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Abstract

The accuracy and efficiency of computing multiple integralsis a very important prob-

lem that arises in many scientific, financial and engineeringapplications. The research

conducted in this thesis is designed to build on past work anddevelop and analyze new

numerical methods to evaluate double integrals efficiently. The fundamental aimis to

develop and assess techniques for (numerically) evaluating double integrals with high

accuracy.

The general approach presented in this thesis involves the development of new multi-

variate approximations from a generalaised Taylor perspective in terms of Appell type

polynomials and to study their use in multi-dimensional integration. The expectation is

that the new methods will provide polynomial and polynomial-like approximations that

can be used for application in a straight forward manner withbetter accuracy. That is, we

aim to devise and investigate new multiple integration formulae and as well as provide

information ona priori error bounds.

A further major contribution of the work builds on the research conducted in the field

of Grüss type inequalities and leads to a new approximation of the one and two dimen-

sional finite Fourier transform. The approximations are in terms of the complex exponen-

tial mean and estimate of the error of approximation for different classes of functions of

bounded variation defined on finite intervals.

It is believed that this work will also have an impact in the area of numerical multidimen-

sional integral evaluation for other integral operators.
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CHAPTER 1

I NTRODUCTION

1.1 Background

Integration is an important, indeed fundamental part of countless problems of interest. In

practice, integrals are not known exactly and require numerical treatment. This procedure

is known asnumerical integrationor quadrature. Much effort over the past 150 years has

been expended into the search for efficient integration routines and an analysis of their

accuracy. The bulk of this work considered the treatment of single dimensional integrals.

The problem of two or higher dimensions is much more difficult. Notwithstanding the

contributions of a number of authors over the last 30 years, there is still little knowledge

of multi-dimensional integration in comparison with the univariate quadrature with much

scope for further development.

The accurate and efficient evaluation of multiple integralsis a very important problem

that arises in many scientific, financial and engineering applications. The principal idea

behind this research is to build on past work and develop and analyze numerical methods

to evaluate double integrals efficiently. Thefundamental aimis to develop and assess

techniques for numerically evaluating multidimensional integrals.

The general method presented in this thesis involves the development of new multivariate

approximations, known as Taylor like approximations and tostudy their use in integra-

tion. It is expected that the new methods will provide polynomial and polynomial-like

3



4 Chapter 1. Introduction

approximations that can be used for application in a straight forward manner with better

accuracy . That is, the intention behind this research is to devise and investigate new

multiple integration formulae and as well as providea priori error information. A similar

method has been used with much success for one dimensional problems. It is believed

that this work will also have an impact in the area of numerical multidimensional integral

evaluation for other integral operators.

This research aims to extend the work for multidimensional integration and hence its

impact on real world problems. In particular, the methodology to be created involves

developing a general Taylor-like expansion for multivariate functions and representing

the remainder in an integral form, which will allow a better estimation using the The-

ory of Integral Inequalities. This will provide new tools for the numerical evaluation of

double integrals via Bernoulli and Euler polynomials, the properties of which are well

documented in the literature.

The research will also give numerical approximations that can be used in the numeri-

cal analysis of partial differential equations, or integral equations for two independent

variables, and provide new tools for the approximation of integral operators expressed in

terms of double integrals (for example, Fourier transform in two dimensional optics or

Hankel transforms, etc.).

In addition, this research focuses on the symbolic computation of Appell polynomials

using the computer algebra system “Maple" (Charet al. (1991)). The work will be

tested against a comparable procedure for different examples of Appell polynomials and

indeed comparison with the more common multidimensional integration techniques will

be made. The procedures will be implemented and some software developed.

Numerical integration of univariate integrals has a long history. Classical rules such as

the trapezoidal ( Lyness and Genz (1980)) and Simpson rule (Kohler (1991)) calculate the

integral exactly for polynomials of degree 1 and 3 respectively. High order rules have been

developed to give exact results for arbitrary order polynomials (known as Newton-Cotes

integration).
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Assessment of the error of such approximations is based on Taylor’s series. For example,

the error in the integration
∫ b

a
f(x)dx for Simpson’s rule is bounded by

(b − a)5

2880

∥

∥f (4)
∥

∥

∞

where
∥

∥f (4)
∥

∥

∞ is the maximum value of the 4th derivative of the function.

In 1975, G. N. Milovanovíc generalised the inequality in Theorem 2.1 due to Ostrowski

(1938) to the case wheref is a function of several variables.

Recently, the Research Group in Mathematical Inequalitiesand Applications (RGMIA)

within the School Computer Science and Mathematics in Victoria University, has carried

out a considerable amount of work in the application of the Modern Theory of Inequalities

to obtaina priori bounds of a variety of Newton-Cotes rules (Anastassiou and Dragomir

(2001), Ceroneet al. (1999a), Ceroneet al. (2000), Cerone (2001), Dragomir and Wang

(1998a), Roumeliotiset al. (1999)) for which the classical rules of mid-point, trapezoidal

and Simpson’s are special cases. Error bounds in terms of a variety of norms (a term

used to describe a measure of the behavior of the function) were provided (see Barnett

and Dragomir (2001), Ceroneet al. (1999a), Dragomir (2001a), Dragomir and Wang

(1998a)).

In another important development, Matić et al. (1999) derived an estimation using a

perturbed generalized one-dimensional Taylor’s formula.Using his theorem any integral
∫ b

a
f(t)dt can be expressed as follows

∫ b

a

f(t)dt = An(f ; a, x) + Rn(f ; a, x)

where the approximation to the integralAn(f ; a, x) can be evaluated, and the errorRn(f ; a, x)

is a one dimensional integral of a product Appell polynomial(Appell 1880) and the

(n + 1)th derivative of the function to be integrated. The importanceof this result is

again the ability to determinea-priori error bounds which are also be sharper than the

classical bounds in some cases.

For multiple integrals the pioneering work was done by Stroud (1971). More recently,

Cools and his group (Coolset al. (1997)) (Numerical Integration, Nonlinear Equation

and Software – NINES), have developed CUBPACK++ which is specifically designed
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for double integrals over a variety of regions (cubature). Their work can be seen as an

extension of Stroud’s work (Stroud (1971)) (see also Cools (1999)). The NINES group

presented both theoretical and practical aspects of multidimensional integration, a com-

prehensive bibliography, and provided cubature rules for different shaped regions. As-

sessment of the bounds is done via a Taylor-like expansion due to Sard (Sard (1963))(see

also Stroud (1971, p. 138)). However these bounds cannot be determined prior to estimat-

ing the integral. There are, of course, other methods that have been developed to estimate

multiple integrals (see Hannaet al. (2000), Hannaet al. (2002b) and Sloan and Lyness

(1989)). The Monte Carlo Method (MCM) is one of the most popular methods used. The

basic idea in MCM is to replace an analytic problem with a probabilistic problem of the

same solution, and then investigate the latter problem by statistical simulation. These are

useful for functions whose convergence is slow, for integral domains that are irregular, or

for larger dimensions.

Other methods have been stated for decreasing the error in the MCM. All such approxima-

tions are called Quasi-Monte Carlo Methods. Many differentQuasi-Monte Carlo Meth-

ods were developed by Haber (see Haber (1967), Haber (1970)). An extensive theory of

number-theoretic-methods (NTM) is given by Korbove (Korobov (1963)). Recently, new

references for NTM have been given by Fang and Wang (1994), Fang and Zhang (1999).

Some other numerical methods and techniques have been used for multidimensional in-

tegration. For example, adaptive quadrature (Rice (1973))is a powerful automatic proce-

dure for increasing the accuracy of numerical approximation to an integral by increasing

the number of samples of the integrand. It should be noted that:

(i) When an adaptive algorithm is used, the nodes at which theintegrand is evaluated

cannot be determined beforehand. Therefore, adaptive techniques are inappropriate

for tabulated integrands. An even more important consequence is thata priori error

results are not available. This contrasts with the current research which aims to

provide sucha priori bounds.

(ii) Often adaptive strategies for multiple dimensions aresimply iterated decomposi-

tion of single dimensional integrals. The work here seeks toevaluate and provide
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error bounds for multiple dimensional integrals without resorting to decompositions

since this will help in sharpening the error bound.

To date there has been little work in developinga priori bounds for multiple integrals.

It is expected that by combining the approach used by RGMIA for single integration

and generalizing the theorem given by Matić et al. (2001), that general progress in this

direction can be made.

1.2 Aims and Outcomes

The principal aim of this thesis is to develop techniques and, in particular, assess these

with regards to numerically evaluating double integrals. The discretisation will be pre-

determined to produce an estimate within given tolerance limits. The performance of the

current methodology will be evaluated with respect to two dimensions, for specificity.

The expected outcomes are:

• the development of a general Taylor-like expansion for functions of two variables

in terms of Appell type polynomials;

• the representation of the remainder in a double integral form which will allow a

better estimation using the Theory of Integral Inequalities (including Grüss type

inequalities);

• the provision of new tools for the numerical evaluation of double integrals via

Bernoulli and Euler polynomials;

• achievement of a sharper analysis of the error bounds;

• numerical approximation that can be used in the numerical analysis of partial dif-

ferential equations or integral equations for two independent variables;

• provision of new tools for approximation of integral operators expressed in terms

of double integrals (for example Fourier transform in two dimensional optics or

Hankel transforms, etc.).



8 Chapter 1. Introduction

It is believed that the current work will have a significant impact in the area of numerical

multidimensional integral evaluation.

The project achieves generalization for two arbitrary polynomials in two variables of Ap-

pell type (Appell (1880)) employing the Taylor-like formula of Sard (1963). This will play

a fundamental role in obtaining kernel theorems and error estimates for the remainders in

cubature formulae. Applications to integral operators, with a broad scope for applications

in Physics, Engineering, and other practical domains will be an outcome of the current

investigation.

1.3 Outline of the Thesis

A review of the one Ostrowski type inequalities are investigated, and some recent results

relating to it are given in Chapter 2.

In Chapter 3, the utilization of the theorem obtained by Sard(1963) to develop an inequal-

ity for Taylor’s expansion of two variables defined on a rectangular plane will be consid-

ered. Also, a development of a Grüss type inequality for double integrals where Korkine’s

identity is applied. Moreover, utilizing the result obtained to develop a perturbed version

of the Taylor expansion. An application for this expansion and some related numerical

results are demonstrated.

Chapter 4 aims to extend the work of Chapter 3 to explore a new Taylor’s expansion which

is comprised of the product of two polynomials, each of whichsatisfies the Appell con-

dition (Appell (1880)). Also, new multiple integration formulae which providea priori

error information are devised and investigated.

In Chapter 5, we consider a reverse of the Cauchy-Bunyakovsky-Schwarz integral in-

equality for complex-valued functions. A pre-Grüss type inequality is obtained when one

of the factors is known and some bounds for the second factor are provided. Numeri-

cal and graphical experiments of the obtained results are given for some functions with

different behaviours.
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In Chapter 6, some approximations of the finite Fourier transform in terms of the expo-

nential mean and estimate the error of approximation for different classes of mappings of

bounded variation defined on finite intervals for functions of one variable are established.

Also, some numerical and graphical results are shown.

The focus on approximating the two dimensional finite Fourier transform to obtain some

integral inequalities for the estimation is taken up in Chapter 7. Finally, a method is

developed which provides for the possibility to approximate the integral of the product of

functions in terms of the product of integrals is developed.





CHAPTER 2

H ISTORY OF THE OSTROWSKI I NEQUALITY

A review of the one and two dimensional Ostrowski type inequalities are investigated,

and some recent results are given in this chapter. Applications of the cubature formulas

are produced and some related numerical results are demonstrated.

The chapter is arranged in the following manner. In Section 2.2, a short definition of the

Peano Kernel is given. In Section 2.3, a review of the Ostrowski type inequalities using

different types of norms is undertaken. Also, the three point technique of the Ostrowski

inequalities in terms ofLp-norms(1 ≤ p ≤ ∞), where at most the first derivatives

are involved in the bound, are demonstrated. Some generalisations of Ostrowski type

inequalities in one dimension forn−times differentiable functions are illustrated.

In Section 2.4, results attained by utilizing the techniques used in the previous section to

obtain two dimensional Ostrowski inequalities in different types of norms, as well as, the

two dimensional three points are given. Also, some generalisations of Ostrowski type in-

equalities in two dimensions forn−times differentiable functions are shown. The results

involve integral inequalities with bounds in terms of thenth derivative of the integrand.

These are then employed to approximate double integrals using one dimension integrals

and functions evaluated at the interior points.

In Section 2.5, applications of some of the cubature formulas which are produced in

the previous section are illustrated numerically and some related plots are demonstrated.

11
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Finally, Section 2.6 focuses on two dimensional integral inequalities. It shows weighted

first and second order double integral inequalities, where the focus is on minimising the

bound for different weights and weight null-spaces.

2.1 Introduction

Many of the techniques used for developing multiple integral inequalities are based on

analogous one dimensional results. With this in mind, this section will focus on one

dimensional integral inequalities and we review some recent results.

The classical Ostrowski integral inequality in one dimension stipulates an error bound in

approximating a function evaluated at an interior pointx by the average of the functionf

over an interval (see for example, Mitrinović et al. (1994, p. 468)). That is,

THEOREM 2.1. Letf : I ⊆ R → R be a differentiable mapping onI◦, (I◦ is the interior ofI)

and leta, b ∈ I◦ with a < b. If f ′ : (a, b) → R is bounded on(a, b), that is,

||f ′||∞ := sup
t∈(a,b)

|f ′(t)| < ∞,

then we have the inequality:

∣

∣

∣

∣

f (x) − 1

b − a

∫ b

a

f (t) dt

∣

∣

∣

∣

≤
[

1

4
+

(

x − a+b
2

)2

(b − a)2

]

(b − a) ‖f ′‖∞ (2.1)

for all x ∈ [a, b]. The constant1
4

is sharp in the sense that it cannot be replaced by a

smaller quantity.

2.2 Peano Kernel

From an estimation or error analysis point of view, we observe that a method like the

Peano kernel formula for quadrature rule errors is more general and can be applied in

other cases besides interpolation. Further, it can be used for error bounds as well as for

study of the behavior of the error itself. Consider all the functionsf ∈ Cn+1[a, b], then

the errorE[f ] can be represented by the formulaE[f ] =
∫ b

a
f (n+1)(t)K(t)dt whereK(t)
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is the Peano kernel for the error and is defined by

K(t) =
1

n!
E[g(x; t)], (2.2)

g(x; t) = (x − t)n
+ =

{

(x − t)n if x ≥ t,

0 if x ≤ t.

wheret is just a parameter in theg function and theE operates only with respect to thex

variable. The fruitful thing about the Peano kernel, is thatit can be used to determine the

error in integration rules explicitly, as well as being applied for the case when the function

has only a low order of differentiability. See Engelbrechtet al. (2003) for full definition

about the Peano Kernel,

For full definition of the Peano Kernel,

2.3 One Dimensional Integral Inequalities

It is natural to obtain the corresponding bounds in term of the p-norms withp ∈ [1,∞).

This was explicitly done by Dragomir and Wang (1997) and Dragomir and Wang (1998b).

These results are stated below.

THEOREM 2.2. Let f as be in Theorem 2.1 and letf ′ ∈ Lp[a, b], (p > 1, 1
p

+ 1
q

= 1),

then the following inequality holds

∣

∣

∣

∣

f(x) − 1

b − a

∫ b

a

f(t) dt

∣

∣

∣

∣

≤ 1

b − a

[

(x − a)q+1 + (b − x)q+1

q + 1

]
1

q

‖f ′‖p, (2.3)

where

‖f ′‖p :=

(∫ b

a

|f ′(t)|p dt

)

1

p

,

is theLp[a, b]-norm.

and

THEOREM 2.3. Let f be defined as in (2.1). Further, letf ′ ∈ L1[a, b]. The following

inequality holds

∣

∣

∣

∣

f(x) − 1

b − a

∫ b

a

f(t) dt

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

1

2
+

x − a+b
2

b − a

∣

∣

∣

∣

∣

‖f ′‖1 (2.4)
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for all x ∈ [a, b] and‖f ′‖1 :=
∫ b

a
|f ′(t)| dt. The constant

1

2
is the best possible.

Notice that the above inequalities (2.3) and (2.4) can be obtained in an equivalent form

from Fink (1992) by choosingn = 1 and performing the corresponding calculations.

The above three theorems can be proved by utilizing the PeanokernelK(., .) : [a, b]2 →
R,

K(x, t) :=

{

t − a if t ∈ [a, x]
t − b if t ∈ (x, b],

(2.5)

and the Montgomery identity (see for example, Mitrinović et al. (1994, Chapter XVII, P.

565)):

f(x) =
1

b − a

∫ b

a

f(t)dt +
1

b − a

∫ b

a

K(x, t)f ′(t)dt, x ∈ [a, b]. (2.6)

Since Ostrowski first produced his inequality in 1937, Anastassiou (1995) established an

optimal upper bound on the deviation ofn-time differentiable function from its average.

He gave a different proof to Theorem 2.1 than Ostrowski’s original proof (see Ostrowski

(1938)). Also, he obtained more general Ostrowski type inequalities as follows.

THEOREM 2.4. Let f ∈ Cn+1([a, b]), n ∈ N and x ∈ [a, b] be fixed, such that

f (k)(x) = 0, k = 1, · · · , n. Then
∣

∣

∣

∣

f(x) − 1

b − a

∫ b

a

f(t)dt

∣

∣

∣

∣

≤
[

(x − a)n+2 + (b − x)n+2

b − a

] ‖f (n+1)‖∞
(n + 2)!

. (2.7)

Corollary 2.4.1. Letf ∈ Cn+1([a, b]), n ∈ N be such thatf (k)((a+b)/2) = 0, all k ∈
{1, · · · , n}. Then

∣

∣

∣

∣

f(
a + b

2
) − 1

b − a

∫ b

a

f(t)dt

∣

∣

∣

∣

≤ (b − a)n+1

2n+1
× ‖f (n+1)‖∞

(n + 2)!
. (2.8)

Further, Milovanovíc and Pěcaríc (1976) generalised the order of the derivative in (2.1) to

an arbitraryn by consideringn-times differentiable mappings as shown in the following

theorem.

THEOREM 2.5. Let f(x) be ann(≥ 1) times differentiable function such thatf (n) ∈
L∞[a, b] for x ∈ (a, b). Then, for everyx ∈ [a, b]
∣

∣

∣

∣

1

n

(

f(x) +

n−1
∑

k=1

Fk

)

− 1

b − a

∫ b

a

f(y)dy

∣

∣

∣

∣

≤
[

(x − a)n+1 + (b − x)n+1

b − a

] ‖f (n)‖∞
n(n + 1)!

,

(2.9)
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whereFk is defined by

Fk = Fk(f ; n; x, a, b) =
n − k

k!

f (k−1)(a)(x − a)k − f (k−1)(b)(x − b)k

b − a
. (2.10)

Equation (2.9) was proved by employing Taylor’s formula

f(x) = f(y) +

n−1
∑

k=1

1

k!
f (k)(y)(x− y)k +

1

n!
f (n)(ξ)(x − y)n (2.11)

and integration by parts, (see Mitrinović et al. (1994) for the complete proof).

Remark 2.5.1. Substitutingn = 1 in (2.9) produces (2.1).

Fink (1992) used the integral remainder form of a Taylor series to generalize the Milo-

vanovíc and Pěcaríc (1976) result (Theorem 2.5) to include functions inLp spaces.

THEOREM 2.6. Letf (n−1) be absolutely continuous on[a, b] with f (n) ∈ Lp[a, b] then

∣

∣

∣

∣

1

n

(

f(x) +
n−1
∑

k=1

Fk

)

− 1

b − a

∫ b

a

f(y)dy

∣

∣

∣

∣

≤ K(n, p, x)‖f (n)‖p (2.12)

where

K(n, p, x) =
1

n!

[(x − a)n+ 1

q + (b − x)n+ 1

q ]1/q

b − a
B((n − 1)q + 1, q + 1)1/q,

for 1 < p ≤ ∞, 1
p

+ 1
q

= 1

and

K(n, 1, x) =
(n − 1)n−1

nnn!

max{(x − a)n, (b − x)n}
b − a

with B(x, y) representing the beta function of Euler, that is

B(x, y) =

∫ 1

0

tx−1(1 − t)y−1dt, x, y > 0.

Remark 2.6.1. It is easily observed that forn = 1, the result is as in Theorem 2.2.

Ceroneet al. (2000), proved the following perturbed inequality of Ostrowski type for

mappings which are twice differentiable:
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THEOREM 2.7. Let f : [a, b] → R be a twice differentiable mapping on(a, b) and

f ′′ ∈ Lp(a, b)(p > 1). Then, we have the following inequality:
∣

∣

∣

∣

f(x) − 1

b − a

∫ b

a

f(t) dt −
(

x − a + b

2

)

f ′(x)

∣

∣

∣

∣

(2.13)

≤ 1

2(b − a)(2q + 1)
2

q

[

(x − a)2q+1 + (b − x)2q+1
]

1

q ‖f ′′‖p

≤ (b − a)1+ 1

q ‖f ′′‖p

2(2q + 1)
1

q

for all x ∈ [a, b], where1
p

+ 1
q

= 1 andp > 1.

Dragomir and Sofo (2000) obtained the following inequalityin the case where the second

derivative belongs to theL∞ norm.

THEOREM 2.8. Let f : [a, b] → R be a mapping whose first derivative is absolutely

continuous on[a, b] and assume that the second derivativef ′′ ∈ L∞[a, b]. Then, the

following inequality holds:
∣

∣

∣

∣

∫ b

a

f(t) dt − 1

2

[

f(x) +
f(a) + f(b)

2

]

(b − a) +
(b − a)

2

(

x − a + b

2

)

f ′(x)

∣

∣

∣

∣

(2.14)

≤
(

1

3

∣

∣

∣

∣

x − a + b

2

∣

∣

∣

∣

3

+
(b − a)3

48

)

‖f ′′‖∞

for all x ∈ [a, b].

Ceroneet al. (1999b), established a generalization of the Ostrowski inequality forn-times

differentiable mappings which naturally generalizes the result from (2.1), as given in the

following theorem:

THEOREM 2.9. Let f : [a, b] → R be a mapping such thatf (n−1) is absolutely contin-

uous on[a, b] andf (n) ∈ L∞[a, b]. Then for allx ∈ [a, b], we have the inequality:
∣

∣

∣

∣

∣

∫ b

a

f(t)dt −
n−1
∑

k=0

[

(b − x)k+1 + (−1)k(x − a)k+1

(k + 1)!

]

f (k)(x)

∣

∣

∣

∣

∣

≤ [(x − a)n+1 + (b − x)n+1]

(n + 1)!
‖f (n)‖∞ ≤ (b − a)n+1

(n + 1)!
‖f (n)‖∞ (2.15)

where

||f (n)||∞ := sup
t∈[a,b]

|f (n)(t)| < ∞.
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The theorem is proved utilizing mathematical induction andusing the Peano kernelK(., .) :

[a, b]2 → R,

K(x, t) :=

{

(t−a)n

n!
, if t ∈ [a, x],

(t−b)n

n!
, if t ∈ (x, b].

(2.16)

The kernel (2.16) is similar in sense to that of (2.5). It vanishes at the boundary points

and is discontinuous at the interior point, thus producing arule that provides sampling at

the interior point and not at the end points. Since (2.16) is apolynomial of ordern, an

integral inequality in thenth derivative will result in (2.15). We can compare this to (2.1)

which has a bound in the first derivative due to the linear Peano kernel.

Another extension was proposed and explored by Cerone (2001) wherein the constants

‘a’ and ‘b’ in the kernel (2.5) were replaced by linear parametric functions- the zeroes

and discontinuity of the kernel were themselves functions whose positions were allowed

to change.

The kernel is

K(x, t) :=

{

t − α(x), if t ∈ [a, x],
t − β(x), if t ∈ (x, b],

(2.17)

where

α(x) = γx + (1 − γ)a and β(x) = γx + (1 − γ)b (2.18)

γ ∈ [0, 1] and x ∈ [a, b]. Hence the sampling occurs at three points, the boundary ‘a’

and ‘b’ and the pointx. The sampling is controlled by the parameterγ, (see also, Cerone

and Dragomir (2003a), Cerone and Dragomir (2003b), Cerone and Dragomir (2003c)).

This is shown in the next theorem.

THEOREM 2.10. Let f andf ′ be as in Theorem 2.1. Further, letα : [a, b] → R and

β : [a, b] → R with a ≤ α(x) ≤ x ≤ β(x) ≤ b. Then, for allx ∈ [a, b], we have the

inequality

∣

∣

∣

∣

∫ b

a

f(t)dt − [(β(x) − α(x))f(x) + (b − β(x))f(b) + (α(x) − a)f(a)]

∣

∣

∣

∣

≤
{

1

2

[(

b − a

2

)2

+

(

x − b − a

2

)2]

+

(

α(x) − a + x

2

)2

+

(

β(x) − b + x

2

)2}

||f ′||∞. (2.19)
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Proof. Let K(., .) : [a, b]2 → R, whereK(x, t) is the kernel (2.17) and consider the

integral
∫ b

a

K(x, t)f ′(t)dt.

Integrating by parts over the given intervals using (2.17) and simplifing produces an iden-

tity from which, taking the modulus and using well known properties of the modulus and

integral, the results follows.

Inspection of the bound in (2.19) reveals thatα andβ should be linear functions for the

bound to be minimized. Thus the motivation is to prescribe a linear parameterization in

(2.18). Utilizing equation (2.18), we get the following theorem.

THEOREM 2.11. Let the conditions of Theorem 2.10 hold, then

∣

∣

∣

∣

∫ b

a

f(t)dt − (b − a)

{

(1 − γ)f(x) + γ

[(

x − a

b − a

)

f(a) +

(

b − x

b − a

)

f(b)

]}∣

∣

∣

∣

≤ 2

[

1

4
+

(

γ − 1

2

)2][(
b − a

2

)2

+

(

x − a + b

2

)2]

||f ′||∞. (2.20)

Remark 2.11.1.γ = 0 in (2.20) reproduces Ostrowski’s inequality equation (2.1) whose

bound is sharpest wherex = a+b
2

, giving the mid-point inequality.

Remark 2.11.2.γ = 1 produces the generalized trapezoidal inequality for whichagain

the best bound occurs whenx = a+b
2

giving the standard trapezoidal-type inequality.

Remark 2.11.3.γ = 1
3

gives a Simpson-type rule for which the valuex = a+b
2

, gives the

optimal bound when only the assumption of a bounded first derivative is used.

Further, the stated three-point rule whenf ′ ∈ Lp[a, b], is as shown below.

THEOREM 2.12. Let f : [a, b] ∈ R be a differentiable mapping on (a,b) andf ′ ∈
Lp(a, b) wherep > 1 and 1

p
+ 1

q
= 1. Then the following inequality holds for allx ∈
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[a, b], α(x) ∈ [a, x] andβ(x) ∈ (x, b],

∣

∣

∣

∣

∫ b

a

f(t)dt − [(β(x) − α(x))f(x) + (b − β(x))f(b) + (α(x) − a)f(a)]

∣

∣

∣

∣

≤ [(α(x) − a)q+1 + (x − α(x))q+1 + (β(x) − x)q+1 + (b − β(x))q+1]
1

q (q + 1)
1

q ||f ′||p

≤
[

(x − a)q+1 + (b − x)q+1

q + 1

]
1

q

||f ′||p

≤ (b − a)

(

b − a

q + 1

) 1

q

||f ′||p. (2.21)

Inequalities for higher order derivative norms are not the only extensions to Theorem 2.1.

Introducing more branches of the Peano kernel; that is extending the number of discon-

tinuities, will produce an integral inequality with many sampling points. This avenue

has been explored by Dragomir with bounds involving the firstderivative and by A. Sofo

(see Dragomir and Rassias (2002), Chapter 2) involving thenth derivative. Sofo used the

Peano kernel

Kn,k(t) :=































(t−α1)n

n!
, t ∈ [a, x1)

(t−α2)n

n!
, t ∈ [x1, x2)

...
(t−αk−1)n

n!
, t ∈ [xk−2, xk−1)

(t−αk)n

n!
, t ∈ [xk−1, b].

(2.22)

To begin, it is immediately evident thatKn,k(t) is of ordern, thus the integral inequal-

ity will be bounded by a measure off (n). In addition, (2.22) has discontinuities at

x1, x2, · · · , xk−1 and does not vanish at the boundary, thus we would expect sampling

at the points

{a, x1, x2, · · · , xk−1, b}. The integral inequality furnished for this kernel is

∣

∣

∣

∣

∫ b

a

f(t)dt +

n
∑

j=1

(−1)j

j!

[ k
∑

i=0

{(xi − αi)
j − (xi − αi+1)

j}f (j−1)(xi)

]∣

∣

∣

∣

(2.23)

≤ ‖f (n)‖∞
(n + 1)!

k−1
∑

i=0

{(αi+1 − xi)
n+1 + (xi+1 − αi+1)

n+1}

≤ ‖f (n)‖∞
(n + 1)!

k−1
∑

i=0

hn+1
i

≤ ‖f (n)‖∞
(n + 1)!

(b − a)νn(h) if f (n) ∈ L∞[a, b],
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wherehi := xi+1 − xi andν(h) := max{hi |i = 0, · · · , k − 1}.

In recent years a number of articles have been written about generalizations of Ostrowski’s

inequality (see Anastassiou (1997), Ceroneet al. (1999a), Hannaet al. (2000), Matíc

et al. (2000), Matíc and Pěcaríc (2001), Pachpatte (2002b), Cerone and Dragomir (2004),

Dragomir (2004), Pachpatte (2004), Ujević (2004a), Ujevíc (2004b) and Ujevíc (2005)).

See also, Cheng (2001), Dragomir and Gomm (2003), Pachpatte(2002a) and Ujevíc

(2003a).

2.4 Two Dimensional Integral Inequalities

Employing the Peano kernel and combining the work of Barnettand Dragomir (2001) and

Hannaet al. (2000) produced an Ostrowski type inequality in two dimensions using the

three point rule involving theLp, p ∈ [1,∞), norms in terms of the first derivatives of the

function. That is given in the following theorem:

THEOREM 2.13. Let f : R2→ R be a differentiable mapping on[a1, b1] × [a2, b2] and

let f ′′
t1,t2 = ∂2f

∂t1∂t2
be bounded on(a1, b1) × (a2, b2) . That is,

∥

∥f ′′
t1,t2

∥

∥

∞ := sup
(x1,x2)∈(a1,b1)×(a2,b2)

∣

∣

∣

∣

∂2f

∂t1∂t2

∣

∣

∣

∣

< ∞.

Furthermore, letxi ∈ (ai, bi) and introduce the parameterizationαi, βi defined by

αi = (1 − γi) ai + γixi, and βi = (1 − γi) bi + γixi,
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whereγi ∈ [0, 1], for i = 1, 2. Then the following inequality holds

|G(x1, t1, x2, t2)| ≤











































































‖f ′′

t1,t2
‖

∞

4

(

1 + (2γ1 − 1)2)
[

(

b1−a1

2

)2
+
(

x1 − a1+b1
2

)2
]

×
(

1 + (2γ2 − 1)2)
[

(

b2−a2

2

)2
+
(

x2 − a2+b2
2

)2
]

,

‖f ′′

t1,t2
‖

p

(q+1)
2
q

[

γq+1
1 + (1 − γ1)

q+1

]
1

q
[

(x1 − a1)
q+1 + (b1 − x1)

q+1

]
1

q

×
[

γq+1
2 + (1 − γ2)

q+1

]
1

q
[

(x2 − a2)
q+1 + (b2 − x2)

q+1

]
1

q

wherep > 1,
1

p
+

1

q
= 1

∥

∥f ′′
t1,t2

∥

∥

1
M1M2

(2.24)

given that

G(x1, t1, x2, t2) =

3
∑

k=1

3
∑

j=1

Ck1Cj2fjk −
3
∑

j=1

(Cj1Ij2 + Cj2Ij1)

+

∫ b2

a2

∫ b1

a1

f (t1, t2) dt1dt2 (2.25)

(fjk) =





f (a1, a2) f (x1, a2) f (b1, a2)
f (a1, x2) f (x1, x2) f (b1, x2)
f (a1, b2) f (x1, b2) f (b1, b2)



 , (2.26)

(Cjk) =





γ1(x1 − a1) γ2(x2 − a2)
(1 − γ1) (b1 − a1) (1 − γ2) (b2 − a2)

γ1 (b1 − x1) γ2(b2 − a2)



 , (2.27)

(Ijk) =







∫ b1
a1

f(t1, a2) dt1
∫ b2

a2
f(a1, t2) dt2

∫ b1
a1

f(t1, x2) dt1
∫ b1

a1
f(x1, t2) dt2

∫ b1
a1

f(t1, b2) dt1
∫ b1

a1
f(b1, t2) dt2






, (2.28)

and

Mi =
(bi − ai)

4
[1 + |2γi − 1|] + 2

∣

∣

∣

∣

(xi −
ai + bi

2
)(1 + |2γi − 1|)

∣

∣

∣

∣

. (2.29)

For the complete proof, see Hannaet al. (2000).

In addition, Pachpatte has obtained some inequalities involving functions of several in-

dependent variables and their first order partial derivatives as well as those of Ostrowski

type inn independent variables (see Pachpatte (2001), Pachpatte (2002b)).

Further, in Pachpatte (2004) the author obtained some generalizations of the Ostrowski
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type inequality and also a new weighted integral and discrete inequalities of the Grüss

type involving functions of several independent variables.

In the mean time, Hannaet al. (2002a) have obtained some generalizations of an Os-

trowski type inequality in two dimensions forn−time differentiable mappings. The re-

sult is an integral inequality with boundednth derivatives. This is employed to approxi-

mate double integrals using integrals and function evaluations at the boundary and interior

points.

THEOREM 2.14. Letf : [a, b]× [c, d] → R be continuous on[a, b]× [c, d], and assume

that ∂n+mf
∂tn∂sm exist on(a, b) × (c, d) . Further, considerKn : [a, b]2 → R, Sm : [c, d]2 → R

given by

Kn (x, t) :=







(t−a)n

n!
, t ∈ [a, x] ,

(t−b)n

n!
, t ∈ (x, b],

Sm (y, s) :=







(s−c)m

m!
, s ∈ [c, y] ,

(s−d)m

m!
, s ∈ (y, d],

(2.30)

Then we have the inequality

∣

∣

∣

∣

∣

∫ b

a

∫ d

c

f (t, s) ds dt −
n−1
∑

k=0

m−1
∑

l=0

Xk(x) · Yl(y)
∂l+kf

∂tk∂sl
(x, y)

−(−1)m
n−1
∑

k=0

Xk(x)

∫ d

c

S(y, s)
∂k+mf

∂tk∂sm
(x, s) ds − (−1)n

m−1
∑

l=0

Yl(y)

∫ b

a

K(x, t)
∂n+lf

∂tn∂sl
(t, y)dt

∣

∣

∣

∣

∣

≤



































































1
(n+1)!(m+1)!

[

(x − a)n+1 + (b − x)n+1]×
[

(y − c)m+1 + (d − y)m+1]×
∥

∥

∥

∂n+mf
∂tn∂sm

∥

∥

∥

∞
,

if ∂n+mf
∂tn∂sm ∈ L∞ ([a, b] × [c, d]) ;

1
n!m!

[

(x−a)nq+1+(b−x)nq+1

nq+1

]
1

q ×
[

(y−c)mq+1+(d−y)mq+1

mq+1

]
1

q ×
∥

∥

∥

∂n+mf
∂tn∂sm

∥

∥

∥

p
,

if ∂n+mf
∂tn∂sm ∈ Lp ([a, b] × [c, d]) , p > 1, 1

p
+ 1

q
= 1;

1
4n!m!

[(x − a)n + (b − x)n + |(x − a)n − (b − x)n|]
× [(y − c)m + (d − y)m + |(y − c)m − (d − y)m|] ×

∥

∥

∥

∂n+mf
∂tn∂sm

∥

∥

∥

1
,

if ∂n+mf
∂tn∂sm ∈ L1 ([a, b] × [c, d]) .

(2.31)

for all (x, y) ∈ [a, b] × [c, d], where
∥

∥

∥

∥

∂n+mf

∂tn∂sm

∥

∥

∥

∥

∞
= sup

(t,s)∈[a,b]×[c,d]

∣

∣

∣

∣

∂n+mf (t, s)

∂tn∂sm

∣

∣

∣

∣

< ∞,

∥

∥

∥

∥

∂n+mf

∂tn∂sm

∥

∥

∥

∥

p

=

(∫ d

c

∫ b

a

∣

∣

∣

∣

∂n+m

∂tn∂sm
f (t, s)

∣

∣

∣

∣

p

dtds

)

1

p

< ∞,
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and

Xk(x) =
(b − x)k+1 + (−1)k (x − a)k+1

(k + 1)!
, Yl(y) =

(d − y)l+1 + (−1)l (y − c)l+1

(l + 1)!
.

(2.32)

Keeping in mind thatx andy are free parameters, then one can produce “mid-point" and

“boundary-point" type results by choosing appropriate values forx andy. In addition’

choosing values forn andm will re-capture the earlier results of Hannaet al. (2000) and

Dragomiret al. (2000).

An iterative approach is used in (Cerone (2003a)) to represent multidimensional integrals

in terms of lower dimensional integrals and function evaluations. The procedure is quite

general utilising one dimensional identities as theseed or generatorto procure multidi-

mensional identities. Bounds are obtained from the identities.

In the following theorem bounds forτn

(

~a, ~x,~b
)

are obtained where

τn

(

~a, ~x,~b
)

(2.33)

= f (x1, x2, . . . , xn) −
n
∑

i=1

1

di

∫ bi

ai

f (x1, x2, . . . , xi−1, ti, xi+1, . . . , xn) dti

+

n
∑

i<j

1

djdi

∫ bj

aj

∫ bi

ai

f (x1, . . . , xi−1, ti, xi+1, . . . , xj−1, tj , xj+1, . . . , xn) dtidtj

− · · · · · · · · · − (−1)n

Dn

∫ bn

an

· · ·
∫ b1

a1

f (t1, . . . , tn) dt1 . . . dtn

and~z = (z1, z2, . . . , zn) .

THEOREM 2.15. Let the conditions of Theorem 6.3 continue to hold. Then
∣

∣

∣
τn

(

~a, ~x,~b
)∣

∣

∣
(2.34)

≤



























































n
∏

i=1

Pi (1)

∥

∥

∥

∥

∂nf

∂tn . . . ∂t1

∥

∥

∥

∥

∞
,

∂nf

∂tn . . . ∂t1
∈ L∞ [In] ;

(

n
∏

i=1

Pi (q)

)
1

q
∥

∥

∥

∥

∂nf

∂tn . . . ∂t1

∥

∥

∥

∥

p

,
∂nf

∂tn . . . ∂t1
∈ Lp [In] ,

p > 1, 1
p

+ 1
q

= 1;
n
∏

i=1

θi

∥

∥

∥

∥

∂nf

∂tn . . . ∂t1

∥

∥

∥

∥

1

,
∂nf

∂tn . . . ∂t1
∈ L1 [In] ,



24 Chapter 2. History of the Ostrowski Inequality

whereτn

(

~a, ~x,~b
)

is as defined in (2.33),

(q + 1)Pi (q) = (xi − ai)
q+1 + (bi − xi)

q+1 , (2.35)

θi =
bi − ai

2
+

∣

∣

∣

∣

xi −
ai + bi

2

∣

∣

∣

∣

. (2.36)

2.5 Numerical Results

In this section the inequalities developed by the author andgiven by theorem 2.13 in the

previous section are used to approximate the double integral. In the following example

we select the integrand for which integrating in each direction is straightforward, but not

so for the double integral.

Example 2.1.
∫ 1

0

∫ 1

0

(

1 − e−xy
)

dxdy = 0.203400400702947. (2.37)

Namely,
∫ 1

0
(1 − e−xy) dx = y+e−y−1

y
and

∫ 1

0
(1 − e−xy) dy = x+e−x−1

x
.

Example 2.1 was chosen also because the integrandf(x, y) is infinitely smooth and its

L∞-norm becomes smaller with each successive derivative, because

fx(x, y) = ye−xy fy(x, y) = xe−xy

fxx(x, y) = −y2e−xy fyy(x, y) = −x2e−xy

...
...

∂nf(x,y)
∂xn = (−1)n+1yne−xy ∂nf(x,y)

∂yn = (−1)n+1xne−xy

as we see,∀y ∈ [0, 1) the derivative with respect tox tends to 0 asn tends to∞, and also,

∀x ∈ [0, 1) the derivative with respect toy→ 0 asn → ∞. This indicates that the higher

order error bound (accompanied by a higher order rule) will give better results.

Example 2.2.
∫ 1

0

∫ 2

1

y

x2
e−y/xdxdy = 0.1548181217. (2.38)
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The integrand in Example 2.2 was chosen because itsL∞-norm blows up rapidly with

successive derivatives. That is,∀y ∈ [0, 1) the derivative with respect tox tends to∞ as

n tends to∞, and also,∀x ∈ [1, 2) the derivative with respect toy tends to∞ asn tends

to ∞. This indicates that the higher order error bounds (accompanied by a lower order

rule) will give better results.

γ1 γ2 actual error L∞-estimated error L2-estimated error L1-estimated error

0 0 1.5(-3) 6.3(-2) 5.7(-2) 1.6(-1)
1
3

1
3 5.4(-7) 1.9(-2) 1.9(-2) 7.1(-2)

0.5 0.5 4.3(-4) 1.6(-2) 1.4(-2) 3.9(-2)
1 1 6.5(-3) 6.3(-2) 5.7(-2) 1.6(-1)

Table 2.1:The actual and estimated errors in computing (2.37) using (2.24) withx1 = x2 = 0.5
and various values ofγ1, γ2 in the‖.‖∞ norm,‖.‖2 norm and‖.‖1 norm respectively .

γ1 γ2 actual error L∞-estimated error L2-estimated error L1-estimated error

0 0 2.5(-3) 2.2(-2) 3(-2) 3.3(-1)
1
3

1
3 1.5(-5) 7.1(-3) 1(-2) 1.5(-2)

0.5 0.5 8.6(-4) 5.7(-3) 7.6(-3) 8.3(-3)
1 1 1.9(-2) 2.2(-2) 3(-2) 3.3(-1)

Table 2.2:The actual and estimated errors in computing (2.38) using (2.24), withx1 = x2 = 0.5
and various values ofγ1, γ2 in the‖.‖∞ norm,‖.‖2 norm and‖.‖1 norm.

From this point of view we find that the actual error is much smaller than the theoretical

one and is smallest when Simpson’s rule is applied (γ1 = γ2 = 1
3
). The optimal theoretical

bound is attained whenγ1 = γ2 = 1
2
. It should be noted thatγ1 = γ2 = 0 approximates

(2.37) and (2.38) with the “mid-point” rule and employs one function evaluation (at the

mid-point of the region) and two integrals (along the bi-sectors). The “trapezoidal” rule

uses four sample points (the boundary corners) and four integrals (along the boundary).

All other values, that isγ1, γ2 ∈ (0, 1), produce a rule that is a linear combination of the

above and results in the use of nine sample points and six integrals.

Furthermore, Simpson’s rule (γ1 = γ2 = 1
3
, nine sample points) is more accurate than the

mid-point rule (γ1 = γ2 = 0, one sample point) which in turn is more accurate than the

trapezoidal rule (γ1 = γ2 = 1, four sample points). We note that the estimated errors are

symmetric aboutγ1 = γ2 = 1
2

as in the Tables 2.1 and 2.2.

Cleary we observe from Figure 2.1 that the bound is convex inγi ∈ [0, 1] for i = 1, 2.

The sharpest occurs atγi = 1
2

for i = 1, 2. The harshest bound is achieved whenγi are
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E
r
r
o
r

(a) The estimated error as a function
of γ in evaluating (2.37) withx1 =
x2 = 0.5 and various values ofγ1, γ2

in the ‖.‖∞ norm (the first inequal-
ity in equation (2.24)),‖.‖2 norm (the
second inequality in equation (2.24))
and‖.‖1 norm (the third inequality in
equation (2.24)).

E
r
r
o
r

g

‖.‖1-norm
‖.‖2-norm

‖.‖∞-norm

(b) The estimated error as a function
of γ in evaluating (2.38) withx1 =
x2 = 0.5 and various values ofγ1, γ2

in the ‖.‖∞ norm (the first inequal-
ity in equation (2.24)),‖.‖2 norm (the
second inequality in equation (2.24))
and‖.‖1 norm (the third inequality in
equation (2.24)).

Figure 2.1: Diagrammatic representation for the estimatederror

taken at either of their boundary points.

Next we will employ the composite rules to explore the numerical results for both Exam-

ple 2.1 and Example 2.2 respectively and produce briefly the actual and estimated errors

in applying the mid-point cubature rules to evaluate the double integral (2.37) and (2.38)

for an increasing number of intervals for the different norms.
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Cleary, we notice that the actual error ratio in both tables suggests that the composite rule

in each case has convergence

|R| ∼ O

(

1

m2n2

)

.

Also, from Table 2.3 and Table 2.4 we gather that the estimated error predicts a conver-

gence rate of

• |R| ≤ ‖f ′′

t1,t2
‖

∞

16mn
,
∥

∥f ′′
t1,t2

∥

∥

∞ = 1 (Example 2.1) and
∥

∥f ′′
t1,t2

∥

∥

∞ = .37 (Example 2.2),

• |R| ≤ ‖f ′′

t1,t2
‖

2

12
√

mn
,
∥

∥f ′′
t1,t2

∥

∥

2
= .69 (Example 2.1) and

∥

∥f ′′
t1,t2

∥

∥

2
= .36 (Example 2.2) ,

• |R| ≤ ‖f ′′

t1,t2
‖

1

4mn
,
∥

∥f ′′
t1,t2

∥

∥

1
= .63 (Example 2.1) and

∥

∥f ′′
t1,t2

∥

∥

1
= .13 (Example 2.2).

n m Actual Error Err ratio L∞-estimated error L2-estimated error L1-estimated error

1 1 1.5(-3) ... 6.3(-2) 5.7(-2) 1.5(-1)
2 2 1.0(-4) 14.51 1.6(-2) 2.9(-2) 4.0(-2)
4 4 6.7(-6) 15.61 3.9(-3) 1.4(-2) 9.9(-3)
8 8 4.2(-7) 15.90 1.0(-3) 7.2(-3) 2.5(-3)
16 16 2.6(-8) 15.98 2.0(-4) 3.6(-3) 6.2(-4)
32 32 1.6(-9) 15.99 6.1(-5) 1.8(-3) 1.5(-4)
64 64 1.0 (-10) 16.00 1.5(-5) 8.9(-4) 3.9(-5)
128 128 6.6 (-12) 16.00 3.8(-6) 4.5(-4) 9.6(-6)

Table 2.3:The actual and estimated errors in evaluating (2.37) using acomposite rule, for various
values ofn,m. Sampling occurs at the mid-point of each region.

n m Actual Error Err ratio L∞-estimated error L2-estimated error L1-estimated error

1 1 2.5(-3) ... 2.2(-2) 1.2(-2) 3.3(-2)
2 2 2.1(-4) 12.32 5.7(-3) 6.1(-2) 8.2(-3)
4 4 1.4(-5) 14.68 1.4(-3) 3.0(-2) 2.1(-3)
8 8 8.9(-7) 15.62 3.5(-4) 1.5(-2) 5.1(-4)
16 16 5.6(-8) 15.90 8.9(-5) 7.6(-3) 1.3(-4)
32 32 3.5(-9) 15.97 2.2(-5) 3.8(-3) 3.2(-5)
64 64 2.2 (-10) 16.00 5.6(-6) 1.9(-3) 8.1(-6)
128 128 1.3 (-11) 16.00 1.4(-6) 9.5(-4) 2.0(-6)

Table 2.4:The actual and estimated errors in evaluating (2.38) using acomposite rule, for various
values ofn,m. Sampling occurs at the mid-point of each region.
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2.6 Weighted Integral Inequalities in Two Dimensions

A powerful approximation tool is that in Hanna and Roumeliotis (2005), in which they

combined and extended the work of Hannaet al. (2000) and Ceroneet al. (2000) and de-

veloped weighted first and second order double integral inequalities. Particular attention

has been paid to the influence of the two dimensional weight function on the error bound

and explored this influence for different weights and weightnull-spaces.

Hanna and Roumeliotis (2005) considered the following identities:

Lemma 2.1. Let f : [a1, b1] × [a2, b2] → R be bounded and integrable and whose

first partial derivatives exist and are also bounded and integrable. Furthermore, let

w : (a1, b1) × (a2, b2) → (0,∞) be integrable. Then the following identity holds

I =

∫ b1

a1

∫ b2

a2

[f (x1, x2) − f (x1, t2) − f (t1, x2) + f (t1, t2)]w (t1, t2) dt2dt1

=

∫ b1

a1

∫ b2

a2

P (t1, t2)
∂2f

∂t1∂t2
dt2dt1 (2.39)

wherex1 ∈ [a1, b1], x2 ∈ [a2, b2] and

P (t1, t2) =















∫ t2

a2

p (t1, u2) du2, a2 ≤ t2 ≤ x2,
∫ t2

b2

p (t1, u2) du2, x2 < t2 ≤ b2,

(2.40)

with

p(t1, t2) =



















∫ t1

a1

w (u1, t2) du1, a1 ≤ t1 ≤ x1,

∫ t1

b1

w (u1, t2) du1, x1 < t1 ≤ b1.

(2.41)

The upper bound of the integration rule will depend onP . Below, we detail some prop-

erties ofP that will be subsequently used in the analysis of the bound (see Hanna and

Roumeliotis (2005)).

Lemma 2.2. The kernelP : [a1, b1] × [a2, b2] → R as defined in Lemma 2.1 has the

following properties:
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1. P vanishes on the boundary of the rectangle[a1, b1] × [a2, b2],

2. P (t1, ·) : (a2, b2) → R is monotonic increasing for allt1 ∈ (a1, x1),

3. P (t1, ·) : (a2, b2) → R is monotonic decreasing for allt1 ∈ (x1, b1),

4. P is positive on(a1, x1) × (a2, x2) and(x1, b1) × (x2, b2),

5. P is negative on(a1, x1) × (x2, b2) and(x1, b1) × (a2, x2).

for all (x1, x2) ∈ (a1, b1) × (a2, b2).

In Figure 2.2, we plot the surface and contours of (2.40) for two different weights. The

plots exhibit the properties discussed in Lemma 2.2. It is obvious that the kernel achieves

its maximum deviation of its branches at the discontinuous point (x1, x2). In the following

theorem we state the main result by employing the identity inLemma 2.1 to produce

second order weighted double integral inequalities (see Hanna and Roumeliotis (2005)).

In contrast with the inequalities of the previous section, the upper bound here is comprised

of just one term.

THEOREM 2.16. Let the conditions of Lemma 2.1 hold. The following double integral

inequalities involving the usual Lebesgue norms of the firstmixed partial derivative off

hold:

|I| ≤
∥

∥

∥

∥

∂2f

∂t1∂t2

∥

∥

∥

∥

∞

∫ b1

a1

∫ b2

a2

|x1 − t1| |x2 − t2|w (t1, t2) dt2dt1, (2.42)

if ∂2f
∂t1∂t2

∈ L∞ ([a1, b1] × [a2, b2]), and

|I| ≤
∥

∥

∥

∥

∂2f

∂t1∂t2

∥

∥

∥

∥

1

max

{∫ x1

a1

∫ x2

a2

w(t1, t2) dt2dt1,

∫ x1

a1

∫ b2

x2

w(t1, t2) dt2dt1, (2.43)

∫ b1

x1

∫ x2

a2

w(t1, t2) dt2dt1,

∫ b1

x1

∫ b2

x2

w(t1, t2) dt2dt1

}

(2.44)

if ∂2f
∂t1∂t2

∈ L1 ([a1, b1] × [a2, b2]), whereI is defined in equation (2.39).

Theorem 2.16 can form the basis of a cubature formula for weighted double integrals.

That is, we can form a mesh and apply equation (2.42) to each grid rectangle.
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(a) (b)

Figure 2.2: Surface and contour plots of the Peano type kernels P defined in (2.40) for
different weights. (a)w(t1, t2) = − ln(t1t2) over the unit square andx1 = x2 = 0.5, (b)
w(t1, t2) =

√

t1/t2 over the unit square andx1 = x2 = 0.5.

Numerous other developments, extensions and generalisations of Ostrowski inequality

have been carried out in various directions (see, Wanget al. (2006), Liu (2006), Barnett

and Dragomir (2006)).

The analysis discussed in this chapter is used in the next, where we consider the Taylor

theorem to extend the Ostrowski results for developing cubature and higher dimension

rules. Thus, in the next chapter the Taylor’s formula with the Lagrange type remainder

will be obtained as well as Taylor expansion of two variablesdefined on a rectanglular

plane. We also utilize Korkine’s identity to derive a Grüss type inequality for double

integrals that will be employed to obtain perturbed cubature rules which are sometimes

more accurate than the unperturbed rules.



CHAPTER 3

NEW TAYLOR L IKE EXPANSIONS FOR FUNCTIONS OF

TWO VARIABLES AND ERROR ESTIMATES

In this chapter, some sharp bounds are obtained for new Taylor-like expansions of func-

tions of two variables utilising an integral remainder in which Korkine’s identity is used

to derive a Grüss type inequality for double integrals.

The chapter is arranged in the following manner. In Section 3.2 , Taylor’s theorem with

an integral remainder is recalled to obtain a Taylor’s formula with a Lagrange type re-

mainder. In Section 3.3, the theorem obtained by Sard (1963)to develop an inequality

for Taylor’s expansion of two variables defined on a rectangle plane is utilized. Section

3.4 is reserved for a Grüss type inequality for double integrals where Korkine’s identity is

applied. Finally, the result obtained in this section will be used in Section 3.5 to develop a

perturbed version of the Taylor expansion. An application for this expansion is illustrated

numerically and plots of the resulting approximation is given.

3.1 Introduction

Taylor’s theorem is a popular vehicle for developing cubature and higher dimension rules.

Stroud (1971) uses Taylor’s expansion to develop cubature rules. Recently, a number of

authors have obtained generalizations of the traditional Taylor’s series expansion of a

31
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functionf(x) about a pointa assuming sufficient differentiability. The drawback of this

approach is in the size of the error bound. For two dimensions, ann-th order rule has

a Taylor remainder ofn + 1 terms. Minimizing the error in any rule with order greater

than one would be extremely difficult. Thus, the work in this chapter, turns to utilising

Korkine’s identity, that is

1

b − a

∫ b

a

u(t)v(t)dt − 1

b − a

∫ b

a

u(t)dt · 1

b − a

∫ b

a

v(t)dt (3.1)

=
1

2(b − a)2

∫ b

a

∫ b

a

(u(t) − u(s))(v(t) − v(s))dtds,

provide thatu, v : [a, b] → R are measurable and all the involved integrals exist. We use

identity 3.1 to produce perturbed generalizations of the normal and traditional Taylor ex-

pansion of a functionf(x) about a point assuming adequate differentiability (Hannaet al.

(2002b)). Also, Grüss type inequalities are used to providea means of approximating the

integral of the product in terms of the product of integrals.

3.2 A Taylor Like Formula for Mappings of Two Variables for a

Rectangular Plane

A number of authors have recently considered generalisations of the traditional Taylor

series expansion of a functionf(x).

Milovanović (1975) utilized the multiple variable Taylor formula to generalise the Os-

trowski inequality to multiple dimensions. As per the Ostrowski (1938) result, the in-

equality was expressed in terms of the first partial derivatives of the integrand.

Matić et al. (1999) derived an estimation using a perturbed generalizedone-dimensional

Taylor’s formula.

Guo and Qi (2003) obtained an integral estimation using theLp norm of the(n + 1)-th

derivative of its integrand.

Ujević (2003b) developed a perturbation of the classical Taylor formula where lower and

upper error bounds are established. One may consider the papers along this line which

have been written by Dragomiret al. (2001), Cerone (2003b), Barnettet al. (2002),

Hannaet al. (2002b), Bougoffa (2003) and Dah-Yan (2004).
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The concern in this section is directed at approximating theremainder using a perturbed

generalised one-dimensional Taylor’s formula. For example, the following theorem is

well known in the literature as Taylor’s theorem with an integral remainder.

THEOREM 3.1. LetI ⊂ R be a closed interval, leta ∈ I and letn be a positive integer.

If f : I → R is such thatf (n) is absolutely continuous, then for eachx ∈ I

f (x) = Tn (f ; a, x) + Rn (f ; a, x) , (3.2)

whereTn(f ; a, x) is the Taylor’s polynomial, i.e.,

Tn (f ; a, x) :=

n
∑

k=0

(x − a)k

k!
f (k) (a) (3.3)

(note thatf (0) = f and0! = 1), and the remainder is given by

Rn (f ; a, x) :=
1

n!

∫ x

a

(x − t)n f (n+1) (t) dt. (3.4)

A simple proof of this theorem can be accomplished by mathematical induction using the

integration by parts formula. The following corollary concerning the estimation of the

remainder is useful when we want to approximate specific functions by Taylor’s expan-

sions.

Corollary 3.1.1. With the assumptions of Theorem 3.1, we have the estimation:

|R (f ; a, x)| ≤ (x − a)n

n!

∫ x

a

∣

∣f (n+1) (t)
∣

∣ dt (3.5)

or

|R (f ; a, x)| ≤ 1

n!
· (x − a)n+ 1

q

(nq + 1)
1

q

(∫ x

a

∣

∣f (n+1) (t)
∣

∣

p
dt

)
1

p

(3.6)

wherep > 1 and 1
p

+ 1
q

= 1, or the bound

|R (f ; a, x)| ≤ (x − a)n+1

(n + 1)!
max
t∈(a,x)

∣

∣f (n+1) (t)
∣

∣ (3.7)

for all x ≥ a, a ∈ I ⊂ R.

The case of a multivariable function can be stated as follows(see Sard (1963)):
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THEOREM 3.2. Let f be in the classC(q)(Rn) andx, x0 ∈ D ⊂ Rn so that the line

segment joiningx andx0 is contained inD and leth = x − x0. Then we have Taylor’s

formula with a Lagrange type remainder:

f (x) = f (x0) +

n
∑

i=1

fi (x0)hi +
1

2!

n
∑

i,j=1

fij (x0) hihj + . . .

+
1

(q − 1)!

n
∑

i1,...,iq−1=1

fi1,...,iq−1
(x0) hi1 . . . hiq−1 + Rq (x) ,

wherehi = xi − xi
0 and

Rq (x) =
1

q!

n
∑

i1,...,iq=1

fi1,...,iq (x0 + sh)hi1 . . . hiq

with s ∈ (0, 1).

3.3 Sard - Stroud Results

The study of Taylor’s formula has a rich literature and a longhistory. A.H. Stroud has

pointed out in his celebrated book (Stroud (1971)) that one of the most important tools in

the numerical integration of double integrals is the following theorem due to A. Sard (see

Sard (1963) and Stroud (1971, p. 138) for the proof).

3.3.1 Sard Linear Approximation

THEOREM 3.3. Let n, m ∈ N andI, J be two closed intervals andf : I × J → R be

a mapping so that the following partial derivatives∂i+m+1f(a,·)
∂xi∂ym+1 (i = 0, ..., n), ∂j+n+1f(·,b)

∂xn+1∂yj

(j = 0, ..., m) and ∂n+m+2f(·,·)
∂xn+1∂ym+1 exist on the intervalsI, J andI×J respectively, wherea ∈

I andb ∈ J are given. Letx ∈ I andy ∈ J and assume that∂
i+m+1f(x,·)
∂xi∂ym+1 are continuous

on [b, y] for (i = 0, ..., n), ∂j+n+1f(·,y)
∂xn+1∂yj are continuous on[a, x] (for j = 0, ..., m) and
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∂n+m+2f(·,·)
∂xn+1∂ym+1 is continuous on[a, x] × [b, y]. Then we have the representation:

f (x, y) =

n
∑

i=0

m
∑

j=0

(x − a)i

i!
· (y − b)j

j!
· ∂i+jf (a, b)

∂xi∂yj

+
1

m!

n
∑

i=0

(x − a)i

i!
·
∫ y

b

(y − s)m ∂i+m+1f (a, s)

∂xi∂ym+1
ds

+
1

n!

m
∑

j=0

(y − b)j

j!
·
∫ x

a

(x − t)n ∂j+n+1f (t, b)

∂xn+1∂yj
dt

+
1

n!m!

∫ x

a

∫ y

b

(x − t)n (y − s)m ∂n+m+2f (t, s)

∂xn+1∂ym+1
dsdt. (3.8)

Proof. For the sake of completeness we give here a short proof. ApplyTaylor’s formula

(3.2) for the mappingf(·, y) to get

f (x, y) =

n
∑

i=0

(x − a)i

i!
· ∂if (a, y)

∂xi
+

1

n!

∫ x

a

(x − t)n ∂n+1f (t, y)

∂xn+1
dt. (3.9)

Also, by (3.2) applied for the partial derivatives∂if(a,·)
∂xi (i = 0, ..., n) we can state that

∂if (a, y)

∂xi
=

m
∑

j=0

(y − b)j

j!
· ∂j+if (a, b)

∂xi∂yj
+

1

m!

∫ y

b

(y − s)m ∂i+m+1f (a, s)

∂xi∂ym+1
ds. (3.10)

Similarly, we have

∂n+1f (t, y)

∂xn+1
=

m
∑

j=0

(y − b)j

j!
· ∂j+n+1f (t, b)

∂xn+1∂yj
+

1

m!

∫ y

b

(y − s)m ∂n+m+2f (t, s)

∂xn+1∂ym+1
ds.

(3.11)
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Using (3.10) and (3.11), equation (3.9) becomes

f (x, y)

=
n
∑

i=0

(x − a)i

i!

[

m
∑

j=0

(y − b)j

j!
· ∂j+if (a, b)

∂xi∂yj
+

1

m!

∫ y

b

(y − s)m · ∂i+m+1f (a, s)

∂xi∂ym+1
ds

]

+
1

n!

∫ x

a

(x − t)n

[

m
∑

j=0

(y − b)j

j!
· ∂j+n+1f (t, b)

∂xn+1∂yj

+
1

m!

∫ y

b

(y − s)m ∂n+m+2f (t, s)

∂xn+1∂ym+1
ds

]

dt

=

n
∑

i=0

m
∑

j=0

(x − a)i

i!
· (y − b)j

j!
· ∂i+jf (a, b)

∂xi∂yj

+
1

m!

n
∑

i=0

(x − a)i

i!
·
∫ y

b

(y − s)m ∂i+m+1f (a, s)

∂xi∂ym+1
ds

+
1

n!

m
∑

j=0

(y − b)j

j!
·
∫ x

a

(x − t)n ∂j+n+1f (t, b)

∂xn+1∂yj
dt

+
1

n!m!

∫ x

a

∫ y

b

(x − t)n (y − s)m ∂n+m+2f (t, s)

∂xn+1∂ym+1
dsdt (3.12)

and the theorem is completely proved upon simplification.

3.3.2 The Lp , p ∈ [1,∞] Bounds for the Remainder in Sard’s Theorem

Now using the above theorem, we can point out the following inequality which provides

error bounds in terms of the Lebesgue norm of some partial derivatives (see Hannaet al.

(2002b)).

THEOREM 3.4. Assume that the mappingf : I × J → R fulfills the hypotheses from

Theorem 3.3. Then forx ≥ a andy ≥ b we have the inequality

∣

∣

∣

∣

∣

f (x, y) −
n
∑

i=0

m
∑

j=0

(x − a)i

i!
· (y − b)j

j!
· ∂i+jf (a, b)

∂xi∂yj

− 1

m!

n
∑

i=0

(x − a)i

i!
·
∫ y

b

(y − s)m ∂i+m+1f (a, s)

∂xi∂ym+1
ds

− 1

n!

m
∑

j=0

(y − b)j

j!
·
∫ x

a

(x − t)n ∂j+n+1f (t, b)

∂xn+1∂yj
dt

∣

∣

∣

∣

∣
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≤







































































1
(n+1)!(m+1)!

(x − a)n+1 (y − b)m+1
∥

∥

∥

∂n+m+2f
∂xn+1∂ym+1

∥

∥

∥

∞;[a,x]×[b,y]

if ∂n+m+2f
∂xn+1∂ym+1 ∈ L∞

[

[a, x] × [b, y]

]

;

1

n!(nq+1)
1
q m!(mq+1)

1
q

(x − a)n+ 1

q (y − b)m+ 1

q

∥

∥

∥

∂n+m+2f
∂xn+1∂ym+1

∥

∥

∥

p;[a,x]×[b,y]

if ∂n+m+2f
∂xn+1∂ym+1 ∈ Lp

[

[a, x] × [b, y]

]

p > 1, 1
p

+ 1
q

= 1;

1
n!m!

(x − a)n (y − b)m
∥

∥

∥

∂n+m+2f
∂xn+1∂ym+1

∥

∥

∥

1;[a,x]×[b,y]

if ∂n+m+2f
∂xn+1∂ym+1 ∈ L1

[

[a, x] × [b, y]

]

.

(3.13)

where‖·‖p,[a,x]×[b,y] is the usualp-norm (p ∈ [1,∞]) on the region[a, x] × [b, y].

Proof. Using the representation (3.8) and the property of the modulus we have

∣

∣

∣

∣

∣

f (x, y) −
n
∑

i=0

m
∑

j=0

(x − a)i

i!
· (y − b)j

j!
· ∂i+jf (a, b)

∂xi∂yj

− 1

m!

n
∑

i=0

(x − a)i

i!
·
∫ y

b

(y − s)m ∂i+m+1f (a, s)

∂xi∂ym+1
ds

− 1

n!

m
∑

j=0

(y − b)j

j!
·
∫ x

a

(x − t)n ∂j+n+1f (t, b)

∂xn+1∂yj
dt

∣

∣

∣

∣

∣

≤ 1

n!m!

∫ x

a

∫ y

b

|x − t|n |y − s|m
∣

∣

∣

∣

∂n+m+2f (t, s)

∂xn+1∂ym+1

∣

∣

∣

∣

dsdt

=: M (x, y) .

It is easy to see that

M (x, y)

≤
∥

∥

∥

∥

∂n+m+2f

∂xn+1∂ym+1

∥

∥

∥

∥

∞;[a,x]×[b,y]

1

n!m!

∫ x

a

∫ y

b

(x − t)n (y − s)m dsdt

=
1

n!m!

[

− (x − t)n+1

n + 1

∣

∣

∣

∣

∣

x

a

][

− (y − s)n+1

m + 1

∣

∣

∣

∣

∣

y

b

]

∥

∥

∥

∥

∂n+m+2f

∂xn+1∂ym+1

∥

∥

∥

∥

∞;[a,x]×[b,y]

=
1

(n + 1)! (m + 1)!
(x − a)n+1 (y − b)m+1

∥

∥

∥

∥

∂n+m+2f

∂xn+1∂ym+1

∥

∥

∥

∥

∞;[a,x]×[b,y]

and the first inequality in (3.13) is proved. Using Hölder’s inequality for double integrals,
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we have

M (x, y)

≤ 1

n!m!

∥

∥

∥

∥

∂n+m+2f

∂xn+1∂ym+1

∥

∥

∥

∥

p;[a,x]×[b,y]

[
∫ x

a

∫ y

b

(x − t)nq (y − s)mq dsdt

]
1

q

=
1

n!m!

∥

∥

∥

∥

∂n+m+2f

∂xn+1∂ym+1

∥

∥

∥

∥

p;[a,x]×[b,y]

[

(x − a)nq+1 (y − b)mq+1

(nq + 1) (mq + 1)

]
1

q

=
1

n! (nq + 1)
1

q m! (mq + 1)
1

q

× (x − a)n+ 1

q (y − b)m+ 1

q

∥

∥

∥

∥

∂n+m+2f

∂xn+1∂ym+1

∥

∥

∥

∥

p;[a,x]×[b,y]

and the second inequality in (3.13) is proved. Finally, we have

M (x, y)

≤ 1

n!m!
sup

(t,s)∈[a,x]×[b,y]

[(x − t)n (y − s)m]

∥

∥

∥

∥

∂n+m+2f

∂xn+1∂ym+1

∥

∥

∥

∥

1;[a,x]×[b,y]

=
1

n!m!
(x − a)n (y − b)m

∥

∥

∥

∥

∂n+m+2f

∂xn+1∂ym+1

∥

∥

∥

∥

1;[a,x]×[b,y]

and the theorem is proved.

The following approximation of the mappingf(x, y) in terms of
n
∑

i=0

m
∑

j=0

(x − a)i

i!
· (y − b)j

j!
· ∂i+jf (a, b)

∂xi∂yj

also holds.

THEOREM 3.5. Assume that the mappingf : I × J → R fulfills the hypotheses from

Theorem 3.3. Then forx ≥ I andy ≥ J we have the inequality
∣

∣

∣

∣

∣

f (x, y) −
n
∑

i=0

m
∑

j=0

(x − a)i

i!
· (y − b)j

j!
· ∂i+jf (a, b)

∂xi∂yj

∣

∣

∣

∣

∣

≤ 1

(m + 1)!
(y − b)m+1

n
∑

i=0

(x − a)i

i!

∥

∥

∥

∥

∂i+m+1f (a, ·)
∂xi∂ym+1

∥

∥

∥

∥

∞,[b,y]

+
1

(n + 1)!
(x − a)n+1

m
∑

j=0

(y − b)j

j!

∥

∥

∥

∥

∂j+n+1f (·, b)
∂xn+1∂yj

∥

∥

∥

∥

∞,[a,x]

+
1

(n + 1)! (m + 1)!
(x − a)n+1 (y − b)m+1

∥

∥

∥

∥

∂n+m+2f

∂xn+1∂ym+1

∥

∥

∥

∥

∞;[a,x]×[b,y]

.(3.14)
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The proof follows from the formula (3.8) however details will not be covered.

Similar bounds in terms of the other norms may be established, but we omit the details

(see Hannaet al. (2002b)).
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3.4 A Grüss Type Inequality for Double Integrals

It is well known that Grüss type inequalities provide a useful means of approximating the

integral of the product in terms of the product of integrals.

In this section we will state, with complete proof, the following lemma representing a

Grüss type inequality for double integrals (Hannaet al. (2002b)).

Lemma 3.1. We assume that

|f (x, y) − f (u, v)| ≤ M1 |x − u|α1 + M2 |y − v|α2 , (3.15)

whereM1, M2 > 0, α1, α2 ∈ (0, 1] and

|g (x, y) − g (u, v)| ≤ N1 |x − u|β1 + N2 |y − v|β2 , (3.16)

whereN1, N2 > 0, β1, β2 ∈ (0, 1] for all (x, y), (u, v) ∈ [a, b]× [c, d], then we have the

following inequality:
∣

∣

∣

∣

1

(b − a) (d − c)

∫ b

a

∫ d

c

f (x, y) g (x, y) dydx (3.17)

− 1

(b − a) (d − c)

∫ b

a

∫ d

c

f (x, y) dydx × 1

(b − a) (d − c)

∫ b

a

∫ d

c

g (x, y)dydx

∣

∣

∣

∣

≤
[

M1N1
(b − a)α1+β1

(α1 + β1 + 1) (α1 + β1 + 2)
+ M1N2

2 (b − a)α1 (d − c)β2

(α1 + 1) (β2 + 1) (α1 + 2) (β2 + 2)

+M2N1
2 (b − a)β1 (d − c)α2

(α2 + 1) (α2 + 2) (β1 + 1) (β1 + 2)
+M2N2

(d − c)α2+β2

(α2 + β2 + 1) (α2 + β2 + 2)

]

.

Proof. Multiplying (3.15) and (3.16), we get

|(f (x, y) − f (u, v)) (g (x, y) − g (u, v))|

≤ M1N1 |x − u|α1+β1 + M1N2 |x − u|α1 |y − v|β2

+M2N1 |y − v|α2 |x − u|β1 + M2N2 |y − v|α2+β2 .

Integrating on([a, b] × [c, d])2 over(x, y) and(u, v) , we obtain
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∫ b

a

∫ d

c

∫ b

a

∫ d

c

|(f (x, y) − f (u, v)) (g (x, y) − g (u, v))| dydxdvdu (3.18)

≤ M1N1

∫ b

a

∫ d

c

∫ b

a

∫ d

c

|x − u|α1+β1 dydxdvdu

+M1N2

∫ b

a

∫ d

c

∫ b

a

∫ d

c

|x − u|α1 |y − v|β2 dydxdvdu

+M2N1

∫ b

a

∫ d

c

∫ b

a

∫ d

c

|y − v|α2 |x − u|β1 dydxdvdu

+M2N2

∫ b

a

∫ d

c

∫ b

a

∫ d

c

|y − v|α2+β2 dydxdvdu

= M1N1I1 + M1N2I2 + M2N1I3 + M2N2I4. (3.19)

Applying Korkine’s identity (see, Mitrinovíc et al. (1993, p. 242)) to the left side of

(3.18) gives

1

2

∫ b

a

∫ d

c

∫ b

a

∫ d

c

[(f (x, y) − f (u, v)) (g (x, y) − g (u, v))]dydxdvdu

=
1

2

∫ b

a

∫ d

c

∫ b

a

∫ d

c

[f (x, y) g (x, y) − f (x, y) g (u, v)

−f (u, v) g (x, y) + f (u, v) g (u, v)]dydxdvdu

=
1

2

∫ b

a

∫ d

c

∫ b

a

∫ d

c

f (x, y) g (x, y) dydxdvdu

−1

2

∫ b

a

∫ d

c

∫ b

a

∫ d

c

f (x, y) g (u, v)dydxdvdu

−1

2

∫ b

a

∫ d

c

∫ b

a

∫ d

c

f (u, v) g (x, y) dydxdvdu

+
1

2

∫ b

a

∫ d

c

∫ b

a

∫ d

c

f (u, v) g (u, v)dydxdvdu
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= (b − a) (d − c)

∫ b

a

∫ d

c

f (x, y) g (x, y) dydx

−
∫ b

a

∫ d

c

∫ b

a

∫ d

c

f (x, y) g (u, v)dydxdvdu

= (b − a) (d − c)

∫ b

a

∫ d

c

f (x, y) g (x, y) dydx

−
∫ b

a

∫ d

c

f (x, y)dydx

∫ b

a

∫ d

c

g (x, y) dydx,

For the right side of (3.18) the following Lemma 3.2 proved byP. Cerone in (Budimir

et al. 2001) will be used. Namely,

Lemma 3.2. Let a,b,c,d∈ R with a < b andc < d. Define

Cθ(a, b, c, d) :=

∫ b

a

∫ d

c

|x − y|θdydx, θ ≥ 0, (3.20)

then

(θ + 1)(θ + 2)Cθ(a, b, c, d) (3.21)

= |b − c|θ+2 − |b − d|θ+2 + |d − a|θ+2 − |c − a|θ+2.

If c = a andd = b, then from (3.21)

Dθ(a, b) = Cθ(a, b, a, b) =

∫ b

a

∫ b

a

|x − y|θdydx, θ ≥ 0 (3.22)

=
2(b − a)θ+2

(θ + 1)(θ + 2)
·

Now, utilizing the result of Lemma 3.2 and returning to (3.19) we find that:

I1 =

∫ b

a

∫ d

c

∫ b

a

∫ d

c

|x − u|α1+β1 dydxdvdu (3.23)

= (d − c)2
∫ b

a

∫ b

a

|x − u|α1+β1 dxdu

= (d − c)2Dα1+β1
(a, b).

(3.24)
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and using (3.22) gives

I1 =
2 (d − c)2 (b − a)α1+β1+2

(α1 + β1 + 1) (α1 + β1 + 2) .
,

Further, from (3.19) and using (3.21) gives

I2 =

∫ b

a

∫ d

c

∫ b

a

∫ d

c

|x − u|α1 |y − v|β2 dydxdvdu (3.25)

=

∫ b

a

∫ b

a

|x − u|α1 dxdu

∫ d

c

∫ d

c

|y − v|β2 dydv

= Dα1
(a, b)Dβ2

(c, d)

and using (3.22) produces

I2 =
4 (b − a)α1+2 (d − c)β2+2

(β1 + 1) (β1 + 2) (α2 + 1) (α2 + 2)
. (3.26)

Using a similar procedure we get forI3 andI4 as defined in (3.21),

I3 =
4 (b − a)α2+2 (d − c)β1+2

(α2 + 1) (β1 + 1) (α1 + 2) (β2 + 2)
, (3.27)

and

I4 =
2 (b − a)2 (d − c)α2+β2+2

(α2 + β2 + 1) (α2 + β2 + 2)
. (3.28)

Thus, using (3.19), (3.25), (3.26), (3.27), (3.28) and Korkine’s identities in (3.18), we get

(b − a) (c − d)

∫ b

a

∫ d

c

f (x, y) g (x, y)dydx−
∫ b

a

∫ d

c

f (x, y)dydx

∫ b

a

∫ d

c

g (x, y) dydx

≤ 1

2

[

M1N1
2 (d − c)2 (b − a)α1+β1+2

(α1 + β1 + 1) (α1 + β1 + 2)
+ M1N2

4 (b − a)α1+2 (d − c)β2+2

(α1 + 1) (α1 + 2) (β2 + 1) (β2 + 2)

+M2N1
4 (b − a)β1+2 (d − c)α2+2

(α2 + 1) (α2 + 2) (β1 + 1) (β1 + 2)
+M2N2

2 (b − a)2 (d − c)α2+β2+2

(α2 + β2 + 1) (α2 + β2 + 2)

]

from which, upon dividing both sides by(b − a)2 (d − c)2 the proof is completed.

Corollary 3.5.1. (see also Mitrinovićet al. (1993, p. 305)) Whenα1 = α2 = 1, β1 =

β2 = 1, we have

|f (x, y) − f (u, v)| ≤ L1 |x − u| + L2 |y − v| ,

|g (x, y) − g (u, v)| ≤ K1 |x − u| + K2 |y − v| ,
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and then (3.17) becomes
∣

∣

∣

∣

1

(b − a) (d − c)

∫ b

a

∫ d

c

f (x, y) g (x, y) dydx

− 1

(b − a) (d − c)

∫ b

a

∫ d

c

f (x, y) dydx× 1

(b − a) (d − c)

∫ b

a

∫ d

c

g (x, y) dydx

∣

∣

∣

∣

≤
[

L1K1
(b − a)2

12
+ L1K2

(b − a) (d − c)

18
+L2K1

(b − a) (d − c)

18
+ L2K2

(d − c)2

12

]

.

Corollary 3.5.2. Let the conditions of Corollary 3.5.1 hold
∣

∣

∣

∣

1

(b − a) (d − c)

∫ b

a

∫ d

c

f 2 (x, y) dx dy

−
[

1

(b − a) (d − c)

∫ b

a

∫ d

c

f (x, y) dx dy

]2
∣

∣

∣

∣

∣

≤
[

L2
1

(b − a)2

12
+ L1L2

(b − a) (d − c)

9
+ L2

2

(d − c)2

12

]

.

Proof. In (3.17) letα1 = α2 = β1 = β2 = 1 and f (·, ·) = g (·, ·) .

3.5 An Application for Taylor’s Expansion

The above result will be used to obtain a perturbed version ofthe Taylor’s expansion. We

may now state the following result (Hannaet al. (2002b)).

THEOREM 3.6. With the conditions as in Theorem 3.5 and assuming that
∣

∣

∣

∣

∂n+m+2f (t, s)

∂xn+1∂ym+1
− ∂n+m+2f (u, v)

∂xn+1∂ym+1

∣

∣

∣

∣

≤ L1 |t − u| + L2 |s − v| ,

we have the inequality

|Rnm (f, a, x, b, y)| ≤ (x − a)n+1 (y − b)m+1

6n!m!
G (n, m) p (a, x, b, y)′ (3.29)

where

G (n, m) =

[

1

(2n + 1) (2m + 1)
− 1

(n + 1)2 (m + 1)2

]
1

2

and

p (a, x, b, y) =
[

3L2
1 (x − a)2 + 4L1L2 (x − a) (y − b) + 3L2

2 (y − b)2]
1

2 ,
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with

Rnm (f, a, x, b, y) = f (x, y) −
n
∑

i=0

m
∑

j=0

(x − a)i

i!
· (y − b)j

j!
· ∂i+jf (a, b)

∂xi∂yj
(3.30)

− 1

m!

n
∑

i=0

(x − a)i

i!
·
∫ y

b

(y − s)m ∂i+m+1f (a, s)

∂xi∂ym+1
ds

− 1

n!

m
∑

j=0

(y − b)j

j!
·
∫ x

a

(x − t)n ∂j+n+1f (t, b)

∂xn+1∂yj
dt

− (x − a)n (y − b)m

(n + 1)! (m + 1)!
·
∫ x

a

∫ y

b

∂n+m+2f (t, s)

∂xn+1∂ym+1
dsdt.

Proof. We can write (3.8) as

f (x, y) =

n
∑

i=0

m
∑

j=0

(x − a)i

i!
· (y − b)j

j!
· ∂i+jf (a, b)

∂xi∂yj
(3.31)

+
1

m!

n
∑

i=0

(x − a)i

i!
·
∫ y

b

(y − s)m ∂i+m+1f (a, s)

∂xi∂ym+1
ds

+
1

n!

m
∑

j=0

(y − b)j

j!
·
∫ x

a

(x − t)n ∂j+n+1f (t, b)

∂xn+1∂yj
dt

+R (f, a, x, b, y) ,

where

R (f, a, x, b, y) =
1

n!m!

∫ x

a

∫ y

b

(x − t)n (y − s)m · ∂n+m+2f (t, s)

∂xn+1∂ym+1
dsdt. (3.32)

Now, let

h (t, s) = (x − t)n (y − s)m

and

g (t, s) =
∂n+m+2f (t, s)

∂xn+1∂ym+1
,
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then, recalling Korkine’s identity, we have from (3.32) that

R (f, a, x, b, y) (3.33)

=
1

n!m!

∫ x

a

∫ y

b

h (t, s) g (t, s) dsdt

=
1

n!m! (x − a) (y − b)

∫ x

a

∫ y

b

h (t, s) dsdt

∫ x

a

∫ y

b

g (t, s) dsdt + R1 (f, a, x, b, y) ,

where

R1 (f, a, x, b, y) (3.34)

=
1

2n!m! (x − a) (y − b)

∫

Ω

(h (t, s) − h (u, v)) (g (t, s) − g (u, v)) dtdsdudv

with

Ω = [[a, x] × [b, y]]2 . (3.35)

In addition, applying the Cauchy-Schwartz inequality (Dragomir (1999b)) for (3.34) we

get

|R1| (3.36)

=

∣

∣

∣

∣

1

2n!m! (x − a) (y − b)

∫

Ω

(h (t, s) − h (u, v)) (g (t, s) − g (u, v)) dtdsdudv

∣

∣

∣

∣

≤ 1

2n!m! (x − a) (y − b)

√

∫

Ω

(h (t, s) − h (u, v))2 dtdsdudv

×
√

∫

Ω

(g (t, s) − g (u, v))2 dtdsdudv.

Simple computation shows that
∫

Ω

(h (t, s) − h (u, v))2 dtdsdudv (3.37)

=

∫

Ω

((x − t)n (y − s)m − (x − u)n (y − v)m)
2
dtdsdudv

= 2 (x − a)2n+2 (y − b)2m+2

[

1

(2n + 1) (2m + 1)
− 1

(n + 1)2 (m + 1)2

]

.
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Now, we let

I =

∫

Ω

(g (t, s) − g (u, v))2 dtdsdudv (3.38)

=

∫

Ω

(

∂n+m+2f (t, s)

∂xn+1∂ym+1
− ∂n+m+2f (u, v)

∂xn+1∂ym+1

)2

dtdsdudv,

then,

I = 2

[

(x − a) (y − b)

∫ x

a

∫ y

b

(

∂n+m+2f (t, s)

∂xn+1∂ym+1

)2

dsdt (3.39)

−
(
∫ x

a

∫ y

b

∂n+m+2f (u, v)

∂xn+1∂ym+1
dvdu

)2
]

.

Applying Corollary 3.5.2, we have the following inequality

|I| ≤ 2 (x − a)2 (y − b)2 (3.40)

×
[

L2
1 (x − a)2

12
+ L1L2

(x − a) (y − b)

9
+

L2
2 (y − b)2

12

]

.

Utilising (3.37), (3.40), and (3.33) and substituting in (3.31), the theorem is proved.
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3.5.1 Numerical Experiments

In this section the perturbed Taylor’s expansion developedin equation (3.30) is used for

different values ofm andn to approximate some functions with different behaviours as

shown in the following examples.

Example 3.1.

f(x, y) = e−x2−y2

, 0 ≤ x, y ≤ 1. (3.41)

Example 3.1 was chosen because the function is infinitely smooth and the partial differen-

tiation for it blows up quickly with successive derivatives. This indicates that the higher

order error bounds will give better results.

The plots of the error bound|Rnm (f, a, x, b, y)| given by (3.30) for the function in Exam-

ple 3.1 are shown in Figure 3.1.

We may notice from the subfigures in Figures 3.1 that doublingthe values ofm andn re-

sults in squaring the value of the error bound. Notice, that the numerical noise in subfigure

(e) are due to the computing limit.

Example 3.2.

f(x, y) = e−xy 0 ≤ x, y ≤ 1. (3.42)

Example 3.2 was chosen because the function is not separableas a product of two func-

tions of one variable in contrast to Example 3.1 and the partial differentiation for it be-

comes smaller on[0, 1] × [0, 1] with successive derivatives. This indicates that the higher

order error bounds will give better results. The plots of theerror bounds|Rnm (f, a, x, b, y)|
for the function in Example 3.2 are shown in Figure 3.2.

By looking at Figure 3.2 we see a resemblance to that of Figures 3.1 where the results in

error bound have been squared as a result of doubling the values ofm andn.
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Figure 3.1:Plots of the error|Rnm (f, a, x, b, y)| for f(x, y) = e−x2−y2

, x, y ∈ [0, 1].
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Figure 3.2:Plots of the error|Rnm (f, a, x, b, y)| for f(x, y) = e−xy, x, y ∈ [0, 1].
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In the next chapter we introduce some Appell type polynomials and typical examples such

as a convex combination of the end points, Bernoulli polynomials and Euler polynomials.

We also represent the remainder in an integral form which will allow a better estimation

using the Theory of Integral Inequalities (including Grüsstype inequalities).

Furthermore, in the next chapter we will extend the work of this chapter to explore a new

Taylor’s expansion which is comprised of the product of two polynomials, each of which

satisfies the Appell condition and also, obtain a generalisation of the Taylor like formula.



52 Chapter 3. New Taylor Like Expansions for Functions of Two Variables and Error Estimates



CHAPTER 4

A GENERAL TAYLOR L IKE EXPANSION IN TERMS OF

TWO DIFFERENT APPELL POLYNOMIALS

In this chapter, generalised Taylor’s formulae are developed utilising an integral remainder

in which the kernel is comprised of a product of two polynomials, each of which satisfies

the Appell condition (Appell (1880))

∂Pn(t, x)

∂t
= Pn−1(t, x), P0(t, x) = 1 for all (t, x) ∈ R

2 andn ≥ 1. (4.1)

Bounds are determined in terms of Lebesgue norms. Furthermore, some of the previous

results are shown to be recaptured as special cases of the current work. An application

and numerical experimentation is undertaken to demonstrate the developments.

The material in this chapter is presented in the following order. In Section 4.2, a review

of previous work and results is given. In Section 4.3, a generalisation of the Taylor-like

formula for two Appell polynomials is obtained and its impact on the numerical integra-

tion of double integrals is studied. Some estimates for the remainder of the generalized

Taylor-like formula are given in Section 4.4. Finally, in Section 4.5 attention is focused

on the symbolic computation of Appell polynomials using thecomputer algebra system

“Maple". The computation is also illustrated by using some numerical experiments to plot

the theoretical results obtained in this chapter.

53
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4.1 Introduction

This chapter aims to extend the work of Chapter 3 to explore a new Taylor’s expansion

which is comprised of a product of two polynomials, each of which satisfies the Appell

condition (Appell (1880)). The methodology to be followed involves:

• The development of a general Taylor like expansion, in termsof two different Ap-

pell polynomials incorporating Sard’s result, Sard (1963).

• The representation of the remainder in an integral form, which will allow a better

estimation using the theory of integral inequalities (including Grüss type inequali-

ties).

• The provision of new tools for the numerical evaluation of double integrals via

Bernoulli and Euler polynomials, the properties of which are well documented in

the literature.

• Achievement of a sharper analysis of the error bounds.

There are many examples of Appell polynomials, the following are some (see also Matić

et al. (1999)):

(a) P
(1)
n (t, x) , 1

n!
(t − x)n, n ∈ N;

(b) P
(2)
n (t, x) , 1

n!
(t − a+x

2
)n, n ∈ N; (or, more generally),

P
(2)
n,λ(t, x) = 1

n!
(t − (λa + (1 − λ)x))n, whereλ ∈ [0, 1]

(c) P
(3)
n (t, x) , 1

n!
(x − a)nBn( t−a

x−a
), n ≥ 1, with, P

(3)
0 (t, x) , 1 ,

where Bn(·) are Bernoulli polynomials (Abramowitz and Stegun (1972));

(d) P
(4)
n (t, x) , 1

n!
(x − a)nEn( t−a

x−a
), n ≥ 1, with, P

(4)
0 (t, x) , 1,

whereEn(·) are Euler polynomials (Abramowitz and Stegun (1972)).
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Using a generalization of integration by parts, it will be shown below that any double

integral
∫ b

a

∫ d

c
f(t, s)dsdt may be expressed as follows (Dragomiret al. (2005)),

∫ b

a

∫ d

c

f(t, s)dsdt = An,m(f, Pn, Qm) + Bn,m(f, Pn, Qm) + Rn,m(f, Pn, Qm), (4.2)

whereAn,m(f, Pn, Qm) can always be numerically evaluated for different choices of Ap-

pell polynomialsPn, Qm andBn,m(f, Pn, Qm) is a linear combination of some univariate

integrals. Further,Rn,m(f, Pn, Qm) is a double integral involving two Appell polynomials

Pn(., .) andQm(., .) and the partial derivatives of the functionf , where

Rn,m(f, Pn, Qm) , (−1)n+m

∫ b

a

∫ d

c

Pn(t, b)Qm(s, d)
∂n+mf(t, s)

∂tn∂sm
dsdt. (4.3)

In cases where the univariate integrals inBn,m(f, Pn, Qm) can be computed exactly or

easily approximated using any univariate quadrature, we can approximate the double in-

tegral as
∫ b

a

∫ d

c

f(t, s)dsdt ≈ An,m(f, Pn, Qm) + Bn,m(f, Pn, Qm)

and henceRn,m(f, Pn, Qm) represents the error. When the univariate integrals inBn,m(f, Pn, Qm)

are not easily approximated, then the double integral is approximated by

∫ b

a

∫ d

c

f(t, s)dsdt ≈ An,m(f, Pn, Qm)

and henceBn,m(f, Pn, Qm) + Rn,m(f, Pn, Qm) represents the error.

One of the main aims of this chapter is to study the error bounds for either the simple

remainderRn,m(f, Pn, Qm), when the termBn,m(f, Pn, Qm) is known or easily com-

putable, or the extended remainder,Bn,m(f, Pn, Qm)+Rn,m(f, Pn, Qm), whenBn,m(f, Pn, Qm)

is difficult to compute, for different particular classes ofAppell polynomials as shown

above (a) - (d). It is well known that Grüss type inequalitiesprovide a useful means of

approximating the integral of the product in terms of the product of integrals. Thus, using

Grüss type integral inequalities for the remainderRn,m (f, Pn, Qm) we are able to obtain

perturbed versions of (4.2) and have different estimates for the new remainder, includ-

ing the one in terms of the upper and lower bounds of the partial derivatives∂n+mf(t,s)
∂tn∂sm on

[a, b]×[a, b] which will improve the classical bounds in terms of the sup-norm
∥

∥

∥

∂n+mf
∂tn∂sm

∥

∥

∥

∞
.

which are based on the lower and upper bounds of the functionswithin the In a similar
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fashion Hölder’s inequality (see Mitrinović et al. (1993)) for double integrals will also

be used. We will develop the approximation of (4.2) in which we will give different es-

timates of the remainder which is expected to improve the classical bounds. Extension

to higher order integrals will also be studied. Numerical comparison of the results with

existing procedures will be provided.

4.2 Some Recent Results

In this section, some of the previous and recent results are shown to be recaptured as

special cases of the current work to obtain a generalisationof the Taylor like formula

(4.5) for two Appell polynomials.

Let x ∈ [a, b] andy ∈ [c, d]. If f(x, y) is a function of two variables we shall adopt the

following notation for partial derivatives off(x, y):

f (i,j)(x, y) ,
∂i+jf(x, y)

∂xi∂yj
,

f (0,0)(x, y) , f(x, y),

f (i,j)(α, β) , f (i,j)(x, y)|(x,y)=(α,β)

(4.4)

for i, j ≥ 0 and(α, β) ∈ [a, b] × [c, d].

A. H. Stroud has pointed out in Stroud (1971) that one of the most important tools in the

numerical integration of double integrals is the followingTaylor’s formula (Stroud 1971,

p. 138 and p. 157) due to Sard (1963).

THEOREM 4.1. If f(x, y) satisfies the condition that all the derivativesf (i,j)(x, y) for

i + j ≤ m are defined and continuous on[a, b] × [c, d], thenf(x, y) has the expansion

f(x, y) =
∑

i+j<m

(x − a)i

i!

(y − c)j

j!
f (i,j)(a, c)

+
∑

j<q

(y − c)j

j!

∫ x

a

(x − u)m−j−1

(m − j − 1)!
f (m−j,j)(u, c) du

+
∑

i<p

(x − a)i

i!

∫ y

c

(y − v)m−i−1

(m − i − 1)!
f (i,m−i)(a, v) dv

+

∫ x

a

∫ y

c

(x − u)p−1

(p − 1)!

(y − v)q−1

(q − 1)!
f (p,q)(u, v)du dv, (4.5)

wherei, j are nonnegative integers;p, q are positive integers andm , p + q ≥ 2.
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Essentially, the representation (4.5) is used for obtaining the fundamental Kernel The-

orems and Error Estimates in numerical integration of double integrals (Stroud 1971,

p. 142, p. 145 and p. 158). This representation has both an important theoretical and

practical value in the whole domain.

Definition 1. A sequence of polynomials{Pi(x)}∞i=0 is called harmonic (Matićet al.

(1999)) if it satisfies the following recursive formula

P ′
i (x) = Pi−1(x) (4.6)

for i ∈ N andP0(x) = 1.

A slightly different concept that specifies the connection between the variables is the

following one.

Definition 2. We say that a sequence of polynomials{Pi(t, x)}∞i=0 satisfies the Appell

condition (Appell (1880)) if
∂Pi(t, x)

∂t
= Pi−1(t, x) (4.7)

andP0(t, x) = 1 for all defined(t, x) andi ∈ N.

It is well-known that the Bernoulli polynomialsBi(t) can be defined by the following

expansion
xetx

ex − 1
=

∞
∑

i=0

Bi(t)

i!
xi, |x| < 2π, t ∈ R. (4.8)

It can be shown that the polynomialsBi(t), i ∈ N, are uniquely determined by the fol-

lowing two formulae

B′
i(t) = iBi−1(t), B0(t) = 1; (4.9)

and Bi(t + 1) − Bi(t) = iti−1. (4.10)

Euler polynomials can be defined by the expansion

2etx

ex + 1
=

∞
∑

i=0

Ei(t)

i!
xi, |x| < π, t ∈ R. (4.11)
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It can also be shown that the polynomialsEi(t), i ∈ N, are uniquely determined by the

following two properties

E ′
i(t) = iEi−1(t), E0(t) = 1; (4.12)

and Ei(t + 1) + Ei(t) = 2ti. (4.13)

For further details about Bernoulli polynomials and Euler polynomials, refer to Abramowitz

and Stegun (1972), (sections 23.1.5 and 23.1.6).

In Matić et al. (1999), the following generalized Taylor’s formula was established.

THEOREM 4.2. Let {Pi(x)}∞i=0 be Appell polynomials. Further, letI ⊂ R be a closed

interval anda ∈ I. If f : I → R is any function such thatf (n)(x) is absolutely continuous

for somen ∈ N, then, for anyx ∈ I, we have

f(x) = f(a) +

n
∑

k=1

(−1)k+1
[

Pk(x)f (k)(x) − Pk(a)f (k)(a)
]

+ Rn(f ; a, x), (4.14)

where

Rn(f ; a, x) = (−1)n

∫ x

a

Pn(t)f
(n+1)(t) dt. (4.15)

In the following section we utilize equation (4.5) and Theorem 2 in Matíc et al. (1999) to

develop a procedure and obtain a generalisation of the Taylor like formula (4.5) for two

Appell polynomials effectively and efficiently.
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4.3 Two New Taylor Like Expansions

The advantage of the method in this section is that polynomial and polynomial-like ap-

proximations can be developed in a straightforward manner with their accuracy incor-

porated into the formulation. That is, we aim to devise and investigate new multiple

integration formulae and providea priori error information as well.

Following a similar argument to the proof of Theorem 2 in Matić et al. (1999) (which is

presented as Theorem 4.2 in Section 4.2), we obtain the following result.

THEOREM 4.3. If g : [a, b] → R is such thatg(n−1) is absolutely continuous on[a, b]

and{Pi(t, x)}∞i=0 an Appell polynomial, then we have the generalised integration by parts

formula forx ∈ [a, b]

∫ b

a

g(t) dt =

n
∑

k=1

(−1)k+1
[

Pk(b, x)g(k−1)(b) − Pk(a, x)g(k−1)(a)
]

+ (−1)n

b
∫

a

Pn(t, x)g(n)(t) dt.

(4.16)

Proof. By integration by parts we obtain

(−1)n

b
∫

a

Pn(t, x)g(n)(t) dt

= (−1)nPn(t, x)g(n−1)(t)
∣

∣

b

a
+ (−1)n−1

∫ b

a

Pn−1(t, x)g(n−1)(t) dt (4.17)

= (−1)n

[

Pn(b, x)g(n−1)(b) − Pn(a, x)g(n−1)(a) −
∫ b

a

Pn−1(t, x)g(n−1)(t) dt

]

.

Clearly, the same procedure can be used for the term
∫ b

a
Pn−1(t, x)g(n−1)(t) dt. Therefore,

formula (4.16) follows from successive integration by parts.

The version for functions of two independent variables is incorporated in the following

result (Dragomiret al. (2005)).

THEOREM 4.4. Let D be a domain inR2 and the point(a, b) ∈ D, let {Pi(t, x)}∞i=0

and{Qj(s, y)}∞j=0 be two Appell polynomials. Iff : D → R is such thatf (i,j)(x, y) are
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continuous onD for all 0 ≤ i ≤ n and0 ≤ j ≤ m, then

f(x, y) = f(a, b)+C(f, Pn, Qm)+D(f, Pn, Qm)+S(f, Pn, Qm)+T (f, Pn, Qm), (4.18)

where

C(f, Pn, Qm) =
n
∑

k=1

(−1)k+1
[

Pk(x, x)f (k,0)(x, b) − Pk(a, x)f (k,0)(a, b)
]

+
m
∑

i=1

(−1)i+1
[

Qi(y, y)f (0,i)(a, y) − Qi(b, y)f (0,i)(a, b)
]

,

D(f, Pn, Qm) =

n
∑

k=1

m
∑

i=1

(−1)k+iPk(x, x)
[

Qi(y, y)f (k,i)(x, y) − Qi(b, y)f (k,i)(x, b)
]

−
n
∑

k=1

m
∑

i=1

(−1)k+iPk(a, x)
[

Qi(y, y)f (k,i)(a, y) − Qi(b, y)f (k,i)(a, b)
]

,

S(f, Pn, Qm) = (−1)n

∫ x

a

Pn(t, x)f (n+1,0)(t, b) dt + (−1)m

∫ y

b

Qm(s, y)f (0,m+1)(a, s) ds

+
n
∑

k=1

(−1)m+k+1

∫ y

b

Qm(s, y)
[

Pk(x, x)f (k,m+1)(x, s) − Pk(a, x)f (k,m+1)(a, s)
]

ds

+
m
∑

i=1

(−1)n+i+1

∫ x

a

Pn(t, x)
[

Qi(y, y)f (n+1,i)(t, y) − Qi(b, y)f (n+1,i)(t, b)
]

dt

and

T (f, Pn, Qm) = (−1)m+n

∫ x

a

∫ y

b

Pn(t, x)Qm(s, y)f (n+1,m+1)(t, s) ds dt.

(4.19)

Proof. Let Pn(t, x) be an Appell polynomial. Applying formula (4.14) to the function



4.3. Two New Taylor Like Expansions 61

f(x, y) with respect to variablex yields

f(x, y) = f(a, y) +
n
∑

k=1

(−1)k+1
[

Pk(x, x)f (k,0)(x, y) − Pk(a, x)f (k,0)(a, y)
]

+ (−1)n

∫ x

a

Pn(t, x)f (n+1,0)(t, y) dt. (4.20)

Similarly, we have

f (k,0)(x, y) = f (k,0)(x, b) + (−1)m

∫ y

b

Qm(s, y)f (k,m+1)(x, s) ds

+

m
∑

i=1

(−1)i+1
[

Qi(y, y)f (k,i)(x, y) − Qi(b, y)f (k,i)(x, b)
]

, (4.21)

f (k,0)(a, y) = f (k,0)(a, b) + (−1)m

∫ y

b

Qm(s, y)f (k,m+1)(a, s) ds

+

m
∑

i=1

(−1)i+1
[

Qi(y, y)f (k,i)(a, y) − Qi(b, y)f (k,i)(a, b)
]

, (4.22)

f (n+1,0)(t, y) = f (n+1,0)(t, b) + (−1)m

∫ y

b

Qm(s, y)f (n+1,m+1)(a, s) ds

+
m
∑

i=1

(−1)i+1
[

Qi(y, y)f (n+1,i)(t, y) − Qi(b, y)f (n+1,i)(t, b)
]

,

(4.23)

f(a, y) = f(a, b) + (−1)m

∫ y

b

Qm(s, y)f (0,m+1)(a, s) ds

+
m
∑

i=1

(−1)i+1
[

Qi(y, y)f (0,i)(a, y) − Qi(b, y)f (0,i)(a, b)
]

. (4.24)

Substituting formulae (4.21)–(4.24) into (4.20) produces

f(x, y) = f(a, b) +
n
∑

k=1

(−1)k+1
[

Pk(x, x)f (k,0)(x, b) − Pk(a, x)f (k,0)(a, b)
]

+
m
∑

i=1

(−1)i+1
[

Qi(y, y)f (0,i)(a, y) − Qi(b, y)f (0,i)(a, b)
]

+

n
∑

k=1

m
∑

i=1

(−1)k+iPk(x, x)
[

Qi(y, y)f (k,i)(x, y) − Qi(b, y)f (k,i)(x, b)
]

−
n
∑

k=1

m
∑

i=1

(−1)k+iPk(a, x)
[

Qi(y, y)f (k,i)(a, y) − Qi(b, y)f (k,i)(a, b)
]

+ (−1)n

∫ x

a

Pn(t, x)f (n+1,0)(t, b) dt + (−1)m

∫ y

b

Qm(s, y)f (0,m+1)(a, s) ds

+
n
∑

k=1

(−1)m+k+1

∫ y

b

Qm(s, y)
[

Pk(x, x)f (k,m+1)(x, s) (4.25)
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− Pk(a, x)f (k,m+1)(a, s)
]

ds

+

m
∑

i=1

(−1)n+i+1

∫ x

a

Pn(t, x)
[

Qi(y, y)f (n+1,i)(t, y) − Qi(b, y)f (n+1,i)(t, b)
]

dt

+ (−1)m+n

∫ x

a

∫ y

b

Pn(t, x)Qm(s, y)f (n+1,m+1)(t, s) ds dt.

The proof of Theorem 4.4 is thus complete.

Remark 4.4.1. If we take

Pi(t, x) =
1

i!
(t − (λa + (1 − λ))x)i, Qj(s, y) =

1

j!
(s − (λb + (1 − λ))y)j (4.26)

for 0 ≤ i ≤ n, 0 ≤ j ≤ m andλ, µ ∈ [0, 1] in Theorem 4.4, then

C(f, Pn, Qm) =

n
∑

k=1

(a − x)k

k!

[

(λ − 1)kf (k,0)(a, b) − λkf (k,0)(x, b)
]

+
m
∑

i=1

(b − y)i

i!

[

(µ − 1)if (0,i)(a, b) − µif (0,i)(a, y)
]

, (4.27)

D(f, Pn, Qm) =

n
∑

k=1

m
∑

i=1

λk(a − x)k(b − y)i

k! · i!
[

µif (k,i)(x, y) − (µ − 1)if (k,i)(x, b)
]

−
n
∑

k=1

m
∑

i=1

(λ − 1)k(a − x)k(b − y)i

k! · i!
[

µif (k,i)(a, y) − (µ − 1)if (k,i)(a, b)
]

, (4.28)

S(f, Pn, Qm) = (−1)n

∫ x

a

[t − (λa + (1 − λ)x)]n

n!
f (n+1,0)(t, b) dt

+ (−1)m

∫ y

b

[s − (µb + (1 − µ)y)]m

m!
f (0,m+1)(a, s) ds

+

n
∑

k=1

∫ y

b

[µb + (1 − µ)y − s]m(a − x)k

m! · k!

[

(λ − 1)kf (k,m+1)(a, s) − λkf (k,m+1)(x, s)
]

ds

+
m
∑

i=1

∫ x

a

[λa + (1 − λ)x − t]n(b − y)i

n! · i!
[

(µ − 1)if (n+1,i)(t, b) − µif (n+1,i)(t, y)
]

dt,

(4.29)

and

T (f, Pn, Qm) =
∫ x

a

∫ y

b

[(λa + (1 − λ)x) − t]n[(µb + (1 − µ)y)− s]m

n! · m!
f (n+1,m+1)(t, s) ds dt. (4.30)
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If further takingλ = 0 and µ = 0 in (4.26), then we can deduce Theorem 4.1 from

Theorem 4.4.

The other choices of Appell type polynomials will provide generalizations of Theorem 4.1.

The following approximation of double integrals in terms ofAppell polynomials holds

(Dragomiret al. (2005)).

THEOREM 4.5. Let {Pi(t, x)}∞i=0 and {Qj(s, y)}∞j=0 be two Appell polynomials and

f : [a, b] × [c, d] ⊂ R
2 → R such thatf (i,j)(x, y) are continuous on[a, b] × [c, d] for all

0 ≤ i ≤ n and0 ≤ j ≤ m. Then we have

∫ b

a

∫ d

c

f(t, s) ds dt = A(f, Pn, Qm) + B(f, Pn, Qm) + R(f, Pn, Qm), (4.31)

where

A(f, Pn, Qm) =

m
∑

i=1

n
∑

j=1

(−1)i+jPj(a, b)
[

Qi(d, d)f (i−1,j−1)(a, d) − Qi(c, d)f (i−1,j−1)(a, c)
]

−
m
∑

i=1

n
∑

j=1

(−1)i+jPj(b, b)
[

Qi(d, d)f (i−1,j−1)(b, d) − Qi(c, d)f (i−1,j−1)(b, c)
]

,

B(f, Pn, Qm) =

m
∑

i=1

(−1)iQi(c, d)

∫ b

a

f (0,i−1)(t, c) dt −
m
∑

i=1

(−1)iQi(d, d)

∫ b

a

f (0,i−1)(t, d) dt

+
n
∑

j=1

(−1)jPj(a, b)

∫ d

c

f (j−1,0)(a, s) ds −
n
∑

j=1

(−1)jPj(b, b)

∫ d

c

f (j−1,0)(b, s) ds

and

R(f, Pn, Qm) =(−1)m+n

∫ b

a

∫ d

c

Pn(t, b)Qm(s, d)f (n,m)(t, s) ds dt.

Proof. The proof is obvious by using the generalized integration byparts formula con-

secutively, and we omit the details.

Remark 4.5.1. As usual, letBi, i ∈ N, denote Bernoulli numbers. From properties(4.9)

and (4.10), (4.12) and (4.13) of Bernoulli and Euler polynomials respectively, we can

obtain easily that, fori ≥ 1,

Bi+1(0) = Bi+1(1) = Bi+1, B1(0) = −B1(1) = −1

2
, (4.32)
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and, forj ∈ N,

Ej(0) = −Ej(1) = − 2

j + 1
(2j+1 − 1)Bj+1. (4.33)

It is also a well known fact thatB2i+1 = 0 for all i ∈ N.

TakingPi(t, x) = Pi,B(t, x; a) andQj(s, y) = Pj,E(s, y; c) for 0 ≤ i ≤ n and0 ≤ j ≤ m

in Theorem 4.5 and considering(4.32)and (4.33)yields

A(f, Pn, Qm) =
m
∑

i=1

n
∑

j=2

(a − b)j(c − d)i

j! · i! · 2(2i+1 − 1)

i + 1
BjBi+1

×
[

f (i−1,j−1)(a, d) + f (i−1,j−1)(a, c) − f (i−1,j−1)(b, d) − f (i−1,j−1)(b, c)
]

+ (b − a)

m
∑

i=1

(2i+1 − 1)(c − d)i

(i + 1)!
Bi+1

×
[

f (i−1,0)(a, d) + f (i−1,0)(a, c) + f (i−1,0)(b, d) + f (i−1,0)(b, c)
]

, (4.34)

B(f, Pn, Qm) = 2

m
∑

i=1

(1 − 2i+1)(c − d)i

(i + 1)!
Bi+1

∫ b

a

[

f (0,i−1)(t, c) + f (0,i−1)(t, d)
]

dt

+
n
∑

j=2

(a − b)j

j!
Bj

∫ d

c

[

f (j−1,0)(a, s) − f (j−1,0)(b, s)
]

ds

+
b − a

2

∫ d

c

[

f(a, s) + f(b, s)
]

ds, (4.35)

and

R(f, Pn, Qm) =

(a − b)n(c − d)m

n! · m!

∫ b

a

∫ d

c

Bn

( t − a

b − a

)

Bm

(s − c

d − c

)

f (n,m)(t, s) ds dt. (4.36)

In Section 4.5 we will discuss numerical experiment that relates to Remark 4.5.1 and

utilize the perturbed Taylor’s expansion developed in equations (4.34) and (4.35) for dif-

ferent values ofm andn to approximate the functions given in example 3.2 in Chapter

3.

4.4 Estimates of the Remainders

In this section, we will give some bounds for the remainders of expansions in Theo-

rems 4.4 and 4.5.
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We firstly need to introduce some notation.

For a functionℓ : [a, b] × [c, d] → R, then for anyx, y ∈ [a, b] , z, u ∈ [c, d] we denote

‖ℓ‖[x,y]×[z,u],∞ , ess sup {|ℓ (t, s)|} , t ∈ [x, y] or [y, x] ands ∈ [z, u] or [u, z]

and

‖ℓ‖[x,y]×[z,u],p ,

∣

∣

∣

∣

∫ y

x

∫ u

z

|h (t, s)|p dsdt

∣

∣

∣

∣

1

p

, p ≥ 1.

The following result in establishing bounds for the remainder in the Taylor-like formula

(4.18) holds (Dragomiret al. (2005)).

THEOREM 4.6. Assume that{Pi (t, x)}∞i=0 , {Qj (s, y)}∞j=0 and f satisfy the assump-

tions of Theorem 4.4. Then we have the representation (4.18)and the remainder satisfies

the estimate

|T (f, Pn, Qm)|

≤























































‖Pn (·, x)‖[a,x],∞ ‖Qm (·, y)‖[b,y],∞
∥

∥f (n+1,m+1)
∥

∥

[a,x]×[b,y],1
,

‖Pn (·, x)‖[a,x],q ‖Qm (·, y)‖[b,y],q

∥

∥f (n+1,m+1)
∥

∥

[a,x]×[b,y],p
,

wherep > 1, 1
p

+ 1
q

= 1;

‖Pn (·, x)‖[a,x],1 ‖Qm (·, y)‖[b,y],1

∥

∥f (n+1,m+1)
∥

∥

[a,x]×[b,y],∞ .

(4.37)

The proof follows on using Hölder’s inequality applied for the integral representation of

the remainderT (f, Pn, Qm) provided by equation (4.37). We omit the details.

The integral remainder in the cubature formula (4.31) may beestimated in the follow-

ing manner.

THEOREM 4.7. Assume that{Pi (t, x)}∞i=0 , {Qj (s, y)}∞j=0 and f satisfy the assump-

tions in Theorem 4.5. Then one has the cubature formula (4.31) and the remainder
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R (f, Pn, Qm) satisfies the estimate:

|R (f, Pn, Qm)|

≤























































‖Pn (·, b)‖[a,b],∞ ‖Qm (·, d)‖[c,d],∞
∥

∥f (n,m)
∥

∥

[a,b]×[c,d],1
,

‖Pn (·, b)‖[a,b],q ‖Qm (·, d)‖[c,d],q

∥

∥f (n,m)
∥

∥

[a,b]×[c,d],p
,

wherep > 1, 1
p

+ 1
q

= 1;

‖Pn (·, b)‖[a,b],1 ‖Qm (·, d)‖[c,d],1

∥

∥f (n,m)
∥

∥

[a,b]×[c,d],∞ .

(4.38)

Remark 4.7.1. If we consider the particular instances of Appell polynomials provided

by (4.11), (4.12) and (4.13), then a number of particular formulae may be obtained.

Their remainder may be estimated by the use of Theorems 4.6 and 4.7, providing a two-

dimensional version of the results in Matićet al. (1999).

For instance, if we consider

Pn,λ(t, x; a) =
[t − (λ a + (1 − λ) x)]n

n!
(4.39)

and Qm,µ(s, y; b) =
[s − (µ b + (1 − µ) y)]m

m!
(4.40)

then we obtain the following result:

THEOREM 4.8. Let {Pn,λ (t, x; a)}∞n=0 , {Qm,µ (s, y; b)}∞m=0 andf satisfy the assump-

tions of Theorem 4.4. Then we have the representation (4.18)and the remainder satisfies

the estimate

|T (f, Pn,λ, Qm,µ)|

≤































(x−a)n(y−b)m

n!m!
λ∞ µ∞

∥

∥f (n+1,m+1)
∥

∥

[a,x]×[b,y],1
,

1
n!m!

[

(x−a)nq+1(y−b)mq+1

(nq+1)(mq+1)

]
1

q

λq µq

∥

∥f (n+1,m+1)
∥

∥

[a,x]×[b,y],p
,

wherep > 1, 1
p

+ 1
q

= 1;

(x−a)n+1(y−b)m+1

(n+1)!(m+1)!
λ1µ1

∥

∥f (n+1,m+1)
∥

∥

[a,x]×[b,y],∞ .

(4.41)
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where

λ1 =
[

λn+1 + (1 − λ)n+1
]

, µ1 =
[

µm+1 + (1 − µ)m+1
]

λq =
[

λnq+1 + (1 − λ)nq+1
]

1

q , µq =
[

µmq+1 + (1 − µ)mq+1
]

1

q

λ∞ =

[

1

2
+

∣

∣

∣

∣

λ − 1

2

∣

∣

∣

∣

]n

, µ∞ =

[

1

2
+

∣

∣

∣

∣

µ − 1

2

∣

∣

∣

∣

]n

.

Proof. Utilizing equations (4.39) and (4.40) and using Hölder’s inequality for double

integrals and the properties of the modulus on equation (4.37), then we have that
∣

∣

∣

∣

∫ x

a

∫ y

b

T (f, Pn,λ, Qm,µ)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ x

a

∫ y

b

Pn,λ(t, x; a) Qm,µ(s, y; b)f (n+1,m+1) ds dt

∣

∣

∣

∣

≤
∫ x

a

∫ y

b

|Pn,λ(t, x; a) Qm,µ(s, y; b)|
∣

∣f (n+1,m+1)
∣

∣ ds dt

≤



























































sup
(t,s)∈[a,b]×[c,d]

|Pn,λ(t, x; a)Qm,µ(s, y; b)|
∥

∥f (n+1,m+1)
∥

∥

[a,x]×[b,y],1
.

(∫ x

a

∫ y

b
|Pn,λ(t, x; a)Qm,µ(s, y; b)|q dt ds

)
1

q
∥

∥f (n+1,m+1)
∥

∥

[a,x]×[b,y],p
,

p > 1, 1
p

+ 1
q

= 1;

∫ x

a

∫ y

b
|Pn,λ(t, x; a)Qm,µ(s, y; b)| dt ds

∥

∥f (n+1,m+1)
∥

∥

[a,x]×[b,y],∞ .

(4.42)

Now, the result in equation (4.42) can be further simplified by application of equations

(4.39) and (4.40), given that,

α = (1 − λ) x + λ a and β = (1 − µ) y + µ b.

It follows

sup
(t,s)∈[a,x]×[b,y]

|Pn,λ(t, x; a)Qm,µ(s, y; b)|

= sup
t∈[a,b]

|Pn,λ(t, x; a)| sup
s∈[c,d]

|Qm,µ(s, y; b)|

= max

{

(α − a)n

n!
,
(x − α)n

n!

}

× max

{

(β − b)m

m!
,
(y − β)m

m!

}

=
(x − a)n (y − b)m

n!m!
[max{(1 − λ), λ}]n × [max{(1 − µ), µ}]m

=
(x − a)n (y − b)m

n!m!

[

1

2
+

∣

∣

∣

∣

λ − 1

2

∣

∣

∣

∣

]n

×
[

1

2
+

∣

∣

∣

∣

µ − 1

2

∣

∣

∣

∣

]m
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giving the first inequality in (4.41) where we have used the fact that

max {X, Y } =
X + Y

2
+

∣

∣

∣

∣

Y − X

2

∣

∣

∣

∣

.

Further, we have

(
∫ x

a

∫ y

b

|Pn,λ(t, x; a)Qm,µ(s, y; b)|q ds dt

)
1

q

=

(
∫ x

a

|Pn,λ(t, x; a)|q dt

)
1

q
(
∫ y

b

|Qm,µ(s, y; b)|q ds dt

)
1

q

=
1

n!m!

[
∫ α

a

(α − t)nq dt +

∫ x

α

(t − α)nq dt

]
1

q

×
[
∫ β

b

(β − s)mq ds +

∫ y

β

(s − β)mq ds

]

1

q

=
1

n!m!

[

(x − a)nq+1 (y − b)mq+1

(nq + 1)(mq + 1)

]
1

q

λq µq

producing the second inequality in (4.41).

Finally,

∫ x

a

∫ y

b

|Pn,λ(t, x; a)Qm,µ(s, y; b)| dt ds

=

∫ x

a

∣

∣

∣

∣

(t − α)n

n!

∣

∣

∣

∣

dt

∫ y

b

∣

∣

∣

∣

(s − β)m

m!

∣

∣

∣

∣

ds

=

[
∫ α

a

(α − t)n

n!
dt +

∫ x

α

(t − α)n

n!
dt

]

×
[
∫ β

b

(β − s)m

m!
ds +

∫ y

β

(s − β)m

m!
ds

]

=
(x − a)n+1 (y − b)m+1

(n + 1)! (m + 1)!

[

(1 − λ)n+1 + λn+1
]

×
[

(1 − µ)m+1 + µm+1
]

gives the last inequality in (4.41). Thus the theorem is completely proved.

Remark 4.8.1. By takingλ = µ = 0 or 1, we recapture the result obtained byHanna

et al. (2002b).

In a similar fashion, we can bound the remainderR (f, Pn,λ, Qm,µ) in the cubature formula

(4.31) as in the following
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THEOREM 4.9. Let{Pn,λ (t, x; a)}∞n=0 , {Qm,µ (s, y)}∞m=0 andf satisfy the assumptions

of Theorem 4.5, then the remainderR (f, Pn,λ, Qm,µ) estimate in the cubature formula

(4.31) satisfies the following

|R (f, Pn,λ, Qm,µ)|

≤



























































(b−a)n(d−c)m

n!m!
λ∞ µ∞

∥

∥f (n,m)
∥

∥

[a,b]×[c,d],1
,

1
n!m!

[

(b−a)nq+1(d−c)mq+1

(nq+1)(mq+1)

]
1

q

λq µq

∥

∥f (n,m)
∥

∥

[a,b]×[c,d],p
,

wherep > 1, 1
p

+ 1
q

= 1;

(b−a)n+1(d−c)m+1

(n+1)!(m+1)!
λ1 µ1

∥

∥f (n,m)
∥

∥

[a,b]×[c,d],∞ .

(4.43)

The proof is similar to the one in Theorem 4.8 applied on the interval [a, b] × [c, d] , and

we omit the details.

In the next section we will apply those equations that are presented in (4.34) and (4.35) in

Remark 4.5.1 to approximating general double integrals.

4.5 Numerical Experiments

It is often desirable to boost the existing theoretical results with the associated numerical

results in order to obtain the desired precision of the estimates. Thus, in this section we

discuss a numerical experiment using Remark 4.5.1 and utilize the representation
∫ x

0

∫ y

0

f(t, s)ds dt = A(f, Pn, Qm)+B(f, Pn, Qm)+R(f, Pn, Qm) for 0 ≤ x, y ≤ 1,

whereA(f, Pn, Qm) andB(f, Pn, Qm) are from equations (4.34) and (4.35) respectively

with a = c = 0 andb = x, d = y. This is used to plot the behaviour of the absolute

value of the error as a function of(x, y) ∈ [0, 1]2 for different values ofm andn when we

consider the function

f(x, y) = e−xy, 0 ≤ x, y ≤ 1, (4.44)

which is given in Example 3.2 in Chapter 3. Again, this function was chosen because it

is not separable as a product of two univariable functions and the partial differentiation
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for it becomes smaller on[0, 1]× [0, 1] with successive derivatives. This indicates that the

higher order error bounds will give better results.

In Figure 4.1 we show the three dimensional plot for the behaviour of the absolute value

of the error as a function of(x, y) ∈ [0, 1]2. It is clear that the error is smaller near the

right end of the interval in each direction.

The magnified graph demonstrates the behaviour of the absolute error over the interval

.95 ≤ x, y ≤ 1.

All the algebraic calculations of the previous section havebeen performed using Maple

and the code for this is shown in Appendix A.1.2.
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(a) The absolute error of approximating the integral
∫

x

0

∫

y

0
f(t, s) dsdt as a function of(x, y) ∈ [0, 1]2 for the

function (4.44) using (4.34) and (4.35) for m = n = 1

(b) The absolute error of approximating the integral
∫

x

0

∫

y

0
f(t, s) dsdt as a function of(x, y) ∈ [0, 1]

2 for the

function (4.44) using (4.34) and (4.35) for m = n = 4
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(c) The absolute error of approximating the integral
∫

x

0

∫

y

0
f(t, s) dsdt as a function of(x, y) ∈ [0, 1]

2 for the

function (4.44) using (4.34) and (4.35) for m = n = 16

(d) The absolute error of approximating the integral
∫

x

0

∫

y

0
f(t, s) dsdt as a function of(x, y) ∈ [0, 1]

2 for the

function (4.44) using (4.34) and (4.35) for m = n = 32

Figure 4.1: The absolute error of approximating the integral
∫ x

0

∫ y

0
f(t, s) dsdt as a func-

tion of (x, y) ∈ [0, 1]2 for the function (4.44) using (4.34) and (4.35) for various values of

m andn.



CHAPTER 5

A REVERSE OF THE

CAUCHY -BUNYAKOVSKY -SCHWARZ (CBS) INTEGRAL

I NEQUALITY

The Cauchy-Bunyakovsky-Schwarz inequality, or for short,the CBS-inequality, plays an

important role in different branches of modern mathematicsincluding Hilbert spaces the-

ory, probability and statistics, classical real and complex analysis, numerical analysis,

qualitative theory of differential equations and their applications. The main purpose of

this chapter is to identify and highlight the discrete inequalities that are connected with

the CBS-inequality and provide refinements and reverse results as well as to study some

functional properties of certain mappings that can be naturally associated with this in-

equality.

The chapter is arranged in the following manner. In Section 5.2, reverse results for the

CBS-inequality are obtained. The results of Cassels are represented with their original

proofs. New results and versions for complex numbers are also obtained. Reverse results

of Dragomiret al. (2005) are mentioned and some refinements of Cassels resultsare ob-

tained.

Finally, Section 5.3 is reserved for a pre-Grüss type inequality for double integrals where

Korkine’s identity is applied.

73
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5.1 Introduction

Let (Ω, Σ, µ) be a measure space consisting of a setΩ, Σ a σ−algebra of subset ofΩ

andµ a countably additive and positive measure onΣ with valuesR ∪ {∞} . Let ρ ≥ 0

be aµ−measurable function onΩ. Denote byL2
ρ (Ω, K) the Hilbert space of all real or

complex valued functions defined onΩ andρ−integrable onΩ, namely,

∫

Ω

ρ (s) |f (s)|2 dµ (s) < ∞. (5.1)

If f, g : Ω → R are real functions such that there exist the constants0 < m ≤ M < ∞
with property that

m ≤ f (s)

g (s)
≤ M for µ − a.e.s ∈ Ω, (5.2)

then we have
∫

Ω
ρ (s) f 2 (s) dµ (s)

∫

Ω
ρ (s) g2 (s) dµ (s)

(∫

Ω
ρ (s) f (s) g (s) dµ (s)

)2 ≤ (M + m)2

4mM
. (5.3)

Inequality (5.3) (in its discrete version) is known in the literature as the Cassels inequality

(see for instance Watson (1955)).

If we assume that there exist constantsmi, Mi (i = 1, 2) such that

0 < m1 ≤ f (s) ≤ M1 < ∞ for µ − a.e.s ∈ Ω, (5.4)

0 < m2 ≤ g (s) ≤ M2 < ∞ for µ − a.e.s ∈ Ω,

then from Cassels’ inequality, we deduce the weighted inequality obtained in Pólya and

Szego (1925), which is also known in the literature as the Greub-Reinboldt inequality

(Greub and Rheinboldt (1959)):
∫

Ω
ρ (s) f 2 (s) dµ (s)

∫

Ω
ρ (s) g2 (s) dµ (s)

(∫

Ω
ρ (s) f (s) g (s) dµ (s)

)2 ≤ (M1M2 + m1m2)
2

4m1m2M1M2

. (5.5)

In the recent works Dragomir (2003), Dragomiret al. (2005), the authors obtained the

following extension for real or complex-valued functions of the Cassels inequality (see

Proposition 4, Dragomir (2003)):
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Let f, g ∈ L2
ρ (Ω, K) andγ, Γ ∈ K such thatRe (Γγ̄) ≥ 0. If either

Re
[

(Γg (s) − f (s))
(

f (s) − γ̄g (s)
)]

≥ 0 for µ − a.e.s ∈ Ω (5.6)

or equivalently

∣

∣

∣

∣

f (x) − Γ + γ

2
· g (s)

∣

∣

∣

∣

≤ 1

2
|Γ − γ| |g (s)| for µ − a.e.s ∈ Ω, (5.7)

then we have the inequality

∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫

Ω

ρ (s) |g (s)|2 dµ (s) (5.8)

≤ 1

4
·

{

Re
[(

Γ̄ + γ̄
)] ∫

Ω
ρ (s) f (s) g (s)dµ (s)

}2

Re (Γγ̄)

≤ 1

4
· |Γ + γ|2
Re (Γγ̄)

∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

2

.

The constant1
4

is best possible in both inequalities.

If (5.6) or (5.7) holds true, then the following additive version of (5.8) also holds

0 ≤
∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫

Ω

ρ (s) |g (s)|2 dµ (s) −
∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

2

(5.9)

≤ 1

4
· |Γ − γ|2
Re (Γγ̄)

∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

2

.

Here 1
4

is also the best possible constant.

5.2 Some Reverses of the CBS-Inequality

We start with the following lemma that is of interest in itself (see Dragomiret al. (2005)).

Lemma 5.1. Let f, g ∈ L2
ρ (Ω, K) with g (s) 6= 0 for µ−a.e. s ∈ Ω. If there exist the

constantsα ∈ K andr > 0 such that

f (s)

g (s)
∈ D̄ (α, r) := {z ∈ K| |z − α| ≤ r} , (5.10)
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then we have the inequality

∫

Ω

ρ (s) |f (s)|2 dµ (s) +
(

|α|2 − r2
)

∫

Ω

ρ (s) |g (s)|2 dµ (s) (5.11)

≤ 2Re

[

ᾱ

∫

Ω

ρ (s) f (s) g (s)dµ (s)

]

≤ 2 |α|
∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

.

The constant 2 in the right side of (5.11) is best possible in the sense that it cannot be

replaced by a smaller constant.

Proof. From (5.10) we have

|f (s) − αg (s)|2 ≤ r |g (s)|2

for µ−a.e.s ∈ Ω, which is clearly equivalent to

|f (s)|2 +
(

|α|2 − r2
)

|g (s)|2 ≤ 2Re
[

ᾱ
(

f (s) g (s)
)]

(5.12)

for µ−a.e.s ∈ Ω.

Multiplying (5.12) withg (s) ≥ 0 and integrating onΩ, we deduce the first inequality in

(5.11). The second inequality is obvious by the fact thatRe (z) ≤ |z| for z ∈ C.

To prove the sharpness of the constant2, assume that under the hypothesis of the theorem,

there exists a constantC > 0 such that

∫

Ω

ρ (s) |f (s)|2 dµ (s) +
(

|α|2 − r2
)

∫

Ω

ρ (s) |g (s)|2 dµ (s)

≤ CRe

[

ᾱ

∫

Ω

ρ (s) f (s) g (s)dµ (s)

]

(5.13)

providedf(s)
g(s)

∈ D̄ (α, r) for µ−a.e.s ∈ Ω.

If we chooseρ such that
∫

Ω
ρ (s) dµ (s) = 1, f (s) = 2r, g (s) = 1 andα = r, r > 0, then

we havef(s)
g(s)

= 2r ∈ D̄ (r, r) , and by (5.13) we deduce

4r2 ≤ 2Cr2

giving C ≥ 2.
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The case where the disk̄D (α, r) does not contain the origin, i.e.,|α| > r > 0, provides

the following interesting reverse of the CBS-inequality (see Dragomiret al. (2005)).

THEOREM 5.1. Let f, g, ρ be as in Lemma 5.1 and assume that|α| > r > 0. Then we

have the inequality

∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫

Ω

ρ (s) |g (s)|2 dµ (s) (5.14)

≤ 1

|α|2 − r2

[

Re

{

ᾱ

∫

Ω

ρ (s) f (s) g (s)dµ (s)

}]2

≤ |α|2

|α|2 − r2

∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

2

.

The constant 1 in the first and second inequalities is the bestpossible in the sense that it

cannot be replaced by a smaller quantity.

Proof. Since|α| > r, we may divide (6.3) by
√

|α|2 − r2 > 0 to obtain

∫

Ω

ρ (s) |f (s)|2 dµ (s) +

√

|α|2 − r2

∫

Ω

ρ (s) |g (s)|2 dµ (s)

≤ 2
√

|α|2 − r2

Re

[

ᾱ

∫

Ω

ρ (s) f (s) g (s)dµ (s)

]

. (5.15)

On the other hand, by the use of the following elementary inequality

1

β
p + βq ≥ 2

√
pq for β > 0 andp, q ≥ 0, (5.16)

we may state that

2

(
∫

Ω

ρ (s) |f (s)|2 dµ (s)

)
1

2
(
∫

Ω

ρ (s) |g (s)|2 dµ (s)

)
1

2

≤ 1
√

|α|2 − r2

∫

Ω

ρ (s) |f (s)|2 dµ (s) +

√

|α|2 − r2

∫

Ω

ρ (s) |g (s)|2 dµ (s) . (5.17)

Utilising (5.15) and (5.17), we deduce

(
∫

Ω

ρ (s) |f (s)|2 dµ (s)

)
1

2
(
∫

Ω

ρ (s) |g (s)|2 dµ (s)

)
1

2

≤ 1
√

|α|2 − r2

Re

[

ᾱ

∫

Ω

ρ (s) f (s) g (s)dµ (s)

]

,
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which is clearly equivalent to the first inequality in (5.14).

To prove the sharpness of the constant, assume that (5.14) holds with a constantC > 0,

that is,

∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫

Ω

ρ (s) |g (s)|2 dµ (s)

≤ C

|α|2 − r2

[

Re

{

ᾱ

∫

Ω

ρ (s) f (s) g (s)dµ (s)

}]2

(5.18)

providedf(s)
g(s)

∈ D̄ (α, r) and|α| > r.

Assume thatK = R, Ω = Ω1∪Ω2, Ω1∩Ω2 6= ∅, Ω1, Ω2 are measurable sets,
∫

Ω
ρ (s) dµ (s) =

1
2

andf (s) = α + r, s ∈ Ω1, f (s) = α − r, s ∈ Ω2, g (s) = 1, s ∈ Ω, α > r. Then
f(s)
g(s)

∈ D̄ (α, r) for anys ∈ Ω and

∫

Ω

ρ (s) (f (s))2 dµ (s) =

∫

Ω1

ρ (s) (α + r)2 dµ (s) +

∫

Ω2

ρ (s) (α − r)2 dµ (s)

=
1

2

[

(α + r)2 + (α − r)2
]

= α2 + r2,

2

∫

Ω

ρ (s) f (s) g (s) dµ (s) =

∫

Ω1

ρ (s) (α + r) dµ (s) +

∫

Ω2

ρ (s) (α − r) dµ (s)

=
1

2
[α + r + α − r] = α

and then, by (5.18), we deduce

α2 + r2 ≤ Cα4

α2 − r2
for α > r,

which is clearly equivalent to

(C − 1)α4 + r4 ≥ 0 for any 0 < α < 2.

If in this inequality we chooseα = 1, r = q ∈ (0, 1) and letq → 0+, then we deduce

C ≥ 1.

The following corollary is a natural consequence of the above theorem.
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Corollary 5.1.1. Under the assumptions of Theorem 5.1, we have the following additive

reverse of the CBS-inequality:

0 ≤ 2

∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫

Ω

ρ (s) |g (s)|2 dµ (s) (5.19)

−
∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

2

≤ r2

|α|2 − r2

∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

2

.

The constant 1, the coefficient of the bound, is best possiblein the sense mentioned above.

Remark 5.1.1. If in Theorem 5.1, we assume that|α| = r, then we obtain the inequality:

∫

Ω

ρ (s) |f (s)|2 dµ (s) ≤ 2Re

[

ᾱ

∫

Ω

ρ (s) f (s) g (s)dµ (s)

]

(5.20)

≤ 2 |α|
∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

.

The constant2 is sharp in both inequalities.

We also remark that ifr > |α| , then (5.11) may be written as

∫

Ω

ρ (s) |f (s)|2 dµ (s) (5.21)

≤
(

r2 − |α|2
)

∫

Ω

ρ (s) |g (s)|2 dµ (s) + 2Re

[

ᾱ

∫

Ω

ρ (s) f (s) g (s)dµ (s)

]

≤
(

r2 − |α|2
)

∫

Ω

ρ (s) |g (s)|2 dµ (s) + 2 |α|
∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

.

The following particular case of interest also holds.

Corollary 5.1.2. Let f, g ∈ L2
ρ (Ω, K) with g (s) 6= 0 for µ−a.e.s ∈ Ω. If there exist the

constantsγ, Γ ∈ K with Re (Γγ̄) > 0 andΓ 6= γ, so that either:

∣

∣

∣

∣

f (s)

g (s)
− γ + Γ

2

∣

∣

∣

∣

≤ 1

2
|Γ − γ| for µ − a.e.s ∈ Ω (5.22)

or, equivalently,

Re

[

(

Γ − f (s)

g (s)

)

(

f (s)

g (s)
− γ

)]

≥ 0 for µ − a.e.s ∈ Ω (5.23)
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holds, then we have the inequalities

∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫

Ω

ρ (s) |g (s)|2 dµ (s) (5.24)

≤ 1

2Re (Γγ̄)

{

Re

[

(

γ̄ + Γ̄
)

∫

Ω

ρ (s) f (s) g (s)dµ (s)

]}2

≤ |Γ + γ|
4Re (Γγ̄)

∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

2

.

The constants1
2

and 1
4

are best possible in (5.24).

Proof. The fact that the relations (5.22) and (5.23) are equivalentfollows by the fact that

for z, u, U ∈ C, the following inequalities are equivalent

∣

∣

∣

∣

z − u + U

2

∣

∣

∣

∣

≤ 1

2
|U − u|

and

Re [(u − z) (z̄ − ū)] ≥ 0.

Defineα := γ+Γ
2

andr = 1
2
|Γ − γ| . Then

|α|2 − r2 =
|Γ + γ|2

4
− |Γ − γ|2

4
= Re (Γγ̄) > 0.

Consequently, we may apply Theorem 5.1, and the inequalities (5.24) are proved.

The sharpness of the constants may be proven in a similar manner to that in proof of

Theorem 5.1, and we omit the details.

Remark 5.1.2. Note that the above result is due to Dragomir (2003) and has been ob-

tained in a different manner in the above mentioned reference.

If γ = m, Γ = M andM > m > 0, then from (5.24) we also recapture Cassels’ result

(5.3).

The following additive version is of interest (see also eqation (5.9)).
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Corollary 5.1.3. With the assumptions of Corollary 5.1.2, we have the inequalities:

0 ≤
∫

Ω

ρ (s) |f (s)|2 dµ (s)

∫

Ω

ρ (s) |g (s)|2 dµ (s) (5.25)

−
∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

2

≤ 1

4
· |Γ + γ|
Re (Γγ̄)

∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s)

∣

∣

∣

∣

2

.

The constant1
4

is best possible in (5.25) in the sense that it cannot be replaced by a

smaller constant.

5.3 A Pre Grüss Type Inequality

The following result provides an inequality of Grüss type that may be useful in applica-

tions when one of the factors is known and some bounds for the second factor are provided

(see Dragomiret al. (2005)).

THEOREM 5.2. Letρ : Ω → [0,∞) be aµ−measurable function onΩ with the property

that
∫

Ω
ρ (s) dµ (s) = 1. If f, g ∈ L2

ρ (Ω, K) and there exist the constantsϕ ∈ K andδ > 0

such thatf (s) ∈ D̄ (ϕ, δ) for µ−a.e.s ∈ Ω, then we have the inequality:

∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s) −
∫

Ω

ρ (s) f (s) dµ (s)

∫

Ω

ρ (s) g (s)dµ (s)

∣

∣

∣

∣

≤
[

∫

Ω

ρ (s) |g (s)|2 dµ (s) −
∣

∣

∣

∣

∫

Ω

ρ (s) g (s)dµ (s)

∣

∣

∣

∣

2
]

1

2

× δ
√

|ϕ|2 − δ2

∣

∣

∣

∣

∫

Ω

ρ (x) f (s) dµ (s)

∣

∣

∣

∣

. (5.26)

The multiplicative constant 1 in the bound is best possible.

Proof. We know, by Korkine’s identity, that

∫

Ω

ρ (s) f (s) g (s)dµ (s) −
∫

Ω

ρ (s) f (s) dµ (s)

∫

Ω

ρ (s) g (s)dµ (s)

=
1

2

∫

Ω

∫

Ω

ρ (s) ρ (t) [f (s) − f (t)]
[

g (s) − g (t)
]

dµ (s) dµ (t) .
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Applying the Schwarz integral inequality for double integrals we also have

∣

∣

∣

∣

∫

Ω

∫

Ω

ρ (s) ρ (t) [f (s) − f (t)]
[

g (s) − g (t)
]

dµ (s) dµ (t)

∣

∣

∣

∣

(5.27)

≤
(
∫

Ω

∫

Ω

ρ (s) ρ (t) |f (s) − f (t)|2 dµ (s) dµ (t)

)
1

2

×
(
∫

Ω

∫

Ω

ρ (s) ρ (t) |g (s) − g (t)|2 dµ (s) dµ (t)

)
1

2

=

(

∫

Ω

ρ (s) |f (s)|2 dµ (s) −
∣

∣

∣

∣

∫

Ω

ρ (s) f (s) dµ (s)

∣

∣

∣

∣

2
)

1

2

×
(

∫

Ω

ρ (s) |g (s)|2 dµ (s) −
∣

∣

∣

∣

∫

Ω

ρ (s) g (s)dµ (s)

∣

∣

∣

∣

2
)

1

2

,

and, for the last identity, we also have used Korkine’s identity for one function(f = g) .

Applying Corollary 5.1.1 for the functiong (s) = 1, s ∈ Ω and taking into account the

fact thatf (s) ∈ D̄ (ρ, δ) for µ−a.e.s ∈ Ω, then we can state that

0 ≤
∫

Ω

ρ (s) |f (s)|2 dµ (s) −
∣

∣

∣

∣

∫

Ω

ρ (s) f (s) dµ (s)

∣

∣

∣

∣

2

(5.28)

≤ δ

|ϕ|2 − δ2

∣

∣

∣

∣

∫

Ω

ρ (s) f (s) dµ (s)

∣

∣

∣

∣

.

Utilising (5.26) and (5.28), we deduce the desired result (5.26).

The fact that the multiplication constant of the bound 1 is the best constant is obvious by

Corollary 5.1.1 and we omit the details.

The following corollary is of interest in itself.

Corollary 5.2.1. Let ρ be as in Theorem 5.2. Iff, g ∈ L2
ρ (Ω, K) and there exist the

constantsϕ, Φ ∈ K with Re (Φϕ̄) > 0 and

∣

∣

∣

∣

f (s) − ϕ + Φ

2

∣

∣

∣

∣

≤ 1

2
|Φ − ϕ| for µ − a.e.s ∈ Ω (5.29)

or, equivalently,

Re
[

(Φ − f (s))
(

f (s) − ϕ
)]

≥ 0 for µ − a.e.s ∈ Ω, (5.30)
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then we have the inequality

∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s) −
∫

Ω

ρ (s) f (s) dµ (s) ·
∫

Ω

ρ (s) g (s)dµ (s)

∣

∣

∣

∣

≤ 1

2
|Φ − ϕ|

∣

∣

∣

∣

∫

Ω

ρ (s) f (s) dµ (s)

∣

∣

∣

∣

[

∫

Ω

ρ (s) |g (s)|2 dµ (s) −
∣

∣

∣

∣

∫

Ω

ρ (s) g (s)dµ (s)

∣

∣

∣

∣

2
]

1

2

.

(5.31)

The constant1
2

is best possible in (5.31).

In what follows we briefly mention some approximation results for the finite Fourier trans-

form whose proofs have employed recent techniques and factsfrom the theory of integral

inequalities of Ostrowski type.
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CHAPTER 6

APPROXIMATIONS OF THE FINITE FOURIER

TRANSFORM FOR FUNCTIONS OF ONE VARIABLE

The reason the Fourier transform is so widely used is that it offers specific computa-

tional advantages over other mathematical approaches. TheFourier transform therefore

provides a computationally versatile tool to analyze complex functions arising from ex-

perimental measurements by decomposing them into simpler wave functions which can

be used to determine experimental unknowns.

The material in this chapter is presented in the following order. In Section 6.2, some

new inequalities for the Fourier transform of function of bounded variation are given. In

Section 6.3, some numerical quadrature formulas are developed. The pre-Grüss inequal-

ity which was developed in previous chapter is used to form anintegral inequality for

complex-valued functions in 6.4. Finally, in Section 6.5 attention is focused on the sym-

bolic computation of the Fourier Transform using the “Maple" computer algebra system.

This is also illustrated by using some numerical experiments to plot the theoretical results

obtained in this chapter.

85
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6.1 Introduction

The Fourier transform has long been a principal analytical tool in such diverse fields as lin-

ear systems, optics, random process modeling, probabilitytheory, quantum physics, and

boundary-value problems (Brigham (1988)). In particular,it has been very successfully

applied to the restoration of astronomical data (Brault andWhite (1971)). The Fourier

transform is a pervasive and versatile tool, which has been used in many fields of science

as a mathematical or physical tool to alter a problem into onethat can be more easily

solved. Some scientists understand Fourier transform as a physical phenomenon, not

simply as a mathematical tool. In some branches of science, the Fourier transform of one

function may yield another physical function (Bracwell (1965)).

Utilizing some integral identities and inequalities developed in Barnett and Dragomir

(2001), Barnett and Dragomir (2002), Dragomir (2001b), Barnettet al. (2004) (see also

Dragomir and Rassias (2002)), we point out some approximations of the one dimensional

finite-Fourier transform in terms of the complex exponential meanE (z, w) and estimate

the error of approximation for different classes of mappings of bounded variation defined

on finite intervals.

Let g : [a, b] → R be a Lebesgue integrable mapping defined on the finite interval [a, b]

andF (g) its finite Fourier transform, namely,

F (g) (t) :=

∫ b

a

g (s) e−2πitsds.

The inverse finite Fourier transform ofg will also be considered, and will be defined by

F
−1 (g) (t) :=

∫ b

a

g (s) e2πitsds.

The following result was obtained in Barnett and Dragomir (2002).

THEOREM 6.1. Letg : [a, b] → R be an absolutely continuous mapping on[a, b] . Then
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we have the inequality
∣

∣

∣

∣

F (g) (x) − E (−2πixa,−2πixb)

∫ b

a

g (t) dt

∣

∣

∣

∣

≤















































1
3
‖g′‖∞ (b − a)2 , if g′ ∈ L∞ [a, b] ,

2
1
q

[(q+1)(q+2)]
1
q

(b − a)1+ 1

q ‖g′‖p , if g′ ∈ Lp [a, b] ; 1
p

+ 1
q

= 1, p > 1,

(b − a) ‖g′‖1

;

for all x ∈ [a, b] , x 6= 0, whereE is the exponential mean of two complex numbers, that

is,

E (z, w) :=



















ez−ew

z−w
if z 6= w

exp (w) if z = w

, z, w ∈ C. (6.1)

The following inequality for a more general class of functions was pointed out in (Dragomir

et al. 2003).

THEOREM 6.2. Let g : [a, b] → R be a measurable mapping on[a, b], then we have the

inequality:
∣

∣

∣

∣

F (g) (x) − E (−2πixa,−2πixb)

∫ b

a

g (s) ds

∣

∣

∣

∣

≤















































2π
3
|x| (b − a)2 ‖g‖∞ if g ∈ L∞ [a, b] ;

2
1+ 1

q π(b−a)
1+ 1

q

[(q+1)(q+2)]
1
q

|x| ‖g‖p if g ∈ Lp [a, b] , p > 1, 1
p

+ 1
q

= 1;

2π |x| (b − a) ‖g‖1 if g ∈ L1 [a, b] ;

for all x ∈ [a, b], x 6= 0.

The main aim of this chapter is to point out some new inequalities for the finite Fourier

transform of functions of bounded variation. Error bounds for some associated quadrature

formulae are also established. Numerical experiments by utilizing the Maple package are

conducted as well.
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6.2 Inequalities for the Fourier Transform of Functions of Bounded

Variation.

The following inequality holds (Barnettet al. (2004)):

THEOREM 6.3. Let g : [a, b] → R be a mapping of bounded variation on[a, b] , then

we have the inequality

∣

∣

∣

∣

F (g) (x) − E (−2πixa,−2πixb)

∫ b

a

g (s) ds

∣

∣

∣

∣

≤ 3

4
(b − a)

b
∨

a

(g) (6.2)

for all x ∈ [a, b] , x 6= 0, where
b
∨

a

(g) is the total variation ofg on [a, b], defined as

follow:
b
∨

a

(g) = sup
△n

n−1
∑

i=0

∣

∣

∣
g
(

x
(n)
i+1

)

−
(

x
(n)
i

)∣

∣

∣

and△n is any partition of[a, b]

Proof. Using integration by parts for the Riemann-Stieltjes integral, we have (see also

(Dragomir 2001b)) that

∫ t

a

(s − a) dg (s) = (t − a) g (t) −
∫ t

a

g (s) ds (6.3)

and
∫ b

t

(s − b) dg (s) = (b − t) g (t) −
∫ b

t

g (s) ds, (6.4)

for all t ∈ [a, b] .

Adding(6.3) and(6.4) and dividing by(b − a) , we deduce the representation (Dragomir

2001b):

g (t) =
1

b − a

∫ b

a

g (s) ds +
1

b − a

∫ t

a

(s − a) dg (s) +
1

b − a

∫ b

t

(s − b) dg (s) , (6.5)

for all t ∈ [a, b] , which is itself of interest.
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Assume thatx ∈ [a, b] , x 6= 0, then utilizing (6.5) we have

F (g) (x) =

∫ b

a

g (t) e−2πixtdt (6.6)

=

∫ b

a

[

1

b − a

∫ b

a

g (s) ds +
1

b − a

∫ t

a

(s − a) dg (s)

+
1

b − a

∫ b

t

(s − b) dg (s)

]

e−2πixtdt

=
1

b − a

∫ b

a

g (s) ds

∫ b

a

e−2πixtdt

+
1

b − a

∫ b

a

(
∫ t

a

(s − a) dg (s)

)

e−2πixtdt

+
1

b − a

∫ b

a

(
∫ b

t

(s − b) dg (s)

)

e−2πixtdt

= E (−2πixa,−2πixb)

∫ b

a

g (s) ds

+
1

b − a

∫ b

a

(
∫ t

a

(s − a) dg (s)

)

e−2πixtdt

+
1

b − a

∫ b

a

(
∫ b

t

(s − b) dg (s)

)

e−2πixtdt,

where we have used the notation (6.1) and

∫ b

a

e−2πixtdt = (b − a) E (−2πixa,−2πixb) .

Using the properties of the modulus, we have, by(6.6) , that

∣

∣

∣

∣

F (g) (x) − E (−2πixa,−2πixb)

∫ b

a

g (s) ds

∣

∣

∣

∣

(6.7)

≤ 1

b − a

∣

∣

∣

∣

∫ b

a

(
∫ t

a

(s − a) dg (s)

)

e−2πixtdt

∣

∣

∣

∣

+
1

b − a

∣

∣

∣

∣

∫ b

a

(
∫ b

t

(s − b) dg (s)

)

e−2πixtdt

∣

∣

∣

∣

≤ 1

b − a

∫ b

a

∣

∣

∣

∣

∫ t

a

(s − a) dg (s)

∣

∣

∣

∣

∣

∣e−2πixt
∣

∣ dt

+
1

b − a

∫ b

a

∣

∣

∣

∣

∫ b

t

(s − b) dg (s)

∣

∣

∣

∣

∣

∣e−2πixt
∣

∣ dt

=
1

b − a

∫ b

a

∣

∣

∣

∣

∫ t

a

(s − a) dg (s)

∣

∣

∣

∣

dt +
1

b − a

∫ b

a

∣

∣

∣

∣

∫ b

t

(s − b) dg (s)

∣

∣

∣

∣

dt.

Now, it is well known that ifp : [c, d] → R is continuous andv : [c, d] → R is of bounded
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variation on[c, d] , then the Riemann-Stieltjes integral
∫ d

c
p (x) dv (x) exists and

∣

∣

∣

∣

∫ d

c

p (x) dv (x)

∣

∣

∣

∣

≤ sup
x∈[c,d]

|p (x)|
d
∨

c

(v) . (6.8)

Applying (6.8) on the intervals[a, t] and[t, b] , we deduce that

∣

∣

∣

∣

∫ t

a

(s − a) dg (s)

∣

∣

∣

∣

≤ (t − a)

t
∨

a

(g) ,

∣

∣

∣

∣

∫ b

t

(s − b) dg (s)

∣

∣

∣

∣

≤ (b − t)
b
∨

t

(g)

and further that,

∣

∣

∣

∣

∫ t

a

(s − a) dg (s)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ b

t

(s − b) dg (s)

∣

∣

∣

∣

≤ (t − a)
t
∨

a

(g) + (b − t)
b
∨

t

(g)

≤ max
t∈[a,b]

{t − a, b − t}
[

t
∨

a

(g) +

b
∨

t

(g)

]

=

[

1

2
(b − a) +

∣

∣

∣

∣

t − a + b

2

∣

∣

∣

∣

] b
∨

a

(g) .

Using(6.7) ,

∣

∣

∣

∣

F (g) (x) − E (−2πixa,−2πixb)

∫ b

a

g (s) ds

∣

∣

∣

∣

≤ 1

b − a

∫ b

a

[

1

2
(b − a) +

∣

∣

∣

∣

t − a + b

2

∣

∣

∣

∣

]

dt

b
∨

a

(g)

=
3

4
(b − a)

b
∨

a

(g) ,

since a simple calculation shows that

∫ b

a

∣

∣

∣

∣

t − a + b

2

∣

∣

∣

∣

dt =
(b − a)2

4
,

and the theorem is completely proved.

Remark 6.3.1. If we consider the inverse Fourier transform

F
−1 (g) (x) =

∫ b

a

g (t) e2πixtdt,
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then, by a similar argument, we can prove that

∣

∣

∣

∣

F
−1 (g) (x) − E (2πixa, 2πixb)

∫ b

a

g (s) ds

∣

∣

∣

∣

≤ 3

4
(b − a)

b
∨

a

(g) , x ∈ [a, b] , x 6= 0. (6.9)

The constant
3

4
is the best possible.

The following corollaries are natural consequences of the above results.

Corollary 6.3.1. Let g : [a, b] → R be a monotonic mapping on[a, b] . Then we have the

inequality
∣

∣

∣

∣

F (g) (x) − E (−2πixa,−2πixb)

∫ b

a

g (s) ds

∣

∣

∣

∣

≤ 3

4
(b − a) |g (b) − g (a)| , (6.10)

for all x ∈ [a, b] , x 6= 0.

The proof is obvious by Theorem 6.3, taking into account thatevery monotonic mapping

is of bounded variation and
∨b

a (g) = |g (b) − g (a)| .

Corollary 6.3.2. Let g : [a, b] → R be anL−Lipschitzian mapping on[a, b] , i.e.,

|g (t) − g (s)| ≤ L |t − s| for all t, s ∈ [a, b] . (L)

Then we have the inequality
∣

∣

∣

∣

F (g) (x) − E (−2πixa,−2πixb)

∫ b

a

g (s) ds

∣

∣

∣

∣

≤ 3

4
L (b − a)2 . (6.11)

The proof is obvious by Theorem 6.3, taking into account thatif g : [a, b] → R is

L−Lipschitzian, thenL is of bounded variation on[a, b] and
∨b

a (g) ≤ L (b − a) .

6.3 A Numerical Quadrature Formula

Let In : a = x0 < x1 < ... < xn−1 < xn = b be a division of the interval[a, b] , put

hk := xk+1 − xk (k = 0, ..., n − 1) andν (h) := max {hk|k = 0, ..., n − 1} . Define the
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sum (see also Barnett and Dragomir (2002) and Choet al. (2003))

E (g, In, x) :=
n−1
∑

k=0

E (−2πixxk,−2πixxk+1) ×
∫ xk+1

xk

g (t) dt, (6.12)

wherex ∈ [a, b] , x 6= 0.

The following approximation theorem holds ((Barnettet al. 2004)).

THEOREM 6.4. Let g : [a, b] → R be a mapping of bounded variation on[a, b] . Then

we have the quadrature rule

F (g) (x) = E (g, In, x) + R (g, In, x) ; (6.13)

whereE (g, In, x) is as defined in(6.12) and the remainderR (g, In, x) satisfies the esti-

mate

|R (g, In, x)| ≤ 3

4
ν (h)

b
∨

a

(g) . (6.14)

Proof. Applying Theorem 6.3 on every subinterval[xk, xk+1] , we can state that
∣

∣

∣

∣

∫ xk+1

xk

g (t) e−2πixtdt − E (−2πixxk,−2πixxk+1) ×
∫ xk+1

xk

g (t) dt

∣

∣

∣

∣

≤ 3

4
hk

xk+1
∨

xk

(g) ,

for all k ∈ {0, ..., n − 1} andx ∈ [a, b] , x 6= 0.

Summing overi from 0 to n − 1 and using the generalized triangle inequality produces

|R (g, In, x)| = |F (g) (x) − E (g, In, x)|

≤ 3

4

n−1
∑

k=0

hk

xk+1
∨

xk

(g) ≤ 3

4
ν (h)

n−1
∑

k=0

xk+1
∨

xk

(g)

=
3

4
ν (h)

b
∨

a

(g) ,

and the theorem is proved.

In practical applications, it is more convenient to consider the equidistant partitioning of

the interval[a, b] . Thus, let

In : xj = a + j · b − a

n
, j = 0, ..., n;
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be an equidistant partition of[a, b] , and define the sum (see also Barnett and Dragomir

(2002) and Barnettet al. (2004))

En (g, x) :=

n−1
∑

k=0

E

[

−2πix

(

a + k · b − a

n

)

,−2πix

(

a + (k + 1) · b − a

n

)]

×
∫ a+(k+1)· b−a

n

a+k· b−a
n

g (t) dt. (6.15)

The following corollary of Theorem 6.4 holds.

Corollary 6.4.1. Let g be as defined in Theorem 6.4. Then we have

F (g) (x) = En (g, x) + Rn (g, x) , (6.16)

whereEn (g, x) approximates the Fourier transform at any pointx ∈ [a, b] , x 6= 0. The

error of approximationRn (g, x) satisfies the bound

|Rn (g, x)| ≤ 3

4n
(b − a)

b
∨

a

(g) , (6.17)

for all x ∈ [a, b] , x 6= 0.

Remark 6.4.1. If we know the total variation
∨b

a (g) of g on [a, b] and would like to

approximate the Fourier transformF (g) (x) by the adaptive quadrature formulaEn (g, x)

with an error less than a givenε > 0, we have to divide the interval[a, b] into at least

nε ∈ N points, where

nε :=

[

3 (b − a)

4ε

b
∨

a

(g)

]

+ 1,

and[r] denotes the integer part ofr ∈ R.

The following corollaries of Theorem 6.4 also hold.

Corollary 6.4.2. Let g : [a, b] → R be a monotonic mapping on[a, b] . Then we have the

quadrature formula(7.15) where the remainder satisfies the estimate

|R (g, In, x)| ≤ 3

4
ν (h) |g (b) − g (a)| , x ∈ [a, b] , x 6= 0. (6.18)

In particular, if In is taken to be equidistant, then we have the formula(6.16) , where the

remainderRn (g, x) satisfies the estimate

|Rn (g, x)| ≤ 3 (b − a)

4n
|g (b) − g (a)| , x ∈ [a, b] , x 6= 0. (6.19)
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A similar result holds for Lipschitzian mappings.

Corollary 6.4.3. Let g : [a, b] → R be a Lipschitzian mapping with the constantL > 0.

Then we have the quadrature formula(7.15) where the remainder is bounded by

|R (g, In, x)| ≤ 3

4
L

n−1
∑

i=0

h2
i ≤

3

4
L (b − a) ν (h) . (6.20)

In particular, if In is chosen to be equidistant, then we have the formula(6.16) where the

remainderRn (g, x) satisfies the inequality

|Rn (g, x)| ≤ 3L (b − a)2

4n
. (6.21)
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6.4 Integral Inequality for Complex Valued Functions

The following result illustrates the usefulness of the pre-Grüss inequality (5.31), at this

point, thatK denotes the field of real complex numbers.

THEOREM 6.5. Let g : [a, b] → K be a real or complex-valued function withg ∈
L2 ([a, b] ; K) and there exist the constantsϕ, φ ∈ K with the property that, either

∣

∣

∣

∣

g (s) − ϕ + Φ

2

∣

∣

∣

∣

≤ 1

2
|Φ − ϕ| for a.e.s ∈ [a, b] (6.22)

or, equivalently,

Re
[

(Φ − g (s))
(

g (s) − ϕ̄
)]

≥ 0 for a.e.s ∈ [a, b] , (6.23)

holds. Then we have the inequality:
∣

∣

∣

∣

F (g) (x) − E (−2πixa,−2πixb)

∫ b

a

g (s) ds

∣

∣

∣

∣

(6.24)

≤ 1

2
|Φ − ϕ|

[

1 − sin2 [πx (b − a)]

(b − a)2 π2x2

]
1

2
∣

∣

∣

∣

∫ b

a

g (s) ds

∣

∣

∣

∣

≤ 1

2
|Φ − ϕ|

[

1 − sin2 [πx (b − a)]

(b − a)2 π2x2

]
1

2

×











































(b − a) ‖g‖∞,[a,b] if g ∈ L∞ [a, b] ;

(b − a)
1

2 ‖g‖p,[a,b] if g ∈ Lp [a, b] ,

p > 1, 1
p

+ 1
q

= 1;

‖g‖1,[a,b] , if g ∈ L1 [a, b]

for eachx ∈ [a, b] (x 6= 0) , whereE (·, ·) is the exponential mean defined in (6.1).

Proof. We apply the pre-Grüss inequality (5.31) to get:

∣

∣

∣

∣

1

b − a

∫ b

a

g (s) e−2πixsds − 1

b − a

∫ b

a

e−2πixsds · 1

b − a

∫ b

a

g (s) ds

∣

∣

∣

∣

≤ 1

2
|Φ − ϕ|

∣

∣

∣

∣

∫ b

a

g (s) ds

∣

∣

∣

∣

×
[

1

b − a

∫ b

a

∣

∣e−2πixs
∣

∣

2
ds −

∣

∣

∣

∣

1

b − a

∫ b

a

e−2πixsds

∣

∣

∣

∣

2
]

.

(6.25)
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However
∫ b

a

e−2πixsds = (b − a) E (−2πixa,−2πixb) ,

∣

∣e−2πixs
∣

∣

2
= 1,

∫ b

a

e2πixsds =
1

2πix

[

e2πixb − e2πixa
]

and
∣

∣

∣

∣

∫ b

a

e2πixsds

∣

∣

∣

∣

2

=
1

(2πx)2

[

∣

∣e2πixb
∣

∣

2 − 2Re
[

e2πixb · e−2πixa
]

+
∣

∣e2πixa
∣

∣

2
]

=
1

2π2x2

[

1 − Re
[

e2πix(b−a)
]]

=
1

2π2x2
[1 − Re [cos (2πx (b − a)) + i sin (2πx (b − a))]]

=
1

2π2x2
[1 − cos (2πx (b − a))]

=
1

2π2x2

[

1 −
(

1 − 2 sin2 (πx (b − a))
)]

=
sin2 [πx (b − a)]

π2x2
.

Using (6.25) multiplied withb− a > 0, we deduce the first result (6.24). The second part

is obvious by Hölder’s inequality.

Remark 6.5.1. If g takes real values, then the condition (6.22) may be replacedby the

equivalent condition (forΦ > ϕ)

ϕ ≤ g (s) ≤ Φ for a.e.s ∈ [a, b] . (6.26)

6.5 Some Numerical Experiments

In the following we numerically illustrate the approximation for the finite Fourier trans-

form provided by

E (g, In, x) (6.27)

: =
n−1
∑

k=0

E

(

2πix

(

a + k · b − a

n

)

,−2π i

(

a + (k + 1)
b − a

n

))

×
∫ a+(k+1) b−a

n

a+k· b−a
n

g (t) dt.
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In Figures 6.1- 6.6 the errorrn (t) := |Rn (g, t)| for n = 1, n = 4, n = 16, n = 64 and

n = 128 is plotted for the different functionsg(t) = et, t ∈ [−1, 1] , g(t) = e−t2 , t ∈
[−π, π] , g(t) = ln t, t ∈ (0, 1] , g(t) = cosh t, t ∈ [−π, π] , g(t) = sinh t, t ∈ [−π, π]

andg(t) = sin(2t) et, t ∈ [−π, π] .

These functions were used because they demonstrate different behaviour types. There-

fore, this will allow for an adequate examination of the method.

The approximates finite Fourier transform when applying equation (6.27) on the functions

listed above are illustrated by the following graphs.
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Figure 6.1:Plots of the bound on errorrn (x) := |Rn (g, x)| for the functiong(x) = ex, x ∈
[−1, 1] .
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Figure 6.2:Plots of the bound on the errorrn (x) := |Rn (g, x)| for g(x) = e−x2

, x ∈ [−1, 1] .
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Figure 6.3:Plots of the bound on the errorrn (x) := |Rn (g, x)| for g(x) = ln x, x ∈ (0, 1] .
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Figure 6.4:Plots of the bound on the errorrn (x) := |Rn (g, x)| for g(x) = cosh x, x ∈ [−π, π] .



102 Chapter 6. Approximations of the Finite Fourier Transform for Functions of One Variable

32

15

1−1

5

−3

0

−2 0

10

(a)rn(x) for n = 1

0

5

−2

3

−1−3 32

1

2

0

6

1

4

(b) rn(x) for n = 4

1.0

3−3 21

0.75

−1−2

0.25

1.25

0

0.5

0.0

(c) rn(x) for n = 16

10−3

2

4

−1

3

1 3

0

2

−2 0−3

1

(d) rn(x) for n = 64

0.0

−1 1−3

0.02

0.01

−2 30

0.005

0.015

2

(e)rn(x) for n = 128

Figure 6.5:Plots of the bound on the errorrn (x) := |Rn (g, x)| for g(x) = sinhx, x ∈ [−π, π] .
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In conclusion, it is evident that the approximate Fourier transformation achieves single

precision accuracy when the values n increase. The results also represent that a doubling

of the mesh size leads to a squaring of the error bound.

In the next chapter we will discuss some approximation results for the two-dimensional

finite Fourier transform and develop inequalities for the estimation of the two dimensional

Fourier transform.



CHAPTER 7

APPROXIMATION OF THE FINITE FOURIER

TRANSFORM FOR FUNCTIONS OF TWO VARIABLES .

Since Fourier series and Fourier transforms are important tools in applied mathematics, it

is not surprising that there is a great deal of interest in their discrete approximation. For a

more recent survey of finite Fourier analysis, see Henrici (1998, Chapter 13).

The Fourier transform can be generalized to higher dimensions. For example, many sig-

nalsf(x, y) are functions of 2D space defined in a plane.

The material in this chapter is presented in the following manner:

In Section 7.2, some new inequalities for the estimation of the two-dimensional Fourier

transform are developed.

Some numerical cubature formulas are developed and appliedto provide some numerical

experiments in Section 7.3.

The pre Grüss inequality which was developed in Chapter 6 is used to form some integral

inequalities for complex-valued functions of two variables as shown in Section 7.4.

Finally, in Section 7.4.2 attention is focused on the symbolic computation of Fourier

Transform using the “Maple" computer algebra system . This is also illustrated by us-

ing some numerical experiments to plot the theoretical results obtained in this chapter.
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7.1 Introduction

In this chapter we point out some approximations of the two dimensional finite Fourier

transform in terms of the complex exponential meanE (z, w) and estimate the error of

approximation for different classes of mappings defined on finite intervals.

In this chapterf : [a, b] × [c, d] → R will be a continuous mapping defined on the finite

interval[a, b] × [c, d] andF (f) its finite Fourier transform. That is

F (f) (u, v; a, b, c, d) =

∫ b

a

∫ d

c

f (x, y) e−2πi(ux+vy)dydx, (7.1)

(u, v) ∈ [a, b] × [c, d]. For a function of one variable we have used the notation

F (g) (u; a, b) =

∫ b

a

g (x) e−2πiuxdx.

7.2 Some Integral Inequalities

In this section we employ an identity obtained in Barnett andDragomir (2001) and de-

velop inequalities for the estimation of the two dimensional Fourier transform. The fol-

lowing inequality holds (Hannaet al. (2002)).

THEOREM 7.1. Let f : [a, b] × [c, d] → R be an absolutely continuous mapping on

[a, b] × [c, d] and assume thatf ′′
x,y := ∂2f

∂x∂y
exists on(a, b) × (c, d) , then we have the

inequality

∣

∣

∣

∣

F (f) (u, v; a, b, c, d)− I1 − I2 + I3

∣

∣

∣

∣

≤































































(b − a)2 (d − c)2

9

∥

∥f ′′
x,y

∥

∥

∞ , if f ′′
x,y ∈ L∞ ([a, b] × [c, d]) ;

[

2 [(b − a) (d − c)]
q+2

2

(q + 1) (q + 2)

]
2

q
∥

∥f ′′
x,y

∥

∥

p
, if f ′′

x,y ∈ Lp ([a, b] × [c, d]) ,

1
p

+ 1
q

= 1, p > 1;

(b − a)(d − c)
∥

∥f ′′
x,y

∥

∥

1
, if f ′′

x,y ∈ L1 ([a, b] × [c, d])

(7.2)
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for all (u, v) ∈ [a, b] × [c, d], where

I1 : = I1(u, v; a, b, c, d) = E (u; a, b)

∫ b

a

F (f (s, ·)) (v; c, d)ds,

I2 : = I2(u, v; a, b, c, d) = E (v; c, d)

∫ d

c

F (f (·, t)) (u; a, b) dt,

I3 : = I3(u, v; a, b, c, d) = E (u; a, b)E (v; c, d)

∫ b

a

∫ d

c

f (s, t) dtds

with

E(u; a, b) : = E (−2πiub,−2πiua) ,

E(v; c, d) : = E (−2πivd,−2πivc) , (7.3)

whereE(·, ·) is the exponential mean of complex numbers as defined in (6.1). Further-

more we define the usual Lebesgue norms on two dimensional space by

∥

∥f ′′
x,y

∥

∥

∞ = sup
(s,t)∈[a,b]×[c,d]

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

< ∞, and

∥

∥f ′′
x,y

∥

∥

p
=

(
∫ b

a

∫ d

c

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

p

dtds

)

1

p

, 1 ≤ p < ∞.

Proof. A Montgomery type identity obtained by Barnett and Dragomir(2001), can be

obtained as follow:

f(x, y) =

∫ b

a
f (s, y) ds

b − a
+

∫ d

c
f (x, t) dt

d − c

−
∫ b

a

∫ d

c
f (s, t) dtds

(b − a) (d − c)

+

∫ b

a

∫ d

c
P (x, s) Q (y, t) f ′′

x,y (s, t) dtds

(b − a) (d − c)
, (7.4)

provided thatf is continuous on[a, b] × [c, d] and

P (x, s) =











s − a, a ≤ s ≤ x

s − b, x < s ≤ b

and Q (y, t) =











t − c, c ≤ t ≤ y

t − d, y < t ≤ d.

If we replacef (x, y) in (7.1) by its representation from (7.4), we get
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F(f)(u, v; a, b, c, d)

=

∫ b

a

∫ d

c

(

e−2πi(ux+vy)

b − a

∫ b

a

f (s, y)ds

)

dydx

+

∫ b

a

∫ d

c

(

e−2πi(ux+vy)

d − c

∫ d

c

f (x, t) dt

)

dydx

−
∫ b

a

∫ d

c

(

e−2πi(ux+vy)

(b − a) (d − c)

∫ b

a

∫ d

c

f (s, t) dtds

)

dydx

+ R (f, u, v; a, b, c, d) , (7.5)

where R(f, u, v; a, b, c, d)

=
1

(b − a) (d − c)

∫ b

a

∫ d

c

(

e−2πi(ux+vy)
)

×
[
∫ b

a

∫ d

c

P (x, s)Q (y, t) f ′′
x,y (s, t) dtds

]

dydx. (7.6)

Let

I1 =

∫ b

a

∫ d

c

(

e−2πi(ux+vy)

b − a

∫ b

a

f (s, y)ds

)

dydx,

then

I1 =

∫ b

a

e−2πiux

b − a
dx

(
∫ d

c

e−2πivy

(
∫ b

a

f (s, y)ds

)

dy

)

=
e−2πiub − e−2πiua

−2πiu (b − a)

∫ b

a

(
∫ d

c

e−2πivyf (s, y) dy

)

ds

= E (u; a, b)

∫ b

a

F (f (s, ·)) (v; c, d) ds.

In a similar fashion we obtain

I2 =

∫ b

a

∫ d

c

(

e−2πi(ux+vy)

d − c

∫ d

c

f (x, t) dt

)

dydx

= E (v; c, d)

∫ d

c

F (f (·, t)) (u; a, b) dt

and

I3 =

∫ b

a

∫ d

c

(

e−2πi(ux+vy)

(b − a)(d − c)
·
∫ b

a

∫ d

c

f (s, t) dtds

)

dydx

=
1

(b − a) (d − c)

∫ b

a

∫ d

c

f (s, t) dtds ×
∫ b

a

∫ d

c

e−2πiux · e−2πivydydx

= E (u; a, b)E (v; c, d)

∫ b

a

∫ d

c

f (s, t) dtds. (7.7)



7.2. Some Integral Inequalities 109

Using the properties of the modulus, then from (7.5) we have

|F (f) (u, v; a, b, c, d) − I1 − I2 + I3|

=

∣

∣

∣

∣

∫ b

a

∫ d

c

(

∫ b

a

∫ d

c

e−2πi(ux+vy)

(b − a) (d − c)
· P (x, s) Q (y, t) × f ′′

x,y(s, t)dtds)dydx

∣

∣

∣

∣

≤
∫ b

a

∫ d

c

∫ b

a

∫ d

c

∣

∣

∣

∣

e−2πi(ux+vy)

(b − a) (d − c)

∣

∣

∣

∣

|P (x, s)| |Q (y, t)| ×
∣

∣f ′′
x,y(s, t)

∣

∣ dtdsdydx (7.8)

=

∫ b

a

∫ d

c

∫ b

a

∫ d

c

|P (x, s)| |Q (y, t)|
(b − a) (d − c)

×
∣

∣f ′′
x,y(s, t)

∣

∣ dtdsdydx. (7.9)

Now, we observe that

∫ b

a

∫ d

c

∫ b

a

∫ d

c

|P (x, s)| |Q (y, t)| ×
∣

∣f ′′
x,y(s, t)

∣

∣ dtdsdydx (7.10)

≤
∥

∥f ′′
x,y

∥

∥

∞

[∫ b

a

(∫ b

a

|P (x, s)| ds

)

dx

∫ d

c

(∫ d

c

|Q (y, t)| dt

)

dy

]

=
∥

∥f ′′
x,y

∥

∥

∞





∫ b

a







(s − a)2

2

∣

∣

∣

∣

∣

x

a

+
(b − s)2

2

∣

∣

∣

∣

∣

b

x







dx

×
∫ d

c







(t − c)2

2

∣

∣

∣

∣

∣

y

c

+
(d − t)2

2

∣

∣

∣

∣

∣

d

y







dy





=
∥

∥f ′′
x,y

∥

∥

∞

[(

∫ b

a

(x − a)2

2
dx +

∫ b

a

(b − x)2

2
dx

)

×
(

∫ d

c

(y − c)2

2
dy +

∫ d

c

(d − y)2

2
dy

)]

=
∥

∥f ′′
x,y

∥

∥

∞

[

(b − a)3

3
· (d − c)3

3

]

.

Substituting (7.10) in (7.9), we obtain the first inequalityin (7.2).
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Further, applying Hölder’s integral inequality for doubleintegrals, we get

∫ b

a

∫ d

c

∫ b

a

∫ d

c

|P (x, s) Q (y, t)|
∣

∣f ′′
x,y(s, t)

∣

∣ dtdsdydx

≤
(
∫ b

a

∫ d

c

∫ b

a

∫ d

c

|P (x, s) Q (y, t)|q dtdsdydx

)

1

q

×
(
∫ b

a

∫ d

c

∫ b

a

∫ d

c

∣

∣f ′′
x,y(s, t)

∣

∣

p
dtdsdydx

)

1

p

(7.11)

=
∥

∥f ′′
x,y

∥

∥

p
((b − a) (d − c))

1

p ×
(
∫ b

a

(
∫ b

a

|P (x, s)|q ds

)

dx

)

1

q

×
(
∫ d

c

(
∫ d

c

|Q (y, t)|q dt

)

dy

)

1

q

=
∥

∥f ′′
x,y

∥

∥

p
((b − a) (d − c))

1

p ×
(

∫ b

a

(

(x − a)q+1

q + 1
+

(b − x)q+1

q + 1

)

dx

)
1

q

×
(

∫ d

c

(

(y − c)q+1

q + 1
+

(d − y)q+1

q + 1

)

dy

)
1

q

=
∥

∥f ′′
x,y

∥

∥

p

[

2
2

q (b − a)1+ 2

q (d − c)1+ 2

q

((q + 1) (q + 2))
2

q

]

. (7.12)

Utilizing (7.9) with (7.12), we get the second inequality of(7.2).

Finally, we obtain that

∫ b

a

∫ d

c

∫ b

a

∫ d

c

|P (x, s) Q (y, t)| ×
∣

∣f ′′
x,y(s, t)

∣

∣ dtdsdydx (7.13)

≤ sup
(x,s)∈[a,b]2

|P (x, s)| sup
(y,t)∈[c,d]2

|Q (y, t)| ×
∫ b

a

∫ d

c

∫ b

a

∫ d

c

∣

∣f ′′
x,y

∣

∣ dtdsdydx

= (b − a)(d − c)

∫ b

a

∫ d

c

∫ b

a

∫ d

c

∣

∣f ′′
x,y

∣

∣ dtdsdydx

=
∥

∥f ′′
x,y

∥

∥

1
(b − a)2 (d − c)2 .

Substituting in (7.13) into (7.9) gives the final inequalityin (7.2), where we have used the

fact that

max {X, Y } =
X + Y

2
+

∣

∣

∣

∣

Y − X

2

∣

∣

∣

∣

.

Thus the theorem is completely proved.
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7.3 A Numerical Cubature Formula

To illustrate the use of a cubature formula, we form a composite rule from the inequality

(7.2).

Let us consider the arbitrary divisionsIm : a = x0 < x1 < · · · < xm = b on [a, b] and

Jn : c = y0 < y1 < · · · < yn = d on [c, d], define the sum

F(f, Im, Jn, u, v) =
m−1
∑

k=0

n−1
∑

l=0

I1(SD) +
m−1
∑

k=0

n−1
∑

l=0

I2(SD) −
m−1
∑

k=0

n−1
∑

l=0

I3(SD) (7.14)

where

(SD) := (u, v; xk, xk+1, yl, yl+1);

hk := xk+1 − xk (k = 0, 1, 2, · · · , m − 1) and νl := yl+1 − yl (l = 0, 1, · · · , n − 1)

Under the above assumptions the following theorem can be obtained (Hannaet al. (2002)).

THEOREM 7.2. Let f : [a, b] × [c, d] → R be a continuous mapping on[a, b] × [c, d],

then we have the cubature formula

F(f)(u, v; a, b, c, d) = F(f, Im, Jn, u, v) + R(f, Im, Jn, u, v), (7.15)

whereF(f, Im, Jn, ·, ·) approximates the Fourier TransformF(f) at every point(u, v) ∈
[a, b] × [c, d], and the remainder termR(f, Im, Jn, ·, ·) satisfies the bounds

|R(f, Im, Jn, u, v)|

≤







































1

9

(m−1
∑

k=0

n−1
∑

l=0

h2
kν

2
l

)

‖f ′′
x,y‖ßnfty,

[

2

(q + 1)(q + 2)

]
2

q
(m−1
∑

k=0

n−1
∑

l=0

hkνl

)
q+1

q

‖f ′′
x,y‖p,

κ(h)τ(ν)‖f ′′
x,y‖1,

(7.16)

whereκ(h) := max{hk| k = 0, · · · , m − 1}, andτ(ν) := max{νl| l = 0, · · · , n − 1}.

Proof. Applying Theorem 7.1 over every subinterval[xk, xk+1] and[yl, yl+1], we can state
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that
∣

∣

∣

∣

F (f) (SD) − I1(SD) − I2(SD) + I3(SD)

∣

∣

∣

∣

≤



































































1

9
h2

kv
2
l sup

(s,t)∈[xk,xk+1]×[yl,yl+1]

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

[

2 [hkνl]
q+1

2

(q + 1) (q + 2)

]
2

q

DIS

hkvl

∫ xk+1

xk

∫ yl+1

yl

∣

∣

∣

∂2f(s,t)
∂x∂y

∣

∣

∣

p

dtds

where

DIS :=

(
∫ xk+1

xk

∫ yl+1

yl

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

p

dtds

)
1

p

,

Summing overk from 0 to m− 1 andl from 0 to n− 1, and using the triangle inequality,

we obtain

|R(f, Im, Jn, u, v)|

= |F(f)(u, v; a, b, c, d)− F(f, Im, Jn, u, v)|

≤































































































1

9

m−1
∑

k=0

n−1
∑

l=0

sup
(s,t)∈[xk,xk+1]×[yl,yl+1]

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

h2
kν

2
l













2

(m−1
∑

k=0

n−1
∑

l=0

[hkvl]
q+1

)
1

2

(q + 1) (q + 2)













2

q

DIS

m−1
∑

k=0

n−1
∑

l=0

hkvl

∫ xk+1

xk

∫ yl+1

yl

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

p

dtds,

where

sup
(s,t)∈[xk,xk+1]×[yl,yl+1]

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

≤ sup
(s,t)∈[a,b]×[c,d]

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

= ‖f ′′
x,y‖∞,
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thus the first inequality in (7.16) is obtained. Using Hölder’s discrete inequality, we have

m−1
∑

k=0

n−1
∑

l=0

[hkνl]
q+1

q

(∫ xk+1

xk

∫ yl+1

yl

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

p

dtds

)
1

p

≤
[m−1
∑

k=0

n−1
∑

l=0

(

[hkνl]
q+1

q

)q] 1

q

×
[m−1
∑

k=0

n−1
∑

l=0

[(
∫ xk+1

xk

∫ yl+1

yl

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

p

dtds

)
1

p
]p] 1

p

=

(m−1
∑

k=0

n−1
∑

l=0

(hkνl)
q+1

)
1

q

‖f ′′
x,y‖p

which proves the second inequality in (7.16).

For the last inequality, we observe that

m−1
∑

k=0

n−1
∑

l=0

hkνl

∫ xk+1

xk

∫ yl+1

yl

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

dtds

≤ κ(h)τ(ν)

m−1
∑

k=0

n−1
∑

l=0

∫ xk+1

xk

∫ yl+1

yl

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

dtds

= κ(h)τ(ν)

∫ b

a

∫ d

c

∣

∣

∣

∣

∂2f (s, t)

∂x∂y

∣

∣

∣

∣

dtds

= κ(h)τ(ν)‖f ′′
x,y‖1

and the theorem is completely proved.

In practical applications, it is convenient to consider theequidistant partitioning of the

region[a, b] × [c, d]. Thus let

Im : xk = a + k · b − a

m
, k = 0, 1, · · · , m and

Jn : yl = c + l · d − c

n
, l = 0, 1, · · · , n,

and we define the sum

Fm,n(f, Im, Jn, u, v)

=

m−1
∑

k=0

n−1
∑

l=0

I1(ES) +

m−1
∑

k=0

n−1
∑

l=0

I2(ES) −
m−1
∑

k=0

n−1
∑

l=0

I3(ES) (7.17)

where(ES) := (u, v; a + k · b − a

m
, a + (k + 1) · b − a

m
, c + l · d − c

n
, c + (l + 1) · d − c

n
).

Then the following corollary of Theorem 7.2 holds:
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Corollary 7.2.1. Let f be as defined in Theorem 7.2. Then we have

F(f)(u, v; a, b, c, d) = Fn,m(f, Im, Jn, u, v) + Rm,n(f, Im, Jn, u, v), (7.18)

whereFn,m(f, Im, Jn, ., .) approximates the Fourier TransformF(f) at every point(u, v) ∈
[a, b] × [c, d], and the remainder termRm,n(f, Im, Jn, ., .) satisfies the bounds

|Rn,m(f, Im, Jn, u, v)| ≤



























































(b − a)2(d − c)2

9mn
‖f ′′

x,y‖∞;

[

2[(b − a)(d − c)]
q+2

2

(q + 1)(q + 2)

]
2

q ‖f ′′
x,y‖p

mn
;

(b − a)(d − c)

mn
‖f ′′

x,y‖1.

(7.19)

7.3.1 Numerical Experiments

Now, we will employ the cubature from equation (7.14) to approximate the finite Fourier

transform of

f(x, y) = e3x−2y(x − y), 0 ≤ x, y ≤ 1. (7.20)

SinceF(f) can be computed analytically we can gauge the performance ofthe cubature

rule as well as compare it to the theoretical error bound (7.19).

The results are shown in Table 1 wheren2 is the number of uniform partitions of the do-

main[0, 1]× [0, 1]. It is clearly evident that the cubature rule performs extremely well and

achieves single precision accuracy whenn = 16. Halving the interval size will increase

the accuracy by approximately one and a half orders, and a simple analysis shows that the

rate of convergence is at leastO((nm)−2). This contrasts with the theoretical error which

is O(1/(nm)). Extending the Peano kernel, that is using a higher order identity to that

of (7.4), may provide a higher order theoretical error result. This will be investigated in

future work.

In Figure 7.1, we show a three dimensional plot of the finite Fourier transform obtained

using (7.14) for the example (7.20).
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n Num. Error Ratio Th. Error

1 0.32E+00 3.11 0.13E+02

2 0.13E-01 25.28 0.33E+01

4 0.48E-04 267.37 0.82E+00

8 0.16E-05 30.63 0.20E+00

16 0.23E-07 67.49 0.51E-01

32 0.34E-09 68.02 0.13E-01

64 0.77E-11 44.09 0.32E-02

Table 7.1: Numerical error (column 2) and theoretical error (column 4)in approximating the

finite Fourier transform of (7.20) using equation (7.14).

00.20.40.60.81 u

0 0.2 0.4 0.6 0.8v

0.5

1

1.5
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Figure 7.1:Finite Fourier transform off(x, y) = e3x−2y(x − y), 0 ≤ x, y ≤ 1 evaluated using

the rule (7.14).
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7.4 A Pre Grüss Type Inequality for Complex Valued Functions

Hannaet al. (2004) developed the following theorem which provides the possibility to

approximate the integral of the product in terms of the product of integrals.

THEOREM 7.3. Letρ : Ω → [0,∞) be aµ−measurable function onΩ with
∫

Ω
ρ (s) dµ (s) =

1. If f, g ∈ L2
ρ (Ω, K) and there exist the constantsγ, Γ ∈ K with the property that either

Re
[

(Γ − f (s))
(

f (s) − γ
)]

≥ 0 for µ − a.e.s ∈ Ω (7.21)

or, equivalently,
∣

∣

∣

∣

f (s) − γ + Γ

2

∣

∣

∣

∣

≤ 1

2
|Γ − γ| for µ − a.e.s ∈ Ω (7.22)

holds, then
∣

∣

∣

∣

∫

Ω

ρ (s) f (s) g (s)dµ (s) −
∫

Ω

ρ (s) f (s) dµ (s)

∫

Ω

ρ (s) g (s)dµ (s)

∣

∣

∣

∣

≤ 1

2
|Γ − γ|

[

∫

Ω

ρ (s) |g (s)|2 dµ (s) −
∣

∣

∣

∣

∫

Ω

ρ (s) g (s) dµ (s)

∣

∣

∣

∣

2
]

1

2

. (7.23)

The above result provides an inequality of Grüss type that may be useful in applications

where one of the factors is known and some bounds for the second factor are provided.

For more details see (Hannaet al. 2004; Barnettet al. 2004; Dragomir 1999a; Dragomir

and Gomm 2003).

Now, we will apply the above theorem for the two dimensional case namely,f : [a, b] ×
[c, d] → R, and we consider the two examples

f(x, s) → f(t, y)

and g(x, y) = e2πi(ux+vy).

We state the following theorem to approximate the Fourier transformF(·, ·) for the two

dimensional case.

THEOREM 7.4. Let f : [a, b] × [c, d] → K be a real or complex valued function with

f ∈ L2
ρ (Ω, K) , and there exist the constantsΓ, γ ∈ K with the property that, either

∣

∣

∣

∣

f (x, y) − Γ + γ

2

∣

∣

∣

∣

≤ 1

2
|Γ − γ| (7.24)
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or, equivalently

Re
[

(Γ − f (x, y))
(

f (x, y) − γ
)]

≥ 0 for (x, y) ∈ [a, b] × [c, d] (7.25)

hold. Then we have the inequality

∣

∣

∣

∣

F (f) (u, v; a, b, c, d) − E (u; a, b)E (v; c, d)

∫ b

a

∫ d

c

f (x, y) dydx

∣

∣

∣

∣

≤ 1

2
|Γ − γ| (b − a) (d − c)

[

1 − sin2 [πu (b − a)]

π2 |x|2 (b − a)2

]
1

2
[

1 − sin2 [πv (d − c)]

π2 |x|2 (d − c)2

]
1

2

. (7.26)

Proof. Utilizing Theorem 7.3 we can state that

(7.27)
∣

∣

∣

∣

1

(b − a)(d − c)

∫ b

a

∫ d

c

f (x, y) e−2πi(ux+vy)dydx− 1

(b − a)(d − c)

∫ b

a

∫ d

c

f (x, y) dydx

· 1

(b − a)(d − c)

∫ b

a

∫ d

c

e−2πi(ux+vy)dydx

∣

∣

∣

∣

≤ 1

2
|Γ − γ|K,

where

K =

[

1

(b − a)(d − c)

∫ b

a

∫ d

c

∣

∣

∣

∣

e−2πi(ux+vy)

∣

∣

∣

∣

2

dydx

−
∣

∣

∣

∣

1

(b − a)(d − c)

∫ b

a

∫ d

c

e−2πi(ux+vy)dydx

∣

∣

∣

∣

2] 1

2

, (7.28)

provided thatγ, Γ ∈ K (if they exist) satisfy the property that, either

Re
[

(Γ − f (x, y))
(

f (x, y) − γ
)]

≥ 0 for (x, y) ∈ [a, b] × [c, d], (7.29)

or, equivalently,

∣

∣

∣

∣

f (x, y) − γ + Γ

2

∣

∣

∣

∣

≤ 1

2
|Γ − γ| for (x, y) ∈ [a, b] × [c, d]. (7.30)
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Also, observe that

1

(b − a)(d − c)

∫ b

a

∫ d

c

e−2πi(ux+vy)dydx (7.31)

=
1

(b − a)(d − c)

∫ b

a

∫ d

c

e−2πiux · e−2πivydydx

=
1

(b − a)(d − c)

(
∫ b

a

e−2πiuxdx

)(
∫ d

c

e−2πivydy

)

=
1

(b − a)(d − c)
× −1

2πiu

[

e−2πiux

]b

a

× −1

2πiv

[

e−2πivy

]d

c

=
e−2πiub − e−2πiua

−2πiub − 2πiua
× e−2πivd − e−2πivc

−2πivd − 2πivc

= E(u; a, b)E(v; c, d).

Moreover, we have
∣

∣e2πi(ux+vy)
∣

∣

2
= 1, (7.32)

∫ b

a

e2πiuxdx =
1

2πiu

[

e2πiub − e2πiua
]

,

and
∣

∣

∣

∣

∫ b

a

∫ d

c

e2πi(ux+vy)dydx

∣

∣

∣

∣

2

=

∣

∣

∣

∣

∫ b

a

e2πuixdx

∣

∣

∣

∣

2 ∣
∣

∣

∣

∫ d

c

e2πviydy

∣

∣

∣

∣

2

but

∣

∣

∣

∣

∫ b

a

e2πuixdx

∣

∣

∣

∣

2

=

(

1

2π|u|

)2
[

∣

∣e2πiub
∣

∣

2 − 2Re
[

e2πiu(b−a)
]

+
∣

∣e2πiua
∣

∣

2
]

=
1

2π2 |u|2
[1 − cos (2πu (b − a))]

=
1

2π2 |u|2
[

1 −
(

1 − 2 sin2 (πu (b − a))
)]

=
sin2 [πu (b − a)]

π2 |u|2
. (7.33)

In similar way we have

∣

∣

∣

∣

∫ d

c

e2πi(vy)dy

∣

∣

∣

∣

2

=
sin2 [πv (d − c)]

π2 |v|2
. (7.34)

Utilizing (7.31) to (7.34) and substitute in (7.27) we deduce the desired inequality (7.26).

Thus the theorem is completely proved.
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7.4.1 Applications to a Cubature Formula

Let us consider the arbitrary divisions as in section (7.3) and define the sum

F(f, Im, Jn, u, v) =

m−1
∑

k=0

n−1
∑

l=0

E(−2πiuxk+1,−2πiuxk)E(−2πivyl+1,−2πivyl)

×
∫ xk+1

xk

∫ yl+1

yl

f(x, y)dydx (7.35)

where(u, v) ∈ [a, b] × [c, d], u 6= 0 andv 6= 0.

Then the following theorem can be obtained.

THEOREM 7.5. Letf : [a, b]× [c, d] → R be continuous mapping on[a, b]× [c, d], then

we have the cubature formula

F(f)(u, v; a, b, c, d) = F(f, Im, Jn, u, v) + R(f, In, Jm, u, v),

where

F(f, In, Jm, ·, ·) approximates the Fourier TransformF(f) at every point(u, v) ∈ [a, b]×
[c, d],

and the remainder termR(f, Im, Jn, ·, ·) satisfies the bounds

|R (f, Im, Jn, u, v)| ≤ 1

2
|Γ − γ| (b − a)

1

2 (d − c)
1

2 [κ(h)]
1

2 [τ(ν)]
1

2 (7.36)

×





m−1
∑

k=0

n−1
∑

l=0

(

1 − sin2 (πuhk)

π2 |u|2 h2
k

) 1

2
(

1 − sin2 (πvνl)

π2 |v|2 ν2
l

) 1

2



 .

Proof. If we apply Theorem 7.4 over every subinterval[xk, xk+1] and [yl, yl+1], we can

state that
∣

∣

∣

∣

∫ xk+1

xk

∫ yl+1

yl

f (x, y) e−2πi(ux+vy)dydx− E (u)E (v) ·
∫ xk+1

xk

∫ yl+1

yl

f (x, y) dydx

∣

∣

∣

∣

≤ 1

2
|Γ − γ|hkνl

[

1 − sin2 (πuhk)

π2 |u|2 h2
k

]
1

2
[

1 − sin2 (πvνl)

π2 |v|2 ν2
l

]
1

2

.

Summing overk from 0 to m − 1 andl from 0 to n − 1 using the triangle inequality and

utilizing the Cauch-Bunyakovsky-Schwarz inequality
∣

∣

∣

∣

∣

r
∑

i=1

XiYi

∣

∣

∣

∣

∣

2

≤
r
∑

i=1

|Xi|2
r
∑

i=1

|Yi|2 ,
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whereXi, Yi ∈ K, we obtain

|R (f, Im, Jn, u, v)| = |F (f) (u, v; a, b, c, d)− F (f, Im, Jn, u, v)|

≤ 1

2
|Γ − γ|

m−1
∑

k=0

hk

[

1 − sin2 (πuhk)

π2 |u|2 h2
k

]
1

2 n−1
∑

l=0

νl

[

1 − sin2 (πvνl)

π2 |v|2 ν2
l

]
1

2

≤ 1

2
|Γ − γ|

(

m−1
∑

k=0

h2
k

)
1

2
[

m−1
∑

k=0

(

1 − sin2 (πuhk)

π2 |u|2 h2
k

)]
1

2

×
(

n−1
∑

l=0

ν2
l

)
1

2
[

n−1
∑

l=0

(

1 − sin2 (πvνl)

π2 |v|2 ν2
l

)]
1

2

.

Finally by observing that

m−1
∑

k=0

h2
k ≤ κ (h)

m−1
∑

k=0

hk = (b − a) κ (h) and
n−1
∑

l=0

ν2
l ≤ τ (ν)

n−1
∑

l=0

νl = (d − c) τ (ν) ,

we deduce the estimate (7.36).

The proof is thus completed.
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7.4.2 Numerical Experiments

In this section the cubature developed in equation (7.35) isused to approximate the finite Fourier

transform of the following functions:

Example 7.1.

f(x, y) = ex+y, 0 ≤ x, y ≤ 1. (7.37)

The surface and contour plots over different partitions using the equation (7.35) to approximate

the finite Fourier transform of the function (7.37) is shown in Figure 7.2.

Example 7.2.

f(x, y) = e−x2−y2

, −0.1 ≤ x, y ≤ 0.1 (7.38)

The plots over different partitions using the equation (7.35) to approximate the finite Fourier trans-

form of the function in Example 7.2 as shown in Figure 7.3.

SinceF(f) can be computed analytically we can gauge the performance ofthe cubature rule as

well as compare it to the theoretical error bound (7.36).

The results are shown in Figures 7.2 and 7.3 where2n and2m are the number of uniform partitions

of the domains[0, 1] × [0, 1] in Example 7.1, and[−0.1, 0.1] × [−0.1, 0.1] in Example 7.2. The

plots of the approximation of the finite Fourier transform ofthe two functions for partitions1 ×
1, 4× 4, 8× 8, 16× 16 , 32× 32 and64× 64, respectively, are depicted in Figures 7.2 and 7.3.

Clearly, we notice from the figures; 7.2 and 7.3 that the erroris always smaller than the error

bound when utilizing equation (7.35) to approximate the finite Fourier transform of the above two

functions. This seems to be quite typical behaviour, this method is expected to give the same

results for any function chosen.
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Figure 7.2: Surface and contour plots of the error between over different partitions using the

equation (7.35). (The approximation and the finite Fourier transform off(x, y) = ex+y, 0 ≤
x, y ≤ 1.)
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Figure 7.3:Plots of the error over different partitions using the equation (7.35). (The approxima-

tion and the finite Fourier transform off(x, y) = e−x2−y2

, −0.1 ≤ x, y ≤ 0.1)
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APPENDIXA

USING THE M APLE PACKAGE TO PRODUCE GRAPHICAL

RESULTS FOR THE FIGURES

For evaluating single or double integration of a function inone or two variables on a computer, it

is generally more efficient in terms of both space and time to have an analytic approximation to the

integration rather than to store a table and use interpolations. It is also desirable to use the lowest

possible degree of polynomial that will give the desired accuracy in approximating the integration.

The following sections give a number of programs using the Maple package for producing the

desired approximations for all the numerical application within the thesis.

A.1 Cubature Related Maple Programs

A.1.1 Graphing the numerical results of Chapter 3

Maple program to produce Figure 3.1

The perturbed Taylor expansion developed in equation (3.30) is used for different values ofm and

n to approximate the error|Rnm (f, a, x, b, y)| for the functionf(x, y) = e−x2−y2

, x, y ∈ [0, 1]

as in Figure 3.1.

> with (student):

> restart:

125
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> Digits:=25:

> g:=unapply(exp (-x2-y2),x,y):

> appr:= proc (g, a, c, d, m, n)

local sum1, sum2, i, j, dsum, sumd1, sumd2, firstp, sum3, sum4, appro2:
sum1:=0: sum2:=0: sum3:=0:

for j from 0 to n do

for i from 0 to m do

dsum:=(((x-a)ˆi)/i!)* (((y-b)ˆj)/j!)* (D[1$i,2$(j)](g)(a, b)):

sum1:=sum1 + dsum:

od:

od:

i:=i: j:=j:

for i from 0 to m do

sumd1:=(((x-a)ˆi)/i!)*int (((y-s)ˆn)* (D[1$i,2$(n+1)](g)(a,s)),s=b..y):

sum2:=sum2+sumd1:

od: firstp:=(1/n!)* sum2:

i:=i: j:=j:

for j from 0 to n do

sumd2:=(((y-b)ˆj)/j!)* int((x-t)ˆn* D[1$m+1,2$(j)](g)(t,b),t=a..x):

sum3:=sum3+sumd2:

od:

appro2:=(1/m!)* sum3:

sum4:=(x-a)ˆm* (y-b)ˆn* int(int(D[1$m+1,2$(n+1)](g)(t,s),s=b..y),t=a..x)/((m+1)!* (n+1)!):

plot3d(abs(g(x,y)-sum1-firstp-appro2-sum4),x=a..c,y=b..d):

end:

> appr( g,0,1,0,1,1,1);
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Maple program to produce Figure 3.2

The perturbed Taylor expansion developed in equation (3.30) is used for different values ofm and

n to approximate the error|Rnm (f, a, x, b, y)| for the functionf(x, y) = e−xy, x, y ∈ [0, 1] as in

Figure3.2.

> with (student):

> restart:

> Digits:=25:

> g:=unapply(exp (-xy),x,y):

> appr:= proc (g, a, c, d, m, n)

local sum1, sum2, i, j, dsum, sumd1, sumd2, firstp, sum3, sum4, appro2:

sum1:=0: sum2:=0: sum3:=0:

for j from 0 to n do

for i from 0 to m do

dsum:=(((x-a)ˆi)/i!)* (((y-b)ˆj)/j!)* (D[1$i,2$(j)](g)(a, b)):

sum1:=sum1 + dsum:

od: od:

i:=i: j:=j:

for i from 0 to m do

sumd1:=(((x-a)ˆi)/i!)*int (((y-s)ˆn)* (D[1$i,2$(n+1)](g)(a,s)),s=b..y):

sum2:=sum2+sumd1: od:

firstp:=(1/n!)* sum2:

i:=i: j:=j:

for j from 0 to n do

sumd2:=(((y-b)ˆj)/j!)* int((x-t)ˆn* D[1$m+1,2$(j)](g)(t,b),t=a..x):

sum3:=sum3+sumd2:

od:

appro2:=(1/m!)* sum3:

sum4:=(x-a)ˆm* (y-b)ˆn* int(int(D[1$m+1,2$(n+1)](g)(t,s),s=b..y),t=a..x)/((m+1)!* (n+1)!):

plot3d(abs(g(x,y)-sum1-firstp-appro2-sum4),x=a..c,y=b..d):

end:

> appr( g,0,1,0,1,m,n);
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A.1.2 Graphing the numerical results of Chapter 4

Maple program to produce Figures 4.1

The absolute error of approximating the integral
∫ x
0

∫ y
0 f(t, s) dsdt as a function of(x, y) ∈ [0, 1]2

for the function (4.44) using (4.34) and (4.35) for various values ofm andn as in Figure 4.1.

> restart:

> Digits:=20:

> f:=unapply(exp(-x*y),x,y);

> approxg:=proc(f,a,b,c,d,m,n)

local i,j,sum1,dsum1,sum2,dsum2,A,B1,sumB1,B2,sumB2,B3,sumB3,B4,sumB4,B,sumf,sums,sumth,

sumfo,sumb1,sumff,sumsf,errorb,doubint,Af,threrr:
sum1:=0: sum2:=0: sumf:=0: sums:=0: sumth:=0: sumfo:=0:

for i from 1 to m do

for j from 2 to n do

dsum1:=(((a-x)^(j)*(c-y)^(i))/((i)!*j!))*

(2*(2^(i+1)-1)/(i+1))*(bernoulli(j)*bernoulli(i+1))*(((D[1(i − 1), 2(j-1)](f)(a, y))

+((D[1(i − 1), 2(j-1)](f)(a, c)))+((D[1(i − 1), 2(j-1)](f)(x, y)))+((D[1(i − 1), 2(j-1)](f)(x, c))))):

sum1:=(sum1+dsum1):

od:

od: i:=i: j:=j:

for i from 1 to m do

sumb1:=((2^(i+1)-1)*(c-y)^(i)/(i+1)!)*bernoulli(i+1)*(((D[1(i − 1), 2(0)](f)(a, y))

+((D[1(i − 1), 2(0)](f)(a, c)))+((D[1(i − 1), 2(0)](f)(x, y)))

+((D[1(i − 1), 2(0)](f)(x, c))))):

sumf := (sumf+sumb1):

sumff:=(b-a)*sumf:

od:

i:=i: j:=j:

for i from 1 to m do

B2:=(2*(1-2^(i+1))*(c-y)^(i)/(i+1)!)*bernoulli(i+1)*int((D[1(0), 2(i-1)](f)(t, c))
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+(D[1(0), 2(i-1)](f)(t, y)),t=a..x):

sums:=(sums+B2):

od:

i:=i: j:=j:

for j from 2 to n do

B3:=(((a-x)^j)/j!)*bernoulli(j)*int((D[1(j − 1), 2(0)](f)(a, s))

+(D[1(j − 1), 2(0)](f)(x, s)),s=c..y):

sumth:=(sumth+B3):

od:

i:=i: j:=j: B4:=((b-a)/2)*int((f(a,s)+f(x,s)),s=c..y):

Af:=sumff+sum1:

B:=sums+sumth+B4:

doubint:=evalf((int(int(f(t,s),s=c..y),t=a..x))):

errorb:=evalf((abs(doubint-Af-B))):

plot3d(abs(doubint-Af-B),y=c..d,x=a..b,axes=framed,style=patchnogrid):

end:

> approxg(f,0,1,0,1,1,1);
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A.2 Fourier Related Maple Programs

A.2.1 Graphing the numerical results of Chapter 6

Maple program of Figure 6.1

Maple program applying equation (6.27) to plot the bound on error rn (x) := |Rn (g, x)| for the

functiong(x) = exp(x), x ∈ [−1, 1] as in Figure 6.1.

> restart:

> gen:=proc(m,a,b)

local g,F,Eg1,Eg3,Eg5,Lg,Sg,

g:=unapply((exp(xˆ 2)),x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u):

Eg1:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):

Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):

Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):

Lg:=unapply(((Eg1)/(Eg3))* (Eg5),k):

Sg:=unapply(sum(Lg(k),k=0..m-1),u):

plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""]):

end proc:

> gen(1,-1,1):
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Maple program to produce Figure 6.2

Maple program applying equation (6.27) to plot the bound on error rn (x) := |Rn (g, x)| for the

functiong(x) = exp(−x2), x ∈ [−1, 1] as in Figure 6.2.

> restart:

> gen:=proc(m,a,b)

local g,F,Eg1,Eg3,Eg5,Lg,Sg,

g:=unapply((exp(xˆ 2)),x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u):

Eg1:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):

Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):

Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):

Lg:=unapply(((Eg1)/(Eg3))* (Eg5),k):

Sg:=unapply(sum(Lg(k),k=0..m-1),u):

plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""]):

end proc:

> gen(1,-1,1):
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Maple program to produce Figure 6.3

Maple program applying equation (6.27) to plot the bound on error rn (x) := |Rn (g, x)| for the

functiong(x) = ln(x), x ∈ (0, 1] as in Figure 6.3.

> restart:

> gen:=proc(m,a,b)

local g,F,Eg1,Eg3,Eg5,Lg,Sg,

g:=unapply((ln(x)),x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u):

Eg1:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):

Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):

Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):

Lg:=unapply(((Eg1)/(Eg3))* (Eg5),k):

Sg:=unapply(sum(Lg(k),k=0..m-1),u):

plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""]):

end proc:

> gen(1,.001,1):
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Maple program to produce Figure 6.4

Maple program applying equation (6.27) to plot the bound on error rn (x) := |Rn (g, x)| for the

functiong(x) = cosh(x), x ∈ [−π, π] as in Figure 6.4.

> restart:

> gen:=proc(m,a,b)

local g,F,Eg1,Eg3,Eg5,Lg,Sg,

g:=unapply((cosh (x)),x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u):

Eg1:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):

Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):

Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):

Lg:=unapply(((Eg1)/(Eg3))* (Eg5),k):

Sg:=unapply(sum(Lg(k),k=0..m-1),u):

plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""]):

end proc:

> gen(1,-Pi,Pi):
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Maple program to produce Figure 6.5

Maple program applying equation (6.27) to plot the bound on error rn (x) := |Rn (g, x)| for the

functiong(x) = sinh(x), x ∈ [−π, π] as in Figure 6.5.

> restart:

> gen:=proc(m,a,b)

local g,F,Eg1,Eg3,Eg5,Lg,Sg,

g:=unapply((sinh (x)),x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u):

Eg1:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):

Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):

Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):

Lg:=unapply(((Eg1)/(Eg3))* (Eg5),k):

Sg:=unapply(sum(Lg(k),k=0..m-1),u):

plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""]):

end proc:

> gen(1,-Pi,Pi):
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Maple program to produce Figure 6.6

Maple program applying equation (6.27) to plot the bound on error rn (x) := |Rn (g, x)| for the

functiong(x) = sin(2x) ex, x ∈ [−π, π] as in Figure 6.6.

> restart:

> gen:=proc(m,a,b)

local g,F,Eg1,Eg3,Eg5,Lg,Sg,

g:=unapply((sin(2x)* exp(x)),x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u):

Eg1:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):

Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):

Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):

Lg:=unapply(((Eg1)/(Eg3))* (Eg5),k):

Sg:=unapply(sum(Lg(k),k=0..m-1),u):

plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""]):

end proc:

> gen(1,-Pi,Pi):
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A.2.2 Graphing the numerical results of Chapter 7

Maple program to produce Figure 7.1

Maple program for the finite Fourier transform off(x, y) = e3x−2y(x − y), 0 ≤ x, y ≤ 1

evaluated using the rule (7.14) as in Figure 7.1.

> restart:

> read ‘fourier.mpl‘:

> with( codegen , fortran ):

> fortran(FinFTp , optimized , precision=double ):

I1 := E1(u,x[k],x[k+1]) * int( F12( f,s,v,y[l],y[l+1] ) , s=x[k]..x[k+1] ):

I1 := combine( evalc( simplify( I1 , power ) ) , trig ):

I1r := coeff( I1 , I , 0 ): I1i := coeff( I1 , I , 1 ):

I2 := E1(v,y[l],y[l+1]) * int( F11( f,t,u,x[k],x[k+1] ) , t=y[l]..y[l+1] ):

I2 := combine( evalc( simplify( I2 , power ) ) , trig ):

I2r := coeff( I2 , I , 0 ): I2i := coeff( I2 , I , 1 ):

I3 := E1(u,x[k],x[k+1])* E1(v,y[l],y[l+1])* int( int( f(m ,n) , m=x[k]..x[k+1] ) , n=y[l]..y[l+1] ):

I3 := combine( evalc( simplify( I3 , power ) ) , trig ):

I3r := coeff( I3 , I , 0 ): I3i := coeff( I3 , I , 1 ):

Sumr := Sumr + I1r+I2r-I3r: Sumi := Sumi + I1i+I2i-I3i;

I3 := E1(u,x[k],x[k+1])* E1(v,y[l],y[l+1])* int( int( f(m ,n) , m=x[k]..x[k+1] ) , n=y[l]..y[l+1] ):

I3 := combine( evalc( simplify( I3 , power ) ) , trig ):

I3r := coeff( I3 , I , 0 ): I3i := coeff( I3 , I , 1 ):

I3i:

fortran( I2r , optimized , precision=double):

fortran( I2i , optimized , precision=double):

fortran( I3r , optimized , precision=double):

fortran( I3i , optimized , precision=double):
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Maple program to produce Figure 7.2

Maple program using the equation (7.35) to approximate the finite Fourier transform off(x, y) =

ex+y, 0 ≤ x, y ≤ 1. as in Figure 7.2.

restart: > Digits:=15:

> with( plots ): with( plottools ):with(student):

> genp:=proc(m,n,a,b)

local g,F,Eg1,Eg2,Eg3,Eg4,Eg5,Lg,Sg:

g:=unapply(exp(x+y),x,y):

F:=Int(Int(g(x,y)* exp(-2* Pi* I* ((u*x)+(v*y))),y=a..b), x=a..b):

F:=unapply(int(int(g(x,y)* exp(-2* Pi* I* ((u*x)+(v*y))),y=a..b), x=a..b),u,v):

Eg1:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):

Eg2:=((exp(-2* Pi* I* v* (a+(1+l)* ((b-a)/n))))-(exp(-2*Pi* I* v* (a+(l)* ((b-a)/n))))):

Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2* Pi* I* u* (a+(k)* ((b-a)/m)))):

Eg4:=((-2* Pi* I* v* (a+(1+l)* ((b-a)/n)))-(-2* Pi* I* v* (a +(l)* ((b-a)/n)))):

Eg5:=(int(int(g(x,y),y=a+(l)* ((b-a)/n)..a+(l+1)* ((b-a)/n)),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m))):

Lg:=unapply(((Eg1* Eg2)/(Eg3* Eg4))* (Eg5),k,l):

Sg:=unapply(sum(sum(Lg(k,l), l=0..n-1),k=0..m-1),u,v):

plot3d(abs(F(u,v)-Sg(u,v)),u=a..b,v=a..b,axes=framed,style=patchnogrid):

end:

> genp(1,1,0,1);
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Maple program to produce Figure 7.3

Maple program using the equation (7.35) to approximate the finite Fourier transform off(x, y) =

e−x2−y2

, −0.1 ≤ x, y ≤ 0.1 as in Figure 7.3.

restart: > Digits:=15:

> with( plots ): with( plottools ):with(student):

> genp:=proc(m,n,a,b)

local g,F,Eg1,Eg2,Eg3,Eg4,Eg5,Lg,Sg:

g:=unapply(exp(-xˆ 2-yˆ 2),x,y):

F:=Int(Int(g(x,y)* exp(-2* Pi* I* ((u*x)+(v*y))),y=a..b), x=a..b):

F:=unapply(int(int(g(x,y)* exp(-2* Pi* I* ((u*x)+(v*y))),y=a..b), x=a..b),u,v):

Eg1:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):

Eg2:=((exp(-2* Pi* I* v* (a+(1+l)* ((b-a)/n))))-(exp(-2*Pi* I* v* (a+(l)* ((b-a)/n))))):

Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2* Pi* I* u* (a+(k)* ((b-a)/m)))):

Eg4:=((-2* Pi* I* v* (a+(1+l)* ((b-a)/n)))-(-2* Pi* I* v* (a +(l)* ((b-a)/n)))):

Eg5:=(int(int(g(x,y),y=a+(l)* ((b-a)/n)..a+(l+1)* ((b-a)/n)),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m))):

Lg:=unapply(((Eg1* Eg2)/(Eg3* Eg4))* (Eg5),k,l):

Sg:=unapply(sum(sum(Lg(k,l), l=0..n-1),k=0..m-1),u,v):

plot3d(abs(F(u,v)-Sg(u,v)),u=a..b,v=a..b,axes=framed,style=patchnogrid):

end:

> genp(1,1,-.1,.1);
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