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Abstract

The accuracy and efficiency of computing multiple integials very important prob-
lem that arises in many scientific, financial and engineeaipglications. The research
conducted in this thesis is designed to build on past workdewetlop and analyze new
numerical methods to evaluate double integrals efficientlge fundamental aims to

develop and assess techniques for (numerically) evatpakiuble integrals with high

accuracy.

The general approach presented in this thesis involvesdhielapment of new multi-
variate approximations from a generalaised Taylor petgmemn terms of Appell type
polynomials and to study their use in multi-dimensionaégration. The expectation is
that the new methods will provide polynomial and polynontiieé approximations that
can be used for application in a straight forward manner ger accuracy. That is, we
aim to devise and investigate new multiple integration falae and as well as provide
information ona priori error bounds.

A further major contribution of the work builds on the resgraconducted in the field
of Gruss type inequalities and leads to a new approximatiagheoone and two dimen-
sional finite Fourier transform. The approximations areenmis of the complex exponen-
tial mean and estimate of the error of approximation foreddht classes of functions of
bounded variation defined on finite intervals.

It is believed that this work will also have an impact in theaof numerical multidimen-

sional integral evaluation for other integral operators.
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CHAPTER1

INTRODUCTION

1.1 Background

Integration is an important, indeed fundamental part ohtiegs problems of interest. In
practice, integrals are not known exactly and require nigakireatment. This procedure
is known asnumerical integratioror quadrature Much effort over the past 150 years has
been expended into the search for efficient integrationmestand an analysis of their
accuracy. The bulk of this work considered the treatmeningfle dimensional integrals.
The problem of two or higher dimensions is much more difficiNbtwithstanding the
contributions of a number of authors over the last 30 yehesgtis still little knowledge
of multi-dimensional integration in comparison with thauariate quadrature with much

scope for further development.

The accurate and efficient evaluation of multiple integrala very important problem
that arises in many scientific, financial and engineerindiegons. The principal idea
behind this research is to build on past work and develop aatyze numerical methods
to evaluate double integrals efficiently. Thendamental aims to develop and assess

techniques for numerically evaluating multidimensiomaégrals.

The general method presented in this thesis involves thelalement of new multivariate
approximations, known as Taylor like approximations andttaly their use in integra-

tion. It is expected that the new methods will provide polyria and polynomial-like

3



4 Chapter 1. Introduction

approximations that can be used for application in a sttda@ivard manner with better
accuracy . That is, the intention behind this research isetosé and investigate new
multiple integration formulae and as well as provalpriori error information. A similar
method has been used with much success for one dimensiaidéprs. It is believed
that this work will also have an impact in the area of numénaealtidimensional integral

evaluation for other integral operators.

This research aims to extend the work for multidimensionggration and hence its
impact on real world problems. In particular, the methodglto be created involves
developing a general Taylor-like expansion for multivegiéunctions and representing
the remainder in an integral form, which will allow a bettetimation using the The-
ory of Integral Inequalities. This will provide new toolsrfthe numerical evaluation of
double integrals via Bernoulli and Euler polynomials, thiepgerties of which are well

documented in the literature.

The research will also give numerical approximations tteat be used in the numeri-
cal analysis of partial differential equations, or intégggquations for two independent
variables, and provide new tools for the approximation tégnal operators expressed in
terms of double integrals (for example, Fourier transfonntwo dimensional optics or

Hankel transforms, etc.).

In addition, this research focuses on the symbolic comjutaif Appell polynomials
using the computer algebra system “Maple" (Ckéarmal. (1991)). The work will be
tested against a comparable procedure for different exesygdlAppell polynomials and
indeed comparison with the more common multidimensionalgration techniques will

be made. The procedures will be implemented and some sefteseloped.

Numerical integration of univariate integrals has a longtdmy. Classical rules such as
the trapezoidal ( Lyness and Genz (1980)) and Simpson rakIl€éK (1991)) calculate the
integral exactly for polynomials of degree 1 and 3 respettivHigh order rules have been
developed to give exact results for arbitrary order polyradsnknown as Newton-Cotes

integration).
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Assessment of the error of such approximations is basedylorEaseries. For example,

the error in the integratio;ﬁ;’ f(x)dx for Simpson’s rule is bounded by

(b—a)
“ago IFV N

where|| /|| __is the maximum value of the’4derivative of the function.
In 1975, G. N. Milovanowt generalised the inequality in Theorem 2.1 due to Ostrowski

(1938) to the case whergis a function of several variables.

Recently, the Research Group in Mathematical Inequaléres Applications (RGMIA)
within the School Computer Science and Mathematics in Viatoniversity, has carried
out a considerable amount of work in the application of thelsta Theory of Inequalities
to obtaina priori bounds of a variety of Newton-Cotes rules (Anastassiou anadj@mir
(2001), Ceronet al. (1999a), Ceronet al. (2000), Cerone (2001), Dragomir and Wang
(1998a), Roumeliotist al. (1999)) for which the classical rules of mid-point, trapielzd
and Simpson’s are special cases. Error bounds in terms ofietywaf norms (a term
used to describe a measure of the behavior of the functiorg m®vided (see Barnett
and Dragomir (2001), Ceronet al. (1999a), Dragomir (2001a), Dragomir and Wang
(1998a)).

In another important development, Magt al. (1999) derived an estimation using a
perturbed generalized one-dimensional Taylor’s formulsing his theorem any integral

fab f(t)dt can be expressed as follows

b
/ F(0)dt = Au(fra,) + Ru(f; a,2)

where the approximation to the integrg|( f; a, ) can be evaluated, and the erfoy(f; a, x)
is a one dimensional integral of a product Appell polynonfiabpell 1880) and the

(n + 1)™ derivative of the function to be integrated. The importan€ehis result is
again the ability to determina-priori error bounds which are also be sharper than the

classical bounds in some cases.

For multiple integrals the pioneering work was done by Sir¢l971). More recently,
Cools and his group (Coolst al. (1997)) (Numerical Integration, Nonlinear Equation

and Software — NINES), have developed CUBPACK++ which iscHally designed
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for double integrals over a variety of regions (cubaturefeil work can be seen as an
extension of Stroud’s work (Stroud (1971)) (see also Cob®99)). The NINES group
presented both theoretical and practical aspects of nmakidsional integration, a com-
prehensive bibliography, and provided cubature rules fiberént shaped regions. As-
sessment of the bounds is done via a Taylor-like expansienal8ard (Sard (1963))(see
also Stroud (1971, p. 138)). However these bounds cannatbeenxined prior to estimat-
ing the integral. There are, of course, other methods thet haen developed to estimate
multiple integrals (see Hanret al. (2000), Hannaet al. (2002b) and Sloan and Lyness
(1989)). The Monte Carlo Method (MCM) is one of the most papwhethods used. The
basic idea in MCM is to replace an analytic problem with a pimlstic problem of the
same solution, and then investigate the latter problemaddystital simulation. These are
useful for functions whose convergence is slow, for intedgoanains that are irregular, or

for larger dimensions.

Other methods have been stated for decreasing the err@ M@M. All such approxima-
tions are called Quasi-Monte Carlo Methods. Many diffel@nasi-Monte Carlo Meth-
ods were developed by Haber (see Haber (1967), Haber (1950@xtensive theory of
number-theoretic-methods (NTM) is given by Korbove (Karelf1963)). Recently, new
references for NTM have been given by Fang and Wang (1994y &ad Zhang (1999).

Some other numerical methods and techniques have beenarsaditidimensional in-
tegration. For example, adaptive quadrature (Rice (1933 powerful automatic proce-
dure for increasing the accuracy of numerical approxinmettoan integral by increasing

the number of samples of the integrand. It should be noted tha

(i) When an adaptive algorithm is used, the nodes at whiclintiegrand is evaluated
cannot be determined beforehand. Therefore, adaptivaitpeds are inappropriate
for tabulated integrands. An even more important consezpisitha@ priori error
results are not available. This contrasts with the curreséarch which aims to

provide sucha priori bounds.

(i) Often adaptive strategies for multiple dimensions siraply iterated decomposi-

tion of single dimensional integrals. The work here seeksveduate and provide
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error bounds for multiple dimensional integrals withoworing to decompositions

since this will help in sharpening the error bound.

To date there has been little work in developegriori bounds for multiple integrals.
It is expected that by combining the approach used by RGMIAsingle integration
and generalizing the theorem given by Madt al. (2001), that general progress in this

direction can be made.

1.2 Aims and Outcomes

The principal aim of this thesis is to develop techniques amgarticular, assess these
with regards to numerically evaluating double integralfie Tiscretisation will be pre-
determined to produce an estimate within given toleramédi The performance of the
current methodology will be evaluated with respect to twmelnsions, for specificity.

The expected outcomes are:

the development of a general Taylor-like expansion for fiems of two variables

in terms of Appell type polynomials;

¢ the representation of the remainder in a double integrah fahich will allow a
better estimation using the Theory of Integral Inequditimcluding Griss type

inequalities);

e the provision of new tools for the numerical evaluation ouidie integrals via

Bernoulli and Euler polynomials;
e achievement of a sharper analysis of the error bounds;

e numerical approximation that can be used in the numericalyais of partial dif-

ferential equations or integral equations for two indeemndariables;

e provision of new tools for approximation of integral operatexpressed in terms
of double integrals (for example Fourier transform in twendnsional optics or

Hankel transforms, etc.).
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It is believed that the current work will have a significanpiact in the area of numerical

multidimensional integral evaluation.

The project achieves generalization for two arbitrary polyials in two variables of Ap-
pell type (Appell (1880)) employing the Taylor-like fornaubf Sard (1963). This will play
a fundamental role in obtaining kernel theorems and ertomeses for the remainders in
cubature formulae. Applications to integral operatorshwibroad scope for applications
in Physics, Engineering, and other practical domains vélblb outcome of the current

investigation.

1.3 Outline of the Thesis

A review of the one Ostrowski type inequalities are investiggl, and some recent results

relating to it are given in Chapter 2.

In Chapter 3, the utilization of the theorem obtained by $48é3) to develop an inequal-
ity for Taylor's expansion of two variables defined on a ragtalar plane will be consid-
ered. Also, a development of a Griiss type inequality for tuitegrals where Korkine’s
identity is applied. Moreover, utilizing the result obtathto develop a perturbed version
of the Taylor expansion. An application for this expansiod aome related numerical

results are demonstrated.

Chapter 4 aims to extend the work of Chapter 3 to explore a rgtoils expansion which
is comprised of the product of two polynomials, each of whselkisfies the Appell con-
dition (Appell (1880)). Also, new multiple integration foulae which provide priori

error information are devised and investigated.

In Chapter 5, we consider a reverse of the Cauchy-Bunyake8skwarz integral in-
equality for complex-valued functions. A pre-Gruss typeguality is obtained when one
of the factors is known and some bounds for the second factopr@vided. Numeri-
cal and graphical experiments of the obtained results aendgor some functions with

different behaviours.
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In Chapter 6, some approximations of the finite Fourier fi@mns in terms of the expo-
nential mean and estimate the error of approximation fdeiht classes of mappings of
bounded variation defined on finite intervals for functiohsme variable are established.

Also, some numerical and graphical results are shown.

The focus on approximating the two dimensional finite Fauri@nsform to obtain some
integral inequalities for the estimation is taken up in Gkap. Finally, a method is
developed which provides for the possibility to approxieidite integral of the product of

functions in terms of the product of integrals is developed.






CHAPTERZ2

HISTORY OF THE OSTROWSKI | NEQUALITY

A review of the one and two dimensional Ostrowski type inditjea are investigated,
and some recent results are given in this chapter. Appbieatof the cubature formulas

are produced and some related numerical results are demi@olst

The chapter is arranged in the following manner. In Secti@n & short definition of the
Peano Kernel is given. In Section 2.3, a review of the Ostkotype inequalities using
different types of norms is undertaken. Also, the three fp@chnique of the Ostrowski
inequalities in terms of.,-norms(1 < p < oo), where at most the first derivatives
are involved in the bound, are demonstrated. Some gerarahs of Ostrowski type

inequalities in one dimension far—times differentiable functions are illustrated.

In Section 2.4, results attained by utilizing the techni&gused in the previous section to
obtain two dimensional Ostrowski inequalities in differgrpes of norms, as well as, the
two dimensional three points are given. Also, some gersatatins of Ostrowski type in-
equalities in two dimensions for—times differentiable functions are shown. The results
involve integral inequalities with bounds in terms of thé derivative of the integrand.
These are then employed to approximate double integralg wsie dimension integrals

and functions evaluated at the interior points.

In Section 2.5, applications of some of the cubature forsywéich are produced in

the previous section are illustrated numerically and sogteed plots are demonstrated.

11



12 Chapter 2. History of the Ostrowski Inequality

Finally, Section 2.6 focuses on two dimensional integrafjumlities. 1t shows weighted
first and second order double integral inequalities, wheeefdcus is on minimising the

bound for different weights and weight null-spaces.

2.1 Introduction

Many of the techniques used for developing multiple integraqualities are based on
analogous one dimensional results. With this in mind, tleistien will focus on one

dimensional integral inequalities and we review some re@sults.

The classical Ostrowski integral inequality in one dimensstipulates an error bound in
approximating a function evaluated at an interior paiby the average of the functiof

over an interval (see for example, Mitrin@\at al. (1994, p. 468)). That is,

THEOREM2.1. Letf : I C R — R be a differentiable mapping oft, (/° is the interior of/)
and leta,b € I° witha < b. If f’: (a,b) — R is bounded orfa, b), that is,

[ f']loo == sup |f'(¢)| < o0,
te(a,b)

then we have the inequality:

b r — atb)?
R UL §+((b_—))] G-l @1

for all z € [a,b]. The constant is sharp in the sense that it cannot be replaced by a

smaller quantity.

2.2 Peano Kernel

From an estimation or error analysis point of view, we obsdhat a method like the
Peano kernel formula for quadrature rule errors is more rgé¢@ad can be applied in
other cases besides interpolation. Further, it can be westifor bounds as well as for
study of the behavior of the error itself. Consider all thediionsf € C"*![a, 0], then
the errorE[f] can be represented by the formulaf] = [ f(+V)(¢) K (t)dt where K (t)
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is the Peano kernel for the error and is defined by

K(t) = = Elg(;1)], (2.2)

gla;t) = (z — )} = {(()x —Z;)”x ;ft. x>,

wheret is just a parameter in thefunction and ther operates only with respect to the
variable. The fruitful thing about the Peano kernel, is theain be used to determine the
error in integration rules explicitly, as well as being apglfor the case when the function
has only a low order of differentiability. See Engelbreehal. (2003) for full definition

about the Peano Kernel,

For full definition of the Peano Kernel,

2.3 One Dimensional Integral Inequalities

It is natural to obtain the corresponding bounds in term efgmorms withp € [1, c0).
This was explicitly done by Dragomir and Wang (1997) and Brag and Wang (1998b).

These results are stated below.

THEOREM 2.2. Let f as be in Theorem 2.1 and I¢t € L,[a,0],(p > 1, - + . = 1),

then the following inequality holds

z—a)tt + (b —x)it!

qg+1

£l = ( / o dt); |

- [ ] <]t i e

where

is theL,[a, b]-norm.

and

THEOREM 2.3. Let f be defined as in (2.1). Further, I¢t € L;[a,b]. The following

inequality holds

-
b—a

‘f(w)— : /abf<t>dt)s§+

— 17 24)
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1. .
forall z € [a,b] and || f'[l == [7|f'(t)| dt. The constang is the best possible.

Notice that the above inequalities (2.3) and (2.4) can bainétl in an equivalent form

from Fink (1992) by choosing = 1 and performing the corresponding calculations.

The above three theorems can be proved by utilizing the Peamel K (., .) : [a, b]*> —

R,

_Jt—a if t€]a,x]
K(x,?) '—{ t—b if te (xb), (2:5)

and the Montgomery identity (see for example, Mitriroet al. (1994, Chapter XVII, P.
565)):

IR 1t )
f(z) = b_a/a f(t)dt+b_a/a K(x,t)f'(t)dt, x € [a,b)]. (2.6)

Since Ostrowski first produced his inequality in 1937, Aaastou (1995) established an
optimal upper bound on the deviationftime differentiable function from its average.
He gave a different proof to Theorem 2.1 than Ostrowski'gioal proof (see Ostrowski

(1938)). Also, he obtained more general Ostrowski typeuadties as follows.

THEOREM 2.4. Let f € C""([a,b]),n € N and z € [a,b] be fixed, such that
f®(z)=0, k=1,---,n. Then

1 b (x—a)”“—i—(b—x)”“ Hf(n—H)”oo
’f(x)_b_a/af@dtg{ b—a n+2)

Corollary 2.4.1. Letf € C""([a,b]),n € Nbesuchthaf® ((a+b)/2) =0, all k €
{1,---,n}. Then

(2.7)

b 1 b h— n+1 (n+1) -
e R el R Rl e S

Further, Milovanowt and Péaric (1976) generalised the order of the derivative in (2.1) to
an arbitraryn by considering:-times differentiable mappings as shown in the following

theorem.
THEOREM 2.5. Let f(x) be ann(> 1) times differentiable function such that" <
Loa,b] for x € (a,b). Then, for every € [a, b]

1 — I (@ —a)" + b —2)""] /"]l
o) ]« [

(2.9)
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whereF}, is defined by

n—k f*V(a)(z —a)* — fAI0)(x - 0)F

Fy = Fy(fimsaa,b) = — — (2.10)
Equation (2.9) was proved by employing Taylor’s formula
n—1 1 1
f@) =W+ 5 f W@ =)+ (@ —y)" (2.11)
k! !

and integration by parts, (see Mitrin@\at al. (1994) for the complete proof).

Remark 2.5.1. Substituting: = 1 in (2.9) produces (2.1).

Fink (1992) used the integral remainder form of a Tayloresetd generalize the Milo-

vanovit and Peéaric (1976) result (Theorem 2.5) to include functiondinspaces.

THEOREM 2.6. Let f("~!) be absolutely continuous da, b] with ™ € L [a, b] then

! (f(x) + ZF) : / bf(y)dy‘ < K(n,p, )| f™ (2.12)
- k| — 37 = s Py p .
n p b—a J,
where
o\t _ \ha1l/g
Kn,p,a) = A= g )g 1,420

1,1
for l<p<oo, s +,=1

and
(n—1)" ' max{(z —a)", (b—x)"}
nn! b—a

K(n,1,z) =

with B(x, y) representing the beta function of Euler, that is

1
B(:c,y):/ "1 =) tdt, w,y > 0.
0

Remark 2.6.1. It is easily observed that for = 1, the result is as in Theorem 2.2.

Ceroneet al. (2000), proved the following perturbed inequality of Osiski type for

mappings which are twice differentiable:
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THEOREM 2.7. Let f : [a,b] — R be a twice differentiable mapping dm, b) and
"€ Ly(a,b)(p > 1). Then, we have the following inequality:

) -t [ (o= 15 1) 2.13)
1
2(b—a)(2g+1)
L b=,
2(2¢ +1)s

forall = € [a, ], where; + - = 1andp > 1.

> [(@ = @) (b — 2)2 ] | ],

Dragomir and Sofo (2000) obtained the following inequalityhe case where the second

derivative belongs to thé,, norm.

THEOREM 2.8. Let f : [a,b] — R be a mapping whose first derivative is absolutely
continuous ona, b] and assume that the second derivatjffe € L.[a,b]. Then, the

foIIowing inequality holds:

i dr——[() PO IO 0 -+ O3 (o= 250 1)

_(g ERCRTIN

forall z € [a, b].

(2.14)

a+b
2

T —

Ceroneet al. (1999b), established a generalization of the Ostrowskjuaéty forn-times
differentiable mappings which naturally generalizes #wsutt from (2.1), as given in the

following theorem:

THEOREM 2.9. Let f : [a,b] — R be a mapping such that™~") is absolutely contin-

uous onla, b] and f™ € L.[a, b]. Then for allz € [a, b], we have the inequality:

n—1 k+1_|_( 1)k($_a)k+1 L
[ s -3 [C= | 796a)
(e = a)™ o (b — )] (b~
(n+1)! (n+1)!

IN

1™ < 1™ (2.15)

where

1f™ oo := sup [ ()| < oo.

tela,b]
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The theorem is proved utilizing mathematical induction asithg the Peano kernél(., .) :
la,b* — R,

it tefa,a,

The kernel (2.16) is similar in sense to that of (2.5). It sheis at the boundary points
and is discontinuous at the interior point, thus producingl@ that provides sampling at
the interior point and not at the end points. Since (2.16)pslgnomial of ordem, an

integral inequality in thex'" derivative will result in (2.15). We can compare this to {2.1

which has a bound in the first derivative due to the linear Béannel.

Another extension was proposed and explored by Cerone J2@@drein the constants
‘a’ and ‘0’ in the kernel (2.5) were replaced by linear parametric fioms- the zeroes

and discontinuity of the kernel were themselves functiohese positions were allowed

to change.
The kernel is
_Jt—a(z), iftela,xl,
K(z,1) := { F— Bln).  if te (b, (2.17)
where
alz) =y + (1 —7v)a and Blx) =~vx+ (1 —~)b (2.18)

v €10,1] and z € [a,b]. Hence the sampling occurs at three points, the boundary °
and %’ and the pointz. The sampling is controlled by the parametfefsee also, Cerone
and Dragomir (2003a), Cerone and Dragomir (2003b), CeradeDaagomir (2003c)).

This is shown in the next theorem.

THEOREM 2.10. Let f and f’ be as in Theorem 2.1. Further, let: [a,b] — R and
B :a,b) — Rwitha < a(z) <z < f(z) < b. Then, for allx € [a,b], we have the

inequality
/abf(t)dt ~[(B(x) — a(e) () + (b= B)S ) + (a(2) - a)f (@)
L Y]

' (O‘(” - ;) * (W) - b;x)z}l\f'lloo- (2.19)
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Proof. Let K(.,.) : [a,b]? — R, whereK(z,t) is the kernel (2.17) and consider the

integral
/ Kot ()t

Integrating by parts over the given intervals using (2.1 simplifing produces an iden-
tity from which, taking the modulus and using well known peajes of the modulus and

integral, the results follows. O

Inspection of the bound in (2.19) reveals thaand /3 should be linear functions for the
bound to be minimized. Thus the motivation is to prescribm@ar parameterization in

(2.18). Utilizing equation (2.18), we get the following trem.

THEOREM 2.11. Let the conditions of Theorem 2.10 hold, then

[ r0ai=0-ad - s 44 ] (F22) s+ (122) 0 |
A I 6 e o

Remark 2.11.1.~+ = 0 in (2.20) reproduces Ostrowski’s inequality equation j2vhose

bound is sharpest where= "T*” giving the mid-point inequality.

Remark 2.11.2.+v = 1 produces the generalized trapezoidal inequality for wraghain

the best bound occurs when= "T*” giving the standard trapezoidal-type inequality.

Remark 2.11.3.~v = % gives a Simpson-type rule for which the value “T*” gives the

optimal bound when only the assumption of a bounded firsvadeve is used.

Further, the stated three-point rule whgre L,[a, ], is as shown below.

THEOREM 2.12. Let f : [a,b] € R be a differentiable mapping on (a,b) anfd €
L,(a,b) wherep > 1 andi + % = 1. Then the following inequality holds for all €
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la,b], a(x) € [a,x] and3(z) € (z, b],

f t)dt — [(6(z) — a(x)) f(x) + (b = B(x)) f(b) + (a(z) —a) f(a)]

(2) = @)™+ (@ — (@)™ + (@) — )" + (b= B)) (g + 17| ],

(=) f b2y ]e
1 17115

<

<0-o(22) 17 @21

Inequalities for higher order derivative norms are not thly extensions to Theorem 2.1.
Introducing more branches of the Peano kernel; that is dktgrthe number of discon-
tinuities, will produce an integral inequality with manynspling points. This avenue
has been explored by Dragomir with bounds involving the fiesivative and by A. Sofo

(see Dragomir and Rassias (2002), Chapter 2) involvingtheerivative. Sofo used the

Peano kernel

'(t_n%)n, t € la,z)
%, t € [x1,29)
K, () == : (2.22)
W, t € [rr_o,T_1)
\%, t € [xr_1,b)].

To begin, it is immediately evident thdt,, . (¢) is of ordern, thus the integral inequal-
ity will be bounded by a measure ¢f™. In addition, (2.22) has discontinuities at
x1,T9, -+, 7,1 and does not vanish at the boundary, thus we would expectlsgmp
at the points

{a, 1,29, ,x;_1,b}. The integral inequality furnished for this kernel is

/bf(t)dt—i-i(

[Z{ — ) - C(i+1)j}f(j1)<xi):| ‘ (2.23)

k—1
e n n
(n+1)! Z{(a”l — )" (T — i)"Y

T i=0

T |
1F " Nloo = i
~ (n+1)!

1
~ (n+1)!

1=0

(b - a)yn(h) Zf f(n) € Loo[a7 b],
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whereh; := x;.1 — z; andv(h) := max{h; i =0,--- |k —1}.

In recent years a number of articles have been written alengrglizations of Ostrowski’s
inequality (see Anastassiou (1997), Cerateal. (1999a), Hannat al. (2000), Matt

et al. (2000), Mat€ and Péaric (2001), Pachpatte (2002b), Cerone and Dragomir (2004),
Dragomir (2004), Pachpatte (2004), UjeyR004a), Ujevé (2004b) and Ujew (2005)).

See also, Cheng (2001), Dragomir and Gomm (2003), Pach(zit®a) and Ujew
(2003a).

2.4 Two Dimensional Integral Inequalities

Employing the Peano kernel and combining the work of BaradtDragomir (2001) and
Hannaet al. (2000) produced an Ostrowski type inequality in two dimensiusing the
three point rule involving thé.,,, p € [1, c0), norms in terms of the first derivatives of the

function. That is given in the following theorem:

THEOREM 2.13. Let f : R?— R be a differentiable mapping dn+, b;] x [as, b,] and

. ,
let f// ,, = 524 be bounded ofia;, b1) X (as,b,) . Thatis,
0*f
£ = sup <o
H t17t2Hoo (z1,22)€(a1,b1) x (az,b2) 8t18t2

Furthermore, letr; € (a;, b;) and introduce the parameterization, 5; defined by

a; = (1 =) a; + v, and 3 = (1 — )b + iz,
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where; € [0, 1], for: = 1, 2. Then the following inequality holds
(el 1) () (o2’
(1 (2 = 1) | (55)7 + (o - 5522)7 |,

Hff1 12|| |: q+1 +1}
+ (L =m)*
G($17t17x2,t2)‘ S ((I+1) ( fyl)

Q= N

[m —a)™ + (b — :cl)QH}
Pt = - ) -]

1 1
wherep > 1, — 4+ - =1
p g

H t1 t2H M, M;
(2.24)
given that
3 3 3
G(x1,t1, 20, t0) = Z chlcﬂfjk — Z (Cj1lj2 4+ Cjol5)
k=1 j=1 ., . j=1
+/ [ (t,ta) dtidty (2.25)
f(aflaa'2> f(l’17a2) f(b17a2>
(fir) = [fla,22) f(x1,22) f(b1,22) |, (2.26)
fla,b2)  f(z1,02)  f (b1, 02)
V(21— a1) Yo(zo — az)
Cip) = A=m) (b1 —a) (1—72)(b2—a2) |, (2.27)
71 (bl - 951) 72(192 - az)
fabll f(t1, az) dty be [lay, ta) dty
(IJk) = fabll f(tl, ZL‘Q) dtl f f xIy, tg) dtg 5 (228)
S f (b, b) dty f”l Fby, to) dts
and
i = O gy g - S -1 (229)

For the complete proof, see Hanetaal. (2000).

In addition, Pachpatte has obtained some inequalitiedvimgpfunctions of several in-
dependent variables and their first order partial deriestas well as those of Ostrowski
type inn independent variables (see Pachpatte (2001), Pachpa@2qp.

Further, in Pachpatte (2004) the author obtained some glezegions of the Ostrowski
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type inequality and also a new weighted integral and diedrezqualities of the Griss
type involving functions of several independent variables

In the mean time, Hannet al. (2002a) have obtained some generalizations of an Os-
trowski type inequality in two dimensions far—time differentiable mappings. The re-
sult is an integral inequality with bounded® derivatives. This is employed to approxi-
mate double integrals using integrals and function evednatat the boundary and interior

points.

THEOREM 2.14. Letf : [a,b] X [¢,d] — R be continuous ofu, b] x ¢, d], and assume
that 22 "L exist on(a, b) x (c,d). Further, considetk,, : [a,b]* > R, Sy, : [¢,d]* — R

otnds™
given by
"t e fa,a], L™ s € [y,
K, (z,t) = (t—l;)" S (y,8) :== (S_d')m (2.30)
=, te (a0 =, s € (y,d],
Then we have the inequality
n—1m—1 l+kf
/ftsdsdt—ZZXk ) - Yi(y tkal( ,Y)
k=0 1=0
. n—1 d akerf n+lf
—(-1) kOXk(x)/c S(y’s>8tk83 (x,8)ds — (— ZY} / K(z,t) 8t preew; (t,y)dt
( n n m m nt+m
(n+1)'1(m+1)! [(x —a) R (b—x) H] X [(y —c) "y (d—y) H} X ‘ gtnas’{l Lo ’
n-+m
if S € Lo ([, 8] % [c,d]);
1 [(xa)"q“ﬂbx)"q“]; % [(yc>mq“+(dy>mq“}§ ontmy
- n!m! ng+1 mq+1 otnosm p’
n+m
- if gtnasiel’ ([a,b]x[c,d]),p>1,%+%:1;
b (@ = a)" + (b—2)" +|(z —a)" = (b—2)"|]
m m m m nt+m
X[(y—)" +(d=y)" + |y —)" = (d—y)"|| x || Sz g
\ if 20 ¢ Ly ([a,b] x [¢,d)).
(2.31)

forall (z,y) € [a,b] x [c,d], where

orm f _ - ot f (¢, s)

omos™ || (ts)€lapx[ed) | O™ ’

an-{—mf an—i—m p %
Hatnasm o < gingsn’ %) dtds) i



2.4. Two Dimensional Integral Inequalities 23

and

Keeping in mind thatr andy are free parameters, then one can produce “mid-point" and
“boundary-point” type results by choosing appropriateugalforz andy. In addition’
choosing values for andm will re-capture the earlier results of Hanagal. (2000) and
Dragomiret al. (2000).

An iterative approach is used in (Cerone (2003a)) to reptesaltidimensional integrals
in terms of lower dimensional integrals and function evabres. The procedure is quite
general utilising one dimensional identities as $ked or generatorto procure multidi-
mensional identities. Bounds are obtained from the idestit

In the following theorem bounds fot, (6, z, 5) are obtained where
- (5, Z, E) (2.33)

n b,
1 i

= f(z1,22,...,2) _ZE/ fay, o, @i b, g ) dE
i=1 Y%

n 1 bj b;
+Zdjdi /aj /{h flay, ot T, - @1, G T, -, ) dEid

1<j

1) bn b1
o _%/ | )bty
andz = (217227"'7Zn)-

THEOREM 2.15. Let the conditions of Theorem 6.3 continue to hold. Then

n (6’ Z g) (2.34)
n q 8"f anf
< ] §
ei a9 9+ || 7 __c] [n,
\ 11 Ot ... 0t ||, oL o © 1 [1"]



24 Chapter 2. History of the Ostrowski Inequality

—

wherer, (*, z, b) is as defined in (2.33),

(q+1) P (q) = (x; — a)™ + (b — z;)™" (2.35)
g, = 2 S = ; " (2.36)

2.5 Numerical Results

In this section the inequalities developed by the authorgaiveh by theorem 2.13 in the
previous section are used to approximate the double irtelgrahe following example
we select the integrand for which integrating in each dioecis straightforward, but not

so for the double integral.

Example 2.1.
1 1
/ / (1 — ™) dazdy = 0.203400400702947. (2.37)
0 0

T

Namely,fol (1 — efxy) dr = y-l—e;ﬁ andfo1 (1 _ e*xy) dy — aH—e*z—ll

Example 2.1 was chosen also because the integféand,) is infinitely smooth and its

L..-norm becomes smaller with each successive derivativausec

fo(z,y) = ye ¥ fyl@,y) = we ™

foo(,y) = —yPe™ foy(x,y) = —x%e

lan Z n n,—x 8" T, n n, —x
gﬂ(cn,y) = (=1)tlyne—=v é‘;ny) = (=1)"Hgne—my

as we seeyy € [0, 1) the derivative with respect totends to 0 as tends toxo, and also,
Vz € [0, 1) the derivative with respect tp— 0 asn — oo. This indicates that the higher

order error bound (accompanied by a higher order rule) wi# etter results.

Example 2.2.
1 2
/ / %e’y/xdxdy — 0.1548181217. (2.38)
0 1
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The integrand in Example 2.2 was chosen becausg.itsiorm blows up rapidly with
successive derivatives. That ¥, € [0, 1) the derivative with respect te tends tooo as
n tends toco, and alsoyz € [1,2) the derivative with respect tptends toco asn tends
to co. This indicates that the higher order error bounds (accoegaby a lower order

rule) will give better results.

| 11 | 72 || actual error| L.-estimated errof L,-estimated errof L;-estimated errof
0 [0 | 15(3) 6.3(-2) 5.7(-2) 1.6(-1)
513 | 547 1.9(-2) 1.9(-2) 7.1(-2)
0.5| 0.5 | 4.3(-4) 1.6(-2) 1.4(-2) 3.9(-2)
1 |1 | 6503 6.3(-2) 5.7(-2) 1.6(-1)

Table 2.1:The actual and estimated errors in computing (2.37) usir@#H{2vithz; = 2 = 0.5
and various values ofy, v, in the .|| norm,||.||z norm and|.||; norm respectively .

| 71 | 72 | actual error| L.-estimated errof L,-estimated errof L;-estimated errof
0 10 | 25(3) 2.2(:2) 3(2) 3.3(-1)
|3 | 15(5) 7.1(-3) 1(-2) 1.5(-2)
0.5| 0.5 | 8.6(-4) 5.7(-3) 7.6(-3) 8.3(-3)
1 |1 | 1.9(-2) 2.2(-2) 3(-2) 3.3(-1)

Table 2.2:The actual and estimated errors in computing (2.38) usir@f#j2withz; = 25 = 0.5
and various values ofy, y2 in the .|| norm,|.|[z norm and|.|[; norm.

From this point of view we find that the actual error is much Benahan the theoretical
one and is smallest when Simpson’s rule is apphged£ v, = %). The optimal theoretical
bound is attained whet, = v, = % It should be noted that; = v, = 0 approximates
(2.37) and (2.38) with the “mid-point” rule and employs om@dtion evaluation (at the
mid-point of the region) and two integrals (along the bitsex). The “trapezoidal” rule
uses four sample points (the boundary corners) and fougralte (along the boundary).
All other values, that is,v2 € (0, 1), produce a rule that is a linear combination of the
above and results in the use of nine sample points and spraite

Furthermore, Simpson’s rule{(= v, = % nine sample points) is more accurate than the
mid-point rule ¢; = v, = 0, one sample point) which in turn is more accurate than the
trapezoidal rule{; = v, = 1, four sample points). We note that the estimated errors are
symmetric about, = v, = % as in the Tables 2.1 and 2.2.

Cleary we observe from Figure 2.1 that the bound is convex ia [0, 1] fori = 1,2.

The sharpest occurs af = 1 for i = 1,2. The harshest bound is achieved wherre
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(a) The estimated error as a function
of v in evaluating (2.37) withz; =

xo = 0.5 and various values of;, v
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ity in equation (2.24))|/.||2 norm (the
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equation (2.24)).
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(b) The estimated error as a function
of v in evaluating (2.38) withz; =

xo = 0.5 and various values of; , v

in the ||.|| norm (the first inequal-
ity in equation (2.24))|/.||2 norm (the
second inequality in equation (2.24))
and||.||; norm (the third inequality in
equation (2.24)).

Figure 2.1: Diagrammatic representation for the estimateat

taken at either of their boundary points.

Next we will employ the composite rules to explore the nuceniesults for both Exam-

ple 2.1 and Example 2.2 respectively and produce briefly theahand estimated errors

in applying the mid-point cubature rules to evaluate thebtlintegral (2.37) and (2.38)

for an increasing number of intervals for the different nerm
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Cleary, we notice that the actual error ratio in both tableggests that the composite rule
in each case has convergence

1
'R‘”O(m)-

Also, from Table 2.3 and Table 2.4 we gather that the estithateor predicts a conver-

gence rate of

”ff1 sz

o R < iel= ||f1 || =1 (Example2.1)andf/ || = .37 (Example 2.2),
o |R| < 7”3;’%!2 N, = 69 (Example 2.1) and| /7. ||, = .36 (Example 2.2)
o |R| < 7||f2£!|1 [l ]|, = -63 (Example 2.1) and|f// ,, ||, = .13 (Example 2.2).
| n | m || Actual Error | Errratio | L..-estimated errof L,-estimated errof L,-estimated errof

1 |1 | 1503 6.3(-2) 5.7(-2) 15(-1)

2 |2 | 1.0¢4) 1451 | 1.6(-2) 2.9(-2) 4.0(-2)

4 |4 | 6.706) 15.61 | 3.9(-3) 1.4(-2) 9.9(-3)

8 |8 | 427 15.90 | 1.0(-3) 7.2(-3) 2.5(-3)

16 | 16 || 2.6(-8) 15.98 | 2.0(-4) 3.6(-3) 6.2(-4)

32 |32 | 1.6(-9) 15.99 | 6.1(-5) 1.8(-3) 1.5(-4)

64 | 64 || 1.0(-10) |16.00 | 1.5(-5) 8.9(-4) 3.9(-5)

128 | 1281 6.6 (-12) | 16.00 | 3.8(-6) 4.5(-4) 9.6(-6)

Table 2.3:The actual and estimated errors in evaluating (2.37) usauyosite rule, for various
values ofn, m. Sampling occurs at the mid-point of each region.

|n | m || Actual Error | Errratio | L..-estimated erroff L,-estimated errof L-estimated errof
1 [1 [ 25(-3) 2.2(-2) 1.2(-2) 3.3(-2)
2 |2 | 214 12.32 | 5.7(-3) 6.1(-2) 8.2(-3)
4 |4 | 1.4(5) 14.68 | 1.4(-3) 3.0(-2) 2.1(-3)
8 |8 | 89(7) 15.62 | 3.5(-4) 1.5(-2) 5.1(-4)
16 | 16 | 5.6(-8) 15.90 | 8.9(-5) 7.6(-3) 1.3(-4)
32 |32 | 3.5(-9) 15.97 | 2.2(-5) 3.8(-3) 3.2(-5)
64 | 64 || 2.2(10) |16.00 |5.6(-6) 1.9(-3) 8.1(-6)
128 | 1281 1.3 (-11) | 16.00 | 1.4(-6) 9.5(-4) 2.0(-6)

Table 2.4:The actual and estimated errors in evaluating (2.38) useugrgosite rule, for various
values ofn, m. Sampling occurs at the mid-point of each region.
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2.6 Weighted Integral Inequalities in Two Dimensions

A powerful approximation tool is that in Hanna and Roumétig2005), in which they
combined and extended the work of Hargtal. (2000) and Ceronet al. (2000) and de-
veloped weighted first and second order double integraluakites. Particular attention
has been paid to the influence of the two dimensional weigtttion on the error bound
and explored this influence for different weights and weighit-spaces.

Hanna and Roumeliotis (2005) considered the following tities:

Lemma 2.1. Let f : [a1,b1] X [a2,b2] — R be bounded and integrable and whose
first partial derivatives exist and are also bounded and gréble. Furthermore, let

w: (a1,b1) X (az,b2) — (0,00) be integrable. Then the following identity holds

b1 pbs
I= / / [f (@1, 20) — f(21,t2) — f(t1, @) + f (t1, t2)] w (t1, t2) dtadty

b1 b2 82]0
:/al / P(t1,ta) 5 diadty (239)

Wherel’l € [al, bl], To € [CLQ, bg] and

to
/ p(t1,ug) dug, as <ty < g,
P(tl,t2> = 92 (240)

[3)
/ p(t1,ug) dug, x9 <ty < by,

bo

with

t1
/ w(u, to) duy, ay <t <,
p(tl, tz) = “ (241)

t1
/ U}(Ul,tz)dul, T <t; <b.
b1

The upper bound of the integration rule will depend/®nBelow, we detail some prop-
erties of P that will be subsequently used in the analysis of the bouad E$anna and
Roumeliotis (2005)).

Lemma 2.2. The kernelP : [ay, b1] X [a2,bs] — R as defined in Lemma 2.1 has the

following properties:
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1. P vanishes on the boundary of the rectanglg b;] x [a2, bs],

2. P(ty,-) : (a2, by) — R is monotonic increasing for ath € (ay, 1),
3. P(ty,-) : (ag,by) — R is monotonic decreasing for al] € (xy, b),
4. Pis positive on(a;, 1) X (ag, o) and (zy,by) X (z2,bs),

5. Pis negative Or(dl,l'l) X (l‘g,bz) and (Qfl,bl) X (ag,l'g).

for all (ZL‘l,ZEQ) S (al,bl) X (ag,bg).

In Figure 2.2, we plot the surface and contours of (2.40)viar different weights. The
plots exhibit the properties discussed in Lemma 2.2. It is@ls that the kernel achieves
its maximum deviation of its branches at the discontinuaistgz,, z3). In the following
theorem we state the main result by employing the identitkemma 2.1 to produce
second order weighted double integral inequalities (seenBland Roumeliotis (2005)).
In contrast with the inequalities of the previous sectibe,upper bound here is comprised

of just one term.

THEOREM 2.16. Let the conditions of Lemma 2.1 hold. The following doubiegral
inequalities involving the usual Lebesgue norms of theriged partial derivative of
hold:

by ba
/ / ‘.1’1 - t1| ‘33'2 - t2| w (tl, tz) dtzdtl, (242)

I <
1< g,

if of € Lo ([al,bl] X [ag,bg]), and

Ot10t2
ba
max{/ / tl,tg dtzdtl,/ / tl, tz dtzdtl, (2 43)
1 a a
;1 i) bll b2
/ / U}(tl, tg) dtgdtl, / / U}(tl, tg) dtzdtl } (244)
T a2 T1 T2

€ Ly ([a1, 1] X [aq, bo]), wherel is defined in equation (2.39).

Il <
1< 5

if

8t1 8t2

Theorem 2.16 can form the basis of a cubature formula for ktedydouble integrals.

That is, we can form a mesh and apply equation (2.42) to eadhegptangle.
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(b)

Figure 2.2: Surface and contour plots of the Peano type kerfeefined in (2.40) for
different weights. (a)u(t1,t2) = — In(¢,t2) over the unit square and = x, = 0.5, (b)
w(ty, ta) = \/t1/t, over the unit square and = x5 = 0.5.

Numerous other developments, extensions and generafisatif Ostrowski inequality
have been carried out in various directions (see, Wra]. (2006), Liu (2006), Barnett
and Dragomir (2006)).

The analysis discussed in this chapter is used in the nexdtemlie consider the Taylor
theorem to extend the Ostrowski results for developing tubaand higher dimension
rules. Thus, in the next chapter the Taylor's formula wité ttagrange type remainder
will be obtained as well as Taylor expansion of two variallefined on a rectanglular
plane. We also utilize Korkine’s identity to derive a Grlgpéd inequality for double
integrals that will be employed to obtain perturbed cubatutes which are sometimes

more accurate than the unperturbed rules.



CHAPTER3

NEW TAYLOR LIKE EXPANSIONS FOR FUNCTIONS OF

TwO VARIABLES AND ERROR ESTIMATES

In this chapter, some sharp bounds are obtained for new rFigoexpansions of func-
tions of two variables utilising an integral remainder inigéhKorkine’s identity is used
to derive a Griss type inequality for double integrals.

The chapter is arranged in the following manner. In Secti@n, Jaylor's theorem with
an integral remainder is recalled to obtain a Taylor’s foanwith a Lagrange type re-
mainder. In Section 3.3, the theorem obtained by Sard (1&68gvelop an inequality
for Taylor's expansion of two variables defined on a rectangjane is utilized. Section
3.4 isreserved for a Gruss type inequality for double irgEgwhere Korkine’s identity is
applied. Finally, the result obtained in this section wélidised in Section 3.5 to develop a
perturbed version of the Taylor expansion. An applicatmnthis expansion is illustrated

numerically and plots of the resulting approximation isagiv

3.1 Introduction

Taylor’'s theorem is a popular vehicle for developing cubatand higher dimension rules.
Stroud (1971) uses Taylor’s expansion to develop cubatues.r Recently, a number of

authors have obtained generalizations of the traditiomglor's series expansion of a

31
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function f(z) about a point: assuming sufficient differentiability. The drawback ofsthi
approach is in the size of the error bound. For two dimensians-th order rule has
a Taylor remainder of + 1 terms. Minimizing the error in any rule with order greater
than one would be extremely difficult. Thus, the work in thispter, turns to utilising

Korkine’s identity, that is

b b b
bia/ u(t)v(t)dt—ﬁ/ w(t)dt - bia/ o(t)dt (3.1)
s . [ 0 = ule) el) = v(s)aras.

provide thatu, v : [a,b] — R are measurable and all the involved integrals exist. We use

identity 3.1 to produce perturbed generalizations of thenaband traditional Taylor ex-
pansion of a functiorf (z) about a point assuming adequate differentiability (Haetre.
(2002b)). Also, Griss type inequalities are used to proaideeans of approximating the

integral of the product in terms of the product of integrals.

3.2 A Taylor Like Formula for Mappings of Two Variables for a

Rectangular Plane

A number of authors have recently considered generalisaid the traditional Taylor
series expansion of a functigifz).

Milovanovic (1975) utilized the multiple variable Taylor formula torgealise the Os-
trowski inequality to multiple dimensions. As per the Ostski (1938) result, the in-
equality was expressed in terms of the first partial derrestof the integrand.

Matic et al. (1999) derived an estimation using a perturbed generatimeddimensional
Taylor’s formula.

Guo and Qi (2003) obtained an integral estimation usingltheaorm of the(n + 1)-th
derivative of its integrand.

Ujevic (2003b) developed a perturbation of the classical Taglontila where lower and
upper error bounds are established. One may consider tleespalong this line which
have been written by Dragomat al. (2001), Cerone (2003b), Barnedt al. (2002),
Hannaet al. (2002b), Bougoffa (2003) and Dah-Yan (2004).
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The concern in this section is directed at approximatingémeainder using a perturbed
generalised one-dimensional Taylor's formula. For exangie following theorem is

well known in the literature as Taylor’s theorem with an gri& remainder.

THEOREM 3.1. Let/ C R be aclosed interval, let € I and letn be a positive integer.

If f:1 — Ris such thatf™ is absolutely continuous, then for eacke I

f(x)=T,(f;a,2) + R, (f;a,z), (3.2)

whereT,,(f;a, z) is the Taylor’s polynomial, i.e.,
To(fra,2) == i & _—a)kf(k) (a) (3.3)
n ) T k" "
k=0
(note thatf(®) = f and0! = 1), and the remainder is given by

Ro(fian) = / (-t O (1) d. (3.4)

A simple proof of this theorem can be accomplished by mathiealanduction using the
integration by parts formula. The following corollary c@mning the estimation of the
remainder is useful when we want to approximate specifictfons by Taylor’s expan-

sions.

Corollary 3.1.1. With the assumptions of Theorem 3.1, we have the estimation:

IR (fa:v|< /}f(”“ (t)] dt (3.5)
or o L
. L (r—a)" q( ’ (n+1) P )p

R(fia,z) < = “—F — 0| dt 3.6

R <t (e 39)

wherep > 1and + ¢ = 1, or the bound

n+1

@ =0) e | 040 () @3.7)

: <
|R(f’ a7$)| o (n+ 1)' te(a,x)

forall z > a,a eI CR.

The case of a multivariable function can be stated as foll@es Sard (1963)):
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THEOREM 3.2. Let f be in the clas€9(R") andz, 7y € D C R" so that the line
segment joining: and z is contained inD and leth = = — x,. Then we have Taylor’s

formula with a Lagrange type remainder:

F@) = o)+ filw) b+ o i o) b+

ij=1

1 - A ‘
T 2 i ()W Ry (),

11,0.0g—1=1

+

whereh! = z* — z} and

with s € (0,1).

3.3 Sard - Stroud Results

The study of Taylor's formula has a rich literature and a Itmgfory. A.H. Stroud has
pointed out in his celebrated book (Stroud (1971)) that dribeomost important tools in
the numerical integration of double integrals is the follogvtheorem due to A. Sard (see
Sard (1963) and Stroud (1971, p. 138) for the proof).

3.3.1 Sard Linear Approximation

THEOREM 3.3. Letn,m € Nand/, J be two closed intervalsanfl: I x J — R be
a mapping so that the following partial derivativé% (i=0,..n), T L0H

Oz t19yi

(j=0,..,m) and%;ﬂlﬁ exist on the intervalg, J and/ x J respectively, where

I andb € J are given. Letr € I andy € J and assume thaﬁgjgyl—i&@ are continuous

aj+n+1f(.7y)
Oxnt+19yI

on [b,y] for (i = 0,...,n), are continuous ona, z| (for j = 0,...,m) and
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%gy’;ﬂﬁ is continuous o, ] x [b, y|. Then we have the representation:

- @—a) (y=b’ 9f(a,b)
f(x,y) - — jzo | ) ]' ) 8x18y1

L~ (@—a) [ m 07" f (a, s)
S v

1 (y—b)j @ o OTTPELE (£ B)
+ - o) / (= 1) g,

=0
an+m+2f (t, S)
e / / z—1t)" (y—s)" Deriggm dsdt. (3.8)

ds

Proof. For the sake of completeness we give here a short proof. Afgylior’'s formula
(3.2) for the mapping (-, y) to get

- —a)’ ‘ x n+1
f(z,y) (v Z.!a) ﬂfa(xéz,y)Jri/ (x_t)na F(t,y)

- n! . Wdt. (3.9)

i

Also, by (3.2) applied for the partial derivativBg'% (i = 0, .., n) we can state that

m

. ————~ds. (3.10
= axlﬁyﬂ m! J, Ox'Qym+1 s )

Similarly, we have

oS (t “ —b ST (D 1 (v o T2 (t s
xJ;Hy Z f( )+_/(y_s> f(ts)

- Dz 19y m! J, D t1gym+1

ds.

(3.11)
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Using (3.10) and (3.11), equation (3.9) becomes

f(z,y)
S (r—a) |~y —=b) df(ab) 1 / w O (a,5)
; i ; 7l gy Tml ), WO g @
I n N (y=b) P (8,D)
o) et [; ooy
1 [ m O f (¢ 5)
+ %/b (y—s) D 1oym+1 ds} dt
N~y (@—a) (y=b) 9 (a,0)
== 2! J! 0x' 0yl
L~ (@—a) [ w0 (a, )
+m!; i! /b (y=s) Oxtoym+t ds
L~y —b) / n 0TS (8,0)
Ry 2, (v =t g,
AL TR (¢ 5)
— ) (y— ) 12
+n!m!/a /b (x—1t)" (y — s) Ger oy dsdt (3.12)
and the theorem is completely proved upon simplification. O

3.3.2 Thel,, p € [1,00] Bounds for the Remainder in Sard’s Theorem

Now using the above theorem, we can point out the followirggirality which provides
error bounds in terms of the Lebesgue norm of some partialatimes (see Hannet al.
(2002Dy)).

THEOREM 3.4. Assume that the mapping: I x J — R fulfills the hypotheses from

Theorem 3.3. Then far > a andy > b we have the inequality

- (—a) (y—b) 9Hf(a,b)
f(x,y)—A Z 1! . 4! ' 0x' Oyl

1~ (z—a) [ m O f (a,5)

LR oY Uilii} / (o PIY)

aanr 1 ay J
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;

1 n+1 m+1 || gntmi2y
(n+D)I(m+1)! (z =) (y—b) 0z 10y | oo 0] x [b,y]
n-+m-+2
Zfa:?n—s-laymﬁl € L [[au l‘] X [b, y] )
1 ntl m+1 gnrm+2 g
Tr—a g —b T o mFiamiT
S n!(nq+l)%ml(mq+1)% (_ ) (y_ ) danTigymrt p;la,x] x[b,y] (313)
n+m-+42
Zf@jnﬂaymfﬂ € Ly|la,x] X [b,y] p>1 119 + é =1
) m n-+m-+2 .
o (7= a)" (y = D) ’W
—y r 1 H1ia,z]x[b,y]
famn+laym+l € Ll [a, l‘] X [ba y] :
\ L .
where|[-[|,, , .1« 1S the usuap-norm ( € [1, oc]) on the regiona, | x [b, y|.

Proof. Using the representation (3.8) and the property of the mmswke have

f (Z‘, y) _ ‘ Z (l‘ — aJ)Z . (y — b>] ai+jf (CL, b)

il U Oxioyd

1 ¢ (:L‘_-a)l ./by(y_s)m ai+m+1f(a>8)d8

ml il Oxigym+!
1~ —b) ‘ n (8, D)
_E / (x —t)" G 10y dt
an+m+2f IR (1, 5)
n'm' / / |z —t|" |y — s|™ FrErITE dsdt

M (z,y)
an+m+2f

It is easy to see that
r—1)" (y—s)" dsdt
Jxn+1gym+1 sorfa]x[ba] nlm! / /
axn—i—laym—f—l

s
1 [—(l'—t)n+1 ] [_(y_s)n—i—l y]’
m+1
1 ¢ ’ an+m+2f

nlm! n+1
_ o a\ntl _gym1 || Y
BTSN A P =y

an+m+2 f

OO;[avx} X [bvy]

oo;[a,{r] X [bvy}

and the first inequality in (3.13) is proved. Using Holdeniequality for double integrals,
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we have
M (x,y)
1
1| grrmers / /y ’
< (x = )" (y — s)™ dsdt
nlm)! 8x”+18ym+1 pila,z]x[by] L/a b
i 1
1| oy (x—a)"" (y— )"
ntml || 9z 1Ayt i (ng+1)(mg+1)
B 1
n! (ng+ 1)7 m! (mq + 1)7
L 1 an+m+2f
X (z—a)"a(y—b)""0 || o
817 +1ay + p;la,z] x[b,y]
and the second inequality in (3.13) is proved. Finally, weeha
M (z,y)
1 an+m+2f
S sup [(z—=1)" (y—s)"] Antl g, mt1
nlm)! (t,5)€a,x] x [b,y] Qarttoym+ Lla,2]x [b,y]
1 an+m+2f
= —@-a"W-0" 5o
nlm! Oz toym+ 1;[a,z] % [b,y]
and the theorem is proved. =

The following approximation of the mappingx, ) in terms of

" (2 —a) — b)Y O f(a,b
ZZ( Z_!).(y ) 9" [ (a,b)

7 P
== ! Ox' Oy’

also holds.

THEOREM 3.5. Assume that the mapping: / x J — R fulfills the hypotheses from

Theorem 3.3. Then far > I andy > J we have the inequality

IERTIED D) DR =t AU At L

i=0 j=0 J! Oy’
I (y — b)m-i-l i (v — a)i aHm,Jrlf (a,-) '
- (m+1)! P i! dz' gy 00,[b,y]

oS ()

b ey W

' 00, [a,z]

(n+1)! = 4! Oxn oyl
1 n+1 m+1 an+m+2f
—b e~ (3.14
(n + ].)' (m -+ ].)' (:L‘ a) (y ) axn+1aym+1 00;[a,z] X [b,y] ( )
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The proof follows from the formula (3.8) however detailsiwibt be covered.
Similar bounds in terms of the other norms may be establigha@dwve omit the details

(see Hannat al. (2002Db)).
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3.4 A Gruss Type Inequality for Double Integrals

It is well known that Griss type inequalities provide a usafaans of approximating the
integral of the product in terms of the product of integrals.
In this section we will state, with complete proof, the feliog lemma representing a

Gruss type inequality for double integrals (Haratal. (2002Db)).
Lemma 3.1. We assume that

|f (,y) = f(u,v)] < My |z —ul™ + Mz |y — 0™, (3.15)
whereM;, My > 0, aq, a5 € (0, 1] and

19 (2,y) = g (w,v)] < Ny |r = u|™ + Ny |y — o], (3.16)

whereN;, Ny >0, (1, B2 € (0,1] forall (x,y), (u,v) € [a,b] X [¢,d], then we have the

following inequality:
b pd
’m/ / [z y) g (z,y) dyde (3.17)

//fxydydxx // (z,y) dydx
b—a d—c) —a)(d—c)

(b o a)oq-i—ﬂl 2 (b ) (d )ﬂ2
(a1 + 61+ 1) (a1 + P+ 2) (a1 +1) (B2 +1) (1 +2) (B2 + 2)

2(b—a)™ (d—c)™ (d — o)zt
@i D@D r0G 2 N G T Rt Dt Bt )

+ M Ny

< [MlNl

+MyN;

Proof. Multiplying (3.15) and (3.16), we get

|(f (z,y) = [ (u,0)) (9 (z,y) — g (u,v))]
< M;N; |z — u|0‘1+ﬁ1 + My Ny |z — u|™ |y — v\ﬁg

+MyNy |y — v|* |z — u|ﬁ1 + MyNs |y — v|aQ+ﬁ2 )

Integrating on([a, b] x [c,d])* over(z,y) and(u,v) , we obtain
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/ab /Cd/ab /Cdl(f (z,y) — f (u,v)) (g (z,y) — g (u,v))| dydzdvdu (3.18)

bopd bopd
< MlNl////|x—u\°‘1+ﬁldydxdvdu
bopd b pd
+M1N2//// |z — ul™ |y — v]”? dydadvdu
b opd b pd
+M2N1//// ly — 0| |z — ul” dydzdvdu
bopd b pd
+M2N2//// ly — 0|7 dydadvdu

= MNI1 + MyNyly + MyNy I3 + MyNyly. (3.19)

Applying Korkine's identity (see, Mitrinow et al. (1993, p. 242)) to the left side of
(3.18) gives

%/@b/j /ab/cd[(f (z,y) — f (u,v)) (9 (z,y) — g (u,v))|dydzdvdu

- [ [vensen-sensey
—f (w,0) g (z,y) + [ (u,v) g (u, v)]dydzdvdu

_ ! F(2,9) g (,y) dydzdudu
AL
_%/ab/cd/ab/cdf(x,y)g(u,v)dyda:dvdu
_%/ab/cd/ab/cdf(u,v)g(:v,y)dydxdvdu
+%/@b/0d/ab/cdf(u,’u)g(u,v)dyd:z:dvdu
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= a0 [ [ 1wnses

_/ab/cd/ab/cdf(:p,y)g(u,v)dydxdvdu

b d
- <b—a><d—c>//f<x,y>g<x,y>dydx

—/ab/cdf(x’y)dydx/ab/cdg(x,y)dyd%

For the right side of (3.18) the following Lemma 3.2 proved®yCerone in (Budimir
et al. 2001) will be used. Namely,

Lemma 3.2. Let a,b,c,dc Rwitha < bandc < d. Define

b pd
Cy(a, b, c,d) ::/ / |z — y|’dydz, 6 >0, (3.20)

then

(0+1)(0+2)Cy(a,b,c,d) (3.21)

_ |b_c|9+2 - |b_d|9+2 + |d_a|9+2 - |c—a|9+2.

If ¢ = aandd = b, then from (3.21)

b b
Da(ah) = Colasbat) = [ [ |~ yldydz, 020 (3.22)
2(b _ a)0+2

0+ 1)(0+2)

Now, utilizing the result of Lemma 3.2 and returning to (3.% find that:

b opd b pd
I :/ / / / |z — u|* " dydedvdu (3.23)
a C a ) C )
=(d—c¢)’ / / |z — u|* " dedu

= (d - C)zDa1+,31 (av b)
(3.24)
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and using (3.22) gives

2(d —¢)? (b—a)* 7 H?
(a1 + B+ 1) (an+ B +2).]

[1:

Further, from (3.19) and using (3.21) gives

bopd b pd

IQZ//// |z — u|™ |y — v|” dydzdvdu (3.25)
b d rd

://|x—u\a1dxdu/ / ly — v|™ dydv

= DOél (av b)DﬁQ (Cv d)
and using (3.22) produces

4(b—a)™ ™t (d—c)»"?

= : 3.26
G A DG+ D (0t Dl D) (829
Using a similar procedure we get foy and/, as defined in (3.21),
o \aet2 NP2
L= 2b-a (d=0 , (3.27)
(az+1) (B1+1) (1 +2) (B2 +2)
and , .
o o \a2+P2+
I - 2(b—a)’(d—c) (3.28)

(Oég—f-ﬁg—f-].) (Oég‘l‘ﬁg‘f‘Q)
Thus, using (3.19), (3.25), (3.26), (3.27), (3.28) and Kuels identities in (3.18), we get

v-ae-a [ [ renewnae [ [ e [ [ ow e

! 2(d = 0 (b— a) P+ A(b—a)" " (d— o)™
=3 [MlNl A D@ +A+D e (2 (%) (B2

4(b—a)" 2 (d— )t
(a2 +1) (a2 +2) (81 + 1) (B1 + 2)

2(b—a)® (d— c)*> "
(a2 + B2+ 1) (a2 + (2 + 2)

+M2N1 _'_MQNQ

from which, upon dividing both sides by — a)” (d — ¢)* the proof is completed. [

Corollary 3.5.1. (see also Mitrinovi@t al. (1993, p. 305)) When; = a, = 1, f; =

b2 = 1, we have

[f (@) = f(w0)l < Lofe—ul+ Loy — ol

9 (2,y) —g(u,v)] < Ki|r—ul+ K|y —v,
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and then (3.17) becomes

‘m/ab/cdf(%y)g(x,y)dydx

‘m/; /cdf () dyde x m/: /cdg@’y) e

(b—a)’

< |LhK;y

+ L1 Ky

(b—a)(d—rc)
18 12

+L2K1% +L2K2(d_c>2] |

Corollary 3.5.2. Let the conditions of Corollary 3.5.1 hold

'm/ab/cdﬁ(w,y)dxdy
b pd )
_{m/afcm,y)my]

(b—a)(d—c)  ,(d—c)

b—a
L%( 12>

+ L1Ly

Proof. In (3.17) letay = s =y =Gy =1and f(,:)=g(:-). O

3.5 An Application for Taylor's Expansion

The above result will be used to obtain a perturbed versidghefaylor's expansion. We

may now state the following result (Hanegal. (2002b)).

THEOREM 3.6. With the conditions as in Theorem 3.5 and assuming that

oM (¢ 5) B oM f (u, )

axn+1aym+1 3x”+13ym+1 S Ll |t — U| + L2 |S — U| s

we have the inequality
(z—a)"" (y =)™

|an (f?aul‘vbv y)| S 6n'm' G(n,m)p(a,x,b, y) (329)
where )
1 1 2
G (n, = —
(nm) = | G T @m 1) (nt )% (m 1 1)
and

(NI

p (aa Z, ba Z/) = [SL% (:C B a>2 +4L1 Ly (.%’ o a’) (y - b) + 3[’% (y - b)Q] )
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with

™ (z—a)’ —bY 9 f(a,b
R (fra,2,0,y) = > : j, S 8;: Egyj ) (3.30)
i=0 j=0 ! :

Z(x_.“) ./by(y_s)m—fwm.+ flas),

ort aym—l—l

| —

J!

_(@=oa)" //yan+m+2ft8ddt
(n+ l (m _|_ 1 Oxntloym+l )

Proof. We can write (3.8) as

3

"y b)Y [° n OTHPELE (1,D)
!; . / (2= 1) gty

fa,y) — :O g: (2 - o) (y : by af;; f a(;z;b) o)
+% Zno (wzla)i ./by (y—s)" %ﬁf;s)ds
1 3 ) (x —t)" w
n =0 a Oxnt1oys
(f.a,z,b,y)

where

T Y an+m+2
R(f,a,z,by) = ﬁ/ /b (x—8)"(y—s5)"- wdsdt. (3.32)

Qxntloym+1
Now, let
h(t,s)=(z—1)"(y—s)"
and

an+m+2f (t, S)
g(t,s) = D igymiL
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then, recalling Korkine’s identity, we have from (3.32)tha

R(f,a,z,b,y) (3.33)

1 vy
= W/a /b h(t,s)g(t,s)dsdt

1 © v =y
= h(t,s)dsdt t,s)dsdt b
T ), ), e [ o by

where

Ry (f,a,z,b,y) (3.34)
1

~ 2nlml(z —a) (y - b) /Q (P (t,5) = P (u,0)) (g (¢ 5) = g (u,v)) dtdsdudv

with
Q= [[a,z] x [b,y]]*. (3.35)

In addition, applying the Cauchy-Schwartz inequality (@enir (1999b)) for (3.34) we
get
| Ry (3.36)

1
2nlm! (z — a) (y — b) /Q (h(t,s) —h(u,v))(g(t s)— g (u,v))dtdsdudv

1 2
2n!m! (x —a) (y — b) \//Q (h(t,s) = h(u,v))” dtdsdudv

x\// (g(t,s) — g (u,v))*dtdsdudv.
Q
Simple computation shows that

/ (h(t,s) — h(u,v))*dtdsdudv (3.37)
Q

= /Q (x=1)"(y— )" = (z — )" (y — v)"™)* dtdsdudv

— r—a 2n42 0 py2mt2 L - :
= 2o G D @m D g )P 1)
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Now, we let
I = /(9(t75)_9(u,v))2dtdsdudv
Q
O (t5) 9 (u0)\
/(3xn+13ym+1 T ot gymt ) dtdsdudv,
then,

GrEmE2 £ (4 5)
I = [x—a —b) / / ( x”+18ym+1) dsdt
Y ontmt2 f (y, v) 2
(/ / Dt oym+1 dvdu) :

Applying Corollary 3.5.2, we have the following inequality

1] < 2(@—a)’(y—0)’

9

y [L% s of o Ema=b 13 (= b>2] |

47

(3.38)

(3.39)

(3.40)

Utilising (3.37), (3.40), and (3.33) and substituting in3B), the theorem is proved. [J
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3.5.1 Numerical Experiments

In this section the perturbed Taylor’s expansion develapestjuation (3.30) is used for
different values ofn andn to approximate some functions with different behaviours as

shown in the following examples.

Example 3.1.

2 2

fley) =7, 0<zy<l (3.41)

Example 3.1 was chosen because the function is infinitelyosimend the partial differen-
tiation for it blows up quickly with successive derivativekhis indicates that the higher

order error bounds will give better results.

The plots of the error bound?,..,, (f, a, z, b, y)| given by (3.30) for the function in Exam-
ple 3.1 are shown in Figure 3.1.

We may notice from the subfigures in Figures 3.1 that doulthegralues ofn andn re-
sults in squaring the value of the error bound. Notice, thatiumerical noise in subfigure

(e) are due to the computing limit.

Example 3.2.
flay)=e™  0<zy<l (3.42)

Example 3.2 was chosen because the function is not sepasbl@roduct of two func-
tions of one variable in contrast to Example 3.1 and the glagifferentiation for it be-
comes smaller of0), 1] x [0, 1] with successive derivatives. This indicates that the highe
order error bounds will give better results. The plots ofdtrer bounds$R,.., (f, a,z,b,y)|

for the function in Example 3.2 are shown in Figure 3.2.

By looking at Figure 3.2 we see a resemblance to that of FegBire where the results in

error bound have been squared as a result of doubling thesvafu: andn.
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(a) error graphfon =m =1 (b) error graph fon = m = 2

10°°

(c) error graph fon = m =4 (d) error graph fon =m =8

10"

(e) error graph fon = m = 16 () error graph fom = m = 32

Figure 3.1:Plots of the errof R, (f,a,x,b,y)| for f(x,y) = e*mzfyz, x,y € [0,1].

49
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(a) error graphfon =m =1 (b) error graph fon = m = 2

(c) error graph fon = m =4 (d) error graph fon =m =8

107 10726

(e) error graph fon = m = 16 () error graph fom = m = 32

Figure 3.2:Plots of the errofR,.,,, (f,a,x,b,y)| for f(z,y) = e *, z,y € [0,1].
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In the next chapter we introduce some Appell type polynosraald typical examples such
as a convex combination of the end points, Bernoulli polyiasrand Euler polynomials.
We also represent the remainder in an integral form whichallidw a better estimation
using the Theory of Integral Inequalities (including Grtigse inequalities).
Furthermore, in the next chapter we will extend the work of tihapter to explore a new
Taylor’'s expansion which is comprised of the product of tvabypomials, each of which

satisfies the Appell condition and also, obtain a genetaisaf the Taylor like formula.
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CHAPTERA4

A GENERAL TAYLOR LIKE EXPANSIONIN TERMS OF

TwoO DIFFERENT APPELL POLYNOMIALS

In this chapter, generalised Taylor’s formulae are devadapilising an integral remainder
in which the kernel is comprised of a product of two polyndsyiaach of which satisfies
the Appell condition (Appell (1880))

= P,_1(t,z), Py(t,z) = 1forall (t,z) € R* andn > 1. (4.1)

Bounds are determined in terms of Lebesgue norms. Furthieyrsome of the previous
results are shown to be recaptured as special cases of tiemtcwork. An application
and numerical experimentation is undertaken to demoedinatdevelopments.

The material in this chapter is presented in the followingdeor In Section 4.2, a review
of previous work and results is given. In Section 4.3, a gaisation of the Taylor-like

formula for two Appell polynomials is obtained and its impaa the numerical integra-
tion of double integrals is studied. Some estimates for éneainder of the generalized
Taylor-like formula are given in Section 4.4. Finally, incden 4.5 attention is focused
on the symbolic computation of Appell polynomials using toenputer algebra system
“Maple". The computation is also illustrated by using soramerical experiments to plot

the theoretical results obtained in this chapter.

53
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4.1 Introduction

This chapter aims to extend the work of Chapter 3 to exploreva Taylor's expansion
which is comprised of a product of two polynomials, each ofohtsatisfies the Appell

condition (Appell (1880)). The methodology to be followesalves:

The development of a general Taylor like expansion, in tesfrigzo different Ap-

pell polynomials incorporating Sard’s result, Sard (1963)

The representation of the remainder in an integral formctvhvill allow a better
estimation using the theory of integral inequalities (iathg Griss type inequali-

ties).

The provision of new tools for the numerical evaluation otidie integrals via
Bernoulli and Euler polynomials, the properties of whick arell documented in

the literature.

Achievement of a sharper analysis of the error bounds.

There are many examples of Appell polynomials, the follapéne some (see also Mati
et al. (1999)):

@) P(t,x) & L(t—x)",neN,;

(b) PP (t,z) 2 L(t — “£=)", n € N; (or, more generally),
PA(t,x) = L(t — (\a+ (1 - A)z))", wherex € [0,1]

¢) BV (t,x) 2 Lz — a)"Bu(12),n > 1, with, P¥(t,2) £ 1,
0

n! r—a

where B,,(-) are Bernoulli polynomials (Abramowitz and Stegun (1972));

(d) PV (t,2) 2 Lz —a)" B, (=), n > 1, with, B{"(t,2) £ 1,

whereFE,,(-) are Euler polynomials (Abramowitz and Stegun (1972)).
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Using a generalization of integration by parts, it will beosim below that any double

integral f;’ fcd f(t, s)dsdt may be expressed as follows (Dragowtial. (2005)),

b d
/ / F(t, $)dsdt = Anm(fs Py Qo) + Bum(fs Py Q) + R fs Pas Q) (4:2)

whereA,, ,.(f, P., Q.,) can always be numerically evaluated for different choidesm
pell polynomialsP,,, Q,, andB,, ..(f, P.,Q.) is a linear combination of some univariate
integrals. Furtherz,, ,..(f, P, @) is a double integral involving two Appell polynomials

P,(.,.)and@,,(.,.) and the partial derivatives of the functighwhere

o™ f(t
Ry, Par Q) 2 (— ”*m/ / (1 0) Qs ) T gy a3
’ otnosm
In cases where the univariate integralsBn,.(f, P., Q) can be computed exactly or
easily approximated using any univariate quadrature, weapproximate the double in-

tegral as
b d
/ / F(t, 5)dsdt = Ayo(F. Pa. Qo) + Buon(f2 Pa Qo)

and hence?,, ,,.(f, P, Q.,) represents the error. When the univariate integrats,in,(f, P, Qm)

are not easily approximated, then the double integral iscqimated by

b d
[ [ rtesidsdt = a5 P
and henc&s,, ,,.(f, Pn. Qm) + Rum(f, Pn, Q) represents the error.

One of the main aims of this chapter is to study the error bedodeither the simple
remainderr,, ,,,(f, P,, @), when the termB,, ,,,(f, P,, Q),,) is known or easily com-
putable, or the extended remaindBy,,,,(f, P, Qm)+ERnm(f, Pr, Qm), WhenB,, ,,.,(f, P, Q)
is difficult to compute, for different particular classesAypell polynomials as shown
above (a) - (d). It is well known that Griss type inequalifesvide a useful means of
approximating the integral of the product in terms of thedouat of integrals. Thus, using
Griss type integral inequalities for the remainder,, (f, P, Q..) we are able to obtain
perturbed versions of (4.2) and have different estimateshi® new remainder, includ-
ing the one in terms of the upper and lower bounds of the pailem/atlves Jt3) g

87&"8 m
.

ontmf
which are based on the lower and upper bounds of the functitthe the In a similar

[a, b] % [a, b] which willimprove the classical bounds in terms of the sapAm|| 77—
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fashion Hoélder’s inequality (see Mitrinaviet al. (1993)) for double integrals will also
be used. We will develop the approximation of (4.2) in whiok will give different es-

timates of the remainder which is expected to improve thesatal bounds. Extension
to higher order integrals will also be studied. Numericahparison of the results with

existing procedures will be provided.

4.2 Some Recent Results

In this section, some of the previous and recent results leoers to be recaptured as
special cases of the current work to obtain a generalisatiadhe Taylor like formula

(4.5) for two Appell polynomials.

Letz € [a,b] andy € [¢,d]. If f(x,y) is a function of two variables we shall adopt the

following notation for partial derivatives of(z, y):
s 0T f(2,y)

(4,9)
S, y) R
FOO (2, y) 2 f(,y), (4.4)
FE9(a, B) 2 F9) (2, 9)| @) =(a5)
]

A. H. Stroud has pointed out in Stroud (1971) that one of thetrimoportant tools in the
numerical integration of double integrals is the followifaylor’s formula (Stroud 1971,
p. 138 and p. 157) due to Sard (1963).

THEOREM 4.1. If f(x,y) satisfies the condition that all the derivativg$’) (z, y) for

i+ j < m are defined and continuous &n b] x [c, d], thenf(x, y) has the expansion

flz,y) = Z (z —' a)' (y _,! cf f(i,j)(a’ c)

7! J

X Z (y - ¢y’ /x (z — “)m_j_lf(mfj,j)(uj ¢) du

(m—j—1)

py o) / PO i 0, 0) o

(m—i—1)!

T —u) T (y =)t P,
o e dua (45)

wherei, j are nonnegative integers, ¢ are positive integers angh = p + ¢ > 2.
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Essentially, the representation (4.5) is used for obtgitiie fundamental Kernel The-
orems and Error Estimates in numerical integration of deubtegrals (Stroud 1971,
p. 142, p. 145 and p. 158). This representation has both aortand theoretical and

practical value in the whole domain.

Definition 1. A sequence of polynomiald’;(z)}:°, is called harmonic (Maticet al.

(1999)) if it satisfies the following recursive formula
P{(z) = Pi_i(x) (4.6)

fori € NandPy(z) = 1.

A slightly different concept that specifies the connecti@iween the variables is the

following one.

Definition 2. We say that a sequence of polynomiél3(t, z)}:°, satisfies the Appell

condition (Appell (1880)) if
OP,(t, )
ot

and Py(t,z) = 1 for all defined(¢, ) andi € N.

— Pa(t,x) (4.7)

It is well-known that the Bernoulli polynomialB;(t) can be defined by the following

expansion

=, B;(t) .
o=y Wi |zl <or, teRr (4.8)

It can be shown that the polynomials(¢), i € N, are uniquely determined by the fol-

lowing two formulae

Bi(t) = iB;_1(t), DBolt) =1; (4.9)

and Bi(t+1) — By(t) = it' . (4.10)

Euler polynomials can be defined by the expansion

26tx . > El(t)
e 4+1 P 7!

', |zl <m teR (4.11)
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It can also be shown that the polynomi&lgt), i € N, are uniquely determined by the

following two properties

Ei(t) =iEi(t), Eo(t) =1; (4.12)
and Ei(t+1)+ E(t) = 2t". (4.13)

For further details about Bernoulli polynomials and Eulelypomials, refer to Abramowitz
and Stegun (1972), (sections 23.1.5 and 23.1.6).

In Matic€ et al. (1999), the following generalized Taylor’s formula wasadsished.

THEOREM 4.2. Let{P;(x)}:°, be Appell polynomials. Further, It C R be a closed
interval anda € 1. If f : I — R is any function such that™ (z) is absolutely continuous

for somen € N, then, for anyr € I, we have
f@) = fla) + > (=D [Pe(a) fP(2) = Pu(a) P ()] + Rulfia,2),  (4.14)
k=1

where

xT

R,(f;a,x) = (=1)" / P, (1) f™ D (t) dt. (4.15)

a

In the following section we utilize equation (4.5) and Theor2 in Matt et al. (1999) to
develop a procedure and obtain a generalisation of the iTakformula (4.5) for two

Appell polynomials effectively and efficiently.
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4.3 Two New Taylor Like Expansions

The advantage of the method in this section is that polynbamd polynomial-like ap-
proximations can be developed in a straightforward mann#r their accuracy incor-
porated into the formulation. That is, we aim to devise anestigate new multiple
integration formulae and providepriori error information as well.

Following a similar argument to the proof of Theorem 2 in Mai al. (1999) (which is

presented as Theorem 4.2 in Section 4.2), we obtain thexfimlgpresult.

THEOREM 4.3. If g : [a,b] — R is such thaty™~" is absolutely continuous ofa, b]
and{ P;(t, z) }2, an Appell polynomial, then we have the generalised intégndiy parts

formula forz € [a, b]

/ g(tydt = (1) [Py(b,2)g* D (b) — Pi(a, 2)g" " (a)]
b (4.16)

Proof. By integration by parts we obtain

b

(1) / Pt 2)g™ (£) dt

a

= (=1)"P,(t,2)g" D(1)[} + (—1)"! / Pt 2)g (8 de (4.17)
b
= (-1)" [Pna), 2)g" D (b) = Po(a,2)g" D (a) - / Py (t,2)g™ O (t) dt .

Clearly, the same procedure can be used for the férm_l(t, x)g"=V(t) dt. Therefore,

formula (4.16) follows from successive integration by part O
The version for functions of two independent variables mporated in the following
result (Dragomiet al. (2005)).

THEOREM 4.4. Let D be a domain inR? and the point(a,b) € D, let{P;(t,z)}2,
and{Q;(s,y)}>2, be two Appell polynomials. If : D — R is such thatf7)(z, y) are
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continuous orD forall 0 <i <nand0 < j < m, then

[ y) = fa,b)+C(f, Po, Qu)+D(f, Po, Q) +S(f, By Qu) +T(f, P Qi) (4.18)

where

O(f, Pna Qm) = Z(_l)k+1 [Pk;(xv :L‘)f(kp)(l‘? b) - Pk;(a> x)f(kVO)(% b)]

k=

+ ) (=D Qiy v) (@, y) — Qilb,y) f OV (a,0)],

2

—

Il
—

D(f, P, Q) = kZ f;(—l)’““Pk(x, 2)[Qi(y, ) F 5, y) = Qulb, y) 59 (x,b)]
- kZ i(—l)’“”&(a, D) [Qi(, 1)1 (a,y) — Qulb,y) F*) (a,b)],

(. P Qu) = (1" [ Puta) 10t 8yt 4 (1" [ Qus O e 5) s
+ ;:(—1)m+’*f+1 /b ' Qi (5, y) [Pe(z, ) fFm ) (2, 5) — Py(a, z) f&™ ) (a, s)] ds
+ i}(—l)””“ /; Po(t,2)[Qily, y) F" 0t y) — Qilb,y) fOTH0(8, b)) dt

and

T(f. Py, Qu) = (1) / ' / U Pt 2)Qun (5, y) O ) dis
’ (4.19)

Proof. Let P,(t,z) be an Appell polynomial. Applying formula (4.14) to the faion
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f(z,y) with respect to variable yields

f(z, flay +Z 1 [P, 2) 5 (2, y) — Prla, z) f50 (a0, )]
+ (=)™ / ) P, (t,z) f" (¢, y) dt. (4.20)
Similarly, we have
FEO(eg) = 150+ (1) [ Qs 47 5) ds
+ ) (=D Qi ) fF (@, y) — Qilb, y) fH (2, 0)], (4.21)
=1
79 (a,) = F<9(a,b) + / Qun(5,4) 574V (0, 5) ds
+Z D*Qiy, u) " (a,y) — Qub,y) " (a,b)], (4.22)
POt ) = £ 08+ (1) [ Qs ) ds
+ ) (=D Qily y) St y) — Qilbyy) fUTHI (1, b)],
=1
(4.23)
Flan) = 5@+ (1" [ Quls) £ e, ds
+ Z D Qi(y, ) f Y (a,y) — Qilb,y) ) (a, b)]. (4.24)
Substituting formulae (4.21)—(4.24) into (4.20) produces
f(w,y) = fla,b)+ Z DF [P, ) f 50 (2, b) = Pi(a, ) f*0(a, b)]

+ ) (=1"Quly ») F ) (a,y) — Qilb,y) F7 (a,b)]

_|_

7
¥

(=1 Py, ) [Qiy. y) f & (. y) — Qi(b, y) f* (2, b)]

e
Il
—
.
Il

1

-
NE

(—1)**" P(a, 2) [Qi(y. y) f*(a,y) — Qi(b, y) f*(a,b)]

1

-1 "/z P, (t,z) fOT L0 (¢ by dt + (— / Qu(s,9) O™ (a,s)ds

_|_

—~ >~
i

~—r ~

3

£ (pym / " Q. 9) [Pul, 2) F B (2, 5) (4.25)

=1

ol
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— Py(a,x) f*™ D (a, 5)] ds

+ Z i / u(t,2) [Qily, y) f (8, ) — Qulb,y) f (8, 0)] dt
_1 m-+n Pn ’ m (s, (n+1,m+1) , ds dt.

e [ Pt aQuss (1, 5) ds

The proof of Theorem 4.4 is thus complete. O

Remark 4.4.1. If we take
Pit.a) = (0= (a+ (1= \)a)', Qyfs9) = 5i(s = b+ (1= X)) (426)

for0 <i<mn,0<j<mand\ u € [0,1]in Theorem 4.4, then

O P Q) = ST [0 1) 70 0,y — 60, 1)

k!

k=1

O 9) i 00 (g ) — i 0
+Z (= 1) a,) = 1 fO(a, y)], (4.27)

DU P Q) = 305 OO Z I iy o1y 79 0, )

Y (A — 1)’“(6;; ;)k(b —y)' [ F5D(ayy) — (o — 1) f%D(a,5)], (4.28)

S(f, Py, Q) = (—=1)" /x [t — (A +n(!1 —N)z)|"

+ (_1)m /by [S — (:ub + (1 — :LL)y>]mf(O,m-i-l)(a7 S) ds

f(n+1,0) (t, b) dt

m!
. Z / b + (1 — pu 2 —k 's] (a —2)* (A =D fEm D (a, 5) = A fETD (2, )] ds
S / e L O 0 gy 1y o 1,) — 0419 1)
i=17a '
(4.29)
and
f7 Pna Qm) =

/ / [(Aa+ (1 - ;]'”[(ub + 1 —py) — 8" FOrmED (¢ 5y ds dt. (4.30)

I-ml!
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If further takingA\ = 0 and x = 0 in (4.26) then we can deduce Theorem 4.1 from
Theorem 4.4,

The other choices of Appell type polynomials will provideegalizations of Theorem 4.1.

The following approximation of double integrals in termsAypell polynomials holds

(Dragomiret al. (2005)).

THEOREM 4.5. Let {F;(t, z)}2, and {Q;(s,y)}32, be two Appell polynomials and
f:]a,b] x [c,d] € R? — R such thatf")(z,y) are continuous ora, b] x [c, d] for all

0 <i<mnand0 < j <m. Thenwe have

b d
/ / J(t5)dsdt = A(f, Pa, Q) + B(f, Pa, Qu) + R(f. Pa, Qw).  (4.31)

where

A(f, Po, Q) = ZZ D)™ Py(a,0)[Qi(d, d) f1 D (a,d) = Qile,d) [V a, ¢)]

zl]l

3 S IR [Q Db, d) Qe D b,).
i=1 5=1
m b m

b
B P @) = 30/ Qulend) [ 7Ot = Yo (=1 @uld ) [ O (e.a)

=1 i=1
d
+Z (a,b) / FULO (g, s)ds— (—1)ij(b,b)/ FULO (b, 5) ds
=1 c

and

(faPQO - m+n// tmeSd)fnm(t s)dsdt
Proof. The proof is obvious by using the generalized integratiorpésts formula con-
secutively, and we omit the details. O

Remark 4.5.1. As usual, letB;, i € N, denote Bernoulli numbers. From propertigs9)
and (4.10) (4.12) and (4.13) of Bernoulli and Euler polynomials respectively, we can

obtain easily that, foi > 1,

Bi11(0) = Biyi(1) = Biya, Bi(0) = —Bi(1) = —5, (4.32)
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and, forj € N,

B(0) = ~E(1) = —— (2" = DBy (4.33)

It is also a well known fact thaB,;,; = 0 for all : € N.

TakingP;(t,z) = P, g(t, z;a) andQ;(s,y) = Pjr(s,y;c)for0 <i <nand0 < j <m
in Theorem 4.5 and considerir(g 32)and (4.33)yields

CL o b )z 2(2i+1 _ 1)
A(f, Py Q) = ; JZQ T z' T B;Bii1
y [f(i_lvj_l)(a,d) + f(i—l,j—l)(ayc) _ f(z‘—l,j—l)(b7 d) _ f(z‘—l,j—l)(b, C)]
N (27— 1) (e — d)’
+(b—a)z (it 1) i+1

i=1

X [fO0(a, d) + fO 0 a,0) + fO b, d) + OO0, 0)],  (4.34)

m

(1—2%1)(c — d)
=1

z—i—l

b
Bi / £Vt ) + FOV(, )] dt

n d
boa [
5 [f(a, s)+ f(b, s)} ds, (4.35)
and
R(f7 Pna Qm) =
G b / / t - “ (2 - Z)f(”’m)(t, s)dsdt. (4.36)

In Section 4.5 we will discuss numerical experiment thaated to Remark 4.5.1 and
utilize the perturbed Taylor's expansion developed in équa (4.34) and (4.35) for dif-
ferent values ofn andn to approximate the functions given in example 3.2 in Chapter
3.

4.4 Estimates of the Remainders

In this section, we will give some bounds for the remainddrg»gansions in Theo-
rems 4.4 and 4.5.
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We firstly need to introduce some notation.

For a functior? : [a, b] x [¢,d] — R, then for anyz,y € [a,b], z,u € [c, d] we denote

He”[x,y}x[z,u],oo = €ss SUP{M (ta 8)‘}7 Le [l'vy] or [:%x] ands € {"%u] or [ua Z]

and

1
Yy u P
//\h(t,s)\pdsdt‘ , p>1.

The following result in establishing bounds for the remainch the Taylor-like formula

(4.18) holds (Dragomiet al. (2005)).

1€1l; =

x?y]X[Z7u]7p =

THEOREM 4.6. Assume thaf P; (¢, )}, , {Q; (s,y)}}2, and f satisfy the assump-
tions of Theorem 4.4. Then we have the representation (dridjhe remainder satisfies

the estimate

120 ) 19 ) 1

1P (- x)’|[a7m]7q 1@ (-, y)’|[b7y}7q Hf(nJerH) H[a:w}X[bnyp’ (4.37)

1 1 _ 1.
wherep > 1, 5+5—1,

IN

n+1m+1
122 o)l 1@ o)l [FE

The proof follows on using Holder’s inequality applied ftvetintegral representation of
the remaindef’ (f, P, @,,) provided by equation (4.37). We omit the details.

The integral remainder in the cubature formula (4.31) magstenated in the follow-

ing manner.

THEOREM 4.7. Assume thaf P (¢, )}, , {Q; (s,y)}}2, and f satisfy the assump-

tions in Theorem 4.5. Then one has the cubature formula Y4a8dl the remainder
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R(f, P,,Q,,) satisfies the estimate:

|R(f, P, Q)]

p
”Pn ('7 b)H[a,b],oo ”Qm ('7 d)”[c,d],oo Hf(mm) H[a,b]x[c,d},l )

”Pn ('7 b)H[a,b],q HQm ('7 d)”[c,d},q Hf(n7m)H[a7b]X[c7d]7p )

(4.38)
wherep > 1, -+ 1 =1;

IN

L ||Pn ('7 b)“[a7b]71 HQm ('7 d)“[qd],l Hf(mM) H[a,b}x[c,d],oo

Remark 4.7.1. If we consider the particular instances of Appell polyndsiarovided
by (4.11), (4.12) and (4.13), then a number of particulamiaiae may be obtained.
Their remainder may be estimated by the use of Theorems d4.8.@nproviding a two-

dimensional version of the results in Magtal. (1999).

For instance, if we consider

[t—Na+ (1=X) z)|"

Pt x;a) = - (4.39)
and  Qn,u(s,y;b) = 5= m btﬁ — W yl” (4.40)

then we obtain the following result:

THEOREM 4.8. Let{P, ) (t,x;a)},_ ), {Qm (5,y;b)},-_, and f satisfy the assump-
tions of Theorem 4.4. Then we have the representation (dri8jhe remainder satisfies

the estimate

|T (f7 Pn,/\a Qm,,u)|
((e—a)"=b)™ ) [loo Hf(n+1m+1 H

n!m! [a,x]x[b,y], 1’

nlm! (ng+1)(mg+1)

o gyt mg+17 5 m
1| @=a)™ " (y—p)™ } Ag Kq Hf (1, +1)H Ixbyle™  (4.41)

[0,z
141 _ 1.
wherep > 1, P

IN

z—a)" ! m+1 n+1.m
\ ( (n)+1)'((gm+b1 Aifn Hf et +1)H[ax]>< b,y],00
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where
)\1 — [/\n-f—l + (1 o )\)n-i-l] = [Mm—I—l + (1 o M)m—f—l}

T = [ (L e

e L

2 2
Proof. Utilizing equations (4.39) and (4.40) and using Holder'sqoality for double

1
q

)\q — [)\anrl 4 (1 o )\)anrl]

1 1
Ao = [=+[A—=
> {2+' 2

integrals and the properties of the modulus on equatior’j4tBen we have that

| [ 1 pu0n

Ty
/ / Po(t, m;0) Qu (s, y; ) fOTH™ ) ds dt
a b

T Yy
= / / [P (t,50) Qupu(s,y; )] | F D] ds dt
a b

(

sup Pt z;a Qm’ s,y b f(n+1,m+1) '
(t,s)E[a,b}X[C,d]| >\( ) M( )| H H[a,m]x[b,y},l

1

(o ) 1Pa(t, 2:0)Qu (s, I dtds) [0 D 4.42)
1 _|_ 1 — 1;

p g

IN

p>1

S 1Pt ) Qs 5Bl dids [ £
Now, the result in equation (4.42) can be further simplifigdapplication of equations
(4.39) and (4.40), given that,

byl,00

a=(1=-XNz+Xa and S=(1—p)y+pubd.
It follows

sup | Poa(t, 25 a0)Qm (s, y; b))
(t,5)€la,a] x [b,y]

= sup |P,\(t,z;a)| sup |Qm,.(s,y;0)|

t€(a,b] s€lc,d]
{0 ) (O =)
n! n! m! m!
(z—a)" (y—0)"

- T [max{ (1 — ), \}]" x [max{(1 — p), u}]™
z—a)" (y—50)" 1
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giving the first inequality in (4.41) where we have used tlot fhat

max {X,Y} =

X+Y 'Y—X
2 + .

Further, we have

(/f/ﬂ&xam@@mAawwwﬁﬁ);
- ([ Patsara)’ (/|Qmusy,n%wﬁ)l
x [/bﬂ(ﬁ—s)qus—k/ﬁy(s—ﬁ)qus}q

1 [u(aW“%ywm“léq%

=

nlm! ng+ 1)(mqg + 1)

producing the second inequality in (4.41).
Finally,

/; /j'PW(t’x? a)Qmu(8,y;b)| dt ds
- /ax dt /by
— Uaa (a ;1t)ndt+/ax (t —n!a)"dt} y [/bﬁ wdH/ﬁy %ds]

T U
(n+ 1) (m+1)!

(t—a)"
n!

(s =p)"

ds
ml!

[(1 o )\)n-l—l + )\n-l—l] % [(1 o M)m—i—l _l_,um—i—l}
gives the last inequality in (4.41). Thus the theorem is detepy proved. O

Remark 4.8.1. By taking\ = p = 0 or 1, we recapture the result obtained bjanna
et al. (2002b)

In a similar fashion, we can bound the remaingg1f, P, », @, ) in the cubature formula

(4.31) as in the following
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THEOREM4.9. Let{ P, (t,z;a)},, {Qmyu (s,y)}. _, and f satisfy the assumptions
of Theorem 4.5, then the remaindBr(f, P, , Q..,.) estimate in the cubature formula

(4.31) satisfies the following

|R (fa Pn,)\a Qm,u)|

(
Emtlem T Ao oo 1™ i

1 (b_a)nq+1(d_c)mq+1 a n,m
i || At s 4,03
wherep > 1, © + . =1;

IN

(b_a)n+1(d_c)m+1

DT A A Hf(n’m)H[a,b]x[c,d],oo'

\

The proof is similar to the one in Theorem 4.8 applied on therirl [a, b] X [c, d], and

we omit the details.

In the next section we will apply those equations that aregureed in (4.34) and (4.35) in

Remark 4.5.1 to approximating general double integrals.

4.5 Numerical Experiments

It is often desirable to boost the existing theoretical ltssuith the associated numerical
results in order to obtain the desired precision of the et Thus, in this section we

discuss a numerical experiment using Remark 4.5.1 andaithie representation

/w /yf<t,s>dsdt:A(f,Pn,@mHB(f,Pm@m>+R<f,Pn,@m> for 0<ay<l,
0 0

whereA(f, P,, Q) andB(f, P,, Q),,) are from equations (4.34) and (4.35) respectively
witha = ¢ = 0andb = z, d = y. This is used to plot the behaviour of the absolute
value of the error as a function ¢f, y) € [0, 1]? for different values ofn andn when we
consider the function

fley)=e™,  0<zy<l, (4.44)

which is given in Example 3.2 in Chapter 3. Again, this fuantivas chosen because it

is not separable as a product of two univariable functiortstae partial differentiation
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for it becomes smaller ojf), 1] x [0, 1] with successive derivatives. This indicates that the
higher order error bounds will give better results.

In Figure 4.1 we show the three dimensional plot for the befhuaof the absolute value
of the error as a function dfr,y) € [0, 1]%. Itis clear that the error is smaller near the
right end of the interval in each direction.

The magnified graph demonstrates the behaviour of the abseitor over the interval
OS5 <z,y <1.

All the algebraic calculations of the previous section hbgen performed using Maple

and the code for this is shown in Appendix A.1.2.
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(@) The absolute error of approximating the integral
S [V f(t,s) dsdt as a function ofz, y) € [0,1]? for the
function (4.44) using (4.34) and (4.35)for m=n=1

(b) The absolute error of approximating the integral
I Y f(t,s) dsdt as a function ofz,y) € [0,1)” for the
function (4.44) using (4.34) and (4.35)for m =n =14
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(c) The absolute error of approximating the integral
[ 2 f(t,s) dsdt as a function ofz, y) € [0,1]” for the
function (4.44) using (4.34) and (4.35) for m =n = 16

(d) The absolute error of approximating the integral
[T [ f(t,s) dsdt as a function ofz, y) € [0,1]” for the
function (4.44) using (4.34) and (4.35) for m = n = 32

Figure 4.1: The absolute error of approximating the mtbﬂafo f(t,s) dsdt as a func-
tion of (z,) € [0, 1]* for the function (4.44) using (4.34) and (4.35) for varioatues of

m andn.



CHAPTERDS

A REVERSE OF THE
CAUCHY-BUNYAKOVSKY -SCHWARZ (CBS) INTEGRAL

| NEQUALITY

The Cauchy-Bunyakovsky-Schwarz inequality, or for shitwt, CBS-inequality, plays an
important role in different branches of modern mathemaitickiding Hilbert spaces the-
ory, probability and statistics, classical real and com@ealysis, numerical analysis,
gualitative theory of differential equations and their bggdions. The main purpose of
this chapter is to identify and highlight the discrete in&igies that are connected with
the CBS-inequality and provide refinements and reversdtsessiwell as to study some
functional properties of certain mappings that can be a#lfuassociated with this in-
equality.

The chapter is arranged in the following manner. In Secti@) &verse results for the
CBS-inequality are obtained. The results of Cassels amresepted with their original
proofs. New results and versions for complex numbers acedddtained. Reverse results
of Dragomiret al. (2005) are mentioned and some refinements of Cassels raseilid-
tained.

Finally, Section 5.3 is reserved for a pre-Gruss type inktyuar double integrals where

Korkine’s identity is applied.

73
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5.1 Introduction

Let (2,3, 1) be a measure space consisting of a(del a o —algebra of subset ap
andyu a countably additive and positive measureXowith valuesR U {oc} . Letp > 0
be au—measurable function oft. Denote byLi (©, K) the Hilbert space of all real or

complex valued functions defined éhandp—integrable orf2, namely,

Lo P duts) < oc. (5.1)

If f,g:Q — R are real functions such that there exist the constartsm < M < oo

with property that

m < /(5) <M for p—a.e.sef, (5.2)
g9(s)
then we have
pr Sfﬂp d,u()<(M+m)2
< . (5.3)
(fgp (s)g (s )du( )) AmM

Inequality (5.3) (in its discrete version) is known in thetature as the Cassels inequality

(see for instance Watson (1955)).

If we assume that there exist constamts M; (i = 1,2) such that

0<my < f(s)<M <oofor p—a.esec, (5.4)

0<my<g(s) <M <oofor u—a.ese,

then from Cassels’ inequality, we deduce the weighted iaktywbtained in Pélya and
Szego (1925), which is also known in the literature as theuBReinboldt inequality
(Greub and Rheinboldt (1959)):

INIO () Jor () ° (s) A (s) _ (MM + mams)”

55
(fQP(5>f($)g(S) du (s))2 = Admymo M M, (5.5)

In the recent works Dragomir (2003), Dragoreiral. (2005), the authors obtained the
following extension for real or complex-valued functiorfstioe Cassels inequality (see

Proposition 4, Dragomir (2003)):
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Let f,g € L2 (2, K) and, " € K such thatRe (T'y) > 0. If either

Re [(Fg (s)— f(9)) (% - "yﬁ)] >0for p—a.ese (5.6)
or equivalently
P05 ()| < G0 allg o) for w-aesen, 67

then we have the inequality

Lo P duts) [ oo ) duts (5.9
L B [T +9)] fop () ()9 du(9)}

< Z.

4 Re (I'¥)
1

=3

D+
" Re(T9) /QP (5) f(s)g(s)dp(s)

The constang is best possible in both inequalities.

If (5.6) or (5.7) holds true, then the following additive s&m of (5.8) also holds

0 < / p ()17 () dya (5) / 0 ()9 ()2 du (s) — / p(5) F(5)g®du(s)|  (5.9)

2

1Py
~— 4 Re(I'y)

/Q p(5) f (3) g ()dpt (s)

Here1 is also the best possible constant.

5.2 Some Reverses of the CBS-Inequality

We start with the following lemma that is of interest in if@slee Dragomiket al. (2005)).

Lemma 5.1. Let f,g € L2 (Q,K) with g (s) # 0 for u—a.e. s € Q. If there exist the

constantsy € K andr > 0 such that

f(S)ED(Q,T)::{ZGK||2_Q|§7~}, (5.10)
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then we have the inequality
/Qp () 1f ()" dpa (5) + (Jaf* = 7?) /Qp (5) lg (s)[* dpe (s) (5.11)
<2re [a [ p(9)1 ()7 )]

< 2|al

/Q p(5) £ ()9 (5)d (5)

The constant 2 in the right side of (5.11) is best possibldéngense that it cannot be

replaced by a smaller constant.

Proof. From (5.10) we have
[ (s) —ag ()] <rlg(s)f
for u—a.e.s € ), which is clearly equivalent to
FEF + (laf =) g () < 2Re | (£ (5)9()) | (5.12)
for u—a.e.s € Q.

Multiplying (5.12) with g (s) > 0 and integrating o2, we deduce the first inequality in
(5.11). The second inequality is obvious by the fact tRatz) < |z| for z € C.

To prove the sharpness of the constarssume that under the hypothesis of the theorem,

there exists a constaat > 0 such that

/Q ()| ()P dp (s) + (Jaf - r2) / p(5)|g () ds (5)
< ORe {a [ #1636 619

providedﬁjg e D («,r)for u—a.e.s € Q.

If we choosep such thatf,, p (s) duu (s) =1, f (s) = 2r, g(s) = 1anda = r, r > 0, then
we have% —2r € D (r,r), and by (5.13) we deduce

4r? < 2072

givingC' > 2. O
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The case where the digR (o, 7) does not contain the origin, i.6q| > r > 0, provides

the following interesting reverse of the CBS-inequalitgg$ragomiet al. (2005)).

THEOREM 5.1. Let f, g, p be as in Lemma 5.1 and assume thdt> r > 0. Then we

have the inequality

/p(S)If(S)IQdM(S)/ﬂ(S) g ()] dpu () (5.14)
Q Q

< o | pe{a [ p( 7 7T )]

o |96 £ 97

"ol 7

The constant 1 in the first and second inequalities is the pp@sdible in the sense that it

cannot be replaced by a smaller quantity.

Proof. Since|a| > r, we may divide (6.3) by/|a|> — r2 > 0 to obtain

L o1 P duts)+ ol —r?/ ) du (5)

<2 R p(s) f(s)g(s)du(s)|. (5.15)
|a|2 r2 [ /Q

On the other hand, by the use of the following elementaryuaéty

1
Ep + Bq > 2/pq for > 0andp,q >0, (5.16)

we may state that

\/7/ $)I* du (s \/m/ P du(s). (5.17)

Utilising (5.15) and (5.17), we deduce

(Lo <s>)é ([ o)
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which is clearly equivalent to the first inequality in (5.14)

To prove the sharpness of the constant, assume that (5.10%) With a constanf’ > 0,

that is,

/p(S)If(S)IQdu(S)/p(S) 9 (s)* du(s)
Q Q
C

el =

refa [p©7@iEme ]| G
Q
providedZ®) € D (a,r) and|a| > r.

Assume thaK = R, Q = Q;UQ, 0NQ, # 0, 0y, Q, are measurable setg, p (s) du (s) =
sandf(s) =a+rseQ, f(s)=a—-r,s€,g(s)=1,s€Q a>r Then

% € D (a,r) foranys € Q and

/Qp(s)(f(s)) dMs):/mp(s)(am du(8)+/ o (5) (0 — )2 du (s)

Qo

and then, by (5.18), we deduce

Cao*

oz2+7“2§ 5

for a > r,

a? —r?

which is clearly equivalent to

(C—1)a*+7r*>0 forany 0 < a < 2.

If in this inequality we choose = 1, r = ¢ € (0,1) and letg — 0+, then we deduce

c>1. 0

The following corollary is a natural consequence of the atreorem.
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Corollary 5.1.1. Under the assumptions of Theorem 5.1, we have the followdddiee

reverse of the CBS-inequality:

0< 2/9/)(8)|f(8)l2dﬂ (8)/9,0(8) g ()" dp (s) (5.19)

2

"ol =

The constant 1, the coefficient of the bound, is best posgitile sense mentioned above.

Remark 5.1.1.1f in Theorem 5.1, we assume that = r, then we obtain the inequality:

/QP(S) [/ ()" du(s) < 2Re [a/ﬂp(S)f(S)g(S)dM (S)} (5.20)

< 2la|

/Q p () £ ()7 (&) (s)]

The constan? is sharp in both inequalities.

We also remark that if > |«|, then (5.11) may be written as

Lo eEants) (5.21)

<02~ 1al) [ p@)a @ duo)+ 28 a [ p(6) £ 7GIn )
< (7= laP) [ p6)lg@F du(s) + 20a

/Q p(5) ()7 (&)du (s)]

The following particular case of interest also holds.

Corollary 5.1.2. Let f,g € L2 (Q,K) with g (s) # 0 for u—a.e.s € Q. If there exist the
constantsy, I' € K with Re (I'y) > 0 andI" # ~, so that either:

'f(S)_ﬂ

1
<=~ f —a.e. Q 5.22
() 5 _2| v| forp—ae.se (5.22)

or, equivalently,

(F— f(s)) (@—VH >0 foru—a.e.se (5.23)
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holds, then we have the inequalities
/p(s)lf(s)lZdu (s)/p(s) |9 (5)]” d (s) (5.24)
Q Q

< s 4B [G4D) [0 95T )]}

< s | [ 6 £ )76l )

The constantg and 1 are best possible in (5.24).

Proof. The fact that the relations (5.22) and (5.23) are equivdt@lnws by the fact that

for z,u, U € C, the following inequalities are equivalent

< Z|U -
2 <SIU-u

u+ U‘ 1
and

Re[(u—z)(z—u)] > 0.
Definea := 2- andr = £ |I' — 4|. Then

:_IT+4° =9 _
1 1

Re (I'y) > 0.

jaf* —r

Consequently, we may apply Theorem 5.1, and the inequa(Bi24) are proved.

The sharpness of the constants may be proven in a similarenaarthat in proof of

Theorem 5.1, and we omit the details. O

Remark 5.1.2. Note that the above result is due to Dragomir (2003) and hasnlab-

tained in a different manner in the above mentioned refexenc

fv=m, I’ =MandM > m > 0, then from (5.24) we also recapture Cassels’ result
(5.3).

The following additive version is of interest (see also ea(5.9)).
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Corollary 5.1.3. With the assumptions of Corollary 5.1.2, we have the inetiesi

OS/QP(S)If(S)IQdM(S)/QP(S) |9 ()] dpu(s) (5.25)

<1 1 |+~
1 Re (D7)

/Q p () f ()9 (5)dpe (5)

The constant}I is best possible in (5.25) in the sense that it cannot be cspleby a

smaller constant.

5.3 A Pre Gruss Type Inequality

The following result provides an inequality of Griss typattimay be useful in applica-
tions when one of the factors is known and some bounds foett@sl factor are provided
(see Dragomiet al. (2005)).

THEOREM5.2. Letp : Q — [0, c0) be au—measurable function of? with the property
that [, p (s) du (s) = 1.If f, g € L2 (Q,KK) and there exist the constantse K andd > 0
such thatf (s) € D (¢, d) for u—a.e.s € Q, then we have the inequality:

L0016 a6 = [ 06 £ 6 duts) [ pe)aTdn )

Q

Jun

< [/ﬂm )19 () dpe (s) — /Qp<s>wdu<s> ]
. ﬁ [owr ). ©.29)
4,0 52 Q

The multiplicative constant 1 in the bound is best possible.

Proof. We know, by Korkine’s identity, that

[ 067 6) 5t /<>f<>dﬂ<>/ﬂp(s)g(s)du(s>
// $) = F ) [g(5) = g (@) dia (s) du (1)
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Applying the Schwarz integral inequality for double intalgrwe also have

75) — 50) du (5) d <t>’ (5.27)

[ s
<([ [r©01r )= @R dn ) dun)
([ [r@p0le) -g0P a6 n0)

- (/Qp(s)]f(s)\ dp (s) — /p(s)f(s)du(s) )

X(/ﬂp(SHg ) dp (s ‘/ 2>%>

and, for the last identity, we also have used Korkine’s itteffior one function(f = g)

2

(NI

N[

Applying Corollary 5.1.1 for the functiop (s) = 1, s € Q and taking into account the

fact thatf (s) € D (p, ) for u—a.e.s € Q, then we can state that

0= [ )1 P au(s ’/ (5

d /Qp(S)f(S)dM(S)-

<
el -4
Utilising (5.26) and (5.28), we deduce the desired resulgp

(5.28)

The fact that the multiplication constant of the bound 1 esllest constant is obvious by
O

Corollary 5.1.1 and we omit the details.

The following corollary is of interest in itself

Corollary 5.2.1. Let p be as in Theorem 5.2. If, g € Lf) (©,K) and there exist the

constantsy, ® € K with Re (®¢p) > 0 and
(5.29)

o 1
)f(s)—ngr ‘§§|®—§0| forp—a.e.s € 2

or, equivalently,
Re [(cp — £ (%)) (m - ¢>] >0 forpu—ae.seQ, (5.30)
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then we have the inequality

Lo 163G = [ 2615 ) dnts)- [ p6)aTan ()

Q

1
2]2

(5.31)

/p@g@ww>
Q

s%@—wﬁéﬂﬁf@@ﬂQ[Lp@m@W@M$—

The constani is best possible in (5.31).

In what follows we briefly mention some approximation restdir the finite Fourier trans-

form whose proofs have employed recent techniques andffaotsthe theory of integral

inequalities of Ostrowski type.
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CHAPTERG

APPROXIMATIONS OF THE FINITE FOURIER

TRANSFORM FOR FUNCTIONS OF ONE VARIABLE

The reason the Fourier transform is so widely used is thaffér® specific computa-
tional advantages over other mathematical approachesFadinger transform therefore
provides a computationally versatile tool to analyze carplinctions arising from ex-
perimental measurements by decomposing them into simglee Wunctions which can
be used to determine experimental unknowns.

The material in this chapter is presented in the followindeor In Section 6.2, some
new inequalities for the Fourier transform of function oibded variation are given. In
Section 6.3, some numerical quadrature formulas are deselolhe pre-Griss inequal-
ity which was developed in previous chapter is used to fornné&ygral inequality for
complex-valued functions in 6.4. Finally, in Section 6.t&eation is focused on the sym-
bolic computation of the Fourier Transform using the “Mdmemputer algebra system.
This is also illustrated by using some numerical experiménplot the theoretical results

obtained in this chapter.

85
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6.1 Introduction

The Fourier transform has long been a principal analytasalin such diverse fields as lin-
ear systems, optics, random process modeling, probathkyry, quantum physics, and
boundary-value problems (Brigham (1988)). In particulidnas been very successfully
applied to the restoration of astronomical data (Brault @fdte (1971)). The Fourier
transform is a pervasive and versatile tool, which has bsed in many fields of science
as a mathematical or physical tool to alter a problem into thia¢ can be more easily
solved. Some scientists understand Fourier transform dsysigal phenomenon, not
simply as a mathematical tool. In some branches of sciehedsaurier transform of one
function may yield another physical function (Bracwell 659).

Utilizing some integral identities and inequalities deyed in Barnett and Dragomir
(2001), Barnett and Dragomir (2002), Dragomir (2001b),reéret al. (2004) (see also
Dragomir and Rassias (2002)), we point out some approximatf the one dimensional
finite-Fourier transform in terms of the complex expondntieanZ (z, w) and estimate
the error of approximation for different classes of mappinfjbounded variation defined
on finite intervals.

Letg : [a,b] — R be a Lebesgue integrable mapping defined on the finite irterva

andJ (g) its finite Fourier transform, namely,

?@@:/g@emw.

The inverse finite Fourier transform gfwill also be considered, and will be defined by

3*@®:/g@ww&

The following result was obtained in Barnett and Dragom@Q2).

THEOREM 6.1. Letg : [a,b] — R be an absolutely continuous mappingjenb] . Then
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we have the inequality

b
F(g) (x) — E(—2miza, —2mwizxd) / g (1) dt‘

;

g Nl (0= a)?, if ¢ € Lo [a, 1],
1 1
<{ —2  _(b—a)Ta|g| , ifgelyfab];t+i=1p>1, ;
< [(qH)(qH)ﬁ( ) e llg'll, . g € Lyla, 0]+ p ;

(b—a)llg'lly

forall = € [a,b], 2 # 0, whereE is the exponential mean of two complex numbers, that

\

IS,
zZ_pw

€
zZ—w

if 2 4w
E(z,w):= , z,w e C. (6.1)

exp (w) ifz=w

The following inequality for a more general class of funosavas pointed out in (Dragomir
et al. 2003).

THEOREM 6.2. Letg : [a,b] — R be a measurable mapping ¢ b], then we have the

inequality:

b
F(g) (x) — E(—2miza, —2mizb) / g(s)ds

(

Tl —a)llglle 1 g€ Lula,0];

1 1
2'tg 7r(bfa)1Jr q

(g+1)(g+2)]a

IN

[ llgll, i g€ Lylab],p>1,

2w lef(b—a)llgll,  if g€ Lifa,b];

\

forall x € [a,b], x # 0.

The main aim of this chapter is to point out some new ineqgealior the finite Fourier
transform of functions of bounded variation. Error bourmtssome associated quadrature
formulae are also established. Numerical experimentsibying the Maple package are

conducted as well.
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6.2 Inequalities for the Fourier Transform of Functions of Bounded

Variation.

The following inequality holds (Barneét al. (2004)):

THEOREM 6.3. Letg : [a,b] — R be a mapping of bounded variation ¢m b] , then

we have the inequality

b

(b—a)\/ (9) (6.2)

a

»lkloo

)9(9) (x) — E (—2miza, —2mizb) /abg( )ds

forall z € [a,b], z # 0, Where\/ (g) is the total variation ofg on [a, b], defined as

follow:
b

n—1
\ (9) = sup > ’g (dﬂ) - (xf-")ﬂ
a =0

and An is any partition of{a, 0]

Proof. Using integration by parts for the Riemann-Stieltjes ind&gwe have (see also
(Dragomir 2001b)) that

[ -aige)=-ao0 - [ o) 6.3)
and
/t (s —b)dg(s) = (b— 1) g (1) - / g (s) ds. (6.4)

forallt € [a,b].
Adding (6.3) and(6.4) and dividing by(b — a) , we deduce the representation (Dragomir
2001b):

b t b
o) = 5= [a@dst 7= [ -aa@ = [ -bdi(s). 69

forall ¢ € [a,b], which is itself of interest.
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Assume that: € [a, b] , x # 0, then utilizing (6.5) we have

T (g) (z) = / g (t) =2ty (6.6)

:/ablbia/b ()ds+b% t(s—a)dg(s>

I .
+ b — / (s —b)dg (s)] e~ 2wt dt

e [
b—a/ (/ s-a)dgls )6_2mdt
bfa/a (/ (s =g (s) ) e >
— E(~2miza, —2mizb) / " o (s)ds
et ([isma)e
i [ ([ nane) eman

where we have used the notation (6.1) and

b
/ e dt = (b — a) B (—2miza, —2mixh) .
Using the properties of the modulus, we have(®¥) , that

’?(g) (x) — E(=2miza, —2mizh) / g(s)ds (6.7)

L ([
! / b < /t (s~ b)dg (s)) e—%mdt'

b—a
Sbia/: /:@—a)dg(s)
+bia/ab /tb(s_b)dg(s) =27t gy
:bia/ab /at(S—a)dg(s) bia/ab /tb(S—b)dg(g)

Now, it is well known that ifp : [¢, d] — R is continuous and : [¢, d] — R is of bounded

<

_l_

’ 6727”‘:137& } dt

dt + dt.
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variation on[c, d] , then the Riemann-Stieltjes integ[ﬁcﬁp (x) dv (x) exists and

[ @

Applying (6.8) on the intervalsda, t| and|t, b] , we deduce that

/at(s—a)dg t—a\:/

/t<s—b>dg<s> <=1\ (9)

< sup [p(x |\/ (6.8)

x€[c,d)

and further that,

[ 5= ardgts

b

<(t—a)\/(9+0b-1\(9)
<maX {t—a,b—t}

t b
Vo)

- B(b—awr’t—a;rb”\:/(g%

+ /tb(s—b)dg

Using(6.7),

‘9( ) () — B (—2miza, —2mizh) /abg(s)ds

"T1 a+b ’
a/ {2 (b—a)+ ’t— 5 Hdt\a/(g)
b

(b—a)

u>|oa

since a simple calculation shows that

and the theorem is completely proved. O]

Remark 6.3.1. If we consider the inverse Fourier transform

F1(g) (x) = / g (t) it
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then, by a similar argument, we can prove that

T (9) (z) — E (27iza, 2mizh) / g(s)ds

<

o oo

b
(b—a)\/(9), = €[a.b], z #0. (6.9)
3. .
The constani— is the best possible.

The following corollaries are natural consequences of bwva results.

Corollary 6.3.1. Letg : [a,b] — R be a monotonic mapping dn, b] . Then we have the

inequality

F(g) (x) — E (—2miza, —2mixb) / g(s)ds| < Z (b—a)|g(b)—g(a)l, (6.10)

forall x € [a,b], x # 0.
The proof is obvious by Theorem 6.3, taking into account évaty monotonic mapping
is of bounded variation any’ (¢) = |g (b) — g (a)| .
Corollary 6.3.2. Letg : [a,b] — R be anL—Lipschitzian mapping ofu, ], i.e.,

lg(t) —g(s)] < L|t—s| forallt,s € [a,b]. (L)
Then we have the inequality

L(b—a). (6.11)

F(9) (x) — E(—2miza, —2mwizh) /a g(s)ds| < Z

The proof is obvious by Theorem 6.3, taking into account that : [a,b] — R is
L—Lipschitzian, therl. is of bounded variation ofu, b] and\/’ (¢9) < L (b — a).

6.3 A Numerical Quadrature Formula

Letl, :a =129 <21 < .. < x,1 < x, = bbe adivision of the intervdl, b] , put

hg == 241 — 2 (k=0,...,n—1) andv (h) := max {hi|k = 0,...,n — 1} . Define the
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sum (see also Barnett and Dragomir (2002) and €thad. (2003))

[y

n—

Tr+1
E(g,In,x) =) FE(—2mixry, —2mixxi, ) X / g (t)dt, (6.12)

0 Lk

i

wherezx € [a,b], z # 0.

The following approximation theorem holds ((Barnettial. 2004)).

THEOREM 6.4. Letg : [a,b] — R be a mapping of bounded variation ¢n b] . Then

we have the quadrature rule
I (9) (x) = E(g,In,x) + R(g, L, 7); (6.13)

where€ (g, I,, x) is as defined ir{6.12) and the remainder: (g, I,,, z) satisfies the esti-

mate

R(g. Lol < v (0 (9). (6.14)

Proof. Applying Theorem 6.3 on every subinteryal,, x| , we can state that

Tk+1 )
/ g (t) e ™ dt — B (=2mizwy, —2mixc,,) X / g(t)dt

Tk Tk

Thk+1 ’

forall k € {0,...,n — 1} andx € [a,b], = # 0.

Summing ovet from 0 to n — 1 and using the generalized triangle inequality produces

1R (9, In, )| = [F(9) () — € (g, Ln, )]
3 n—1 Tr41 3 n—1 Te+1
<DV @< v\ ()
k=0 Ty k=0 =y
3 b
and the theorem is proved. O]

In practical applications, it is more convenient to consithe equidistant partitioning of
the intervalla, b] . Thus, let

b—a

In:xj=a+j- ,7=0,...,n;
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be an equidistant partition d#, ] , and define the sum (see also Barnett and Dragomir
(2002) and Barnettt al. (2004))

n—

1
b— b—
= E |:—27Til’ (a+k- a) , —2mix (a+(l€—|—1)- a)}
n n
k=0

a+(k+1)- =2
X / g(t)dt. (6.15)

b—
atk-2%

The following corollary of Theorem 6.4 holds.

Corollary 6.4.1. Let g be as defined in Theorem 6.4. Then we have
F(9)(x) = & (9. 2) + Ry (9. 2), (6.16)

whereé,, (g, z) approximates the Fourier transform at any poine [a,b], x # 0. The

error of approximationR,, (g, ) satisfies the bound

3 b
IR, (g,2)] < 4—b—a\/ (6.17)

a

forall x € [a,b], x # 0.

Remark 6.4.1. If we know the total variatior\/’; (g) of g on [a,b] and would like to
approximate the Fourier transforti (¢) (x) by the adaptive quadrature formua, (g, x)

with an error less than a given > 0, we have to divide the intervéd, b] into at least

n. = [3(64; ) (9)

and[r] denotes the integer part ofc R.

n. € N points, where

The following corollaries of Theorem 6.4 also hold.

Corollary 6.4.2. Letg : [a,b] — R be a monotonic mapping dn, b] . Then we have the

quadrature formulg7.15) where the remainder satisfies the estimate

R(g. 1 0)| < S0 ()9 () ~ g (@)l v €fat], 2£0.  (618)

In particular, if ,, is taken to be equidistant, then we have the fornjlas) , where the

remainderR,, (g, z) satisfies the estimate

Rao 0 <2 D) g @), velat] v 40 619
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A similar result holds for Lipschitzian mappings.

Corollary 6.4.3. Letg : [a,b] — R be a Lipschitzian mapping with the constdnt> 0.
Then we have the quadrature formylals) where the remainder is bounded by

n—1
3
R (g, In )| < 7L ) i <
1=0

L(b—a)v(h). (6.20)

In particular, if 7, is chosen to be equidistant, then we have the forrtulgs) where the

remainderR,, (g, x) satisfies the inequality

3L (b—a)’

<

(6.21)
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6.4 Integral Inequality for Complex Valued Functions

The following result illustrates the usefulness of the @giss inequality (5.31), at this

point, thatK denotes the field of real complex numbers.

THEOREM 6.5. Letg : [a,b] — K be a real or complex-valued function with €
L? (Ja, ] ; K) and there exist the constants¢ € K with the property that, either

’g(s)—¢;@'§%|@—¢| fora.e.s € [a, 0] (6.22)
or, equivalently,
Re [(cp —g(%)) (m - ¢)] >0 fora.e.s € [a, 0], (6.23)

holds. Then we have the inequality:

b
)Er’"(g) (x) — E(—2miza, —2mizh) / g(s)ds (6.24)

ool e
= % [© =l {1 - Si;)ZEWj)gbﬁzxc;)]r

;

(b=a)ll9llcofary 1 g€ Loola,b];

X (b—=a)? ligll,uy I g€ Lplab],
l_|_l:1;

p g

190 if g€ Lifab

p>1

for eachz € [a,b] (x # 0), whereFE (-, -) is the exponential mean defined in (6.1).

Proof. We apply the pre-Griss inequality (5.31) to get:

1 b i 1 b 1 b
’b—a/ g(s)e”mds—b_a/ e’”“d&b_a/ g(s)ds

’ 1 ’ —2mixs |2 1 ’ —2mixs
ag(s)dsx s a’e ’ds— P ae ds

|® — ¢l

.

(6.25)
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However
b
/ e s = (b — a) E (—2miza, —2mizh)
}6—27ria:s}2 _ 1,
* omi 1 2mizh _ 2
/a e2mizs Jo — 5 [6 mizb _ o ﬂzxa]
and
b 2 1
/ e2mis g ol — ~ |:’€27rixb’2 — 9Re [e2ﬂ'ixb ) efZﬂixa} + ‘ezmmﬂ
a (2mx)
1 2miz(b—a
- 2722 [1 — Re [e ( )H
1 .
=533 [1 — Re[cos (2mz (b —a)) + isin 27z (b — a))]]
1
=5 [1 —cos (2mz (b — a))]
1 .
=533 [1— (1 —2sin*(7z (b —a)))]

sin? [z (b — a)]

22
Using (6.25) multiplied wittb — a > 0, we deduce the first result (6.24). The second part

is obvious by Holder’s inequality. O

Remark 6.5.1. If g takes real values, then the condition (6.22) may be repldxgethe

equivalent condition (fo® > )

0 <g(s)<® forae.sclab. (6.26)

6.5 Some Numerical Experiments

In the following we numerically illustrate the approximatifor the finite Fourier trans-
form provided by

E (g, In, x) (6.27)

n—1

:ZE(%M (a—H{:-b;a) ,—27ri(a+(k:+1)b;a))

k=0

at+(k+1) =2
« / g () dt.
a—l—k-b_Ta
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In Figures 6.1- 6.6 the errot, (t) := |R, (g9,t)|forn =1, n =4, n =16, n = 64 and
n = 128 is plotted for the different functiong(t) = ¢', t € [-1,1], g(t) = e, t €
[—m, x|, g(t) = Int, t € (0,1], g(t) = cosht, t € [-m, 7], g(t) = sinht, t € [—7, 7]
andg(t) = sin(2t) €', t € [—m, 7).

These functions were used because they demonstrate difteebaviour types. There-
fore, this will allow for an adequate examination of the noeth

The approximates finite Fourier transform when applyingatign (6.27) on the functions

listed above are illustrated by the following graphs.
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(@) rn(x)forn=1

-1.0 -0.5 0.0 0.5 1.0

(€) rn(x) forn = 16

(b) rp(z) forn =4

-1.0 -0.5 0.0 0.5 1.0

(d) 7 (z) forn =64

(€)rn(x) forn = 128

Figure 6.1:Plots of the bound on errat, (z) := |R, (g, 2)| for the functiong(x) = e*, z €

~1,1].
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(b) r(x) forn =4

107

(€) rn(x) forn =16 (d) () forn =64

(€)ry(x) forn = 128

2

Figure 6.2:Plots of the bound on the erroy, (z) := |R,, (g, )| for g(z) = e™*

99

, e [—1,1].
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1t 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
@) rp(z)forn=1 (b) r(z) forn =4

0.55 0.15
1 0.125

0.4j
E 0.1

037
] 0.075

0'2; 0.05

0.1 0.025
Ax{x[x[x[x[x[x[x{x{x\ 0.0 TTTTTTTTTT T I I T
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 10
(€) rn(x) forn =16 (d) 7 (z) forn =64

(€)rn(x) forn =128

Figure 6.3:Plots of the bound on the errey, (z) := |R,, (g,2)| for g(z) = Inz, x € (0,1].
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5]
10.0; E
5]
7.5 E
| ﬁ
2
1
zﬂy;Trm-rrrrﬁ—m—r TTTT T TTITI[TIT a TTTTTTTTTrITIT
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
@) rn(z)forn=1 (b) r(z) forn =4
1.25: 0.02—
10: &E
0.755 H

RARAREARARRAGARNRRRARARRRRARAN! AAASRARAARSA RN RRRARRARRARARAN
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
(€) rp(x) forn = 16 (d) rp(z) forn =64

10°

(e)rp(x) forn = 128

101

Figure 6.4:Plots of the bound on the errey, (z) := |R,, (g, x)| for g(z) = coshx, x € [—7,7].
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6
5
15
104
UL UL L TITT T T T [ITTr] TTTTT T TTT TTTTTTTITTTTTTT
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
@) rp(z)forn=1 (b) r(z) forn =4
] 10
1.25—

o
3
vl
tlirn
mmmall

(€) rp(x) forn =16 (d) rp(z) forn =64

(€)rn(x) forn =128

Figure 6.5:Plots of the bound on the errey, () := |R,, (g, x)| for g(z) = sinhx, x € [—7,7].



6.5. Some Numerical Experiments 103

(b) 7 (z) forn =4

(€) rn(x) forn =16 (d) () forn =64

107

(€)ry(x) forn = 128
Figure 6.6:Plots of the bound on the erroy, (z) := |R, (g,2)| for g(z) = sin(2z) €*, x €

[—m, 7).
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In conclusion, it is evident that the approximate Fouriangformation achieves single
precision accuracy when the values n increase. The ressitsepresent that a doubling
of the mesh size leads to a squaring of the error bound.

In the next chapter we will discuss some approximation tegal the two-dimensional
finite Fourier transform and develop inequalities for thieneation of the two dimensional

Fourier transform.



CHAPTERY

APPROXIMATION OF THE FINITE FOURIER

TRANSFORM FOR FUNCTIONS OF TWO VARIABLES.

Since Fourier series and Fourier transforms are importents in applied mathematics, it
is not surprising that there is a great deal of interest iir thiscrete approximation. For a
more recent survey of finite Fourier analysis, see Henrig98l Chapter 13).

The Fourier transform can be generalized to higher dimessiBor example, many sig-
nals f (x, y) are functions of 2D space defined in a plane.

The material in this chapter is presented in the followingnrea:

In Section 7.2, some new inequalities for the estimatiorheftivo-dimensional Fourier
transform are developed.

Some numerical cubature formulas are developed and applgdvide some numerical
experiments in Section 7.3.

The pre Griss inequality which was developed in Chapter 6ad to form some integral
inequalities for complex-valued functions of two variab&s shown in Section 7.4.
Finally, in Section 7.4.2 attention is focused on the syntbobmputation of Fourier
Transform using the “Maple” computer algebra system . Téialso illustrated by us-

ing some numerical experiments to plot the theoreticallresbtained in this chapter.
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7.1 Introduction

In this chapter we point out some approximations of the twoetisional finite Fourier
transform in terms of the complex exponential méafx, w) and estimate the error of
approximation for different classes of mappings defined mitefintervals.

In this chapterf : [a,b] X [c,d] — R will be a continuous mapping defined on the finite

interval[a, b] x [¢, d] andJ (f) its finite Fourier transform. That is

b d
ﬂnwwm@a@:/ /fmmf%WWMwL (7.1)

(u,v) € [a,b] x [¢,d]. For a function of one variable we have used the notation

b
F(9) (u;a,b) = / g (z) e 2w dy,

7.2 Some Integral Inequalities

In this section we employ an identity obtained in Barnett Bmdgomir (2001) and de-
velop inequalities for the estimation of the two dimensidfaurier transform. The fol-

lowing inequality holds (Hannat al. (2002)).

THEOREM 7.1. Let f : [a,b] X [¢,d] — R be an absolutely continuous mapping on
[a,b] x [c,d] and assume thaf = ;xigy exists on(a, b) x (c,d), then we have the

inequality

'?(f)(u,v;a,b,c,d)—ﬂl—32+33

(= g e ot ¢ )

IN

if £, € Ly ([a,b] x [c.d]), (7.2)

[ﬂ@axd@ffliﬂ

wrn@r) | 1l

1 1 _ .
p+q—1,p>17

| (0—a)(d—<)||£2,] if £, € Ly ([a,b] x [c,d])

1 Y
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for all (u,v) € [a,b] x [c,d], where
b
3=l abe.d) = B (usa.t) |57 (s.) (i) ds,
d
j2 L= j2(”7 v; @, ba & d) =F (U; C, d) / gj(f ('7 t)) (u; a, b) dta
‘ b pd
J3:=33(u,v;a,b,¢,d) = E(u;a,b) E (v; ¢, d)/ / f (s, t)dtds
with

E(u;a,b) : = E(—2miub, —2miua) ,

E(v;e,d) : = E(—2mivd, —2mivc) , (7.3)

whereE(-, -) is the exponential mean of complex numbers as defined in (Butjher-

more we define the usual Lebesgue norms on two dimensiored bya

O*f (s,t)
1 — ’ d
1723 tretmbiea | 0mdy | =0
b pd 92 t P %
Hfa/c,,pr = (/a /C %Sy) dtds) .1 <p<oo.

Proof. A Montgomery type identity obtained by Barnett and Drago(2i001), can be
obtained as follow:

f@w:ﬁﬂ@?$+ﬁ2@?ﬁ

LS f (s t) dtds
(b—a)(d—c)

L P s QUut) 1Y, (5,1) drds
(b—a)(d—c) ’

(7.4)

provided thatf is continuous ot, b] x [c, d] and

s—a, a<s<czx t—c, c<t<y
P(l’,S): and Q(y,t):

s—b, x<s<b t—d, y<t<d.

If we replacef (z,y) in (7.1) by its representation from (7.4), we get
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F(f)(u,v;a,b,c,d)

b d 6—27ri(ua:+vy) b
:/ / (ﬁ/ f(s,y)ds) dyda
b pd e—2mi (uz+vy)
/ <4/ f(z,t) dt) dydx
ab Cd 727rz(ux+vy
— / ( 2 / / f (st dtds> dydx
a Jc - CL

_|_
T~

where (fuvabcd

b—a 7 // (¢-2riCu )
« [ / / P(2,5)Q (y,1) f;{y(s,t)dtds} dyda.

727rz (uz+vy) b
Jy = // ( r— /af(s,y)d8>dydx,
b e~ 2miux
31:/ dx(/ _2”2”9(/fsyds)dy)
a b—a c

€f2m'ub o 672m'ua b d i
o / ( [ “”yf(s,y)dy) s

= F(u;a, b)/ F(f(s,")) (v;c,d)ds.

Let

then

In a similar fashion we obtain

727rz(ux+vy
Jo = //( /fxtdt)dydx

:E(’U,C,d)/ F(f (1)) (u;a,b)dt

727rz(ux+vy
// (b—a //fstdtds)dydx
s,t) dtds x - e ydx
b_ a f dtd 2miux 27rwyd d
= F(u;a,b) E (v;c, d)/ / f(s,t)dtds.

and

(7.5)

(7.6)

(7.7)
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Using the properties of the modulus, then from (7.5) we have

F(f) (u,
/ab / / / b_zzwmy P(x,8)Q(y,t) x f, (s, t)dtds)dydx

via,b,c,d) — Iy —Jg + T

b 727rz (uz+vy)
< / / G a=g| 1P Q0] x | £y (s.0)| dedsdydz (7.8
:/ / / / 1Pz 5 HQ y’ ’ < |1 (5,1)| dtdsdydz. (7.9)

Now, we observe that

(7.10)

[ [ ] [1rwonawongen
<1l Ub (/b P (@ 9) ds) de /cd </d Q (. 1) dt) dy]

T b
” b (s —a)? b—s)?
»muu{<y + ! >}m

2
= £l [(/ab@dwr/:@dx)
([ )

” b—a)® (d—c)?
Il [B5 5

Substituting (7.10) in (7.9), we obtain the first inequality7.2).
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Further, applying Holder’s integral inequality for douloiéegrals, we get

/b / // P (2,5) Q (y, )] | 1, (s, 1)| dtdsdyda
(/ /// P (z,5)Q (v, )!thdsdydx)
(/ / / / £y 0 dtdsdydx)p -
el i< ([ ([ pmrea)a)
([
(e o))
()

_RI=Q

=

= [[£2ull, (0 =a) (d=¢))

C Pt (- ot
- ), [P 712
+1)(g+2))s

Utilizing (7.9) with (7.12), we get the second inequality(@f2).

Finally, we obtain that
b d b d
////|P(x,s)Q(y,t)|><}f;' (s, t)] dtdsdydx (7.13)
< sup |P(x,s)] sup |Q(y,t |><////‘ | dtdsdydz
(z,5)€[a,b)? (y,t)€le,d)?

(b—a)( —c////] | dtdsdyda

=[£I, (0 = @) (d =)

Substituting in (7.13) into (7.9) gives the final inequality(7.2), where we have used the

fact that

X+Y Y- X
max {X,Y} = i +' '

2

Thus the theorem is completely proved.
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7.3 A Numerical Cubature Formula

To illustrate the use of a cubature formula, we form a contpasie from the inequality
(7.2).
Let us consider the arbitrary divisios : a« = o < z; < - -+ < x,,, = bonJa,b] and

Jpic=yo <y <---<y,=don][cd|, define the sum

,_.
—
i
—_
3
|
—

n—1

§(f. I, Ty u,v) = 7,(8D) + 7,(8D) — 1,(8D)  (7.14)
0 I=0

3
3

n—

ES
I

i
=)
Il

=)
il
=)
-
I

<)

where

(8D) = (u, v; Ty Tt 1, Yi» Yig1);

hy =z — 2 (k=0,1,2,--- m—1) and vy =y —y (=0,1,--- ,n—1)

Under the above assumptions the following theorem can lzeraat (Hannat al. (2002)).

THEOREM 7.2. Let f : [a,b] X [¢,d] — R be a continuous mapping dn, b] x [c, d],

then we have the cubature formula
F(f)(u,v;a,b,¢,d) =F(f, Ly Jnyu,v) + R(f, L, Jn, u, v), (7.15)

whereg(f, I,n, Jn, -, -) approximates the Fourier Transforff( /) at every pointu,v) €

la,b] x [c,d], and the remainder termk(f, I,,,, J,., -, ) satisfies the bounds

|R(f; L, Iy ;)

(mzl "Zl hivi ) yllsnsey,
R0 =0 2 meln—1 o+l
< {m} (Z;;hm) i (7.16)
AT f2y ]l

wherer(h) := max{hy| k =0,--- ,m —1},and7(v) := max{y| [ =0,--- ,n—1}.

Proof. Applying Theorem 7.1 over every subinteryal, z; 1] and[y;, v;.1], we can state
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that
\9cﬁ<8®>—Jmsw>—9x83>+ﬂﬂswﬁ
( Of (s t)'
h v? sup — 7
9 o (s;t)Elzp,Tr1] X [Y1,y141] 8x6y
a1 g
< 2[ha] DIS
(¢+1)(¢+2)
o [ |20 atas
where
Tht1 Yi4+1 p %
DI§ := dtd
(/ / &vay S) ’

Summing over from 0 tom — 1 and/ from 0 ton — 1, and using the triangle inequality,

we obtain

[R(f, I, Jny u, 0))|
= | (f)(u ,a, b C, d) —S(f71majnauav)‘

m—1n—1

1 O%f (s,t
0 P Tfélhﬁf
=0 1—0 StE@RTEr1]X[Yr,yi41] oy
- m—1n—1 14 2
A XX )
< k=0 1=0 IS
(g+1)(g+2)
m—1n—1 Tp41 Yi+1 an (8 t) P
“”/ / “onoy | Tds
\ k=0 =0 xp, Ul Toy
where
a2f Sat an S,t
o ‘5%—w§ Sup ﬁfgl:ﬂmwm,
(s;t) [T, rq1] X [Yr,Y141] Toy (s,t)€[a,b] x [c,d] Toy
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thus the first inequality in (7.16) is obtained. Using Holgeliscrete inequality, we have

m—1n—1 a1 Tht1 [ Yi+1 p %
Z [hw] T ( / / dtds)
=0

ﬁxﬁy

=

e ”zﬁ(/““/”“ I

k=0
1 n—

=( (hm)q“) TN
k=0 [=0

which proves the second inequality in (7.16).

dtds)

8x8y

For the last inequality, we observe that

Tr+1 Yi+1
hkl/l / /
Y

lnl

[
:,{(h)T(u)/& /cd &f(s1)

0xdy
= r(h)T(W)|f2, I

[y

LS 0*f (s, 1)

dtds
0xy

k=0 1

Il
=)

dtds
8x8y ’

’dtds

and the theorem is completely proved. O

In practical applications, it is convenient to consider gugiidistant partitioning of the

region[a, b] x [c,d]. Thus let

b _
I, :x,=a+k- a’ k=0,1,---,m and
m
d _
Jniyy=c+1- ¢ [=0,1,---,n,
n
and we define the sum
Sm,n(fa Im> Jm )
m—1n—1 m—1n—1 m—1n—1
J1(E8) + > ) Ta(€ I5(& (7.17)
k=0 (=0 k=0 (=0 k=0 [=0
where(€S) = (u,via+ k- — at (k1) =% eq 1. T2 e 1 41)- 129,

Then the following corollary of Theorem 7.2 holds:
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Corollary 7.2.1. Let f be as defined in Theorem 7.2. Then we have
F(f)(u,v;a,b,¢,d) = Fom(fs Ly Jns 4, V) + R (fy Iy I w, v), (7.18)

where§,m(f, I, Jn, ., .) @pproximates the Fourier Transford{ /) at every pointu, v) €

[a,b] x [c,d], and the remainder termk,,, ,,(f, I, J, ., .) Satisfies the bounds

( (b — a)g(d B 0)2 " X
9mn ”fx,y”ooﬂ
2(b—a)(d — )] 15 112, 1l
an 7Im7Jn7 y >~ Y . 719
|Ry(f u,v)| < RIS o (7.19)
b— d—
=@y .

7.3.1 Numerical Experiments

Now, we will employ the cubature from equation (7.14) to apmate the finite Fourier
transform of

fla,y) ="z —y), 0<zy<l (7.20)

SinceJ(f) can be computed analytically we can gauge the performantteeafubature

rule as well as compare it to the theoretical error bound(7.1

The results are shown in Table 1 whereis the number of uniform partitions of the do-
main[0, 1] x [0, 1]. Itis clearly evident that the cubature rule performs exely well and
achieves single precision accuracy when- 16. Halving the interval size will increase
the accuracy by approximately one and a half orders, and@emnalysis shows that the
rate of convergence is at least(nm)~?2). This contrasts with the theoretical error which
is O(1/(nm)). Extending the Peano kernel, that is using a higher ordettityeto that
of (7.4), may provide a higher order theoretical error restihis will be investigated in

future work.

In Figure 7.1, we show a three dimensional plot of the finitarigy transform obtained

using (7.14) for the example (7.20).
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Num. Error  Ratio Th. Error
0.32E+00 3.11 0.13E+02
0.13E-01 25.28 0.33E+01
0.48E-04 267.37 0.82E+00
0.16E-05 30.63 0.20E+00

16 0.23E-07 67.49 0.51E-01

32 0.34E-09 68.02 0.13E-01

64 0.77E-11 44.09 0.32E-02

o A N S

Table 7.1: Numerical error (column 2) and theoretical error (columnirdapproximating the

finite Fourier transform of (7.20) using equation (7.14).

Figure 7.1:Finite Fourier transform of (z,y) = e3*~2¥(x — y), 0 < z,y < 1 evaluated using
the rule (7.14).
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7.4 A Pre Gruss Type Inequality for Complex Valued Functions

Hannaet al. (2004) developed the following theorem which provides thesibility to

approximate the integral of the product in terms of the pobdfiintegrals.

THEOREM7.3. Letp : Q — [0, 00) be au—measurable function o with [, p (s) dp (s) =
1.If f,g € Lf) (©2, K) and there exist the constanisI” € K with the property that either

Re [(r — £ (s)) (m - 7)] >0 for j—ae.se (7.21)

or, equivalently,

ot

1
5 < 3 ' —~| for p—a.e.s e (7.22)

p@>

holds, then

Lp@f@M@MMﬂ—Lp@f@ﬂMﬁ/pww@MMﬂ

Q

< %|F—7! [/Qp(S) g (s)[” dp (s) — ] - (7.23)

Ap@mwwmw>

The above result provides an inequality of Griss type that lbeauseful in applications
where one of the factors is known and some bounds for the ddleator are provided.
For more details see (Hane&al. 2004; Barnetet al. 2004; Dragomir 1999a; Dragomir
and Gomm 2003).

Now, we will apply the above theorem for the two dimensioredenamelyf : [a, b] x

[c, d] — R, and we consider the two examples
f(w,s) = [(t,y)
and g(:E,y) _ 62m‘(ua}+vy)'

We state the following theorem to approximate the Four@mgformd (-, -) for the two

dimensional case.

THEOREM 7.4. Let f : [a,b] x [c,d] — K be a real or complex valued function with
fe Lf, (©,K) , and there exist the constaritsy € K with the property that, either

‘f@w%"——-<—ﬁ—vl (7.24)
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or, equivalently

Re (F - f(x,y)) <f (IL‘,y) _7>] >0 for (:Evy) € [CL, b] X [07 d] (725)

hold. Then we have the inequality

’?(f)(u,v;a,b,c,d)—E(u a,b) E (v;e,d) / f(z,y) dydz

D= o

l\')ll—

P=l-aa-o 1 - T =]

w2 Ja]* (b~

2] o

Proof. Utilizing Theorem 7.3 we can state that

(7.27)

'b—a T //fxy 2”’(“”+”y)dydx—( _C//fxydydx
1

2m(ux+vydd -

b—a (d—c) // yar 2

' -] K,

where

"= lm /ab /Cd ‘
Ao [ [

provided thaty, I' € K (if they exist) satisfy the property that, either

—2mi(uz+vy)

2
dydx

F, (7.28)

Re (U= [ (,9)) ((.9) = 7)| 2 0 for (2,9) € a.8] x [, ], (7.29)

or, equivalently,

‘f(:p,y) - % < %|F — | for (z,y) € [a,b] X [c,d]. (7.30)
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Also, observe that

1 b d i
RO o) gy d 7.31
<b—a><d—c>/a/ce v (7.31)
1 bt -
— — 7TZU,{L‘. — mvyd d
<b—a><d—c>/a/ce e
1 L 4
— — TI'Zu{L‘d — mvyd
<b—a><d—c>(/a ‘ )(/ ‘ y)

1 N T L O P
— X —Z2TTIuxT X — 4Ty
(b—a)(d—c) 2miu [e L 2miv {e }

[

—2miub __ —2miua —2mivd __ ,—2mive

(& € (& €

— X
—2miub — 2miua —2mivd — 2mwive

= E(u;a,b)E(v;c,d).

Moreover, we have
2

}627ri(um+vy)‘ =1, (7.32)

’ 1
eQﬂzuxdx — : [627rzub o lerzua} ’
a 2miu

b d ) b ) d )
/ / 627rz(uz+vy) dydl' / 627ruw: dx / 627rvzy dy

and

2 2 2

but

2

1 2 - : iua 2
— < ) [’62mub’ — 2Re [e2mu(bfa)] + ‘627rzua‘ :|

b
/ e27ruz:vdx
a

27 |ul
1
= m [1— cos (2mu (b — a))]
1 :
=0 e [1— (1 —2sin® (7u (b — a)))]
sin? [ru (b — a)]
= — : (7.33)
2 [ul
In similar way we have
2
/d egm(vy)dy’ _ sin? [rv (d — c)] (7.34)
: 2o

Utilizing (7.31) to (7.34) and substitute in (7.27) we dedtice desired inequality (7.26).

Thus the theorem is completely proved. O
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7.4.1 Applications to a Cubature Formula

Let us consider the arbitrary divisions as in section (7r®) @efine the sum

m—1n—1
F(f, Im, I, u,v) = E(—2miuxgi1, —2miuzg) E(—2mivy1, —2mivy,)
k=0 =0

Tk Yit1
X / / f(z,y)dydx (7.35)
Tk u

where(u,v) € [a,b] x [¢,d], u# 0 andwv # 0.
Then the following theorem can be obtained.

THEOREM 7.5. Let f : [a,b] X [c,d] — R be continuous mapping da, b| x [c, d], then

we have the cubature formula
St(f)(uv U; CL, b) C7 d) - g(f) Im7 Jn7 U, U) + R(fa ]na me U, U)a

where
F(f, In, Jm, -, ) approximates the Fourier Transforsi( /) at every poin{u, v) € [a, b] X
e, d],

and the remainder termk(f, L., J,, -, ) satisfies the bounds

1 1 1 1 1
(R (fs Ly Ty w, )| < S T =] (b = )2 (d = )2 [w(R)]* [7(v)]? (7.36)
1 1
m—1n—1 ) 2 ) 2
sin® (muhy,) sin® (moy;)
X ZZ <1 T a2 2 ) <1 22,2
k=0 1=0 ™ ‘U| hk; ™ ‘U| Vl
Proof. If we apply Theorem 7.4 over every subinter\al, z;.1] and[y;, y,11], we can
state that
Thk+1 yl+1 Thk+41 yz+1
(r,y)e e~ 2t vy) gy oy — / / (x,y) dydx
1 sin? (ruhy) sin? (rvy;) :
— | = 5|~y _— 1———= .
R W ] [ =

Summing ovek from 0 tom — 1 and/ from 0 to n — 1 using the triangle inequality and

utilizing the Cauch-Bunyakovsky-Schwarz inequality

T 2 T T
doxyi| <X P,
i=1 i=1 =1
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whereX;, Y; € K, we obtain

|R(f7lm7<]n7u7v)| - |EF(f) (u7v;a7bvcvd>_g:(f7]m7‘]n7uav)|
1 1
m—1 . 9 2 n—1 . 9 2
< % =] e |1 Sln2 (W;Lh:) w1 SII; (Zvyé)
k=0 ™ ‘u‘ hk =0 ™ ‘U| Vl
1
m—1 7 [m—1 . 9 3
1
2 k=0 k=0 w2 Jul” by
2 .. 92

Finally by observing that

3
L
3
L
7
L
7
L

hp<k()d hp=0b-a)r(h)and) 2 <7()> un=(d-c)7(v),

0 =0 =0

=
Il

0

=
Il

we deduce the estimate (7.36).

The proof is thus completed. O]
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7.4.2 Numerical Experiments

In this section the cubature developed in equation (7.36%ésl to approximate the finite Fourier

transform of the following functions:

Example 7.1.
fle,y) =€, 0<zy<L (7.37)

The surface and contour plots over different partitionsgishe equation (7.35) to approximate

the finite Fourier transform of the function (7.37) is showrFigure 7.2.

Example 7.2.
flay)=e ™Y, —01<z,y<01 (7.38)

The plots over different partitions using the equation$yt8 approximate the finite Fourier trans-

form of the function in Example 7.2 as shown in Figure 7.3.

SinceJ(f) can be computed analytically we can gauge the performantdeeafubature rule as

well as compare it to the theoretical error bound (7.36).

The results are shown in Figures 7.2 and 7.3 wBerand2m are the number of uniform partitions
of the domaing0, 1] x [0, 1] in Example 7.1, ang—0.1,0.1] x [—0.1,0.1] in Example 7.2. The
plots of the approximation of the finite Fourier transformtloé two functions for partitiong x
1,4x4, 8x8, 16 x 16, 32 x 32 and64 x 64, respectively, are depicted in Figures 7.2 and 7.3.
Clearly, we notice from the figures; 7.2 and 7.3 that the eisalways smaller than the error
bound when utilizing equation (7.35) to approximate thddifiourier transform of the above two
functions. This seems to be quite typical behaviour, thishi is expected to give the same

results for any function chosen.
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N o
» o
I R A R B A B A B A R A

o
N

o
=)

(a) Results using & x 1 partition (b) Results using d x 4 partition

107

0.00016

0.00012

0.75 2E-5

05 v
4E-5
§ 0.25
0 7~
r—rrrrrrrrrrrrr T 00
0.0 0.25 0.5 0.75 1.0
u

(c) Results using &6 x 16 partition (d) Results using &4 x 64 partition

Figure 7.2: Surface and contour plots of the error between over diftepantitions using the
equation (7.35). (The approximation and the finite Fouringform off (z,y) = e**Y, 0<

z,y <1.)
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10°®
4]
35
2]
.
o]
-01 -005 00 005 01 01
u u
(a) the error over a partitioh x 1 (b) the error over a partitios x 4

(c) the error over a partitiod x 8 (d) the error over a partitioh6 x 16

L0t Lot

(e) the error over a partitiod2 x 32 (f) the error over a partitiof4 x 64

Figure 7.3:Plots of the error over different partitions using the etura(7.35). (The approxima-

tion and the finite Fourier transform ¢fx, y) = e—~”’52—yz, -0.1<2,y<0.1)
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APPENDIXA

USING THE M APLE PACKAGE TO PRODUCE GRAPHICAL

RESULTS FOR THE FIGURES

For evaluating single or double integration of a functiomire or two variables on a computer, it
is generally more efficient in terms of both space and timatefan analytic approximation to the
integration rather than to store a table and use interpolstilt is also desirable to use the lowest
possible degree of polynomial that will give the desireduaacy in approximating the integration.
The following sections give a number of programs using thelklgackage for producing the

desired approximations for all the numerical applicatidthim the thesis.

A.1 Cubature Related Maple Programs

A.1.1 Graphing the numerical results of Chapter 3

Maple program to produce Figure 3.1

The perturbed Taylor expansion developed in equation Y3s3Bsed for different values of. and
n to approximate the errdiR,,,,, (f,a,z,b,y)| for the functionf (z,y) = e~ z,y € [0,1]

as in Figure 3.1.

> with (student):

> restart:
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> Digits:=25:
> g:=unapply(exp (-%y?),x,y):
> appr:= proc (g, a, ¢, d, m, n)

local suml, sum2, i, j, dsum, sumdl, sumdz2, firstp, sum3, sappro2:
sum1:=0: sum2:=0: sum3:=0:

for j from O to n do
for i from O to m do
dsum:=(((x-a)"i)/i)* (((y-b)7)/)* (D[1$i,28()I(g)(a, b)):
suml:=suml + dsum:
od:
od:
i=i: )=
for i from O to m do
sumdZl:=(((x-a)"i)/iN*int (((y-s)"n)* (D[1$i,2$(n+1)o)(a,s)),s=b..y):
sum2:=sum2+sumd1:
od: firstp:=(1/nH)* sumz2:
=i =g
for j from O to n do
sumd2:=(((y-b)7j)/jhH* int((x-t)"n* D[1$m+1,2%(j)](gjt,b),t=a..x):
sum3:=sum3+sumd2:
od:
appro2:=(1/m!)* suma3:

sum4:=(x-a)"m* (y-b)"n* int(int(D[1$m+1,2$(n+1)](g)&),s=Db..y),t=a..x)/((m+1)!* (n+1)!):

plot3d(abs(g(x,y)-suml-firstp-appro2-sum4),x=a..b,yd:

end:

>appr(9,0,1,0,1,1,1);
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Maple program to produce Figure 3.2

The perturbed Taylor expansion developed in equation Y3s3Bsed for different values of. and
n to approximate the errdR?,,,,, (f, a, z, b, y)| for the functionf (z,y) = e=*¥, z,y € [0,1] asin

Figure3.2.

> with (student):

> restart:

> Digits:=25:

> g:=unapply(exp (-xy).x.y):

> appr:= proc (g, a, ¢, d, m, n)

local suml, sum2, i, j, dsum, sumdl, sumdz2, firstp, sum3, sappro2:

sum1:=0: sum2:=0: sum3:=0:
for j from O to n do
for i from O to m do
dsum:=(((x-a)7i)/i)* (((y-b)7)/iH)* (D[1$i,23())l(g)(a. b)):
suml:=suml + dsum:
od: od:
i:=i: ji=
for i from O to m do
sumdl:=(((x-a)")/iY)*int (((y-s)"n)* (D[1$i,2$(n+1)g)(a,s)),s=b..y):
sum2:=sum2+sumdl: od:
firstp:=(1/n!)* sum2:
i:=i: =
for jfrom O to n do
sumd2:=(((y-b)7j)/jhH* int((x-t)"n* D[1$m+1,2%(j)](gjt,b),t=a..x):
sum3:=sum3+sumd2:
od:
appro2:=(1/m!)* suma3:
sum4:=(x-a)"m* (y-b)"n* int(int(D[1$m+1,2$(n+1)](g)&),s=b..y),t=a..x)/((m+1)!* (n+1)!):
plot3d(abs(g(x,y)-suml-firstp-appro2-sum4),x=a..b,yd:
end:

>appr( 9,0,1,0,1,m,n);
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A.1.2 Graphing the numerical results of Chapter 4

Maple program to produce Figures 4.1

The absolute error of approximating the integf@l [/ f (¢, s) dsdt as afunction ofz,y) € [0, 1)?
for the function (4.44) using (4.34) and (4.35) for varioasues ofm andn as in Figure 4.1.

> restart:

> Digits:=20:

> f:=unapply(exp(-x*y),X,y);

> approxg:=proc(f,a,b,c,d,m,n)

local i,j,suml,dsuml,sum2,dsum2,A,B1,sumB1,B2,suBBaumB3,B4,sumB4,B,sumf,sums,sumth,

sumfo,sumbl,sumff,sumsf,errorb,doubint,Af,threrr:
sum1:=0: sum2:=0: sumf:=0: sums:=0: sumth:=0: sumfo:=0:

for i from 1 to m do
for jfrom 2to ndo
dsuml:=(((a-x)"(1)*(c-y)* O))/(()*1)*
(2*(27(i+1)-1)/(i+1))*(bernoulli(j)*bernoulli(i+1) }(((D[1 ( — 1), 2(j-1)](f)(a, ¥))
+(D[L(i — 1), 2G-1)](H(a, c))+(DLA(i — 1), 2G-DIA X, Y)+(DL( — 1), 2(-1IAX, c))):
suml:=(suml+dsumal):
od:
od: i:=i: ji=:
for i from 1 to m do
sumbl1:=((27(i+1)-1)*(c-y) (i)/(i+1))*bernoulli(i+)*(((D[1 (: — 1),2(0)](N(a, ¥))
+((D[1(i — 1), 2(0)1(f)(a, c))+((D[L — 1), 2(0)1(F)(x, ¥)))
+((D[L(i — 1), 2(0)](H(x, )))):
sumf := (sumf+sumbl):
sumff:=(b-a)*sumf:
od:
i=i: )=
for i from 1 to m do
B2:=(2*(1-27(i+1))*(c-y)"(i)/(i+1)!)*bernoulli(i+1)*int((D[1 (0), 2(-1)1(f)(t, c))
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+(D[1(0), 2(-1)1(N(t, y)),t=a..x):
sums:=(sums+B2):
od:
i:=i: =
for jfrom 2 to n do
B3:=(((a-x)"j)/j")*bernoulli()*int(D[1(; — 1), 2(0)](f)(a, S))
+(D[1(j — 1), 200]((x, 5)).5=C..y):
sumth:=(sumth+B3):
od:
i=ic = B4:=((b-a)/2)*int((f(a,s)+f(x,S)),s=C..Y)
Af:=sumff+sum1.:
B:=sums+sumth+B4:
doubint:=evalf((int(int(f(t,s),s=c..y),t=a..x))):
errorb:=evalf((abs(doubint-Af-B))):
plot3d(abs(doubint-Af-B),y=c..d,x=a..b,axes=franstgle=patchnogrid):
end:
> approxg(f,0,1,0,1,1,1);
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A.2 Fourier Related Maple Programs

A.2.1 Graphing the numerical results of Chapter 6

Maple program of Figure 6.1

Maple program applying equation (6.27) to plot the bound ware,, (x) := |R,, (g, x)| for the

functiong(z) = exp(x), = € [-1,1] asin Figure 6.1.

> restart:

> gen:=proc(m,a,b)

local g,F,Egl,Eg3,Eg5,Lg,Sq,

g:=unapply((exp(x” 2)),X);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..h):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u)

Egl:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):
Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):
Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):
Lg:=unapply(((Eg1)/(Eg3))* (Eg5),k):
Sg:=unapply(sum(Lg(k),k=0..m-1),u):
plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""):

end proc:

>gen(1,-1,1):
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Maple program to produce Figure 6.2

Maple program applying equation (6.27) to plot the bound ware-,, () := |R,, (g, z)| for the

functiong(z) = exp(—z?), = € [-1,1] as in Figure 6.2.

> restart:

> gen:=proc(m,a,b)

local g,F,Egl,Eg3,Eg5,Lg,Sg,

g:=unapply((exp(x” 2)),x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u)

Egl:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):
Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):
Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):
Lg:=unapply(((Eg1)/(Eg3))* (EGS).k):
Sg:=unapply(sum(Lg(k),k=0..m-1),u):
plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""1):

end proc:

>gen(1,-1,1):
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Maple program to produce Figure 6.3

Maple program applying equation (6.27) to plot the bound ware-, (x) := |R, (g, z)| for the

functiong(z) = In(x), = € (0, 1] as in Figure 6.3.

> restart:

> gen:=proc(m,a,b)

local g,F,Eg1,Eg3,Eg5,Lg,Sg,

g:=unapply((In(x)).x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u)

Egl:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):
Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):
Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):
Lg:=unapply(((Eg1)/(Eg3))* (EgS).k):
Sg:=unapply(sum(Lg(k),k=0..m-1),u):
plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""]):

end proc:

> gen(1,.001,1):
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Maple program to produce Figure 6.4

Maple program applying equation (6.27) to plot the bound ware-,, () := |R,, (g, z)| for the

function g(z) = cosh(z), « € [—m, 7] as in Figure 6.4.

> restart:

> gen:=proc(m,a,b)

local g,F,Egl,Eg3,Eg5,Lg,Sg,

g:=unapply((cosh (x)),x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u)

Egl:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):
Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):
Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):
Lg:=unapply(((Eg1)/(Eg3))* (EGS).k):
Sg:=unapply(sum(Lg(k),k=0..m-1),u):
plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""1):

end proc:

> gen(1,-Pi,Pi):
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Maple program to produce Figure 6.5

Maple program applying equation (6.27) to plot the bound ware-, (x) := |R, (g, z)| for the

functiong(z) = sinh(z), x € [—n, 7] as in Figure 6.5.

> restart:

> gen:=proc(m,a,b)

local g,F,Eg1,Eg3,Eg5,Lg,Sg,

g:=unapply((sinh (x)),x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u)

Egl:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):
Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):
Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):
Lg:=unapply(((Eg1)/(Eg3))* (EgS).k):
Sg:=unapply(sum(Lg(k),k=0..m-1),u):
plot(abs(F(u)-Sg(u)),u=a..b,labels=["",""]):

end proc:

> gen(1,-Pi,Pi):
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Maple program to produce Figure 6.6

Maple program applying equation (6.27) to plot the bound ware-,, () := |R,, (g, z)| for the

functiong(z) = sin(2zx) e*, x € [—m, 7] as in Figure 6.6.

> restart:

> gen:=proc(m,a,b)

local g,F,Egl,Eg3,Eg5,Lg,Sg,

g:=unapply((sin(2x)* exp(x)).x);

F:=Int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b):

F:=unapply(int(g(x)* exp(-2* Pi* I* ((u*x))),x=a..b),u)

Egl:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):
Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2*Pi* I* u* (a+(k)* ((b-a)/m)))):
Eg5:=int(g(x),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m)):
Lg:=unapply(((Eg1)/(Eg3))* (EGS).k):
Sg:=unapply(sum(Lg(k),k=0..m-1),u):
plot(abs(F(u)-Sg(u)),u=a..b,labels=[",""):

end proc:

> gen(1,-Pi,Pi):
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A.2.2 Graphing the numerical results of Chapter 7

Maple program to produce Figure 7.1

Maple program for the finite Fourier transform ¢fz,y) = e3*2Y(z —y), 0 < z,y < 1

evaluated using the rule (7.14) as in Figure 7.1.

> restart:

> read ‘fourier.mpl".

> with( codegen , fortran ):

> fortran(FinFTp , optimized , precision=double ):

11 := E1(u,x[K],x[k+1]) * int( F12( f,s,v,y[I,y[I+1] ) , sx[K]..x[k+1] ):
11 := combine( evalc( simplify( 11, power) ), trig ):

I1r ;= coeff(11,1,0): ILli:=coeff( 11,1, 1):

12 := EL(v,y[I],y[l+1]) * int( F121( f,t,u,x[K],x[k+1] ) , t=y[l]..y[I+1] ):
12 := combine( evalc( simplify( 12, power) ), trig ):

12r ;= coeff(12,1,0): 12i := coeff(12,1,1):

13 := E1(u,x[K],x[k+1])* EL1(v,y[I],y[I+1])* int( int( f(m ,n) , m=x[K]..x[k+1] ) , n=y[l]..y[I+1] ):
I3 := combine( evalc( simplify( I3, power) ), trig ):
13r:=coeff(13,1,0): 13i:=coeff(13,1,1):

Sumr := Sumr + 11r+12r-13r: Sumi ;= Sumi + 11i+12i-13i;

13 := E1(u,x[K],x[k+1])* E1(v,y[I],y[I+1])* int( int( f(m ,n) , m=x[K]..x[k+1] ) , n=y[l]..y[I+1] ):
I3 := combine( evalc( simplify( I3, power) ), trig ):

13r .= coeff(13,1,0): I3i:=coeff( 13,1, 1):

13i:

fortran( 12r , optimized , precision=double):

fortran( 12i , optimized , precision=double):

fortran( 13r , optimized , precision=double):

fortran( I13i, optimized , precision=double):
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Maple program to produce Figure 7.2

Maple program using the equation (7.35) to approximate ttieefirourier transform of (x, y) =

ey, 0 <az,y <1.asinFigure 7.2.

restart: > Digits:=15:

> with( plots ): with( plottools ):with(student):

> genp:=proc(m,n,a,b)

local g,F,Egl,Eg2,Eg3,Eg4,Eg5,Lg,SQ:

g:=unapply(exp(x+y),x,y):

F:=Int(Int(g(x,y)* exp(-2* Pi* I* ((u*x)+(v*y))),y=a..b), x=a..b):
F:=unapply(int(int(g(x,y)* exp(-2* Pi* I* ((u*x)+(v*y))),y=a..b), x=a..b),u,v):
Egl:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):
Eg2:=((exp(-2* Pi* I* v* (a+(1+)* ((b-a)/n))))-(exp(-2*Pi* I* v* (a+(I)* ((b-a)/n))))):
Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2* Pi* I* u* (a+(k)* ((b-a)/m)))):
Eg4:=((-2* Pi* I* v* (a+(1+])* ((b-a)/n)))-(-2* Pi* I* v* (a +(I)* ((b-a)/n)))):
Eg5:=(int(int(g(x,y),y=a+(l)* ((b-a)/n)..a+(+1)* ((@)/n)),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m))):
Lg:=unapply(((Egl* Eg2)/(Eg3* Eg4))* (Eg5),k,l):

Sg:=unapply(sum(sum(Lg(k,l), 1=0..n-1),k=0..m-1) Ju,v
plot3d(abs(F(u,v)-Sg(u,v)),u=a..b,v=a..b,axes=frdjstyle=patchnogrid):

end:

>genp(1,1,0,1);
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Maple program to produce Figure 7.3

Maple program using the equation (7.35) to approximate thefirourier transform of (z,y) =

e~®*=v* 0.1 <,y <0.1as in Figure 7.3.

restart: > Digits:=15:

> with( plots ): with( plottools ):with(student):

> genp:=proc(m,n,a,b)

local g,F,Egl,Eg2,Eg3,Eg4,Eg5,Lg,SQ:

g:=unapply(exp(-x" 2-y" 2),X,y):

F:=Int(Int(g(X,y)* exp(-2* Pi* I* ((u*x)+(v*y))),y=a..h), x=a..b):
F:=unapply(int(int(g(x,y)* exp(-2* Pi* I* ((u*x)+(v*y))),y=a..b), x=a..b),u,v):
Egl:=((exp(-2* Pi* I* u* (a+(1+k)* ((b-a)/m))))-(exp(-2*Pi* I* u* (a+(k)* ((b-a)/m))))):
Eg2:=((exp(-2* Pi* I* v* (a+(1+l)* ((b-a)/n))))-(exp(-2*Pi* I* v* (a+(I)* ((b-a)/n))))):
Eg3:=((-2* Pi* I* u* (a+(1+k)* ((b-a)/m)))-(-2* Pi* I* u* (a+(k)* ((b-a)/m)))):
Eg4:=((-2* Pi* I* v* (a+(1+)* ((b-a)/n)))-(-2* Pi* I* v* (a +(I)* ((b-a)/n)))):
Eg5:=(int(int(g(x,y),y=a+(l)* ((b-a)/n)..a+(I+1)* (d@)/n)),x=a+k* ((b-a)/m)..a+(1+k)* ((b-a)/m))):
Lg:=unapply(((Egl* Eg2)/(Eg3* Eg4))* (Eg5).k,I):

Sg:=unapply(sum(sum(Lg(k,l), 1=0..n-1),k=0..m-1) Ju,v
plot3d(abs(F(u,v)-Sg(u,v)),u=a..b,v=a..b,axes=frdystyle=patchnogrid):

end:

>genp(1,1,-.1,.1);
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