifies whether an attribute or measure value belongs to or does

not belong to a specific list of values. One limitation of this approach is that it requires

knowledge of the normal value or what is anomalous [MSN]. Although we can “learn” the

normal values from historical data and then detect events that indicate departures from the
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norm [KJBB09], the learnt knowledge may be out-of-date, since the environmental situation

is changing with time. For example, it is unreasonable to use the average value of several

sampling locations to denote the water quality of a whole river. Another limitation of the

straightforward approach is that it is only valid when rare environmental events can directly

lead to an abnormal value. But it is invalid when rare environmental events produce a normal

value, since the whole environmental system (e.g. a river water system) can bear a pollution

event for an extended period due to the following factors.

• First, daily water flow varies greatly in different seasons or in different rivers. A pol-

lution event may not instantly change the water quality of the whole river that has a

large amount of water flow in season, since the pollution may be flushed away; al-

though a pollution event may persist for a long time and reduce the river water quality

eventually.

• Second, different rivers have a various range of water quality from “excellent” to “very

poor”; where water quality is higher, the pollution event detection is harder. For exam-

ple, if the water quality of a river is “excellent”, it may take a long time for a pollution

event to change the water quality into a “poor” state. This means we are not aware

of the harm of this pollution event from the beginning, for example, when a factory

drains waste water into a nearby river for an extended period of time.

Meanwhile, already known data mining algorithms cannot directly apply to detect and
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rank exceptional objects. There are two classes of rare event detection methods: application-

specific and general rare event detections. However, already known application-specific rare

event detection methods may not be suitable for detecting rare events from water quality

data. Besides, clustering algorithms, such as DBSCAN [EKSX96], ROCK [GRS00], Shared

Nearest Neighbor (SNN) clustering [ESK03] and Findout algorithm [YQLZ02], which do

not force every data instance to belong to a cluster can be used to generate some data in-

stances that could not be grouped into any cluster as rare events. But the disadvantage of

such techniques is that they are not optimized to find rare patterns, since the main aim of the

underlying clustering algorithm is to find clusters [CBK09].

In this chapter, we provide a novel EOAFREE method to satisfy our goal. Our EOAFREE

method has the following advantages:

• It provides an approach to explore domain knowledge to pre-process real world data

to remove the heterogeneous data differences brought by different organizations and

different collected technologies. That is, we use a unified water quality index to denote

water quality instead of multiple different water quality parameters.

• It defines water quality changes instead of water quality value itself as the input of the

data mining algorithm in order to overcome the limitation of statistical analysis, since

both the geographical differences between any two sites and the temporal differences

between any two years are removed.
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Site Date 

Water parameters 

nitrates 
total 

phosphate
temperature turbidity PH 

dissolved

oxygen 

total dissolved 

solids

Avoca Site 1 June 2009 

Avoca Site 1 Oct. 2003 

Campaspe Site 2 Dec. 2007 

Table V.1: Example of heterogeneous water data.

• It proposes two Exceptional Object Analysis (EOA) algorithms to cluster objects based

on the objects’ water quality changes, and then distinguishes those data objects (or

data points) that cannot be grouped into any clusters as exceptional objects. These al-

gorithms are general for rare (or exceptional) object detection. Interestingly, opposite

to the already known Principal Component Analysis (PCA) that ranks principal com-

ponents, our EOA algorithms rank exceptional objects. To the best of our knowledge,

no related work exists to rank exceptional objects.

Also, the effectiveness of our EOAFREE method is demonstrated by a real world appli-

cation - that is, to detect water pollution events from the water quality datasets of 93 sites

distributed in 10 river basins in Victoria, Australia between 1975 and 2010 [Dat].

V.2 Framework of the EOAFREE Method

In this section, we present the framework of our proposed EOAFREE method.

The EOAFREE method comprises three steps:

• Step 1: Preprocessing raw data by using domain knowledge. We unify heteroge-

neous water quality datasets by summarizing multiple water quality parameters (e.g.
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PH, temperature, dissolved oxygen, total phosphate, nitrates, turbidity, total dissolved

solids etc.) into one Water Quality Index (WQI), a standard index for evaluating water

quality, segment time series of water data by years and interpose missing data.

• Step 2: Defining water quality forward changes. We define water quality forward

change of each water data object (or point), which describes the difference between

the WQI value of the current month and the WQI value of the next consecutive month

and the difference between the WQI value of the current month and the WQI value of

the same month in the next consecutive year.

• Step 3: Exceptional Object Analysis. We cluster water data objects based on the

differences of the objects’ forward changes and distinguish those objects (or points)

that cannot be grouped into any clusters as exceptional objects.

V.3 Preprocess Raw Water Data

In this section, we preprocess raw water data, including to unify heterogeneous data

based on water semantics, that is, water quality index, and partition time series data.

V.3.1 Unify Heterogeneous Water Data Using Water Quality Index

The heterogeneous water data are produced due to historical factors, such as different

collecting organizations, different types of the collecting equipment and different levels of

collecting technologies and thus the data quality varies. We give an example of heteroge-
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Factor Weight 

Dissolved oxygen 0.17 

Fecal coliform 0.16 

PH 0.11 

Biochemical oxygen demand 0.11 

Temperature change 0.10 

Total phosphate 0.10 

Nitrates 0.10 

Turbidity 0.08 

Total dissolved solids 0.07 

Table V.2: Water Quality Factors and Weights.

neous water quality data in Table V.1. In Table V.1, the water data at Avoca Site 1 include

7 water parameters in June 2009 but 6 water parameters in Oct. 2003, missing data of total

dissolved solids. Also, there are only 5 water parameters in the dataset of Campaspe Site 2

in Dec. 2007.

Thus, to unify heterogeneous water data, we adopt the method in [NSF] to calculate the

water quality index. When test results from fewer than all nine measurements are available,

the relative weights are preserved for each factor and the total is scaled so that the range

remains 0 to 100. Note that, to ensure the data quality, we compute the WQI only when the

number of water parameters is no less than 4; otherwise we set the WQI as “unknown” in

this chapter. The water quality factors and weights are listed in Table V.2.

The 100-point index can be divided into several ranges, corresponding to the general

descriptive terms shown in Table V.3.

An example of computing WQI based on multiple water parameters is shown in Table
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Range Quality 

90-100 Excellent 

70-90 Good 

50-70 Medium 

25-50 Poor 

0-25 Very Poor 

Table V.3: Water Quality Index Legend.

Site Date Water Parameters Value WQI 

East

Gippsland

Cann river 

(west branch) 

@Weeragua 

(Site No. 

221201)

June-

2009

Dissolved oxygen 10.4

69 (M) 

PH 7

Nitrates 0.003

Temperature change 7.8

Total dissolved solids 51

Total phosphate 0.007

Turbidity 1.1

Table V.4: Example of computing WQI.

V.4. There are 7 water parameters at Weeragua of East Gippsland Cann river (west branch)

(Site 221201) sampled in June 2009. We first compute WQI of each original parameter value

in Table V.4. Then we combine them into one WQI value through

WQI =
n∑

i=1

(
Wi × fi(parai)∑

Wi

) (V.3.1)

where n is the number of parameters, Wi is the weight of parameter parai that can be

achieved in Table V.2, fi is the function (curve) of the ith parameter according to the method

in [NSF]. In this case, the WQI is 69, denoting ‘Medium’ quality.
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Site

Number 
Year 

Seasonal Partition (Months from Jan. to Dec.) 

1 2 3 4 5 6 7 8 9 10 11 12 

Avoca 

408202 

1994 55 55 55 58 57 57 60 58 57 56 55 53 

1995 52 76 49 49 - 58 46 57 55 56 46 57 

1996 77 53 55 55 58 59 58 56 53 54 55 54 

1997 53 54 54 48 58 58 48 50 54 61 61 61 

Note: “-” denotes unknown/missing. 

Table V.5: Example of seasonal partitions.

V.3.2 Seasonally Partitioned Time Series of Water Data

Since the environment changes with the seasons, we partition the time series of water

data by “year”.

DEFINITION 14. A Seasonal Partition of Water Data is a sequence of 12 WQIs for the 12

months from January to December in a year at a site.

For example, a river basin, Avoca, comprises 4 sites and there is a sequence of 24 sea-

sonal partitions for each site from 1976 to 2009. An example of season partitions at site

408202 in the Avoca river basin is shown in Table V.5.

V.4 Water Quality Changes and Exceptional Objects

In this section, we define water quality changes based on the result of preprocessed data

on seasonal partitions of water data without data missing. We have discussed in Section I that

the values of WQIs at different sites are obviously different: some sites show “Excellent”

water quality at most times while other sites generally have “Poor” water quality. The same
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problem happens to the water data over two different periods of time. Thus, it is difficult to

compare the water data at different sites and at different times. To overcome this difficulty

and to detect an exceptional event at the time it occurs, we define two types of water quality

changes. The first is to describe the instant “forward” change trend of the WQI value in a

given month as follows:

DEFINITION 15. Water Quality Change is a 2D value: (H-change, V-change), where H-

change is the difference between the WQI value of the current month and the WQI value

of the next consecutive month and V-change is the difference between the WQI value of the

current month and the WQI value of the same month in the next consecutive year.

The advantage of water quality changes is that the geographical differences between any

two sites and the temporal differences between any two years have been removed and thus

we can discover common (or frequent) patterns among different data sequences at different

sites for different years. Moreover, water quality changes are useful to help detect events,

since water pollution events happen at the time when water quality is being changed.

Based on the concept of water quality change, we define exceptional objects as follows:

DEFINITION 16. Similarity. Given two water quality changes: p(H1, V1) and q(H2, V2),

the difference between two water quality changes, , is given by

 = α|H1 −H2|+ β|V1 − V2|(α + β = 1), (V.4.1)

where α is the weight of H-change and β is the weight of V-change. Generally, we set
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α = β = 0.5. If  ≤ λ, where λ is a given threshold, then the two objects have similarity

(are similar).

DEFINITION 17. Strict Exceptional Objects. Given an object set R, a strict exceptional

object x(x ∈ R) is not similar to any other objects in R.

DEFINITION 18. Relaxed Exceptional Objects. Given an object set R and a relaxed ex-

ceptional object set Re, a relaxed exceptional object x(x ∈ R) is not similar to any other

objects in R−Re.

We give some properties of exceptional objects as follows:

LEMMA 1. Given two strict exceptional objects: A and B, A is not similar to B.

LEMMA 2. If object A is a strict exceptional object, object B is similar to object C and

object B is not similar to A, then object A is not similar to object C.

Water Pollution Events often happen at the points where those exceptional objects whose

H-change and V-change are both negative are detected. Taking advantage of noises that can-

not be grouped into any clusters in the Density-Based Spatial Clustering of Applications

with Noise (DBSCAN) algorithm [EKSX96], [HHD08a], [HHD08b], we develop an inno-

vative Exceptional Object Analysis (EOA) algorithm to rank the exceptional objects. Not

only the cited DBSCAN [EKSX96], but also other algorithms efficient in finding notices,

such as ROCK [GRS00], Shared Nearest Neighbor (SNN) clustering [ESK03] and Findout

algorithm [YQLZ02], can be applied in our EOA algorithm.
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V.5 Exceptional Object Analysis

In this section, we first introduce a novel EOAN algorithm in Section 5.1, then present

an improved EOAN algorithm in Section 5.2 and discuss the extendibility of our proposed

algorithms in Section 5.3.

V.5.1 Exceptional Objects Analysis based on Noises (EOAN)

We develop a Detecting Exceptional Objects based on Noises (DEON) algorithm shown

in Algorithm 1 by modifying an implemented version of DBSCAN clustering in our work

[HHD08a].

Algorithm 1. Detecting Exceptional Objects based on Noises 

Function DEON (R, eps, MinPts, eR )

Input: An object set, R, with object data format: (siteNumber, date, H-change, 

V-change) eps, MinPts

Output: An exceptional object set, eR .

Step 1. Build neighbour lists of each object. The neighbours of object q

(siteNumber, date, H-change, V-change) must satisfy the criteria that the 

locations of neighbours are in the neighbourhood circle area with (H-change, V-

change) as the centre and eps as the radius. Initialize all objects in R as 

"unused".

Step 2. Build a set of core objects, I. The object which has greater than 

MinPts neighbors is marked as a core object. 

Step 3. For each unused core object p, put p and p's neighbors into cluster 

class_ id and mark the object p as "used". Any core object r in cluster class_ id

will recruit r's neighbors into cluster class_ id and the used objects are marked. 

Step 4. Exceptional objects (or noises) are those objects that are not used. 

Figure V.1: Detecting Exceptional Objects based on Noises.

Generally, we set MinPts = 1. The algorithm complexity of DBSCAN is O(n ∗ lnn)
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[EKSX96] and thus the algorithm complexity of DEON is O(n ∗ lnn), where n = |R|.

DEON is a basic algorithm to detect exceptional objects. We can recursively run DEON

by setting different values of eps to produce different classes of exceptional objects and the

Exceptional Objects Analysis based on Noises (EOAN) algorithm is shown in Algorithm 2.

Algorithm 2 shows that DEON repeats several times and thus the algorithm complexity

of EOAN is O(m ∗ n ∗ lnn), where n = |W | and m is the number of repeat times. An

example result of EOAN is shown in Fig. V.3. The original dataset, W , are all of the objects

shown in Fig. V.3. We set rank 1 to original data and the rank 1 dataset is R1 = R. Then we

discover Rank 2- Rank 7 datasets, denoted by R2 - R7, respectively. We observe that some

objects are given more than one rank and we generally use the highest rank to distinguish

the data. Finally, we group objects into different clusters by their highest rank. Thus, every

object belongs to a cluster. In Fig. V.3, we may be interested in Rank 3 - Rank 7 objects

(marked in the figure) and thus neglect the remaining Rank 1 and Rank 2 objects. Note that

two objects may be at the same location in Fig. V.3.

V.5.2 Improved EOAN Algorithm

We improve Algorithm 2 and develop a new Improved EOAN algorithm in Algorithm

3. In the improved EOAN algorithm, although the DEON function is also repeated several

times, the number of objects that are input to the DEON function is reduced greatly using

Line 5 in Algorithm 3. Initially, all the objects in W are set to rank 1. After the first running
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Algorithm 2. Exceptional Objects Analysis based on Noises (EOAN) 

Function EOAN (W)

Input: An object set, W, object x W having a data format: 

(siteNumber, date,  

H-change, V-change, rank), where x.rank=1

Output: Each object x W is set a rank. 

1 R=W; eps=2; MinPts=1; Rank=2;

2 While (| eR |>0)// | eR | is the number of objects in the set eR .

3 DEON (R, eps, MinPts, eR );

4 For each object x eR

x.rank=Rank;

End For 

5 eps=eps+ ; //  is the step length.

6 Rank++;

7 End While

Figure V.2: Exceptional Objects Analysis based on Noises (EOAN).

of DEON, R = W and thus each object x ∈ Re is set to rank 2. Then, in the second running

of DEON, it only clusters the noise set Re produced by the first running of DEON. If a noise,

p, produced in the second time is not similar to any objects with rank 1, then p is set to rank

3. The procedure keeps running in this way until |R| = 0 when no noise is produced any

more. The improved EOAN algorithm achieves the same result as that produced by EOAN

but is far more efficient than the EOAN algorithm.

V.5.3 Discussions

The above algorithms are general to find relaxed exceptional objects (see Definition 18).

According to Definition 17, we can use Step 1 in Algorithm 1 to find strict exceptional
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Figure V.3: An Example Result of EOAN.
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Algorithm 3. Improved EOAN (IEOAN) 

Function IEOAN (W)

Input: An object set, W, object x W having a data format: 

(siteNumber, date, H-change, V-change, rank). Set initial rank=1.

Output: Each object x W is set a rank. 

1 R=W; eps=2; MinPts=1; Rank=2;

2 While (|R|>0)// |R| is the number of objects in the set R.

3 DEON (R, eps, MinPts, eR );

4

For each object x eR

4.1 If (R=W) then 

4.2 x.rank=Rank;

4.3 Else If not ( p x.neighborlist and p.cluster_id 0)

then

4.4 x.rank=Rank;

End For

5 R= eR

6 eps=eps+ ; //  is the step length.

7 Rank++;

8 End While

Figure V.4: Improved EOAN (IEOAN).
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objects that have no neighbors. We assume that the common trend is unknown. This means

the objects on the border may not be exceptional objects, though it is true in some cases.

V.6 Experimental Study

V.6.1 Application Background and Motivations

Work in [Dat] and [oSE04] reports the environment quality of the river basins in Victoria,

Australia based on hydrology, physical form, streamside zone, water quality and aquatic life.

Our work is different, since we focus on analyzing water quality and detecting water quality

related events, such as pollution events, from water quality data. In addition, we consider

more detailed water quality data, for example, at least 3 sites in each river basin, to learn

about water quality-related common patterns for detecting pollution events at the beginning

of when they happen.

We selected water quality datasets of 93 sites at 10 river basins: Avoca, Barwon, Broken,

Bunyip, Campaspe, Corangamite, East Gippsland, Glenelg, Goulburn and KiewWa in Vic-

toria, Australia between 1976 and 2010 from the Victorian water resources data warehouse

[Dat]. The distribution of the 10 river basins is shown in Fig. V.5. There are a total of 7 water

quality parameters: PH, temperature, dissolved oxygen, total phosphate, nitrates, turbidity

and total dissolved solids in the datasets.

In this application, the raw water quality data are heterogeneous, provided by different

organizations and have different data quality. There are less than 7 water quality parameters
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Figure V.5: Selected 10 River Basins in Victoria, Australia. The environmental quality (from
excellent to very bad) at each basin is evaluated in 2004 ISC Report [oSE04].

available in some years for a site, with various numbers of collection times for different

months. Therefore, we first preprocess water quality data using the method described in

Section 3 as follows. We compute the water quality index (WQI) for a month by using 4-7

water quality parameters to ensure the data quality, since not all the sites collected all of

the 7 water quality parameters. Then we segmented the time series water quality data into

seasonal partitions by year and thus one seasonal partition is a sequence of 12 WQIs for the

12 months from January to December in a year.

We briefly analyze the goals of this application. The first goal of this application is

to study whether water quality change (Definition 15) is effective to detect water pollution

events. Two proposed EOA algorithms aim to discover exceptional objects by using the
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unsupervised clustering method, since no standard evaluation criteria can distinguish excep-

tional objects from normal ones. Also, the efficiency of the data mining algorithm is critical,

since the target datasets that comprise more than 30 years’ water quality data for 93 sites

are very huge. Therefore, another goal of this application is to contrast the efficiency of the

proposed EOAN and the Improved EOAN algorithms.

We implemented all the experimental algorithms in Microsoft VC++6.0 and Excel (VB-

script), which were run on a Windows XP 1.83GHZ cpu with 512 Mbyte of RAM. We set

MinPts = 1 to find the strict exceptional objects in the experiment and then change eps in

the range [U.S11], [KJBB09] to find strict exceptional objects with rank 2 to rank 7, respec-

tively. To find the relaxed exceptional objects, we set MinPts ≥ 2.

V.6.2 Exceptional Objects Ranking

We plot all of the points (H-change, V-change) of water quality objects on a 2D plane

and build a water quality change map for each river basin. Fig. V.6 (a) -V.15 (a) show water

quality change maps, on which exceptional objects are marked. A common trend is that the

exceptional objects are always located at the borders of the water quality change maps of the

10 river basins, while most are normal objects and located at the center of the maps. Also,

we observed from Fig. V.6 (a) -V.15 (a) that the higher the rank of exceptional objects, the

farther they are from the map centers and thus the exceptional objects with the highest rank

(Rank 7) are the farthest away from the map centers. Fig. V.6 (c) -V.15 (c) show the details
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of the exceptional objects, which point out where and when the rare events happen. Note that

both pollution events and water quality improvement events are included. Also, we mark the

rare event locations on the Basin Maps in Fig. V.6 (b) -V.15 (b) according to the site name

in Fig. V.6 (c) -V.15 (c). The basin maps are provided by the 2004 ISC Report [oSE04] in

[Dat] and the water qualities of each area in 2004 have been marked.

We then validate the effectiveness of the EOAFREE method by explaining the detected

exceptional objects in 10 river basins based on the basins’ environmental quality map pro-

vided in the ISC 2004 report. Note that the metric (H-change, V-change) denotes the forward

change trends. For example, the first row in Fig. V.6 (c) means that WQI of March 1994 is

55, the same as the WQI of February 1993 since H-change equals 0; while WQI of February

1995 is 76, since V-change is 21. Fig. V.6 (a) shows an exceptional object distribution map

from Rank 2 to Rank 7. Although we only list the details of rank 7 objects in Fig. V.6 (c),

other ranked exceptional objects can be used for many purposes according to users’ require-

ments. For example, if the user is interested in analyzing pollution factors, then two rank 6

exceptional objects at the bottom left corner are more important than other objects. Also, if

the users focus on looking for the reasons for water quality improvement, the three rank 5

exceptional objects at top right corner are more useful. We can see from Fig. V.6 (c) that

two rare events (rank 7) happened at the same site: Avoca River @ Amphitheatre (408202)

in two different months: Feb. 1994, Dec. 1995 and Dec. 2009 in Avoca Basin. Also, this

site is marked on the map in Fig. V.6 (b).
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(a) Exceptional Object Analysis. (b) Avoca Basin Map in ISC 2004 

Report.

Basin Site Site Name Time H-change V-change WQI

408202 Avoca River @ Amphitheatre Feb-94 0 21 55 
Avoca

408202 Avoca River @ Amphitheatre Dec-95 20 -3 57 

(c) Rare Events (Where and When). 

408202 

Figure V.6: Avoca.
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Another feature of the exceptional object distribution map is to show different change

trends, for example, to answer questions of which change range is greater: the V-change

or H-change and which trend is the major: the negative change or the positive change. In

Fig. V.7 (a), we can see that the vertical change range [-50, 50] is greater than the horizonal

change range [-40, 30]; this means the water quality changes are greater in consecutive years

than in consecutive months in the same year. But a different change trend is shown in Fig.

V.8 (a), where both H-change and V-change are in the range of [-40, 50]. For the second

question, we can see in Fig. V.7 (a) that 12 exceptional objects from rank 2 to rank 7 are

negative since they are located at the bottom left corner while only 5 exceptional objects

are positive at the top right corner. But Fig. V.8 (a) shows an opposite trend: 8 exceptional

objects are at the bottom left corner while 12 exceptional objects are at the top right corner.

This trend also is evidenced by rank 7 exceptional objects listed in Fig. V.8 (c) with 5 positive

events (both H-change and V-change are positive) and only 1 negative event (both H-change

and V-change are negative). We also can observe the spatial distribution of the four sites

where rare events happened in V.8 (b). The fact that they are scattered along the Broken

River while they happened from 1978 to 2009 may denote the whole trend of the Broken

River basin in the past years is positive.

There are 5 river basins that have a balanced negative change and positive change in the

exceptional object distribution maps: Bunyip in Fig. V.9 (a), Campaspe in Fig. V.10 (a),

East Gippsland in Fig. V.12 (a), Glenelg in Fig. V.13 (a) and Goulburn in V.14 (a). The other
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(a) Exceptional Object Analysis. (b) Barwon Basin Map in ISC 2004 

Report.

Basin Site Site Name Time H-change V-change WQI

Barwon 233224 Barwon River @ Ricketts Marsh Apr-93 10 43 38 

(c) Rare Events (Where and When). 

233224 

Figure V.7: Barwon.

Broken
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(a) Exceptional Object Analysis. (b) Broken Basin Map in ISC 2004 

Report.

Basin Site Site Name Time H-change V-change WQI

404207 Holland Creek @ Kelfeera Dec-78 41 18 39 

404210 Broken Creek @ Rices Weir (Affra Unit) May-81 -31 -11 69 

404210 Broken Creek @ Rices Weir (Affra Unit) Feb-88 39 41 29 

404210 Broken Creek @ Rices Weir (Affra Unit) Mar-88 -34 2 68 

404210 Broken Creek @ Rices Weir (Affra Unit) May-88 16 34 36 

404216 
Broken River @ Goorambat (Casey Weir 

H. Gauge) 
Jan-09 14 49 44 

Broken 

404712 
Muckatah Depression Drain @ Numurkah 

Outfall 
Mar-09 8 42 52 

(c) Rare Events (Where and When). 

404207 

404210 

404216 

404712 

Figure V.8: Broken.
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Bunyip
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(a) Exceptional Object Analysis. (b) Bunyip Basin Map in ISC 2004 

Report.

Basin Site Site Name Time H-change V-change WQI

228204 Dandenong Creek @ Dandenong Feb-86 -48 -19 74 

228204 Dandenong Creek @ Dandenong Jan-87 25 46 30 

228204 Dandenong Creek @ Dandenong Mar-87 -27 21 55 

228204 Dandenong Creek @ Dandenong Jan-88 0 -37 76 

228204 Dandenong Creek @ Dandenong Mar-88 -47 -37 76 

Bunyip 

228213 Bunyip River @ Iona Sep-78 -39 -30 75 

(c) Rare Events (Where and When). 

228204 

228213 

Figure V.9: Bunyip.

two: Corangamite in Fig. V.11 (a) and Kiewa Fig. V.15 (a) have the same trend as Barwon

in Fig. V.7 (a) in that negative change is the majority.

Table V.6 provides the numeric summary of exceptional objects in Fig. V.6-V.15. An-

other interesting discovery is while the total number of objects is greater, the percentage of

exceptional objects is smaller. In Table V.6, for example, only 1.3% of the Goulburn dataset

were exceptional objects, while, 4.7% of the Avoca dataset were exceptional objects. We

also notice that there are more exceptional objects located at the top right and bottom left

corners of each map. This means H-change and V-change of the exceptional objects are of-

ten of the common trend: either both are positive or both are negative. To satisfy our goal to

find water pollution events, we are interested in those exceptional objects whose H-change
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(a) Exceptional Object Analysis. (b) Campaspe Basin Map in ISC 

2004 Report. 

Basin Site Site Name Time H-change V-change WQI

Campaspe 406202 Campaspe River @ Rochester Jul-09 36 -11 55 

(c) Rare Events (Where and When). 

406202 

Figure V.10: Campaspe.

Corangamite
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(a) Exceptional Object Analysis. (b) Corangamite Basin Map in ISC 

2004 Report. 

Basin Site Site Name Time H-change V-change WQI

234201
Woady Yaloak River @ Cressy 

(Yarima) 
Aug-04 -34 -5 64 

Corangamite 

234203
Pirron Yallock Creek @ Pirron 

Yallock (Above HWY BR.) 
Apr-81 33 5 42 

(c) Rare Events (Where and When). 

234201 

234203 

Figure V.11: Corangamite.
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East Gippsland
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(a) Exceptional Object Analysis. (b) East Gippsland Basin Map in ISC 2004 

Report.

Basin Site Site Name Time H-change V-change WQI

221212 Bemm River @ Princes Highway Mar-77 4 38 44 

221212 Bemm River @ Princes Highway Feb-78 36 17 46 
East

Gippsland 
221212 Bemm River @ Princes Highway Jul-78 10 49 40 

(c) Rare Events (Where and When). 

221212 

Figure V.12: East Gippsland.

Glenelg
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(a) Exceptional Object Analysis. (b) Glenelg Basin Map in ISC 2004 Report.

Basin Site Site Name Time H-change V-change WQI

238204 Wannon River @ Dunkeld Dec-86 -36 -18 68 

238231 Glenelg River @ Big Cord Nov-81 -39 0 65 

238231 Glenelg River @ Big Cord Aug-82 -12 -40 65 

238231 Glenelg River @ Big Cord Aug-83 35 14 25 

Glenelg

238231 Glenelg River @ Big Cord Dec-08 36 36 58 

(c) Rare Events (Where and When). 

238204 

238231 

Figure V.13: Glenelg.



CHAPTER V. THE EOAFREE METHOD 127

Goulburn
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(a) Exceptional Object Analysis. (b) Goulburn Basin Map in ISC 2004 

Report.

Basin Site Site Name Time H-change V-change WQI

405204 Goulburn River @ Shepparton Jun-78 -27 -41 71 

405204 Goulburn River @ Shepparton Dec-79 34 -9 43 

405232 Goulburn River @ McCoy Bridge Feb-88 36 40 35 
Goulburn 

405232 Goulburn River @ McCoy Bridge Jul-09 24 -19 62 

(c) Rare Events (Where and When). 

405204 

405232 

Figure V.14: Goulburn.

Kiewa
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(a) Exceptional Object Analysis. (b) Kiewa Basin Map in ISC 2004 Report. 

Basin Site Site Name Time H-change V-change WQI

402203 Kiewa River @ Mongans Bridge Aug-79 -43 -37 88 

402204 Yackandandah Creek @ Osbornes Flat Feb-84 -33 1 61 

402204 Yackandandah Creek @ Osbornes Flat May-88 -34 -29 82 

402204 Yackandandah Creek @ Osbornes Flat May-91 -26 -33 84 

402205 Kiewa River @ Bandiana Jul-09 23 -19 65 

Kiewa 

402222 Kiewa River @ Kiewa (Main Stream) Dec-79 -12 -31 76 

(c) Rare Events (Where and When). 

402203 

402204 

402205 

402222 

Figure V.15: Kiewa.
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Number of exceptional objects River Basin 

Name 

Number 

of sites 

Total Number 

of Objects Total Rank2

(eps=2)

Rank3

(eps=3)

Rank4

(eps=4)

Rank5 

(eps=5)

Rank6 

(eps=6)

Rank7 

(eps=7)

Avoca 3 924 43 (4.7%) 24 6 5 5 1 2 

Barwon 12 3096 70 (2.3%) 48 9 7 3 2 1 

Broken 11 2712 63 (2.3%) 37 8  6  2  3  7  

Bunyip 10 1896 76 (4%) 50  10  4  4  2  6  

Campaspe 7 2724 81 (3%) 38  27  9  6  0  1  

Corangamite 8 1824 62 (3.4%) 28  19  9  2  2  2  

EastGippsland 7 2556 72 (2.8%) 50  6  3  4  6  3  

Glenelg 12 3648 74 (2%) 54  10  2  3  0  5  

Goulburn 21 7020 94 (1.3%) 59  17  11  2  1  4  

Kiewa 5 1704 66 (3.9%) 33  10  7  7  3  6  

Table V.6: Exceptional Objects Ranking Summary.

and V-change are both negative and we discuss this in Section 6.4.

V.6.3 Time Efficiency

In this subsection, we compare EOAN and Improved EOAN algorithms in terms of time

efficiency.

DEON is the core function called by EOAN and has two important parameters: MinPts

and eps. Since DEON repeats several times with increased eps to process the same dataset

in EOAN , we analyze the execution time of each run. We run DEON with eps = 2−7, then

we achieved rank 2-7 exceptional objects, respectively. Fig. V.16 shows the time spent on

executing DEON in the EOAN algorithm. We can see that the overall trend of the execution

time is increased with the increasing eps.

The execution time of EOAN is the sum of the total execution time of running DEON

with eps = 2− 7 and thus is very huge as shown in Fig. V.16.
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Figure V.16: Time Analysis of DEON in EOAN Algorithm.

As shown in Fig. V.17, Improved EOAN performs far better than EOAN, because Im-

proved EOAN reduces the data size greatly for each DEON function running, as shown in

Fig. V.18. Therefore, the execution time is reduced from several hundreds of seconds to

several ten seconds. This is critical for processing a huge volume of water data accumulated

over many years.

V.6.4 Exceptional Water Pollution Events

In this subsection, we show the effectiveness of our proposed method to detect excep-

tional water pollution events. We assume Rank 7 exceptional objects with both negative H-

change and V-change are the points where water pollution events happen. Table V.7 shows

water pollution events detected in 6 river basins. There are no water pollution events in
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Figure V.17: Time Efficiency: EOAN vs. Improved EOAN.

Figure V.18: Data size reduced greatly for each running of DEON in Improved EOAN.



CHAPTER V. THE EOAFREE METHOD 131

Avoca, Barwon, Campaspe and East Gippsland in this case. It is possible to detect com-

mon patterns between the water pollution events. For example, in Kiewa, there are 4 water

pollution events at three sites, two happening at at Yackandandah Creek at Osbornes Flat

(site 402204) in May 1988 and May 1991. We can test a rule that water pollution events al-

ways happen in May at Yackandandah Creek at Osbornes Flat (site 402204). Also, in 1979,

two water pollution events happened at two different sites: Kiewa River @ Mongans Bridge

(402203) and Kiewa River @ Kiewa (Main Stream) (402222); we may ask the question

whether something happened in 1979 in the Kiewa basin that is related to the two events.

In Bunyip, two water pollution events happened at Dandenong Creek @ Dandenong (site

228204) in Feb. 1986 and March 1988, two very close months, and one happened at site

228213 in Sep. 1978.

Also, we may observe that Kiewa with medium environmental quality suffered the most

water pollution events. Also, Bunyip and Glenelg with very poor environmental quality suf-

fered the second and third most water pollution events. Meanwhile, East Gippsland with

excellent environmental quality escaped water pollution entirely. Avoca, Barwon and Cam-

paspe with very poor environmental quality may improve gradually without any water pol-

lution events.
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Basin Environmental Quality  

( in 2004 ISC Report*)

Site Date WQI H-change V-change 

Broken Very Poor 404210 1981-5 69 -31 -11 

228213 1978-9 75 -39 -30 

228204 1986-2 74 -48 -19 Bunyip Very Poor 

228204 1988-3 76 -47 -37 

Corangamite Very Poor 234201 2004-8 64 -34 -5 

238231 1982-8 65 -12 -40 
Glenelg Very Poor 

238204 1986-12 68 -36 -18 

Goulburn Poor 405204 1978-6 71 -27 -41 

402203 1979-8 88 -43 -37 

402222 1979-12 76 -12 -31 

402204 1988-5 82 -34 -29 
Kiewa Medium 

402204 1991-5 84 -26 -33 

Avoca Very Poor 

Barwon Very Poor 

Campaspe Very Poor 

East Gippsland Excellent 

No water pollution events. 

* http://www.vicwaterdata.net/ 

Table V.7: Water pollution events (Rank 7).
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V.7 Summary

In this chapter, we have proposed a novel EOAFREE method to detect rare environmen-

tal events. Detecting water pollution events from water quality data is a typical case. The

core Improved EOAN algorithm in our EOAFREE method is a general solution to detect ex-

ceptional objects and to rank the exceptional objects, opposite to the already known Principal

Component Analysis (PCA) that ranks principal components. In the real world application,

that is, to detect water pollution events from water quality datasets of 93 sites distributed in

10 river basins in Victoria, Australia between 1975 and 2010, we summarize several experi-

ences to use our EOAFREE method: (1) domain knowledge is required to preprocess data;

(2) different applications may have different exceptional objects distribution in change maps,

though in this application, exceptional objects are located at the borders of the map; (3) the

EOAFREE method can automatically rank the exceptional objects from a huge volume of

datasets and provide a useful way to help decision makers focus on further analyzing a small

critical range of exceptional objects.



Chapter VI

SOMAwater for Water Resource

Decision Support

“Every marvel is the strength which isn’t resisted outside; or a kind of order with wisdom

inside.”

– Qiuyu Yu (A Voyage West)

In this chapter, we develop a Semantics-Oriented Mining Application for Detecting Wa-

ter Quality Events (SOMAwater) prototype system based on the CIRCE method for discov-

ering common patterns and the EOAFREE method for detecting rare patterns. The CIRCE

method resolves Uncertainty Problems in retrieving common patterns from spatiotemporal

data, while the EOAFREE method tackles the heterogeneity problem in Discovering Rare

Patterns. The SOMAwater prototype system aims to significantly address critical issues as-

sociated with improving the quality and completeness of the water data and negotiating the

heterogeneity of water data in order to enhance the accurate and efficient data processing

models (e.g. common and rare pattern mining for detecting critical water events) underpin-

134
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ning many of the water resource management strategies and planning decisions.

The structure of this chapter is organized as follows. In Section 1, we present the

overview of the SOMAwater prototype system. We query spatiotemporal common patterns

in Section 2 and find spatiotemporal rare patterns in Section 3. Finally, we summarize this

chapter in Section 4.

VI.1 Overview of The SOMAwater Prototype System

Water is the most important catalyst for human development [Mat02]. Rivers, as a typical

type of water resource, are the prime factors controlling the global water cycle. River Wa-

ter Pollution due to urbanization [VV01] [KLL08] [SLJ+02] [KLK+07] [Pra05] becomes a

critical issue that must be mitigated to provide the suitability of water to sustain various uses

or processes (e.g. drinking, irrigation, industry etc.). Water quality can be defined as a range

of variables [Pra05] related to certain levels of physical, chemical or biological characteris-

tics of water. Water quality differs by location (spatial factor) and season (temporal factor)

[Pra05].

With the advanced tools (e.g. sensors [GQZe08] [CJ08] [VM10] and Geographical In-

formation Systems (GIS) [KJHK] [GMFC02] [MGR05]), frameworks [ATL+05] [TNGA09]

[SR08] and protocols [U.S11] for continuously and closely monitoring the environmental

parameters related to water resources, we can capture abundant physical chemical water

data (such as PH, temperature, dissolved oxygen, total phosphate, nitrates, turbidity, total
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dissolved solids etc.) to analyze the spatial and temporal variation in river water quality

[RA09]. However, water resource management will be more complex in the future, world-

wide, and relies heavily on computer software processing [Mat02], since the decision makers

may not be the engineers and water resource domain experts and must be fed with the right

information (or useful knowledge) [Mat02] through data queries (e.g. queries of common

or rare patterns for analyzing critical water events). For example, knowing if certain types

of water quality problems are isolated (e.g. rare patterns) or ubiquitous (e.g. common pat-

terns) [KLL08] and whether the conditions are changing spatially or temporally is essential

for a proper management plan [KLL08] [Cha08]. Responses to these queries face two chal-

lenges: (1) uncertainty problems of discrete water quality data curves; and (2) heterogeneity

problems of water quality data.

We have introduced the CIRCE method to tackle the uncertainty problems in Chapter IV

and presented the EOAFREE method to resolve the heterogeneity problems in Chapter V.

Also, we have evaluated the performance of the CIRCE method in terms of efficiency and

accuracy by using trajectories of moving objects, while demonstrating the effectiveness of

the EOAFREE method by real world water quality datasets. Now, we focus on how to use

these two methods in the SOMAwater prototype system to query common and rare water

pollution events to support high level decision making in the water resource management

field.

The framework of the SOMAwater prototype system is shown in Fig. VI.1. The SO-
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MAwater prototype system is a data mining tool specially for water quality data. So, dif-

ferent from other data mining tools, the SOMAwater prototype system first preprocess raw

water data. We can see that in the CIRCE package, the CIRCE core module is used to re-

move Uncertainty due to Discrete Sampling, while the CTP module and the DISP procedure

are used to remove Uncertainty due to Sampling Errors. Also, in the EOAFREE package,

the water quality index and change-based heterogeneity removing module are used to get rid

of heterogeneity. Note that semantics are vital to assist data preprocessing; the CTP mod-

ule and the DISP procedure are used to find spatiotemporal semantic regions, while water

quality index is a kind of water semantics. After preprocessing, the water data become clean

and unified to be processed by the LCS mining module to discover common patterns and the

IEOAN (Improved EOAN) module to detect rare patterns. These two modules also can be

used to generally process any data.

Based on Chapter III, Chapter IV and Chapter V, in this chapter, we focus on introducing

the inside structure that organizes the CIRCE package and the EOAFREE package into the

SOMAwater prototype system and the application aspects to support water resource decision

making.
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Figure VI.1: The Framework of The SOMAwater Prototype System.
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VI.2 Querying Spatio-Temporal Common Patterns for Wa-

ter Resource Decision Support

VI.2.1 Water Common Patterns

In Chapter III, we have defined a trajectory of a moving object as a sequence of points

denoted by (location, timestamp). Here, we take a Water Instance Object (WIO) denoted

by WIO (parameter, site, year) as a ‘moving object’, then we define a curve of this WIO

as follows:

DEFINITION 19. A curve of a water instance object is a sequence of points S =< p1, ..., pu,

..., pk >, where pu = (paraV alueu, tu), tu (u = 0..k) is a timestamp when paraV alue is

sampled, ∀0≤u<k, tu < tu+1.

We note that a trajectory of a moving object is a 3D sequence while a curve of a water

instance object is a 2D sequence. Similar to Longest Common Route (LCR) patterns, we

are interested in Longest Common Curve patterns. We first introduce how to calculate the

distance (or difference) between two curves of water instance object. Similar to our work

[HHD08b] that emulates how the frog’s eyes detect difference, we detect the difference be-

tween two curves by emulating human’s eyes to detect the visual curves’ difference. In Fig.

VI.2, suppose there are two curves: S1S2 and S3S4. Let P1 denote the closed area of AS1S2B

and let P2 denote the closed area of AS3S4B. The area in the hatched area denotes the value



CHAPTER VI. SOMAWATER FOR WATER RESOURCE DECISION SUPPORT 140

S2

S4

A (t1) B (t2)

S1

S3

Time 

Parameter 

Value 

Figure VI.2: Measuring difference between two curves.

of the distance (or difference) between S1S2 and S3S4, given as follows:

diff(S1S2, S3S4) =

∫ t2
t=t1

(|fS1S2(t)− fS3S4(t)|)dt
t2 − t1

. (VI.2.1)

Thus, we define similar curves as follows:

DEFINITION 20. Given two curves: fc1 and fc2 , if they satisfy the following two criteria,

then they are similar.

(1) according to Eq. VI.2.1, diff(c1, c2) < τ1, where τ1 is a threshold of the difference

area in a unit time; and

(2) |fc1(t)− fc1(t)| < τ2, where τ2 is the threshold of the differences between two values

at the same time, t.

Then, based on the difference between curves, we define Longest Common Curve pat-

terns as follows:

DEFINITION 21. A Longest Common Curve (LCC) patterns is a group of k curves that

satisfies the following criteria:
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Figure VI.3: A Longest Common Curve Pattern in time span: [April,October] in temperature
curves of Avoca Basin, Australia.

(1) each curve is sampled in the same time span [t1, t2];

(2) any two curves are similar to each other;

(3) k ≥ min sup and

(4) this LCC pattern is not a subsequence of any other LCC patterns.

Fig. VI.3 shows an example of a Longest Common Curve pattern in time span: [April,

October] in the temperature curves of Avoca Basin, Australia, over 13 years from 1997 to

2009.

We call interesting regions as semantic inflexions and popular turning regions/implicit

turning regions as popular semantic inflexions/implicit semantic inflexions in this chapter

for summarizing water stream curves and define the following concepts.

DEFINITION 22. A Polygon line based LCC (P-LCC) pattern is an LCC pattern which
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includes at least two semantic inflexions.

DEFINITION 23. A Direct line based LCC (D-LCC) pattern is an LCC pattern which

includes at most one popular semantic inflexion and at least one implicit popular semantic

inflexion.

P-LCC patterns and D-LCC patterns compose the whole set of LCC patterns. We neglect

the proving process, since it is similar to Theorem 1 in Chapter III.

DEFINITION 24. A Spatial LCC (S-LCC) pattern is an LCC pattern that is supported by

a group of Water Instance Objects denoted by WIO (Para, Site, Y ear), where Para and

Y ear are the same and only Sites are different.

DEFINITION 25. A Temporal LCC (T-LCC) pattern is an LCC pattern that is supported by

a group of Water Instance Objects denoted by WIO (Para, Site, Y ear), where Para and

Site are the same and only Y ears are different.

DEFINITION 26. A Spatio-Temporal LCC (ST-LCC) pattern is both an S-LCC pattern and

a T-LCC pattern.

VI.2.2 Discovering Longest Common Curves (LCC)

To simplify the problem of checking theoretically the similarity of two curves based on

Definition 20, we learn the mechanism of retrieving longest common route (LCR) patterns in

Chapter III and Chapter IV and thus summarize a curve by a sequence of semantic regions.

Therefore, we slightly modify the CIRCE method and then apply it to discover LCC patterns.
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Figure VI.4: Missing highest (lowest) points on a temperature curve at Coonooer, Avoca
River, Australia.

The CIRCE Core Algorithm for LCC Patterns

A nature rule about river temperature is that the time of reaching the highest (lowest)

value in a day is at a relatively fixed region within a tolerant error; these fixed regions are

just like turning regions in trajectories of moving objects. Also, the CIRCE algorithm is

useful to correct highest (lowest) points and compress temperature curves in a day by using

the critical points (or turning regions). Fig. VI.4 illustrates an example of missing data in

Jan. 1, 1997. We can take advantage of the CIRCE core algorithm to correct the missing

critical points.

The MicPasts Method for LCC Patterns

We adopt the MicPasts method to discover semantic inflexions. An example is shown

in Fig. VI.5. In this case of temperature curves, given min sup = 3, there are two LCC

patterns: ABCD supported by a WIO list of {1999, 2000, 2003} and HIJ supported by a
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Figure VI.5: Temporal Semantic Inflexions Detected by MicPasts.

WIO list of {1998, 2000, 2003}. Also, we can use the DISP procedure in MicPasts to detect

implicit semantic inflexions to extend a P-LCC pattern to an LCC pattern. Since the supports

are years, these are also two temporal LCC patterns.

We also give more curves of different water quality parameters (e.g. Dissolved Oxygen,

Turbidity, PH, Nitrates, Total Phosphorus and WQI) to illustrate temporal LCC patterns from

Fig. VI.6 to Fig. VI.11 by using the MicPasts Method. We use 12 month IDs: J (Jan.), F

(Feb.), M (March), A (April), Y (May), N (June), L (July), U (Aug.), S (Sep.), O (Oct.), V

(Nov.) and D (Dec.) to denote an LCC pattern. Every year curve is denoted by 12 points,

each for a value of a month. In some months, there is more than one sampling point, while

in others, there is only one sampling point. For the first cases, we use average values of
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a month. Note that the sampling points in the same month but in different years may be

sampled at different dates. Thus, we also get the average date for an average value. Since

the parameter values and sampling dates are different in a month, we use our CTP clustering

algorithm to group points into clusters. Those points that are in the same cluster are denoted

by a month ID, as a semantic place.

We can detect LCC patterns automatically by using the CIRCE method. Here, we also

introduce a simple method to determine whether a curve is an LCC or not. Taking Dis-

solved Oxygen curves in Fig. VI.6 as an example and given min sup = 3, we want to

determine whether the whole curve is an LCC. For January, 1991 and 1998 are excluded. In

February, 1994 and 2000 are excluded. In March, 2001 and 2000 are excluded. In April,

1992 is excluded. In June, 1997 and 2000 are excluded. In July, 1993 is excluded. Then

in November, 1999 is excluded. In December, 1994 and 1998 are excluded. Thus, there is

only 1996 and 1997 support the whole curve and thus the whole curve is not an LCC, since

2 < min sup. So, we only achieve a shorter LCC pattern: “JFMAYNLUSO”, with a support

list of {1996, 1997, 1999}.

Using the same method, we have found several complete curves that are LCC patterns.

For example, the whole Turbidity curves show an LCC pattern: “JFMAYNLUSOVD”,

which are supported by {1993, 1994, 1996, 1997, 1999, 2000} as shown in Fig. VI.7, the

whole PH curves show an LCC pattern: “JFMAYNLUSOVD”, which are supported by

{1991, 1994, 1995, 1997, 1998, 1999, 2000} in Fig. VI.8 and the whole WQI curves show an
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Figure VI.6: LCC patterns in Dissolved Oxygen Curves.

LCC pattern: “JFMAYNLUSOVD”, which are supported by {1994, 1998, 1999, 2000, 2001}

in Fig. VI.11. We also detect shorter LCC patterns, such as in Fig. VI.8, where LCC

pattern “AYNLUSOV” with a support list of {1992, 1993, 1996} is not the subsequence

of “JFMAYNLUSOVD” with a support list of {1991, 1994, 1995, 1997, 1998, 1999, 2000},

since they have different support lists. More shorter LCC patterns include “JFMAY” with

{1998, 2000, 2001}, “NL” with {1998, 1999, 2000} and “OVD” with {1999, 2000, 2001} in

Fig. VI.9, as well as “FMA” with {1998, 1999, 2000} and “NL” with {1998, 2000, 2001} in

Fig. VI.10.

We then give another example of a spatial LCC pattern in Fig. VI.12, where “ABCDE-

FGHIJKLMNOPQRST” is a S-LCC pattern, supported by a site list of { Avoca408202,

Avoca408203, Avoca408204 }.
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Figure VI.7: LCC patterns in Turbidity Curves.
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Figure VI.9: LCC patterns in Nitrates Curves.
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Figure VI.10: LCC patterns in Total Phosphorus Curves.
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5

10

15

20

25

30

35

1-Jan 15-May 27-Sep 9-Feb 23-Jun 5-Nov 20-Mar 1-Aug 14-Dec

Temperature

Avoca408202 Avoca408203 Avoca408204

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

Semantic  

Inflexion 

Figure VI.12: Spatial Semantic Inflexions Detected by MicPasts.



CHAPTER VI. SOMAWATER FOR WATER RESOURCE DECISION SUPPORT 150

Given discrete curves, Eq. VI.2.1 can be changed into

diff(S1S2, S3S4) =

∑t2
t=t1

|fS1S2(t)− fS3S4(t)|
t2 − t1

. (VI.2.2)

It is actually difficult to detect whether two curves are similar or not, since two discrete

point pairs on two curves may not be exactly sampled at the same time. So the CIRCE

method is a solution to detect LCC patterns. First, the CIRCE method splits the whole

curves into several segments by using semantic inflexions. Then, it ensures every segment

of the curves satisfy the two similar criteria in Definition 20, because the cluster area is very

small, compared to the distance between two consecutive semantic inflexions.

Different from trajectories of moving objects, curves of water instance objects have the

following distinct characteristics:

• (1) curves of water instance objects do not have self-intersections. So, the DP algo-

rithm and the Angle-DP algorithm can be used correctly.

• (2) the first similar criteria (e.g., accumulated error is bounded) in Definition 20 is nec-

essary to ensure the results are the same as the results determined by a human’s eyes.

Also, computing accumulated error for a curve is simpler than that for a trajectory.

Also, the CIRCE method has several advantages for finding LCC patterns. First, Angle-

DP removes the zigzag between two critical points. Second, the critical points grouped in

the same cluster are very close to each other; this is the basis to make a segment between
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two semantic inflexions satisfy the two similar criteria in Definition 20. Third, the problem

of finding uncertain LCC patterns is mapped onto the problem of finding LCS patterns.

VI.2.3 Experimental Study for Massive Dataset

The massive dataset includes 126,752 points of 6 parameters at 93 sites in 10 river basins

between 1975 and 2010. We use the CIRCE method to find LCC patterns. The CIRCE core

algorithm can correct some missing critical points, if there are sampled points near to the

missing points. Note that the CIRCE core algorithm is only valid when the gap due to the

missing data is not too wide; thus, those which have no any sampled point at all in a whole

month are out of our control.

We now briefly introduce the experimental setup. We first split the massive dataset into

pieces of year curves. Each year curve includes 12 months’ values for each water quality

parameter. That is, there are 12 points on a year curve, where a point is denoted by (WIO,

month, value) and WIO (Water Instance Object) is denoted by WIO(parameter, site, year).

An LCC pattern is a sequence of consecutive timestamps (e.g. months or dates) supported

by a list of more than min sup WIOs. We suppose min sup = 3. First, given m sam-

pling points in a month, if m = 1, the only point is the critical point. Otherwise, we use

the CIRCE core algorithm to detect the critical point in a month. Then, we group critical

points into clusters based on the DBSCAN clustering algorithm. The points that are in the

same cluster satisfy two similarity criteria: (1) the span of the two timestamps in a bounded
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Parameter Number of Curves Total Number of Points 

Dissolved Oxygen 2243 22,834 

Temperature 2323 24,451 

Turbidity 2315 24,116 

PH 2355 24127 

Nitrates 1634 14,661 

Total Phosphorus 1822 16,563 

Table VI.1: Curves.

threshold; (2) the difference of two values is bounded in a threshold. We set a cluster ID for

each cluster as a semantic place ID and use the cluster IDs to replace the values in order to

format a year curve by a sequence of cluster IDs. Finally, we discover LCSs from a number

of year curves as the LCC patterns. Note that we can retrieve P-LCC first and then refine

a coarse P-LCC by discovering implicit semantic places based on the DISP procedure. If a

D-LCC pattern is too short, it is neglected. We classify WIO by water quality parameters

and thus there are 6 groups of LCC patterns based on 6 parameters. The basic information

of 6 types of curves is summarized in Table VI.1.

We then present some results of 6 types of LCC patterns as shown in Table VI.2 - Table

VI.7. By using LCC patterns, the WIOs with sites and years are actually grouped into clusters

(e.g., support lists). We can analyze the other common spatiotemporal information about the

sites and years to explain why they behave the same as the LCC patterns. This automatic

retrieval of LCC patterns offers a potential means to decision makers.

In this experimental study, the parameters of the CIRCE method for mining LCC patterns

are the same as in Table III.2, together with ε, a parameter of the CIRCE core algorithm.
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We set ε = 0.1 and the other main parameters are marked below the tables. The LCC

patterns are denoted by a sequence of consecutive months with support number and list.

For example, in Table VI.2, the first row with LCC: “1:2:3” means the Dissolved Oxygen

curves of three WIOs: (site 233224, 1996), (site 238228, 1989) and (site 402205, 2006) are

common in January, February and March. Also, we observe that for the same LCC, there are

different support lists. For instance, LCC: “2:3:4” has 5 support lists. This means the LCC

patterns between February and April are in 5 different clusters. According to the parameter

value ranges, we set eps = 0.1 for Dissolved Oxygen, Temperature, Turbidity and PH and

set eps = 0.001 for Nitrates and Total Phosphorus. MinPts = 2 for all six parameters.

Generally, if the users like to get longer LCC patterns, they can decrease min sup. For

example, the max LCC pattern length of Dissolved Oxygen in Table VI.2 is 3 months with

min sup = 3, while all the max LCC pattern lengths of the other 5 water parameters is

greater than 4 with min sup = 2. We do not list LCC patterns with pattern length shorter

than 3 or 4, since there are too many of them. Through Table VI.2 - Table VI.7, we can easily

get any result with min sup > 2.

These LCC pattern results are very useful. First, it provides detailed spatiotemporal

seasonal common patterns of each water parameter. At a glance of these results in Table

VI.2 - Table VI.7, we can learn that there are a greater number of LCC patterns of PH and

temperature than those of Dissolved Oxygen, Turbidity, Nitrates and Total Phosphorus, if

we set the pattern length greater than 3. Also, we see from Table VI.4 and Table VI.7 that
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LCC of  

Dissolved 

Oxygen 

Sum Support List (Site, Year) 

1:2:3 3 {(233224,96), (238228,89), (402205,06)}

3 {(221212,89), (404206,80), (405219,85)}

3 {(221201,98), (402205,90), (402222,95)}

3 {(233224,81), (238205,92), (405202,85)}

3 {(233218,87), (238205,98), (405202,79)}

2:3:4 

3 {(404216,89), (404224,00), (405200,01)}

3 {(405227,86), (405264,06), (405264,95)}

3 {(404224,06), (405204,84), (408202,86)}

3 {(221201,82), (221211,98), (233215,96)}

3 {(221208,91), (234201,94), (402222,81)}

3:4:5 

3 {(233224,81), (404207,97), (405251,04)}

3 {(405209,92), (405214,01), (405251,80)}

3 {(221210,99), (233215,96), (405251,05)}

4 {(233214,93), (404207,95), (405204,80), 

(405234,98)} 

3 {(221212,89), (404206,06), (405231,80)}

3 {(402222,02), (402222,81), (405200,89)}

3 {(228207,97), (402203,81), (405205,98)}

3 {(221201,82), (221207,85), (221210,86)}

3 {(405204,04), (406202,04), (406207,98)}

3 {(221208,99), (405219,00), (406215,00)}

3 {(238206,85), (238206,98), (238224,98)}

3 {(221207,98), (405264,81), (405264,89)}

4:5:6 

3 {(5654,92), (22000,96), (404224,95)} 

3 {(404224,06), (405204,85), (405237,94)}

3 {(228203,93), (233228,05), (404207,03)}5:6:7 

3 {(238231,92), (404206,01), (404224,97)}

LCC of  

Dissolved 

Oxygen 

Sum Support List (Site, Year) 

3 {(233228,05), (234203,94), (404207,03)} 
6:7:8 

3 {(221210,01), (238223,86), (402223,96)} 

3 {(404206,80), (405209,93), (405231,98)} 

3 {(404206,08), (404206,91), (405209,86)} 7:8:9 

3 {(233218,85), (404207,00), (405219,96)} 

3 {(404224,01), (405202,82), (405209,81)} 

3 {(402222,02), (405203,01), (405214,96)} 

3 {(233218,91), (238223,03), (238223,88)} 

3 {(228213,93), (404224,93), (405251,78)} 

3 {(221211,99), (238204,94), (238206,94)} 

3 {(221210,87), (402204,05), (405212,79)} 

8:9:10 

3 {(402204,08), (402205,02), (406215,79)} 

3 {(221210,03), (234203,85), (405237,93)} 

6 {(404224,01), (404224,94),  

(405202,82), (405234,82),  

(405251,94), (406235,89)} 

3 {(238223,04), (238223,79), (238223,88)} 

3 {(405200,89), (405203,02), (405209,81)} 

3 {(238224,94), (238231,87), (404207,84)} 

9:10:11 

3 {(238202,83), (238204,01), (238208,99)} 

3 {(402222,01), (404206,91), (406202,94)} 

3 {(221201,83), (238206,83), (405232,08)} 

3 {(221211,83), (233218,91), (405219,05)} 

3 {(233214,01), (402203,80), (408202,01)} 

10:11:12 

4 {(233224,99), (238223,79), (238223,88), 

(405214,01)} 

eps=0.1, MinPts=2, min_sup=3 and pattern length>=3. 

Table VI.2: LCC of Dissolved Oxygen.
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LCC of 

Temperature 

Sum 
Support List (site, year) 

1:2:3:4 2 {(238208,84), (405202,77)} 

1:2:3:4:5:6:7:

8

2
{(5678,92), (5681, 92)} 

2 {(405212,86), (405234,87)} 
2:3:4:5 

2 {(221201,96), (406207,95)} 

2 {(234201,02), (404207,94)} 
3:4:5:6 

2 {(233214,90), (405202,90)} 

2 {(234203,90), (405240,92)} 

3:4:5:6:7:8 3 {(5654,92), (5678,92), 

(5681,92)} 

2 {(238231,87), (405214,86)} 

2 {(233218,93), (405212,79)} 

2 {(221211,98), (233214,89)} 

2 {(402222,89), (405200,77)} 

2 {(233228,02), (405251,94)} 

2 {(238205,96), (404210,86)} 

4:5:6:7 

2 {(221212,82), (405212,96)} 

2 {(234203,90), (405240,92)} 
4:5:6:7:8 

2 {(234201,89), (404210,92)} 

2 {(233224,77), (404207,89)} 

2 {(233215,88), (406202,92)} 

2 {(402204,97), (405214,85)} 

2 {(233215,80), (238202,95)} 

2 {(405202,87), (406214,78)} 

2 {(234201,89), (404210,92)} 

2 {(52900,97), (238223,96)} 

4 {(5654,92), (5678,92),  

(5681,92), (228209, 90)} 

2 {(233211,94), (405232,93)} 

2 {(402205,04), (405209,93)} 

5:6:7:8 

2 {(5678,86), (238224,91)} 

2 {(233218,87), (405246,87)} 
5:6:7:8:9 

2 {(405234,84), (405234,86)} 

eps=0.1, MinPts=2, min_sup=2 and pattern length >=4 

LCC of 

Temperature

Sum 
Support List (site, year) 

2 {(402204,89), (405204,89)} 

2 {(404207,89), (404214,83)} 

2 {(238223,95), (238228,00)} 

2 {(238231,86), (404207,92)} 

2 {(228207,93), (405240,91)} 

2 {(405200,94), (405204,86)} 

2 {(405231,90), (406207,92)} 

2 {(234203,02), (405232,93)} 

2 {(406214,80), (406224,80)} 

2 {(238204,88), (405212,93)} 

4 {(233211,87), (233218,87),

 (404207,96), (405246,87)} 

2 {(233214,99), (402222,81)} 

2 {(404210,92), (405204,80)} 

6:7:8:9 

2 {(228209,89), (233218,79)} 

6:7:8:9:10 2 {(221201,92), (221212,90)} 

3 {(52900,85), (238228,77), 

(405214,95)} 

2 {(404214,95), (405204,85)} 

2 {(405205,84), (405209,86)} 

2 {(405202,78), (406202,86)} 

2 {(233214,80), (405212,91)} 

2 {(221201,92), (221212,90)} 

2 {(238231,97), (405218,84)} 

7:8:9:10 

2 {(233215,81), (238224,98)} 

7:8:9:10:11 2 {(221201,78), (406214,92)} 

2 {(221201,78), (406214,92)} 

2 {(52900,85), (405214,79)} 

2 {(233214,85), (402222,81)} 

2 {(406202,79), (406207,78)} 

2 {(233228,97), (405219,98)} 

2 {(233211,84), (405202,78)} 

2 {(405234,84), (406215,91)} 

2 {(405202,86), (405232,89)} 

8:9:10:11 

2 {(238204,98), (406207,77)} 

9:10:11:12 2 {(406202,81), (406214,94)} 

Table VI.3: LCC of Temperature.
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LCC of Turbidity Sum Support List (Site, Year) 

2 {(233218,99), (405202,90)}
1:2:3:4

2 {(238206,80), (238208,09)}

2 {(233215,08), (238224,01)}
2:3:4:5

2 {(221207,77), (405264,06)}

2 {(221210,93), (238236,96)}
2:3:4:5:6

2 {(221207,92), (405219,99)}

2 {(221210,93), (238236,96)}

2 {(221207,92), (405219,99)}

2 {(405258,96), (405264,87)}

2 {(221209,80), (234608,92)}

3:4:5:6

2 {(221201,95), (405258,92)}

3:4:5:6:7 2 {(5654,96), (5678,96)}

4:5:6:7 2 {(221207,82), (238237,06)}

eps=0.1, MinPts=2, min_sup=2 and pattern length>=4 

Table VI.4: LCC of Turbidity.

Turbidity and Total Phosphorus curves show less seasonal patterns spatially and temporally,

since the number of supports for a LCC pattern is almost 2.

We can also detect some rare events by setting a very great pattern length. For example,

in Table VI.5, two WIOs: (site 238202, 2007) and (site 238228, 2007) are supports for the

longest LCC pattern (a whole year pattern). Another example is “6:7:8:9:10:11:12”, which

is supported by 14 WIOs, with the greatest number of supports. But the point real means to

decision makers is that site 234608 supports this LCC pattern of PH for 9 years: 1985, 1993,

1995, 1995, 1997, 1999, 2002, 2005 and 2007. Also, the same site: 238231 supports LCC

pattern of Nitrates “8:9:10:11:12” for consecutive 5 years: from 1990 to 1994 as shown in

Table VI.6.
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LCC of PH Sum Support List (Site, Year) 

2 {(238202,92), (238228,97)} 
1:2:3:4:5:6:7 

2 {(221207,03), (405232,81)} 

2 {(234200,88), (405214,85)} 
1:2:3:4:5:6:7:8 

2 {(238224,87), (238224,99)} 

1:2:3:4:5:6:7:8:9 2 {(233218,97), (234201,88)} 

1:2:3:4:5:6:7:8:9:10:11:12 2 {(238202,07), (238228,07)} 

1:3:4:5:6:7:8 3 {(221201,79), (221209,79), (405218,77)} 

2 {(238202,92), (238228,91)} 

5 {(234201,78), (234201,97), (238202,01), (402222,82), (406213,99)} 

3 {(233215,98), (238228,96), (238228,98)} 

2 {(238202,96), (238205,07)} 

3 {(233215,02), (233215,08), (233215,88)} 

2:3:4:5:6:7:8 

2 {(404218,96), (406202,84)} 

2 {(233218,97), (234201,88)} 

2 {(404218,06), (405212,78)} 2:3:4:5:6:7:8:9 

2 {(234200,79), (402222,81)} 

2:3:4:5:6:7:8:9:10 2 {(22000,92), (234606,97)} 

2:3:4:5:6:7:8:9:10:11 2 {(404219,95), (405204,81)} 

2:3:4:5:6:7:8:9:10:11:12 2 {(238202,07), (238228,07)} 

9 {(234200,79), (234201,79), (234201,80), (238202,88), (238228,84), (238228,88), (402222,81), (404219,95), (405204,81)} 
3:4:5:6:7:8:9 

7 {(5654,02), (405204,80), (405214,85), (405232,07), (405240,78), (406202,97), (406215,77)} 

3:4:5:6:7:8:9:10 2 {(238228,97), (406213,08)} 

3:4:5:6:7:8:9:10:11 3 {(402222,81), (404219,95), (405204,81)} 

3:4:5:6:7:8:9:10:11:12 2 {(238202,07), (238228,07)} 

2 {(402203,80), (402204,82)} 
4:5:6:7:8:9:10 

6 {(234201,05), (402203,81), (402204,81), (405234,82), (406207,04), (406214,01)} 

2 {(238202,07), (238228,07)} 
4:5:6:7:8:9:10:11:12 

3 {(234606,93), (234608,02), (234608,85)} 

3 {(5254,95), (238228,94), (406207,77)} 

9 {(221210,96), (233217,05), (234201,05), (234201,98), (238202,05), (238223,88), (405212,78), (406207,04), (406215,01)} 

2 {(5678,96), (233215,04)} 
5:6:7:8:9:10:11 

2 {(405200,05), (405205,99)} 

2 {(402223,92), (405264,92)} 

4 {(5254,02), (233218,05), (233224,84), (405214,84)} 5:6:7:8:9:10:11:12 

2 {(238202,07), (238228,07)} 

4 {(5254,02), (233218,05), (233224,84), (405214,84)} 

5 {(402222,81), (404219,95), (405219,79), (406215,02), (406215,77)} 

2 {(402223,92), (405264,92)} 

9 {(3361,88), (221211,79), (238202,98), (238206,97), (238228,98), (402203,81), (402204,81), (404219,97), (406207,05)} 

14 {(22000,95), (22000,99), (234606,05), (234606,93), (234606,99),(234608,02),(234608,05),(234608,07), 

(234608,85),(234608,93),(234608,94), 234608,95), (234608,97), (234608,99)} 

2 {(22000,02), (22000,85)} 

6:7:8:9:10:11:12 

2 {(221209,79), (406202,07)} 

eps=0.1, MinPts=2, min_sup=2 and pattern length>=7 

Table VI.5: LCC of PH.
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LCC of Nitrates Sum Support List (Site, Year) 

2 {(238224,08), (238231,95)} 
2:3:4:5:6 

2 {(234203,91), (409216,93)} 

2:3:4:5:6:7:8:9:10:11:12 3 {(238231,91), (238231,92), (238231,94)} 

4:5:6:7:8:9:10:11:12 4 {(238231,91), (238231,92), (238231,93), (238231,94)} 

8:9:10:11:12 7 {(238231,90), (238231,91), (238231,92), (238231,93), (238231,94), (406214,94), (409204,97)}

eps=0.001, MinPts=2, min_sup=2 and pattern length >=5. 

Table VI.6: LCC of Nitrates.

LCC of Total 

Phosphorus 

Sum 
Support List (Site, Year) 

1:2:3:4 2 {(238228,89), (238228,94)} 

3 {(221210,10), (238231,97), (405205,08)} 

2 {(238236,92), (405258,92)} 3:4:5:6

2 {(238224,99), (405205,94)} 

3:4:5:6:7:8:9 2 {(238231,92), (238231,93)} 

2 {(238236,93), (405214,91)} 

2 {(238236,08), (406215,98)} 

2 {(405214,06), (405219,06)} 

2 {(52900,96), (234608,96)} 

2 {(408202,93), (408202,94)} 

2 {(221207,07), (238237,05)} 

2 {(405203,01), (405219,94)} 

4:5:6:7

2 {(238231,00), (238231,05)} 

4:5:6:7:8 2 {(234608,92), (408202,95)} 

4:5:6:7:8:9 2 {(238231,92), (238231,93)} 

5:6:7:8 2 {(52900,91), (408202,91)} 

2 {(234608,85), (234608,99)} 
7:8:9:10 

2 {(238231,08), (238231,91)} 

3 {(221210,04), (221210,91), (238231,07)} 

2 {(405264,95), (408202,94)} 8:9:10:11 

2 {(221210,97), (405258,92)} 

2 {(405203,93), (405231,90)} 
9:10:11:12 

2 {(405205,96), (405231,94)} 

eps=0.001, MinPts=2, min_sup=2 and pattern length>=4. 

Table VI.7: LCC of Total Phosphorus.
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VI.2.4 Applications of LCC Patterns

In summary, LCC patterns have extensive applications. We can query LCC patterns to

achieve a group of supporters; this is very useful. We can recursively use the CTP algorithm

in the CIRCE method to analyze spatial similarity of WIOs in the same LCC support list. Or,

we can go on to find seasonal rare patterns in an LCC support list by using the EOAFREE

method. Moreover, two more interesting application scenes of the LCC patterns are to predict

the future trends and to estimate the missing points. For example, suppose a user in June

2010, given already known six points of a turbidity curve from January to June in 2010, we

can query an LCC pattern with year 2010 as one of the supports for this half a year’s curve,

and then choose the most similar year, say 1998 in the same site, from the support list as the

counterpart to predict the trend of 2010’s curve in July or onwards. Also, suppose the data

in July or onwards are missing, we can use the same method to estimate the missing points.

VI.3 Finding Spatio-Temporal Rare Patterns for Water Re-

source Decision Support

In Chapter V, we focus on evaluating the time efficiency of our EOAFREE method. Also,

we have evaluated the effectiveness of the EOAFREE method by using the pollution events

(negative rare events) that have been found. Actually, for decision makers, both negative

and positive rare events are critical. The positive rare events (or factors) that increase the

water quality are very useful, since we can learn useful experiences from the rare positive
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events and then popularize their effectiveness to cure pollution in other sites. Therefore,

in our SOMAwater prototype system, we provide several query functions to enhance the

information to assist water resource decision making.

VI.3.1 Water Rare Patterns

Given a set of rare patterns, denoted by R = {R1, R2, ...Rk}, where Ri (i ∈ [1, k]) is a

rare pattern denoted by a 5-tuple (sitei, timei, H−changei, V −changei,WQIi), we define

several concepts about rare patterns as follows:

DEFINITION 27. A Positive Rare Pattern is a rare pattern in which H − changei > 0 and

V − changei > 0.

DEFINITION 28. A Negative Rare Pattern is a rare pattern in which H − changei < 0 and

V − changei < 0.

DEFINITION 29. A Month-Decrease Rare Pattern is a rare pattern in which H−changei <

0 and V − changei > 0.

DEFINITION 30. A Year-Decrease Rare Pattern is a rare pattern in which H−changei > 0

and V − changei < 0.

These four rare patterns are classified by H − change and V − change. Positive rare

patterns are very useful for evaluating pollution control effectiveness, such as wastewater

treatment and in-stream purification system [SLJ+02], while negative rare patterns are used
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to detect the pollution events that we have presented in Chapter V. Month-Decrease rare

patterns are so called since the decrease of water quality is related to seasons. Year-Decrease

rare patterns may also be evidence to support some positive rare patterns happening in the

last year.

Then, according to the applications, there are following interesting rare events:

DEFINITION 31. A Continual Rare Event is a sequence of consecutive months in a year

of (years for the same month) that is supported by a group of rare patterns happening at the

same site.

DEFINITION 32. A Simultaneous Rare Event is a month supported by a group of rare

patterns happening at multiple sites.

DEFINITION 33. A Global Rare Event is an exceptional object that is detected by the

IEOAN algorithm, given the input as the rare pattern set R.

DEFINITION 34. A Seasonal Rare Event is a group of rare patterns related to a month and

rare patterns happening in any year and at any sites that can support this pattern.

The above four types of rare events are interesting for decision makers. Continual rare

events generally indicate that some factors decrease or increase the water quality contin-

uously, and if this factor does not disappear, the water quality continues to change. For

example, if an oil tank leakage decreases the water quality of a nearby river, we may detect a

continual rare pattern. Simultaneous rare events generally are more interesting than the rare
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patterns happening in a single site; they are useful evidence to help analyze the real reasons

for changing water quality. We can analyze common patterns based on the other characteris-

tics of those sites to find the reasons. Not all local rare patterns that are discovered at a local

site are global rare patterns, since the same rare patterns may happen at different sites and

from a global view, they are not exceptional. Seasonal rare events are helpful to analyze the

relationship between seasons and rare events.

VI.3.2 Rare Pattern Queries

We take an example set of rare patterns to explain how to query the three types of rare

patterns. The rare patterns detected in the experiments in Chapter V based on exceptional

ranking 7 are shown in Table VI.8. Here, we list all the negative, positive, Month-Decrease

and Year-Decrease rare patterns.

Querying Continual Rare Patterns

From Table VI.8, the continual rare patterns are shown in Fig. VI.13. Fig. VI.13 (a) and

(b) show a continual rare pattern in consecutive months in a year and a continual rare pattern

in consecutive years for a month, respectively.

Querying Simultaneous Rare Patterns

From Table VI.8, the simultaneous rare patterns are shown in Fig. VI.14. Querying

simultaneous rare patterns involves two functions: (1) to find the common factors that cause

homogenous rare patterns, such as the positive rare patterns in Fig. VI.14 (b) and Year-
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Basin Site Time H-change V-change WQI 

408202 Feb-94 0 21 55 
Avoca

408202 Dec-95 20 -3 57 

Barwon 233224 Apr-93 10 43 38 

404207 Dec-78 41 18 39 

404210 May-81 -31 -11 69 

404210 Feb-88 39 41 29 

404210 Mar-88 -34 2 68 

404210 May-88 16 34 36 

404216 Jan-09 14 49 44 

Broken 

404712 Mar-09 8 42 52 

228204 Feb-86 -48 -19 74 

228204 Jan-87 25 46 30 

228204 Mar-87 -27 21 55 

228204 Jan-88 0 -37 76 

228204 Mar-88 -47 -37 76 

Bunyip 

228213 Sep-78 -39 -30 75 

Campaspe 406202 Jul-09 36 -11 55 

234201 Aug-04 -34 -5 64 
Corangamite 

234203 Apr-81 33 5 42 

Basin Site Time H-change V-change WQI

221212 Mar-77 4 38 44 

221212 Feb-78 36 17 46 
East

Gippsland
221212 Jul-78 10 49 40 

238204 Dec-86 -36 -18 68 

238231 Nov-81 -39 0 65 

238231 Aug-82 -12 -40 65 

238231 Aug-83 35 14 25 

Glenelg

238231 Dec-08 36 36 58 

405204 Jun-78 -27 -41 71 

405204 Dec-79 34 -9 43 

405232 Feb-88 36 40 35 
Goulburn 

405232 Jul-09 24 -19 62 

402203 Aug-79 -43 -37 88 

402204 Feb-84 -33 1 61 

402204 May-88 -34 -29 82 

402204 May-91 -26 -33 84 

402205 Jul-09 23 -19 65 

Kiewa

402222 Dec-79 -12 -31 76 

Table VI.8: Rare Patterns (Ranking 7).

404210 Feb-88 39 41 29 
Broken 

404210 Mar-88 -34 2 68 

(a) A continual rare pattern in consecutive months in a year. 

238231 Aug-82 -12 -40 65 
Glenelg

238231 Aug-83 35 14 25 

(b) A continual rare pattern in consecutive years for a month. 

Figure VI.13: Continual Rare Patterns.
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Goulburn 405204 Dec-79 43 34 -9 

Kiewa 402222 Dec-79 76 -12 -31 

(a) Year-Decrease vs. Negative Rare Patterns. 

Broken 404210 Feb-88 29 39 41 

Goulburn 405232 Feb-88 35 36 40 

(b) Positive Rare Patterns. 

Broken 404210 Mar-88 68 -34 2 

Bunyip 228204 Mar-88 76 -47 -37 

(c) Month-Decrease vs. Negative Rare Patterns. 

Broken 404210 May-88 36 16 34 

Kiewa 402204 May-88 82 -34 -29 

(d) Positive vs. Negative Rare Patterns. 

Campaspe 406202 Jul-09 55 36 -11 

Goulburn 405232 Jul-09 62 24 -19 

Kiewa 402205 Jul-09 65 23 -19 

(e) Year-Decrease Rare Patterns. 

Figure VI.14: Simultaneous Rare Patterns.

Decrease rare patterns in Fig. VI.14 (e); (2) to compare factors that cause heterogenous rare

patterns, such as the Year-Decrease vs. negative rare patterns in Fig. VI.14 (a), Month-

Decrease vs. negative rare patterns in Fig. VI.14 (c) and positive vs. negative rare patterns

in Fig. VI.14 (d).

Querying Seasonal Rare Patterns

We also can query seasonal rare patterns from Table VI.8. The results are shown in Fig.

VI.15. We can observe from Fig. VI.15 that most of the rare patterns happen in December

and February, while the least rare patterns happen in October, September, November and

June. Also, negative rare patterns (38%) and positive rare patterns (40%) are the majority,

being around 78% of the total number of rare patterns. The experimental study in Chapter
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Month Total Rare Patterns Negative Positive Month-Decrease Year-Decrease 

Jan. 3 1 2 0 0 

Feb. 6 1 4 1 0 

Mar. 5 1 2 2 0 

Apr. 2 0 2 0 0 

May 4 3 1 0 0 

Jun. 1 1 0 0 0 

Jul. 4 0 1 0 3 

Aug. 4 3 1 0 0 

Sep. 1 1 0 0 0 

Oct. 0 0 0 0 0 

Nov. 1 1 0 0 0 

Dec. 6 2 2 0 2 

Sum 37 14 15 3 5 

Figure VI.15: Seasonal Rare Patterns.

V has validated the effectiveness of using negative rare patterns to detect pollution events.

Here, we say that the positive rare patterns are useful to help learn about discovering anti-

pollution events.

Querying Global Rare Patterns

Querying global rare patterns is to study the relationship between the global exceptional

water pollution events for 93 sites and the local exceptional water pollution events for each

site. As we believe “exception” is a comparative concept, exceptional objects in one site’s

dataset may not be exceptional in a global dataset and we aim to find some general rules for

environmental rare event detection applications. Different from querying local rare patterns,

we develop a procedure to query global rare patterns, which includes the following steps:

Step 1: Use the EOAFREE method for a river basin, i, and detect the exceptional objects

as rare patterns that are put into a rare pattern set: Ri.
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Avoca Water Quality Data 
EOAFREE 

Rare Pattern Set 1

Barwon Water Quality Data 
EOAFREE 

Rare Pattern Set 2

Broken Water Quality Data 
EOAFREE 

Rare Pattern Set 3

Bunyip Water Quality Data 
EOAFREE 

Rare Pattern Set 4

Campaspe Water Quality Data 
EOAFREE 

Rare Pattern Set 5

Corangamite Water Quality Data 
EOAFREE 

Rare Pattern Set 6

EastGipps Water Quality Data 
EOAFREE 

Rare Pattern Set 7

Glenelg Water Quality Data
EOAFREE 

Rare Pattern Set 8

Goulburn Water Quality Data 
EOAFREE 

Rare Pattern Set 9

Kiewa Water Quality Data 
EOAFREE 

Rare Pattern Set 10

IEOAN 
Global Rare 

Patterns

Figure VI.16: Flowchart of Detecting Global Rare Patterns.

Step 2: Combine all of k rare pattern sets for k river basin into one rare pattern set:

R = R1 ∪R2... ∪Rk.

Step 3: Use the IEOAN algorithm again to detect and rank global rare patterns from R.

A flowchart is shown in Fig. VI.16, where local rare patterns are found by the EOAFREE

method firstly in 10 river basins and then the IEOAN algorithm runs again to detect global

rare patterns.

The global rare patterns for these 10 river basins are shown in Table VI.9 and the distri-

bution of (H-change, V-change) is shown in Fig. VI.17. We can see from Table VI.9 that

there are 13 global rare patterns, being 35% of total 37 local rare patterns.
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Basin Site Time WQI H-change V-change 

Avoca 408202 Feb-94 55 0 21 

Avoca 408202 Dec-95 57 20 -3 

Broke 404210 May-88 36 16 34 

Bunyip 228204 Feb-86 74 -48 -19 

Bunyip 228204 Jan-87 30 25 46 

Bunyip 228204 Mar-87 55 -27 21 

Bunyip 228204 Jan-88 76 0 -37 

Corangamite 234203 Apr-81 42 33 5 

Glenelg 238204 Dec-86 68 -36 -18 

Glenelg 238231 Aug-82 65 -12 -40 

Goulburn 405204 Jun-78 71 -27 -41 

Kiewa 402204 May-91 84 -26 -33 

Kiewa 402222 Dec-79 76 -12 -31 

Table VI.9: Global Rare Patterns (Ranking 7).
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Figure VI.17: Results of Global Rare Patterns.
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Figure VI.18: Rare Pattern Clusters.

Querying Spatial Similarity

Although we naturally group rare patterns by river basins, spatial similarity analysis is

also important. For example, we group all of the rare patterns in Table VI.8 into clusters

based on the DBSCAN clustering algorithm as shown in Fig. VI.18. Rare patterns in the

same river basin naturally form a cluster, such as 4 rare patterns in Kiewa in Cluster 2, 2

rare patterns in Glenelg in Cluster 5 and 2 rare patterns in Bunyip in Cluster 4. Meanwhile,

using spatial similarity analysis, we also merge rare patterns in different river basins into

one cluster. For example, 4 rare patterns in Broken, 2 rare patterns in Goulburn and 1 rare

pattern in Campaspe are grouped into Cluster 1 and 2 rare patterns in Corangamite and 1

rare pattern in Barwon are grouped into Cluster 3. Each of Avoca and East Gippsland has 1

rare pattern separated naturally. We can use the methods to detect common and rare patterns

intra a spatial cluster, the same as we have done intra a river basin.
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VI.4 Summary

In this chapter, we have presented the SOMAwater prototype system that aims to query

Longest Common Curve (LCC) patterns and rare patterns to support decision making. LCC

patterns and rare patterns of water quality curves are important, since they can help deci-

sion makers focus only on the valuable datasets and discover spatiotemporal water patterns

efficiently and automatically, as well as in more detail. The main techniques adopted in

the SOMAwater prototype system are the CIRCE method in Chapters III and IV and the

EOAFREE method in Chapter V. Note that the efficiency and accuracy of the CIRCE method

and the EOAFREE method have been validated in Chapter III, Chapter IV and Chapter V.

This chapter focuses on illustrating querying LCC patterns and several rare patterns (e.g.,

continual,simultaneous, seasonal and global rare patterns) from water quality data by using

extensive examples. We have conducted a massive experimental study based on a water

quality dataset of 93 sites distributed in 10 river basins in Victoria, Australia between 1975

and 2010 for querying LCC patterns while taking advantage of the experimental results in

Chapter V to classify rare patterns further.



Chapter VII

Conclusions

VII.1 Summary of Contributions

Water is becoming a highly valued resource, not only in Australia, but in many countries

around the world. This value is driving the need to improve the precision and efficiency of

water resource management practices. With the help of advanced tools (e.g. sensors) and

protocols for collecting water resource data, water data can be collected by closely monitor-

ing the environmental parameters related to water resources. Already known spatiotemporal

water quality data analysis methods are generally based on statistical techniques and spa-

tiotemporal patterns are recognized manually or semi-manually; thus they cannot handle a

large number of water data efficiently and in detail. State-of-the-art spatiotemporal data min-

ing algorithms cannot directly satisfy the efficient and accurate mining of water quality data

due to uncertainty and heterogeneity problems in the real world water quality dataset.

This dissertation have addressed several vital issues associated with improving the preci-

sion and efficiency of querying critical events from spatiotemporal datasets being used in the

170
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models underpinning many of the water management strategies and planning decisions, that

is, to improve data quality and completeness by identifying and correcting data inaccuracies

in datasets, to remove redundant data points to compact the data volume and to detect critical

events such as river pollution. These are also general problems in the spatiotemporal data

mining field that we present from two aspects. The first problem is to discover common pat-

terns from an uncertain, even imprecise, and huge volume of spatiotemporal data. However,

already known algorithms for processing spatiotemporal data only can compress data but

cannot correct the imprecise critical points on a data stream at the same time. The second

problem is to detect critical events from a heterogeneous spatiotemporal database. Critical

events are generally rare events. Although many data mining algorithms are developed for

finding common patterns, few can efficiently detect rare patterns by analyzing exceptional

objects in the spatiotemporal database.

We have developed two semantics-oriented methods: the CIRCE method which includes

the MicPasts and the CIRCE core algorithm for mining common patterns and the EOAFREE

method for mining rare patterns from water quality dataset. We also implement the two

methods into a SOMAwater prototype system to satisfy the goal of improving the precision

and efficiency of querying common and rare patterns from spatiotemporal datasets to sup-

port better decision making. First, a MicPasts method explored semantics related to space

and time that are discovered in this dissertation through mining the original spatiotempo-

ral data to help remove Uncertainty due to Sampling Error (SE uncertainty). Then, we
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extended the MicPasts method to the CIRCE method by replacing the DP algorithm by a

novel CIRCE core algorithm to remove Uncertainty due to Discrete Sampling (DS Uncer-

tainty) of the original data in order to improve the precision of the data and compact the data

volume. Meanwhile, a novel Exceptional Object Analysis for Finding Rare Environmental

Events (EOAFREE) method was provided to detect rare events (such as water pollutions).

The EOAFREE method comprises three major steps. First, it provides an approach to ex-

plore semantics based on domain knowledge to unify heterogeneous real world data that are

collected by different organizations. For example, a water quality index can be used to de-

note water quality instead of multiple different water quality parameters. Second, it defines

changes in a data object in a spatiotemporal database by considering both the difference be-

tween consecutive points on the same stream and the difference between two data objects on

the two streams at the same season in two consecutive years. Third, a proposed Improved

Exceptional Object Analysis based on Noises (IEOAN) algorithm clusters objects based on

the objects’ changes, and then distinguishes those data objects (or data points) that cannot be

grouped into any clusters as exceptional objects. Interestingly, opposite to the already known

Principal Component Analysis that ranks principal components, IEOAN ranks exceptional

objects.

The findings of this work include following three aspects:

• First, the CIRCE method [HZHa] including both the MicPasts method (also called

LCRTurning in our paper in [HZHD11]) and the CIRCE core algorithm, as well as
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the IEOAN algorithm [HZHb], are general solutions proposed for mining common

and rare patterns from uncertain spatiotemporal data. The MicPasts method discovers

semantic places by summarizing turning points. The CIRCE core algorithm is devel-

oped for improving the quality and compressing the volume of spatiotemporal data.

The IEOAN algorithm is proposed for discovering and ranking exceptional objects in

a spatiotemporal database.

• Second, the EOAFREE method [HZHb] is developed especially for mining water data

in order to detect critical water events (e.g. water pollution).

• Third, the SOMAwater prototype system that is built on the aforementioned novel

methods and algorithms can be used to automatically discover spatiotemporal com-

mon patterns (e.g., Longest Common Curve patterns) and rare patterns (e.g. contin-

ual, simultaneous, seasonal and global rare patterns) from water quality data and to

support decision making for effective water management. Compared to manual and

semi-manual spatiotemporal pattern analysis, SOMAwater can help decision makers

to focus only on the valuable datasets and discover spatiotemporal water patterns effi-

ciently and automatically, as well as in more detail.

VII.2 Future Work

We have introduced the mechanism (based on the CIRCE method and the EOAFEE

method) and the whole graph of our SOMAwater prototype system that are used to support
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decision making in the water resources management field. In our future work, we will extend

it to a more general data mining tool and support more applications from the following

aspects:

• We will extend the Detecting Inflexions and Computing Missing Inflexions (DICMI)

algorithm in the CIRCE core to support more methods to compute the missing inflex-

ions.

• We will provide interfaces to embed more clustering algorithms, such as K-Means

[HW79], in Clustering Turning Points (CTP) module.

• We will provide services to query more common patterns, such as Sequential PAttern

(SPA) etc.

• We will provide a general interface to embed more clustering algorithms, including

those that do not force every data instance to belong to a cluster, such as ROCK

[GRS00], Shared Nearest Neighbor (SNN) clustering [ESK03] and Findout algorithm

[YQLZ02], into the IEOAN module.
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