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C h a p t e r  1  

INTRODUCTION 

Soft computing is a concept that has come into prominence in recent times 

and its application to power system analysis is still more recent [1]. This thesis 

explores the application of soft computing techniques in the area of voltage 

stability of power systems.  

Soft computing, as opposed to conventional “hard” computing, is a technique 

that is tolerant of imprecision, uncertainty, partial truth and approximation. 

Its methods are based on the working of the human brain and it is commonly 

known as artificial intelligence. The human brain is capable of arriving at valid 

conclusions based on incomplete and partial data obtained from prior 

experience. It is an approximation of this process on a very small scale that is 

used in soft computing. Some of the important branches of soft computing 

(SC) are artificial neural networks (ANNs), fuzzy logic (FL), genetic 

computing (GC) and probabilistic reasoning (PR). The soft computing 

methods are robust and low cost.   

It is to be noted that soft computing methods are used in such diverse fields 

as missile guidance, robotics, industrial plants, pattern recognition, market 

prediction, patient diagnosis, logistics and of course power system analysis 

and prediction. However in all these fields its application is comparatively 

new and research is being carried out continuously in many universities and 

research institutions worldwide [2, 3]. 

The research presented in this thesis uses the soft computing method of 

Artificial Neural Networks (ANN’s) for the prediction of voltage instability in 

power systems. The research is very timely and current and would be a 

substantial contribution to the present body of knowledge in soft computing 
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and voltage stability, which by itself is a new field. The methods developed in 

this research would be faster and more economical than presently available 

methods enabling their use online. 

1.1 Problem Statement 

In all electrical power engineering courses rotor angle stability is invariably 

taught as a routine practice. However, while voltage stability has come into 

prominence in recent times, it is not covered in sufficient depth if at all. Most 

engineers in the industry are not familiar with the problem and usually 

confuse it with rotor angle stability or low voltage problems. This is due to 

the fact that in the past virtually all power systems were designed with ample 

redundancy and voltage stability was seldom a problem. However, in recent 

times with reduced investment in power system expansion, load growth 

particularly in areas with weak transmission and generation and deregulation 

of the market causing unusual load patterns, voltage stability has come into 

prominence and theories to explain and analyze it are now being developed 

[4]. Voltage instability results in voltages in parts of the system or the entire 

system becoming unstable or collapsing altogether causing collapse of the 

system. It is also different to low voltages experienced in certain parts of the 

network during certain conditions, when, though some voltages are low, the 

system is operating at a stable point. The power system dynamics that take 

place during voltage instability are non-linear and non-linear analytical 

techniques, such as Bifurcation Theory  are required for its analysis [4]. 

Voltage instability/collapse being a recently recognized field, literature on it is 

somewhat limited. It is also a field that requires a thorough understanding of 

the relevant mathematics which is not taught in much depth in an engineering 

undergraduate course. This mathemaics is the mathematics of dynamical 

systems that studies such concepts as dynamics of and bifurcations in 

dynamical systems and singular perturbation.[5-13]. (Refer to Appendices 1 & 

2.) The reason for mathematics of dynamical systems for not being taught at 
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undergraduate level is the difficulty of the subject coupled with the difficulty 

of its evaluation. However with the advent of personal computers more and 

more mathematicians and engineers are paying greater attention to it and 

computer programs are being written for solution and visualization of 

solutions, PHASER [14] and MATLAB. There is also a voltage stability 

specific computer program called UWPFLOW that solves voltage stability 

specific problems.[15]. Extensive use of this program is made in the present 

research along with PHASER [14]. 

A major outage in North America on 14th August 2003 causing major 

blackouts in Midwest and Northeast United States and Ontario, Canada has 

been at least partially due to voltage collapse according to the US-Canada 

Power System Outage Task Force Report [16]. 

A recent outage due to voltage instability has also been reported in Sri Lanka 

[17]. 

References [18, 19] describe the application of voltage stability theory to 

analyze the South-Brazilian and Ecuadorian Power Systems and how the 

results thus obtained agreed with operational experience where voltage 

collapse has been experienced before. Thus voltage stability is not merely a 

theoretical construct but reality for which there was no urgency till recent 

times when power systems became more and more stressed due to 

aforementioned reasons. 

Therefore as power systems become more complex as well as operate in more 

stressed states, in addition to presently used security assessment methods, 

methods for voltage security assessment are also needed. 
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1.2 Aim 

The aims of the research reported in this thesis are as follows. 

• To make a thorough study of the theory of voltage stability 

(instability). 

• To study the methods of soft computing in general and Artificial 

Neural Networks in particular. 

• Analyze the IEEE 14-bus system under different contingencies to 

obtain proximity to voltage collapse indices. The analysis will be 

performed using the UWPFLOW computer program. 

• To use the results of the computer analysis to develop artificial neural 

networks (ANN’s) suitable for the prediction of pending voltage 

instability in power systems thus developing a soft computing method 

of power system security assessment. This is the main aim of this 

research. Though the implementation is not a part of this project, 

ANN’s developed will be suitable for on-line use in real power 

systems. For this purpose the ANN’s need to be embedded and 

trained in dedicated hardware with inputs of the suitable power 

system parameters which will be identified. 

• To relate the results to the hypothesis (Section 1.3). 

• To identify topics suitable for further research on the subject. 

1.3 Hypothesis 

After reading the available literature on voltage stability and soft computing 

methods the following hypothesis was formed. 

It is possible to train Artificial Neural Networks to predict pending 

voltage instability in a power system. 
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1.4 The Research Method 

The following approach which includes the method used to obtain results was 

used in the research. 

• The relevant mathematics was studied in detail. Refer to appendices 1 

& 2. 

• A study was made of the theory of voltage stability/instability. 

Although a highly technical textbook [4], is available and is very good 

for the understanding of voltage stability phenomena, other sources 

such as journal papers and the IEEE/PES Special Publication on 

Voltage Stability [20], were found to be more useful in the actual 

research method implemented during the voltage stability computer 

simulations. The computer program used is UWPFLOW [15]. 

• Data on voltage stability for the IEEE 14-bus test system was 

generated using UWPFLOW to be used to train the ANN’s and 

illustrate the phenomenon of voltage instability in power systems. 

• Artificial Neural Network theory was studied and ANN’s for the 

prediction of voltage instability in power systems were trained and 

tested. 

• The results were related to the hypothesis. 
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1.5 A survey of the available literature on voltage stability in power 

systems 

As stated before voltage stability/instability has come in to prominence or has 

even been recognised only in comparatively recent times. Therefore the 

available literature on the topic is still tentative and often repetitive. Two 

recent attempts at formalising the theory and facilitating its analysis are 

presented in References [4, 20]. 

Placing the voltage stability problem in context, the references [16-19] 

describe real life voltage stability problems, some of which caused major 

outages in North America, Sri Lanka, Brazil and Ecuador. 

The IEEE journal article [21] giving definitions and classifications of power 

system stability recognises voltage stability and gives a brief description and 

definition. 

The References [22-25] are good examples of the original efforts to develop 

and consolidate a dynamical systems based theory of power system stability in 

general and voltage stability in particular. These are initial efforts and a theory 

of voltage stability is only beginning to take shape. 

Subsequently further study of dynamical systems theory as applied to voltage 

stability of power systems was made with test systems and real systems 

analysed References [19, 26-34]. In these papers the theory of voltage stability 

takes shape pointing to the later writing of a text book and an IEEE/PES 

Special Publication [4, 20]. The IEEE/PES Special Publication explains the 

phenomenon of voltage stability, its theory though not extensively and 

different methods of voltage stability evaluation together with definitions of 

different indices to measure proximity to voltage stability in a power system. 

It appears from the literature that the main contributors to the development 

of voltage stability theory and its evaluation are Canizares [15, 19, 20, 33, 35-

39], Ajjarapu [22, 23, 26-29, 32, 40, 41], Van Cutsem [4] and Hill [24, 25] in 

the early stages. 
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Later a series of papers some of which are given in references [35, 36, 38, 40-

50], were published that considered different methods of calculating the 

voltage stability of power systems. Broadly the methods fall in to two 

categories, direct methods and continuation methods. The different papers 

vary mostly only in the detail of the methods rather than the mathematical 

principles involved. The point of collapse and continuation power flow 

methods put forward in reference [35] are the methods used in the computer 

program UWPFLOW; both the paper and the computer program are by the 

same author. This computer program is the only reasonable program that is 

available to researchers without spending too much on purchase of the 

software. 

Modelling of power system components such as generators, lines, loads, etc. 

are presented in references [4, 20, 36, 38, 43, 45, 51]. 

Indices for the prediction of proximity to voltage instability are presented in 

references [4, 20, 37, 39, 52, 53] and compared.  

A mathematical function called a Lyapunov Function is used in the analysis of 

dynamical systems. In voltage stability analysis this function is called an 

Energy Function and its derivation is put forward in references [20, 24, 54-

61]. Using this energy function proximity to voltage instability can be 

calculated as an index. 

An implemented method of real time monitoring of voltage stability in a 

power system in China is described in reference [62]. Other methods are 

described or touched upon in references [20, 63]. However none of these 

methods use any artificial intelligence methods as proposed in this thesis. 
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1.6 Originality of the Thesis 

The thesis contains original work of the author except where reference is 

made to published literature. The choice of parameters for the training of 

ANN’s and the particular ANN architectures chosen are new in the field of 

voltage stability prediction as far as the author has been able to ascertain after 

an extensive search of the available literature. Therefore the thesis would be 

an original contribution to and an expansion of the present knowledge in the 

field of voltage stability in general and the application of soft computing or 

artificial intelligence  to voltage stability estimation in particular. 

1.7 Thesis Organisation 

 

Chapter 1 - Introduction 

This Chapter introduces the intent of the thesis. The problem of voltage 

stability in power systems which has recently come into prominence is briefly 

explained. An aim and a hypothesis for the thesis are formulated and the 

research method appropriate for the stated aim of the research is formulated. 

Section 1.5 gives a survey of the available literature on the subject. A 

statement of originality of the thesis is given in Section 1.6. 

Chapter 2 – Voltage Stability 

The theoretical concepts of voltage stability in power systems are introduced 

in this Chapter which starts with an introductory section that illustrates 

voltage stability problems in an elementary dc power system to set the stage 

for later more complicated voltage instability phenomena in large ac power 

systems explanation of which requires complicated mathematics. This 

Chapter is considered essential since text books on the subject have been 

published only in very recent times [4] and are hard to obtain in Australia 

without specially ordering them from overseas. Journal publications are 
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somewhat recent too and it is difficult to come to grips with the subject 

without reading a large number of them. 

Chapter 3 – Methods for Evaluation of Voltage Stability in Power 

Systems and Indices Used to Measure Proximity to Voltage Instability 

This Chapter explains methods used to evaluate the voltage stability of power 

systems off line and the various indices proposed in the literature to measure 

proximity to voltage instability in power systems with their relative merits. 

The methods used in this thesis will be indicated. 

Chapter 4 – Soft Computing or Artificial Intelligence Methods – Brief 

Theory and Selection 

A brief theory of soft computing or artificial intelligence methods is 

introduced in this Chapter. Reasons for the selection of artificial neural 

networks in general and the types of neural networks used in particular are 

explained. 

Chapter 5 – Design of the Simulation Performed 

This Chapter explains the design of the power system simulations performed 

for the evaluation of voltage stability in the IEEE 14-bus test system and its 

variations selected by the author of the thesis. The reasons for the particular 

design used are explained. The design and training of the ANN’s used is also 

explained. 

Chapter 6 – Simulation Results 

Results of the voltage stability analysis of the IEEE 14-bus Test System and 

the results of the ANN's trained are presented in this Chapter. Graphical 

representations of voltage collapse of the IEEE 14-bus Test System for 

different contingencies and the error graphs of the different ANN's that were 

trained are also given in this Chapter. 
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Chapter 7 – Discussion of Results 

A discussion of the results in the context of the aims of the research 

undertaken is given in this Chapter. Section 1.2 presents the aims in point 

form and a summary of these aims is used as the relevant section headings in 

this Chapter. 

Chapter 8 – Conclusions and Scope for Future Work 

Finally the conclusions of the research with respect to the hypothesis 

presented in Section 1.3 are presented here. The discussion of the results with 

respect to the aims of the research is presented in Chapter 7. Topics for 

further related research are also identified. 

1.7.9 Appendices 1 & 2 

These two appendices, Appendix 1 – Preliminary Mathematics and Appendix 

2 – Analysis of Voltage Stability are given for completeness of the thesis. 

They, it is hoped will save the reader the trouble of having to locate hard to 

find references. In the relevant chapters of the thesis reference is made to 

these two Appendices. 
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C h a p t e r  2  

VOLTAGE STABILITY 

2.1 Introduction 

In the past adequate redundancy was built into power systems for voltage 

instability to be a major problem. Only rotor angle stability was considered in 

the operation and expansion of power systems. With the introduction of the 

new electricity market resulting in reduced investment and altered load 

patterns, particularly increasing load in areas with weak transmission and 

generation capacity, voltage stability has come into prominence [4, 20]. 

Voltage stability requires mathematical theory and concepts that are difficult 

to understand. 

2.2 Some Useful Definitions. 

The following two definitions of stability of a power system are given in [20]. 

1. An operating point of a power system is small disturbance stable if, 

following any small disturbance, the power system state returns to be identical or 

close to the pre-disturbance operating point. 

2. An equilibrium of a power system model is asymptotically stable if, 

following any small disturbance, the power system state tends to the equilibrium. 

 

The second definition assumes that the power system is modelled by a set of 

differential equations. 

Voltage instability is defined in [4] as follows. 
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Voltage instability stems from the attempt of load dynamics to restore power 

consumption beyond the capacity of the combined transmission and generation 

system. 

2.3 Voltage Instability 

A power system operating under stable conditions keeps continuously 

evolving. During this process some or all of the following take place in the 

system. The load changes; generators and induction motors go through 

electromechanical transients; static VAR compensators, (SVCs), activate; on 

load tap changers in transformers activate; shunt capacitors are switched on 

and off; automatic load recovery takes place following faults; faulted 

components of the power system are isolated; faulted transmission and 

distribution lines auto-reclose; excitation limiters activate etc. Thus a power 

system under load is a dynamical system. During this dynamics, if the power 

system is to remain stable, the operating point or the equilibrium point of the 

system has to track a stable point in state space. However, the transmission 

system has a limited capacity for power transmission and generators have a 

limited generating capacity, on reaching these limits the system can go into 

voltage instability. At the point of going into voltage instability, the stable 

point of operation that existed before disappears. Thus the power system 

undergoes a transient and during this transient, the voltages decline causing a 

voltage collapse. It is to be noted that the state of a power system operating 

with low voltages but at a stable point, i.e. there is no dynamic collapse of the 

voltages, does not constitute a voltage stability problem. 

The following example taken from [1] but solved in greater detail is an 

elementary example of how voltage instability takes place. 



 

 19 

2.4 Voltage Instability in an Elementary DC Power System 

Consider a simple dc power system fed by a dc power source of 1V. The line 

resistance is 0.5Ω, the load is a variable resistor and I is the current drawn by 

the load. 

 

E=1V   V 

R=0.5Ω 

RL 

 

Figure 2.1 An Elementary dc Power 
System 

The load resistance RL is automatically varied to achieve an assumed 

maximum power demand of 0.55W according to the differential equation: 

                                                                           (2.1) 

According to elementary circuit theory, the maximum transferable power Pmax 

is given by: 

                                                                        (2.2) 

 

However in this example a power demand of 0.55W is placed on the system.  

The trajectory of the load resistance given by the solution of the differential 

equation (2.1) with an initial condition of 4.5LR = Ω  is shown in Figure 2.2. 

2 0.55
L L

R I R= −�

2

max 0.50
4

E
P W

R
= =
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Figure 2.2 Trajectory of the Load 
Resistance 

The variation of the load voltage and load power as the system power 

demand increases are shown in Figures 2.3 & 2.4. 

 

Figure 2.3 Variation of Load Voltage 
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P
 (

W
) 

t (s)  

Figure 2.4 Variation of Load Power 

It is seen from Figures 2.3 & 2.4 that voltage instability or collapse takes place 

when the demand for power increases beyond the maximum deliverable 

power of 0.5 W. Obviously the dynamics obtained in an actual power system 

is far more complicated. 

The dynamics of a loaded power system, as the dynamics of many other 

systems in engineering, can be represented by a system of non-linear ordinary 

differential equations, which can be written as: 

( )x f x=�                                                                                               (2.3) 

where usually 
dx

x
dt

=�  where t is time, x  is a ( 1)n×  vector and 

, ( 1, 2,.... )if i n=  are generally non-linear functions of , ( 1,2,.... )ix i n= . The 

vector x  represents the state of the system at a given time and is known as 

the state vector. Systems of this type are known as dynamical systems. 

Such dynamical systems can be solved analytically only in a very limited 

number of cases, however given initial conditions for the state variables, the 

equations can be solved by numerical integration. Computer programs are 

now available for their solution. A theory known as the qualitative or 
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geometric theory of ordinary differential equations allows the study of the 

behaviour of dynamical systems without resort to integration. [5-13]. 

 

2.5 Classification of Power System Stability 

Table 2.1 shows a convenient classification of power system stability. It is 

similar to Table 1.1 in reference [4] but has been modified for better clarity of 

understanding. 

Table 2.1 Classification of Power System 
Stability 

Time Scale

General Description - 

generator driven Generator driven Load Driven

Short Term

Steady state or small 

signal stability. 

Transient or large 

disturbance stability

Rotor angle 

stability both 

transient and 

steady state

Short term 

voltage 

stability

Long Term

Insufficient 

generation

Frequency 

stability

Long term 

voltage 

stability
 

Here two types of mechanisms of instability, namely generator driven and 

load driven are identified. The column headed general description briefly 

describes the familiar generator driven instability. Rotor angle stability takes 

place in the time frame of electromechanical dynamics which lasts a few 

seconds. Frequency instability also generator driven takes place on a longer 

time frame lasting several minutes. Voltage stability also takes place both in 

the short term and in the long term but it is load driven. Its analysis requires a 

detailed network representation as will be seen below. Further, in its analysis, 
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no strict distinction is made between long term and short term voltage 

stability. [4]. 

The dynamic nature of a power system was touched upon in Section 2.3. The 

dynamics mentioned there take place in the general time scales given in table 

2.1. A further elaboration of the time scales in which voltage instability may 

take place is as follows. 

1. The time scale of electromechanical transients such as those of 

generators, regulators, induction machines and power electronics (eg. 

SVC’s),  takes place in the range of seconds. 

2. The time scale of discrete switching devices such as on load tap 

changers and excitation limiters, takes place in the range of tens of 

seconds. 

3. The time scale of load recovery processes, takes place in the range of 

several minutes or even hours. 

 

The time scale 1 as aforementioned is the short term or transient time scale in 

voltage stability while the time scales 2 & 3 are the long term time scales. 

Electromagnetic transients such as dc components of short circuit currents 

take place in too short a time scale to be of any relevance in voltage stability 

and therefore are not considered. It should also be noted that a voltage 

collapse that starts in the long term time scale could end up as a transient or 

short term collapse. That is initially the voltages in the power system collapse 

slowly but towards the end of this collapse the rate of collapse accelerates 

causing a catastrophic failure of the power system. [20]. 

A very important but often unnoticed difference between voltage collapse 

and classical transient stability is that the focus of voltage collapse is voltages 
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and loads while the focus of classical transient stability is generators and 

angles. 

2.6 Theory of Voltage Stability 

As mentioned earlier in the thesis, a power system is a nonlinear dynamical 

system and in the analysis of voltage stability, mathematics of dynamical 

systems is used. Though in the past, engineers have from time to time used 

the methods of dynamical systems for problem solving, it has remained 

mainly the province of mathematicians due to its difficulty. Even among 

mathematicians not many have devoted much time to it due to its 

computational difficulties and the need to grasp and visualise its concepts in 

many dimensions. However with the advent of personal computers easing the 

computational burden, more and more authors are paying attention to it. 

Some of the available books on the subject are [6-13]. There is a computer 

program ‘PHASER’ [14] specifically designed for evaluation and visualisation 

of the behaviour of dynamical systems. The author of this thesis used this 

program to solve some of the specifically designed problems which are 

presented in Appendix 1. Appendices 1 & 2 present the mathematics of 

dynamical systems and will be referred to in the rest of this section along with 

other references. It should be emphasised that dynamical systems are solved, 

given the initial conditions, using qualitative or geometric theory of ordinary 

differential equations rather than analytical methods. These systems are very 

difficult or impossible to analyse analytically.   

2.6.1 A Brief Description of Relevant Mathematics 

A dynamical system is usually represented by a set of n differential equations 

as follows: (Refer to Appendices 1 & 2, particularly appendix 2 for detailed 

explanations and references.) 

          ( )x f x=�                                                                             (2.1) 
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Here x  is a (n x 1) vector, ( )f x  is a set of (n) nonlinear functions of x  and 

x�  is the time differential of x . Given the initial conditions and under certain 

conditions the system can be solved to give a trajectory of the system over 

time in the n-dimensional space of x . These trajectories have intervals of 

existence that may be finite or infinite. 

Equilibrium points are particular solutions of the equation (2.1) where the 

solutions stay at these equilibrium points for all time. Equilibrium points are 

given by the solutions to the following equation: 

          ( ) 0f x =                                                                             (2.2) 

An equilibrium point may be unstable, stable or asymptotically stable with 

a region of attraction. 

If equation (2.1) represents a nonlinear system then the following apply. 

• The number of equilibria of the system may be one, more than one or 

none. 

• The existence of a stable equilibrium is not a guarantee of the stability 

of the system since the region of attraction of the stable equilibrium 

may be limited. 

 

The stability of an equilibrium point of a nonlinear system of the type shown 

in equation (2.1) may be determined by linearising the system around the 

equilibrium point and obtaining its Jacobian. 

• If all the eigenvalues of the Jacobian have negative real parts, then 

that particular equilibrium point is asymptotically stable. 
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• If at least one eigenvalue of the Jacobian has a positive real part, then 

that particular equilibrium point is unstable. 

2.6.1.1 Bifurcations 

The instabilities of interest in power system voltage stability are bifurcations. 

Consider a dynamical system of the following form. 

          ( , )x f x p=�                                                                         (2.3) 

where x  is a (n x 1) state vector and p  is a (k x 1) parameter vector. For 

every value of p , the equilibrium points of the system are given by: 

          ( , ) 0f x p =                                                                         (2.4) 

These equilibrium points fall on a k-dimensional manifold in the (n + k)-

dimensional space of state and parameter vectors. At a bifurcation point for 

the given value of p  , the Jacobian of equation (2.3) with respect to x  is 

singular. A saddle node bifurcation (SNB) is a bifurcation where two 

branches of equilibria meet. (Refer to Appendix 2.) So at a saddle node 

bifurcation two equilibria coalesce and disappear. One of the equilibria has a 

real positive eigenvalue and the other has a real negative eigenvalue. Both 

become zero at the SNB. 

At a Hopf bifurcation a pair of complex eigenvalues crosses the imaginary 

axis and causes an oscillatory instability. 

2.6.1.2 Differential Algebraic Systems 

Some dynamic systems are represented by a set of differential equations with 

algebraic variables where these algebraic variables are subject to a set of 

algebraic constraints represented by a set of algebraic equations as follows: 

          ( , , )x f x y p=�                                                                      (2.5a) 
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          0 ( , , )g x y p=                                                                     (2.5b) 

where x  and p are as in equation (2.3) and y is a (m x 1) vector of algebraic 

variables. The algebraic equation (2.5b) defines a (n + k)-dimension 

constraint manifold which is a hypersurface where the solutions to the 

system occur. 

At singular points of the m algebraic equations, ie. when the algebraic 

Jacobian is singular, the response of the system is undefined and causes 

singularity induced bifurcations. 

When the algebraic Jacobian is non-singular, the response of the system can 

be studied by studying the reduced Jacobian of the system given by equation 

(2.5). This will give the bifurcation points and other relevant data of the 

system. 

2.6.1.3 Singular perturbation or Time Scale Decomposition 

Some systems, including power systems, have dynamics evolving in different 

time scales. That is these systems have dynamics evolving in slow and fast 

time scales. Such systems are represented as follows. 

          ( , )x f x y=�                                                                         (2.6a) 

          ( , )y g x yε =�                                                                       (2.6b) 

where x  is a vector of slow states, y  is a vector of fast states and ε  is a 

small number. 

In singular perturbation or time scale decomposition, the method used to 

study such systems, it is assumed that 0ε → . Then the system reduces to a 

differential algebraic system as follows: 

          ( , )s s sx f x y=�                                                                      (2.6c) 
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          0 ( , )s sg x y=                                                                        (2.6d) 

This system contains only slow state variables and can be studied by the 

methods used for differential algebraic systems. It is assumed in the analysis 

that the fast dynamics is stable and that it has died out. 

2.7 Application of the Theory to Power Systems 

In equation 2.3 reference is made to two types of variables in a dynamical 

system namely states and parameters. In a power system, which as stated 

above is a dynamical system, examples of states are bus voltage magnitudes, 

bus voltage angles, machine angles and currents in generator windings. 

Examples of parameters are real power demands at system buses and 

sometimes control settings that determine how different power system and 

generator controls behave. [4, 18-20, 26-29, 31, 32, 35, 36, 40, 41, 44]. The 

choice of states and parameters used in a particular study of voltage stability is 

dependent on the method of analysis chosen in that instance. Refer to 

Chapter 3 for the method of study used in this thesis. 

In the analysis of a power system for voltage stability one of the methods 

used is the singular perturbation method described above and in Appendices 

1 and 2 is applied. Also refer to references [4, 20]. This is justified by the fact 

that the parameters, usually bus loads, vary slowly as the loads evolve with 

time and the variation in the states such as bus voltages and angles due to this 

load change is comparatively very fast. This method of analysis is known as 

the quasi-static or quasi-steady-state method and is sometimes used in 

practical voltage stability studies. In this method the states are calculated at 

each small increment of the parameters till voltage collapse occurs in the 

power system. The other methods are the multi-time-scale method where 

the full dynamics of the power system and its components are taken into 

account and a modified load flow method. For most studies the modified 

load flow method is sufficient. Refer to Chapter 3 for a discussion of this. It is 
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to be noted that both system states and parameters are vectors and therefore 

the state space and parameter space of a power system are multi-

dimensional consisting of hundreds and sometimes thousands of dimensions 

each. Therefore the following explanation is confined to 1, 2 or 3 dimensions. 

Higher dimensional problems can be calculated and manipulated 

mathematically, (refer to Appendices 1 and 2), though they are impossible to 

visualise. 

2.7.1 A Simple Power System 

Consider the simple power system shown in Figure 2.5. 

 

Figure 2.5 A Simple Power System 

The figure shows a single PV or constant voltage or slack bus with a single 

generator connected to it supplying a constant power factor PQ load 

consisting of real and reactive parts equal to p(1+jk). 

Let the impedance of the line be (0 )jX+  as resistance is neglected. Then, if 

I is the line current and ( )S p jq= + is the load power, it can be shown that 

[4, 20]: 

          V E jXI= −                                                                       (2.7) 

           

               

PV 

E,0o V,δo 

jX 

PQ 

I 
p(1+jk) 
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                                        (2.8 a and b) 

 

 

 

The above equations are written on the assumption of quasi-steady-state in 

which case they reduce to power flow equations. More will be discussed on 

this topic in Chapter 3. 

Now, if real power p is chosen as the slowly varying parameter and V and δ 

are chosen as the state vector, the variation of the magnitude of V with p is as 

shown in Figure 2.6. Such a diagram where one of the state variables is 

plotted against the slowly varying parameter, p in this case, is called a 

bifurcation diagram. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.6 Bifurcation Diagram of State V 
Vs Parameter p 

It is seen from the bifurcation diagram that for loads less than p' there are two 

equilibria, one at high voltage and therefore low current and the other at low 
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voltage and high current. In practice the high voltage equilibrium is the more 

stable and the equilibrium at which a power system operates. As the slowly 

varying parameter, power p, is increased at the load bus, the two equilibria 

come closer and coalesce at the critical power p' which is a saddle node 

bifurcation. Beyond p' the power system has no equilibrium points and 

cannot be operated. At p' voltage collapse occurs. 

In Figure 2.7 both power system states V and δ are plotted against p. 

 

Figure 2.7 Bifurcation Diagram of States V 
& δ Vs Parameter p 

In this diagram the lower value of angle δ refers to the stable higher value of 

voltage V. It is seen that the noses of both curves representing a saddle node 

bifurcation occur at the same critical loading p'. 

The occurrence of voltage stability and instability can also be visualised in 

state space as follows: (It is to be emphasised that the Figures 2.6 and 2.7 are 

bifurcation diagrams). Figure 2.8 shows the case of the above simple power 

system operating at a stable equilibrium where the load power is less than p'. 

Loading p p' 

V 

δ  
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Figure 2.8 State Space at Loads Below 
Critical Loading p' 

It is seen that any small perturbation from the upper equilibrium at the higher 

voltage causes system dynamics that bring the operating point back to the 

equilibrium. The diagram also shows that the low voltage equilibrium is 

unstable. Any small perturbation from this equilibrium invariably causes a 

catastrophic collapse of the power system unable to reach an equilibrium. 

Figure 2.9 shows state space at the critical loading of p'. 

V 

δ 
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Figure 2.9 State Space at Critical Loading 
p' 

At this loading the two equilibria have coalesced into one equilibrium. Any 

small perturbation from this equilibrium will cause power system states to 

move in the direction of the thick arrow casing a monotonic decrease in the 

system voltage and an increase in the angle δ. This is the mechanism of 

voltage collapse in a power system. 

Figure 2.10 shows the state space of the simple power system above 

subsequent to voltage collapse at a saddle node bifurcation. 

V 

δ 
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Figure 2.10 State Space Subsequent to 
Voltage Collapse at a Saddle Node 

Bifurcation 

The voltages fall monotonically unable to find an equilibrium. 

In a real power system the state space would be, as aforementioned, 

multidimensional consisting of hundreds if not thousands of states. 

2.7.1.1 A Two Load Power System in Parameter Space 

Figures 2.8 to 2.9 showed a single load power system in state space. Similarly 

a power system can also be visualised in parameter space for voltage stability 

studies. To do so at least two load buses need to be considered. Let the real 

power loads at the two buses be p1 & p2. 

Referring to Figure 2.11: 

V

δ 



 

 35 

 

Figure 2.11 Parameter Space of a Two 
Load Bus Power System 

In the region marked ‘Stable Region’ there are stable equilibrium points where 

the power system may be operated stably with any combination of p1 & p2 

that falls in that region. However in the region marked ‘Unstable Region’ the 

power system has no equilibrium points at which it can operate stably and any 

loading that reaches this region will cause voltage collapse. In the figure 

loading point p is stable, however if the power system is stressed by increasing 

the load in the direction of the arrow it will reach the point p' which is a 

saddle node bifurcation and voltage collapse will ensue. Thus the power 

system always needs to be operated in the stable region. The two regions are 

separated by a curve called the bifurcation set. The bifurcation set for a 

power system with n real power loads (parameters) is a hyper surface of (n-1) 

dimensions and the parameter space is n-dimensional. 

2.7.1.2 Voltage Instability Caused by a Large Disturbance 

Voltage instability may result in a power system that undergoes a large 

disturbance such as the loss of a transmission line or a generator due to a 
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fault. Before the disturbance the power system is operating at a stable 

equilibrium, however, after the disturbance that causes the loss of a major 

component, the power system may be left without a stable operating point or 

equilibrium. This would cause a catastrophic collapse of the system voltages. 

In state space this is the equivalent of the power system abruptly going from 

the state represented in Figure 2.8 to the state represented in Figure 2.10 

without first reaching the saddle node bifurcation represented in Figure 2.9. 

In parameter space this can be represented as the system, operating stably, as 

represented by the point p in Figure 2.11 and then immediately after the 

disturbance finding itself operating in the unstable region as shown in Figure 

2.12. 

 

Figure 2.12 Parameter Space of a Two 
Load Bus Power System Operating at an 

Unstable Point 

In Figure 2.12, the operating point p of the power system has not moved but 

the stable operating region of the power system has shrunk due to the 

disturbance and now the operating point is outside the new modified stable 

region. 
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2.7.1.3 Voltage Instability Caused by Power System Limits 

During the operation of a power system various limits are invariably 

encountered. Examples of these limits are generators reaching their reactive 

power limits and on load tap changing transformers reaching the limits of the 

tap ranges. Consider a generator with reactive power limits and the nose 

curves of the power system drawn for a particular bus with the bus voltage on 

the y-axis and the system real power drawn on the x-axis. When so drawn, the 

nose curves are also bifurcation diagrams and are shown in the following 

Figures 2.13 and 2.14. The upper portions of the nose curves represent the 

stable equilibria of the power system. 

 

Figure 2.13 Equilibrium Point B Remains 
Stable On Reaching Reactive Power Limit 

V 
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Limit Off 

Limit On 
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Figure 2.14 Equilibrium Point B Becomes 
Unstable On Reaching Reactive Power 

Limit 

In both figures consider the system starting operation at point A. Point A is 

not a zero power point since the x-axis starts at a value greater than zero, the 

base condition of the power flow study. At this point in time, the generator 

reactive power limit is off, that is the generator is capable of supplying more 

reactive power. As the parameter p (system real power) increases, the system 

equilibrium or operating point moves along the ‘limit off’ nose curve. Now if 

it is assumed that the generator reaches its reactive power limit at point B, 

then the nose curve which is also the bifurcation diagram changes to the ‘limit 

on’ nose curve. In Figure 2.13 it is seen that the point B falls on the stable 

part of the ‘limit on’ nose curve and therefore the power system continues to 

function in a stable state though with a smaller margin to voltage collapse. 

However if the ‘limit on’ nose curve of the system is as shown in Figure 2.14, 

then the power system operating point is on the unstable part of the new nose 

curve and therefore the system collapses at a limit induced bifurcation. 
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2.7.1.4 Voltage Stability in a System with Both Slow and Fast Time Scales 

Equations 2.6c and 2.6d represent the time scale decomposition of a system 

with both slow and fast time scales. In the two equations it is assumed that 

the fast transients are stable and that they have died out. Such a system with 

only one slow variable x and one fast variable y is represented in Figure 2.15 

in the x-y plane. 

 

Figure 2.15 A System with Slow and Fast 
Time Scales 

The curve g=0 is the fast dynamics equilibrium manifold, that is, on this 

manifold fast dynamics do not take place. Only the slow components of y and 

x vary on this curve. That is, this is a good approximation of the slow 

manifold of the two time scale system. Now the equilibria of the complete 

system with both slow and fast components are the intersection of the curves 

g=0 and f=0. The upper equilibrium is stable and the lower equilibrium is 

unstable. The arrows in the diagram indicate the direction of movement of 

the system operating point for any initial condition. As an example, if the 

initial condition of the system is at A in the figure, then a fast transient takes 

y (fast) 

x (slow) 

A 

f=0 

g=0 

Equilibriums Stable 

Equilibriums Unstable 
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place that brings the operating point to the upper stable part of the fast 

dynamics equilibrium manifold and then moves slowly along this slow 

manifold of the two time scale system till the stable upper equilibrium of the 

two time scale system is reached and continues to operate there. In an actual 

power system obviously there will be many variables x and y and therefore 

Figure 2.15 would be multi-dimensional. 

In a two time scale system it can also happen that the curves g=0 and f=0 do 

not intersect. For example the curve f=0 may be some distance removed 

from the curve g=0 in the positive direction along the x-axis. If the power 

system has reached such a state then a saddle node bifurcation of the fast 

dynamics can take place since the two curves or manifolds do not intersect 

at system equilibria. In this case, for an initial condition at A, the system again 

is brought to the fast dynamics equilibrium manifold through a fast transient 

and starts moving along this manifold in search of a system equilibrium. But 

since no system equilibrium exists, the operating point reaches the nose of the 

fast dynamics equilibrium manifold which is a saddle node bifurcation of the 

fast dynamics causing voltage collapse. 

2.8 Conclusion 

In this chapter voltage stability in a power system is defined and illustrated 

with a simple dc power system. A classification of power system stability is 

given and the theory of voltage stability along with the requisite mathematics 

is described. Finally the application of the theory to power systems is 

discussed and illustrated with simple examples. 
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C h a p t e r  3  

METHODS FOR EVALUATION OF VOLTAGE STABILITY IN 
POWER SYSTEMS AND INDICES USED TO MEASURE 

PROXIMITY TO VOLTAGE INSTABILITY 

There are a number of methods of evaluating voltage stability in a power 

system. However the method chosen in a particular case depends on the 

resources available, time constraints and the required depth of analysis. Since 

voltage stability is still a developing field one has to be rather cautious in the 

method and resources used. The program used for this thesis is UWPFLOW 

[15]. This chapter, as the title suggests, will examine the methods of 

evaluation of voltage stability in a power system and indices used to measure 

proximity to voltage instability in a power system with emphasis on the 

method used in the thesis. 

3.1 Background 

Until now time power system engineers have used power flow programs and 

transient angle stability programs in the analysis of power systems during 

design and operation [4, 20]. However, due to reasons mentioned in Section 

2.1, it has now become necessary to consider voltage stability as well. 

Power flow programs use static analysis using algebraic equations to obtain 

the condition of the power system at a particular point in time. This point in 

time may be after the active and reactive powers have changed in some or all 

of the buses or the system configuration has changed due operational reasons 

or fault conditions. 

Transient angle stability programs use dynamic analysis. As mentioned in [20] 

and in the experience of the author of this thesis as a power systems engineer, 

transient stability programs use dynamic models of power system 
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components such as synchronous machines, excitation systems, turbines and 

their governors, static var compensators (SVC’s), high voltage direct current 

transmission, loads etc. These models are suitable for analysis in the time 

frame of a few milliseconds to a few tens of seconds. 

However voltage instability can develop in the time frame of up to many tens 

of minutes, references [4, 16, 20, 64]. Thus a careful choice of the method 

depending on resources and time available is needed in the analysis of voltage 

stability. 

3.2 Methods Used in the Analysis of Voltage Stability 

Voltage security of a power system in the context of its general security is 

explained very clearly in reference [4] which is summarised below. 

A power system is subjected to two types of constraints: 

• Load constraints state that the load demand is met by the system 

and are expressed as equality constraints.  

• Operating constraints impose maximum and minimum limits on 

variables such as line currents, bus voltages, generator real and 

reactive power etc. These are expressed as inequality constraints. 

When both load and operating constraints are satisfied the power system is in 

a normal state. On the occurrence of a disturbance the system may settle 

down to a new normal state or one of two abnormal states. An emergency 

state is an abnormal state when some operating constraints are not satisfied. 

A restorative state is an abnormal state when operating constraints are 

satisfied but some or all the load constraints are not, due to say a partial 

blackout or load shedding. 

A static emergency occurs after a disturbance when a new long term 

equilibrium is reached but some operative conditions are violated. A 
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dynamic emergency occurs when a disturbance causes the system to 

become unstable due to say loss of synchronism. Static security assessment 

deals with the ability of the system not to enter a static emergency after a 

disturbance. Dynamic security assessment deals with the ability of the 

system to reach a stable operating point after a disturbance and is a 

prerequisite for system security. 

Corrective control or corrective operator action is often possible in a static 

emergency but a dynamic emergency requires action by automatic devices. 

Voltage stability belongs to the category of dynamic emergencies where a 

stable operating point is lost requiring automated action, however if a pending 

voltage instability could be predicted sufficiently in advance then corrective 

operator action may be possible. This is still beyond the state-of-the-art, 

reference [4], and the research presented in this thesis is an attempt at 

rectifying this. 

In voltage security analysis, a power system is evaluated for voltage stability 

during credible contingencies such as the loss of transmission and generation 

facilities. The general rule adopted is the well-known (N-1) criterion where a 

power system is expected to perform without entering an emergency state for 

contingencies when a single transmission line or a single generator trips out. 

[4]. 

As will be seen below in this Chapter static analysis tools can be used for 

voltage security analysis and often is the main tool used. However this should 

not detract from the fact that voltage instability is a dynamic problem. 

3.2.1 Dynamic or Time Domain Analysis. 

As stated in section 3.1, dynamic or time domain analysis is used in the main 

for the analysis of transient behaviour of power systems. The computer 

programs designed for this purpose, in general, use dynamic models for the 

following power system components, [20]: 



 

 44 

• Synchronous machines. 

• Excitation systems. 

• Turbines. 

• Governors. 

• Loads. 

• High Voltage Direct Current (HVDC) transmission equipment. 

• Static Var Compensators (SVC). 

These dynamic models and the algorithms used in these programs are suitable 

only for short term analysis, that is from a few milliseconds to a few tens of 

seconds. The programs do not model variables in slow acting components 

such as on load tap changing transformers (OLTC’s), generator over 

excitation limiters and load characteristics (ie. variation of loads with variation 

of voltage and frequency). Therefore they are unsuitable for voltage stability 

analysis which takes place in a much longer time scale one or two orders of 

magnitude larger. However now a new class of computer programs are being 

written with system component models that are suitable for long term 

dynamic analysis and the literature presents a few examples of analysis using 

such programs [4, 20, 44-46]. (In these references the power system 

components are modelled to varying degrees of complexity). Component 

modelling for voltage stability study by dynamic analysis is discussed in detail 

in [4]. These methods are very time and engineering effort intensive and in 

general do not give voltage stability indices to ascertain system security. 

Because of their time and engineering effort requirements they are unsuitable 

for the study of large numbers of contingencies in large power systems. 

Therefore they are used mostly for bench marking purposes and for post-

mortem analysis after major incidents [4, 20]. 
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3.2.2 Quasi Steady State (QSS) Method or Analysis 

The quasi steady state method makes use of the method known as singular 

perturbation or time scale decomposition presented in Sections 2.6.1.3, 2.7.1.4 

and A2.7. 

In this method the fast dynamics of fast responding components of the 

power system are neglected and represented by their equilibrium equations. 

The long term dynamics of components such as shunt compensation, on load 

tap changers, secondary voltage and frequency controllers, loads etc are 

represented by differential or difference equations. The algorithm uses 

suitable time steps and at each time step (call this the present time step) 

calculates the values of the states assuming that the slow dynamics remains 

static at the value at the end of the previous time step. Then these new state 

values are used in the equations for slow dynamics to calculate corrected 

values for states at the present time step. The calculations are repeated at each 

time step for the required period of time [4]. 

The quasi steady state method has been found to be about three orders of 

magnitude faster than the complete time simulation by dynamic analysis [20]. 

Therefore it is suitable for studies of large power systems with numerous 

possible network and equipment configurations. 

3.2.3 Use of Traditional Power Flow Analysis 

The main interest in most voltage stability analyses is to determine the 

distance, in say real power (MW), from a given stable operating point to the 

nearest unstable point. Referring to Figure 2.6, this would be the distance 

from a stable operating point on the upper half of the nose curve to the 

critical power point p' at the tip of the nose curve. This may be required for a 

number of network and equipment configurations. A standard power flow 

analysis may be used for this purpose. The presence of a solution to the 

power flow analysis indicates a stable operating point and the absence of a 

solution indicates an unstable operating point. So a number of power flow 
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analyses can be performed with suitable increments of real power demand till 

an unstable operating point is reached [4, 20]. However there are a number of 

drawbacks to this method. A number of modelling assumptions are made in 

traditional power flow analysis programs, some of which are as follows [20]: 

1. The real power dispatch of generators are fixed with a swing bus to 

handle the slack. 

2. Loads are assumed to be constant P and constant Q without voltage 

and frequency sensitivity. 

3. On load tap changer action is assumed to be instantaneous. 

4. Capacitors and reactors are assumed to be either fixed to the network 

or switched instantaneously. 

5. Generator limits are represented as maximum and minimum reactive 

power limits. 

6. PV buses are assumed to have perfect voltage control. 

The algorithms used in power flow programs tend to be unstable and non 

convergent as an unstable operating point is approached due to the Jacobian 

of the power flow equations tending to zero. Therefore it is not possible to 

know definitely when an unstable point is reached since the lack of a solution 

to the power flow equations could be due to limitations of the solution 

algorithm as the bifurcation point is neared rather than on reaching the 

bifurcation or unstable operating point. 

Therefore if traditional power flow programs are used in voltage stability 

analysis it should be with caution and also in the knowledge that the system 

components are not quite adequately modelled for voltage stability analysis. 
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3.2.4 Energy or Lyapunov Function Analysis 

In the theory of dynamical systems and control theory, Lyapunov functions, 

which are a family of functions that can be used to demonstrate the stability 

of some state points of a system, are used as one of the methods of analysis. 

In voltage stability analysis these functions are called energy functions since 

they have not been proved to be true Lyapunov functions. References [20, 

54-61] deal with the topic. This method of analysis has not been used in this 

thesis since suitable computer programs are not yet available to analyse 

systems of suitable size for a thesis and also since the methods used in this 

thesis give more accurate results. 

3.3 Power System Component Modelling for Voltage Stability Studies 

As mentioned in Section 3.2.1 voltage stability takes place in the time scale of 

one or two orders of magnitude greater than that of transient stability. 

Therefore component models used in traditional transient stability or 

standard power flow analysis are inadequate for voltage stability analysis. This 

section describes briefly some of the methods used in voltage stability 

programs to take into account the behaviour of various components over the 

long periods of time studied in voltage stability. References [4, 20, 51, 65-67] 

deal with this subject in greater detail.  

Ideally all components of a power system need to be modelled accurately; 

however, the type of data available, the limitations of the models available and 

the practicalities of keeping the system manageable so that the number of 

equations that need to be solved is kept to a minimum require some system 

reduction. Due to the very nature of voltage stability that makes it dependent 

on reactive power demand and supply it is necessary to represent these 

variables accurately though [4, 20]. 

In voltage stability analysis behaviour of loads particularly space heaters with 

changing voltage is of great importance due to the large interval over which 

voltage collapse can take place whereas in traditional power flow analysis and 
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transient stability analysis these effects are often neglected. As the voltage 

drops, loads exhibit a thermostatic effect whereby the energy consumed 

drops. As a result these loads tend to remain active for a longer time for 

example to bring the temperature to the set point. Therefore after a period of 

time within the voltage collapse time frame, the average load returns to the 

original value thus exacerbating any voltage stability problems. 

In addition to the thermostatic effect, OLTC transformers and other voltage 

restoration devices between the transmission system and the loads on the 

distribution system act to restore the load voltages during a voltage collapse 

scenario again exacerbating the problem by restoring the loads to nominal 

values. 

3.3.1 Load Modelling 

Load modelling for voltage stability studies and the study of other power 

system phenomena is still an ongoing project and a number of papers [19, 65-

67], have been published. As mentioned above [4, 20] also deal with the 

subject. The model used in this thesis is based on the polynomial load model 

mentioned in these references which can be accommodated in the 

UWPFLOW program used by the author. The model is presented briefly 

below and the reader is referred to the above references for details. 

In the polynomial model used in this thesis the load at a given bus is divided 

into two parts, a constant impedance part and the balance, usually a constant 

current part. The effective load at a given voltage is calculated as follows: 

Let, 

Pl = Effective real power load at per unit voltage V of the bus, 

Ql = Effective reactive power load at per unit voltage V of the bus, 

Pz = Constant impedance part of the real power at the bus, 
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Qz = Constant impedance part of the reactive power at the bus, 

Pn = Balance real power at the bus, 

Qn = Balance reactive power at the bus, 

a and b are given constants relevant to the load under consideration. 

Then, 

          2. .a
Pl PnV Pz V= +                                                            (3.1a) 

          2. .b
Ql QnV Qz V= +                                                            (3.1b) 

If a = b= 1, then Pn and Qn are constant current parts of the given load. 

It is assumed that Equations 3.1a & b take into account the effects of tap 

changers and other voltage control devices in the distribution network. 

3.3.2 Generator Modelling 

Generator modelling suitable for voltage stability is an important aspect of 

detailed voltage collapse studies. References [4, 20, 51] deal with the subject in 

some detail. 

The desired models are those for generator capability curves and over 

excitation limiters. The above references deal with the subject. 

However in the computer program UWPFLOW [15], used by the author of 

this thesis, there is a weakness as stated by the author of the program in the 

manual. When detailed generator data is used the program experiences 

convergence difficulties. Therefore detailed generator modelling has been 

avoided in the present work. As mentioned in Section 3.3, in any type of 

analysis, certain compromises need to be made depending on resources and 

data available and since the aim of this thesis is to show that artificial 
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intelligence methods can be used to predict voltage instability in power 

systems, this is considered not to be a drawback. It is only a compromise in 

the details and with more sophisticated tools of analysis it can easily be 

overcome without compromising the conclusions drawn in this thesis. 

3.4 Indices Used to Measure Proximity to Voltage Collapse 

In voltage stability analysis it is useful to know, given a particular operating 

point of the power system, how far this operating point is to voltage 

instability. This enables the operators to anticipate and take precautionary 

measures to avoid any pending voltage instability. In fact the aim of this thesis 

is to develop an artificial intelligence method to predict the distance to voltage 

stability of a power system from any stable operating point. 

A number of voltage stability indices have been proposed in the literature [4, 

20, 26, 32-51, 53, 55, 63]. Many of these papers are repetitions in some form 

or slightly improved versions of a given method. Some of the methods have 

taken hold in the research community and some have not. Discussed briefly 

below, avoiding mathematical detail, are some of the more relevant indices 

and methods. The reader is referred to the above references particularly [4, 

20] for details. 

3.4.1 Loading Margin 

Loading margin is the simplest and most straight forward of the indices used 

to measure proximity to voltage collapse in a power system. It is also the most 

widely accepted index of voltage collapse, [20]. However the determination of 

loading margin requires new and sophisticated methods that are unfamiliar to 

the average power system engineer. The computer program, UWPFLOW, 

used in this thesis can be employed to determine this index and it is this index 

that is used in this thesis in the design and training of artificial neural 

networks. 
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The loading margin to voltage collapse is defined in the above references as 

the change in loading between the operating point and the loading at point of 

voltage collapse. Considering Figure 2.6, the nose curve for a power system, 

the loading margin is the difference in loading between any stable operating 

point on the upper part of the nose curve and the tip of the same curve. 

The following advantages of the load margin index to voltage collapse are 

given in [20]: 

• The loading margin is straight forward, well accepted and easily 

understood. 

• The loading margin is not based on a particular system model; it only 

requires a static power system model. It can be used with dynamic 

models, but it does not depend on the details of the dynamics. 

• The loading margin is an accurate index that takes full account of the 

power system nonlinearity and limits such as reactive power control 

limits encountered as the loading is increased. Limits are not directly 

reflected as sudden changes on the loading margin. 

• The loading margin accounts for the pattern of load increase. 

3.4.1.1 Continuation Method of Determining Loading Margin Using Nose Curves 

This method is equivalent to using successive power flow solutions with 

successive small increments of the parameter of interest which usually is the 

system power. However certain drawbacks of this method are overcome as 

will be apparent below. The data obtained is used to draw the nose curves for 

buses of interest. Figure 3.1 illustrates the procedure. 
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Figure 3.1 Continuation Method – 
Modified from Reference [1] 

Since it is the long term voltage stability that is of interest in voltage stability 

studies, a stable operating point of the power system is obtained by the 

following equilibrium version of the power system equations given in [4]: 

           ( , ) 0F z p =                                                                        (3.2) 

Where z represents the states of the system and p is the varying parameter of 

interest. In the case of a power flow study, which is of interest here, z 

represents the vectors of bus voltages and angles and p represents varying 

system power. 

If standard power flow methods are used, as the system approaches the 

bifurcation point at the nose of the nose curve, the equations exhibit 

convergence difficulties. Also a large number of different power flow studies 

with small increments of system power are computer resource and time 

consuming. These difficulties are overcome as described below. 

V 

Loading p p' 

A
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The continuation method uses a predictor corrector method of drawing the 

nose curve for a given bus, Figure 3.1. The references [4, 20, 26, 32, 35, 36, 

38, 40-45, 47, 53] deal with the subject in detail and give the mathematical 

theory behind the method. The method starts with a known stable operating 

point obtained after performing a standard power flow. From this known 

stable point, the method proceeds as shown in Figure 3.1 by increasing the 

varying parameter p in small steps and calculating predicted and corrected 

points on the nose curve. The white dots represent the predicted values and 

the black dots represent the corrected values. Suitable numerical methods are 

used to obtain the predicted and corrected values; refer to the above 

references. However there is a drawback in this method in that as the nose of 

the curve, which is the bifurcation point, is approached the numerical method 

tends not to converge as indicated by point A in Figure 3.1. To overcome 

this, as the nose is approached, the increment in the varying parameter p, is 

decreased. 

3.4.1.2 Continuation Method with Parameterisation 

This method is similar to the continuation method described in Section 

3.4.1.1 above. The difference being, referring to Figure 3.1, when 

convergence problems are encountered at a point such as A, then the 

continuation parameter p in Equation 3.2 is swapped with a component of z. 

Usually the lowest magnitude voltage or the voltage with the highest rate of 

decrease is chosen. Thus p becomes a state in the Equation 3.2 and one of the 

bus voltages becomes the parameter. This is continued till the nose of the 

curve, where the most change occurs, is past and after passing the nose, again 

the standard Equation 3.2 is used. In Figure 3.2 this is illustrated by the fact 

that from point A, till the nose of the curve is past, the movement from the 

predicted value to the corrected value is horizontal, that is the movement is at 

constant voltage but the parameter p finds a new corrected value. References 

[4, 20, 33, 35, 38, 40, 41, 45, 53] describe this method in detail. 



 

 54 

3.4.1.3 Direct or the Point of Collapse Method 

Considering Equation 3.2, the bifurcation point, which is the nose of the nose 

curve and therefore the loadability limit, may be obtained by solving the 

following set of equations: 

          

( , ) 0

0

1

z

F z p

F v

v
∞

=

=

=

                                                                        (3.3) 

where, 

Fz = Jacobian of Equation 3.2 with respect to z, the states 

v = the right eigen vector 

||v||∞ = mathematical L∞ norm of v. 

In Equation 3.3, the first equation is the equilibrium condition of the power 

system, the second equation is the singularity condition at the point of 

collapse and the third equation is the non-zero requirement for the right 

eigenvector. See references [4, 20, 23, 35, 36, 43] for detailed explanations of 

the method including its mathematics. 

3.4.1.4 Optimisation Method 

This too is a direct method in that it determines the point of collapse without 

tracing the complete nose curve. The problem may be expressed 

mathematically as follows: 

          
max

. . ( , ) 0

p

s t F z p =
                                                              (3.4) 

This is an optimisation problem that can be solved using the following 

Lagrangian: 
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          ( , )T
L p w F z p= +                                                              (3.5) 

where, w = the vector of Lagrangian multipliers. 

The first order optimality conditions, which are the derivatives of L with 

respect to z, w and p, are as follows: 

          

( , ) 0

( , ) 0

( , ) 1 0

T

z z

w

T

D L D F z p w

D L F z p

L F
w z p

p p

= =

= =

∂ ∂
= + =

∂ ∂

                                                  (3.6) 

By solving the first order optimality conditions in Equation (3.6) using 

numerical methods the maximum value of p which is the bifurcation point or 

the point of collapse can be obtained. There are computer programs for the 

solution of optimisation problems and an example is given in [68]. References 

[4, 20, 33, 34, 36, 48, 51] deal with optimisation methods to different degrees 

of description. 

3.4.2 Other Methods 

There are a number of other methods described in the literature, references 

[4, 18, 20, 22, 27-31, 37, 39, 42, 46-50, 52, 53], for the analysis of voltage 

stability and the determination of indices of proximity to voltage collapse. 

These are: 

1. Voltage Sensitivity Factor. 

2. Sensitivity Factor. 

3. Singular Values. 

4. Eigen Value Decomposition. 

5. Voltage Instability Proximity Index. 
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All these can be used in post mortem analysis of power system failures. 

However the indices they provide are highly non-linear as system loading is 

increased. The loading margin as an index using any of the methods described 

in Sections 3.4.1.1 to 3.4.1.4 is more straight forward, widely used in research 

and is the method used in this thesis. 

3.5 Conclusion 

A number of methods of voltage stability analysis have been described in this 

Chapter. The method chosen in this thesis is quasi steady state analysis using 

continuation power flows using both step reduction and parameterisation to 

avoid convergence difficulties when approaching the nose of the nose curve. 

This method has been chosen for its adequacy in voltage stability analysis 

giving accurate results. The author of the thesis was also able to obtain a 

suitable software package that implements this method. Such software 

packages are just beginning to be written and can be prohibitively expensive. 

This chapter also describes the requirements for power system component 

modelling for voltage stability analysis and explores the adequacy of various 

available models and the compromises that may be needed in the real world. 

Voltage stability indices that indicate the distance to voltage instability of a 

power system are also described paying special attention to the method used 

in this thesis. 
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C h a p t e r  4  

SOFT COMPUTING OR ARTIFICIAL INTELLIGENCE METHODS 
– BRIEF THEORY AND SELECTION 

As stated earlier in Chapter 1, soft computing, as opposed to conventional 

“hard” computing, is a technique that is tolerant of imprecision, uncertainty, 

partial truth and approximation. Its methods are based on the working of the 

human brain and it is commonly referred to as Artificial Intelligence (AI). 

The action of AI is similar to the human brain which is capable of arriving at 

valid conclusions based on incomplete and partial data obtained from prior 

experience. An approximation of this process on a very small scale is used in 

soft computing. Some of the important branches of Soft Computing (SC) 

are Artificial Neural Networks (ANNs), Fuzzy Logic (FL), Genetic 

Computing (GC) and Probabilistic Reasoning (PR). The soft computing 

methods are robust and low cost. 

In the research presented in this thesis, Artificial Neural Networks branch of 

Soft Computing has been chosen, since, for reasons that will become 

apparent in this chapter, such networks are eminently suitable for the study of 

voltage stability. The architecture of the ANNs used are selected on intelligent 

criteria rather than by a "brute force" method of trial and error with different 

architectures. 

4.1 Introduction to Artificial Neural Networks (ANNs) 

Artificial Neural Networks have been inspired by biological neural networks 

found in the human brain though the relationship is very remote. Figure 4.1 is 

a rudimentary representation of human neurons. 
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Figure 4.1 Rudimentary Representation of 
Human Neurons – Modified from 

Reference [66] 

There are approximately 1011 neurons in the human brain with approximately 

1015 interconnections, references [3, 69, 70]. Dendrites are branched 

receptive networks that carry electrical signals into the cell body. The axon 

carries the signals from the cell body to other neurons. A synapse is the point 

of contact between axon of one cell and the dendrite of another cell. The cell 

body thresholds and sums the incoming signals from other cells by the use of 

chemical processes. Some of the neural structure with interconnections 

through axons is present at birth. Later learning is acquired through the 

development of new axons and the strengthening and weakening of synapses. 

Reference [3] gives the following similarities between biological and Artificial 

Neural Networks: 

• The building blocks of both networks are simple computational 

devices that are highly interconnected. 

• Connections and the connection strengths between neurons 

determine the function of any given network. 

Dendrites 

Cell Body 

Axon 

Synapse 
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Kohonen in reference [69] gives the following definition of neural 

computers or neural networks: 

"Artificial Neural Networks are massively parallel interconnected networks of 

simple (usually adaptive) elements and their hierarchical organizations which 

are intended to interact with the objects of the real world in the same way as 

biological nervous systems do." 

Though digital computers are used in the implementation of ANN's, both 

biological and Artificial Neural Networks are non-digital massively parallel 

computational devices. Reference [69] makes the following distinctions 

between digital and neural computers: 

• The biological neural systems do not apply principles of digital or 

logic circuits. 

• Neither the neurons, nor the synapses are bistable memory elements. 

Neurons seem to act as analogue integrators and the efficacies of the 

synapses change gradually without flipping back and forth. 

• No machine instructions or control codes occur in neural computing. 

• The neural circuits do not implement recursive computation using 

algorithms. 

• Even on the highest level, the nature of information processing is 

different in the brain or neural networks and in the digital computers. 

Among the many biological and mental functions of the brain, the main 

functions that are utilized in neural computing are sensory functions, motor 

functions and internal processing which is similar to thinking in humans in a 

rudimentary way. As such neural computers are capable of taking into 

account high order relationships in stochastic data and can define very 
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complicated dynamic phenomena. It is this property that makes ANNs, 

which are massively parallel interconnected computing elements, suitable for 

the study of power system phenomena in general and voltage stability in 

particular, a power system being a complicated dynamical system. Hence the 

choice of ANNs in the present research. 

As a result of the research presented in this thesis it is envisaged that the 

principles involved can be used in an on-line "intelligent robot" that could 

predict impending voltage instabilities and take automatic corrective actions 

such as switching of capacitors, synchronous condensers, load shedding etc. 

The neural computer used in such a robot would utilize ANNs similar to the 

ones developed in this thesis along with sensory systems and systems for 

remedial actions. The sensory system would be continuously monitoring 

system states such as bus voltages and angles and system parameters such as 

loads at buses. 

4.2 Notation, Neuron Models and Network Architectures 

ANN's have been used in many vastly different fields and as such there are 

many notations used in the literature. In this thesis the notation used in 

reference [3] is utilised and is summarised below. This is also the notation 

used in the MATLAB Neural Network Toolbox which has been used in this 

thesis for designing and training ANNs. Neuron models and network 

architectures are also described briefly. References [3, 69-73] present neuron 

models and network architectures in detail. 

A single neuron ANN may be represented as shown in Figure 4.2 
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Figure 4.2 An R Input Neuron 

In this figure: 

p = an (Rx1) input vector. Represented by the solid bar, 

W = a (1xR) weight matrix, 

b = the (1x1) bias vector that multiplies the constant input of 1 to the neuron, 

n = the (1x1) net input vector to the transfer function f, 

a = the (1x1) output vector, 

f = the transfer function. 

Relating this ANN to the biological neurons shown in Figure 4.1, the cell 

body is the summer and the transfer function, the weight matrix is the 

strength of connection of the synapses and the elements of the output vector 

are the signals in the axons. In this thesis the standard convention of 

representing vector and matrix elements with simple or small letters with 

subscripts to indicate row and column of that element is used. The bold 

capitals indicate matrices and bold small letters represent vectors. f is a 

transfer function, many types of which are used in ANN's and the more 

common are discussed in this thesis. Using matrix algebra and the standard 
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representation for function evaluation the output of the ANN in Figure 4.2 

can be represented by the following equation: 

a = f (Wp + b)                                                                             (4.1) 

In the case of the above single neuron ANN, 

n = w1,1p1 + w1,2p2 + …………..+w1,RpR + b                               (4.2) 

If S neurons are used the weight matrix will be of dimension (SxR) and the 

output vector will be of dimension (Sx1). When training an ANN, the transfer 

function and the number of neurons are decided by the designer. The input is 

repeatedly presented to the ANN and after each presentation the parameters 

which are the weights and biases are adjusted using a learning rule, also 

known as a training algorithm, till the desired result is obtained. The initial 

values of the weights and biases are chosen to be random small values. For 

example a two input single neuron ANN using the transfer function 

"hardlim" (refer to Section 4.2.1 for the definition of hardlim) can be trained 

as an AND gate by repeatedly presenting training vectors and correct target 

vectors till the ANN is trained producing minimum error. Though this is a 

simple example, once an ANN is so trained it will give correct results all the 

time. 

Multilayer ANNs can be designed by connecting single layer ANNs together 

as shown in Figure 4.3. 

 

Figure 4.3 A Multilayer ANN 
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In the case of multilayer ANNs the convention is to use superscripts for input 

and output vectors and the number of neurons in each layer. These 

superscripts indicate the relevant layer.  For example W1 is the (S1xR) weight 

matrix of the first layer containing S1 neurons. 

Using the above convention the outputs of each of the layers of the ANN in 

Figure 4.3 may be written as follows: 

a1 = f 1(W1p + b1)                                                                         (4.3)  

a2 = f 2(W2a1 + b2)                                                                        (4.4) 

a3 = f 3(W3a2 + b3)                                                                        (4.5) 

Combining these three equations the final output of the ANN can be written 

as follows. 

a3 = f 3(W3f 2(W2f 1(W1p + b1) + b2) + b3)                                    (4.6) 

4.2.1 Transfer Functions 

The following are the commonly used transfer functions. The figures giving 

the graphs of the transfer functions have been modified from reference [3]. 

The notation is as above. 

1. The Hard Limit or hardlim transfer function: 

Input/output relation: 

a = 0          n or p < 0 

a = 1          n or p >=0 

Graph: 
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2. The Symmetrical Hard Limit or hardlims transfer function; 

Input/output relation: 

a = -1          n or p < 0 

a = +1         n or p >= 0 

Graph: 

 

3. The Linear or purelin transfer function: 

Input/output relation: 

a = n or p 

Graph: 
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4. The Saturating Linear or satlin transfer function: 

Input/output relation: 

a = 0          n or p < 0 

a = n          0 <= n or p <= 1 

a = 1          n or p > 1 

Graph: 

 

5. The Symmetric Saturating Linear or satlins transfer function: 

Input/output relation: 

a = -1          n or p < -1 

a = n           -1 <= n or p <= 1 

a = 1           n or p > 1 
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Graph: 

 

6. The Log-Sigmoid or logsig transfer function: 

Input/output relation: 
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(Note: n stands for n or p.) 

Graph: 

 

7. The Hyperbolic Tangent Sigmoid or tansig transfer function: 

Input/output relation: 
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(Note: n stands for n or p.) 

Graph: 

 

4.3 Problem Solving with Different Architectures of ANNs and 

Learning Rules Used 

There are many architectures and learning rules described in the ANN 

literature. Some of these that are relevant to the research presented in this 

thesis are presented here. The different architectures, transfer functions and 

learning rules or training algorithms can be implemented in the Matlab ANN 

toolbox and it is this toolbox that has been used in this thesis. References [2, 

3, 69-76] have been used in writing Section 4.3 along with all its sub sections. 

The notation used in Section 3.2 is used throughout. 

4.3.1 The Perceptron Architecture 

The perceptron is a feedforward (see Section 4.3.2.2) network that is suitable 

for recognising patterns that are linearly separable. Figure 4.2 represents a 

single neuron perceptron with a hardlims transfer function. 

If we consider two element input vectors: 

p = [p1 p2], 

then the perceptron once trained can separate these vectors into two 

categories as shown in Figure 4.4. 
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Figure 4.4 The Perceptron Decision 
Boundary and the Weight Matrix – 

Modified from [66] 

The dark line crossing the p1 and p2 axes is the decision boundary and the 

weight matrix W is orthogonal to the decision boundary. When trained by 

repeated presentation of typical vector and their target sets, starting with small 

random values allocated to the weight and biases, the perceptron is able to 

categorise them into two categories. The perceptron learning rule modifies 

the weights and biases using an iterative process till the correction needed is 

less than a predetermined small value or zero. Referring to Figure 4.2, the 

value of n is greater than 0 for the region left of decision boundary in Figure 

4.4 and less than 0 for the region right of the decision boundary. The output 

of the perceptron will be 1 for all vectors in the region where n>1 and -1 for 

all vectors in the region where n<1. Thus all vectors on the p1 p2 plane are 

categorised into two classes. Since the hardlims function is being used in this 

ANN, a perceptron, the equation to the perceptron may be written as: 

a = hardlims(Wp + b). 

If the vectors p are 3-dimensional, then the decision boundary will be a plane 

enabling the perceptron to categorise the 3-dimensional vectors. 

p1 

p2 

W 

Decision Boundary 

n > 1 n < 1 
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In the case of higher dimensional vectors that require to be classified into 

more than two categories, multi neuron perceptrons are needed and the 

decision boundaries are hyper planes that are impossible to visualise. Each 

row vector of the weight matrix W will have one such hyper plane. So the 

power and capability of even this simple ANN is evident. References [3, 70, 

72, 74, 76] provide greater detail. 

4.3.1.1 Perceptron learning Rule 

Consider the following set of training and target vectors presented to a 

perceptron: {p1, t1}, {p2, t2},……..,{pQ, tQ}. 

Then after each presentation to the perceptron of a training and target vector 

the weights and biases are updated according to the following rule: 

Wnew = Wold + epT                                                                         (4.7) 

bnew = bold + e                                                                                (4.8) 

Where, 

e = t – a.                                                                                        (4.9) 

The procedure is repeated till the error is zero. The perceptron learning rule 

or the algorithm has been proved to be convergent for all linearly separable 

vectors [3]. 

This procedure of training an ANN using sets of training and target vectors is 

known as supervised training. 

4.3.2 The Backpropagation Learning Rule and Architecture 

As a preliminary to the discussion of the backpropagation networks it is 

necessary to discuss the Widrow-Hoff or Least Mean Square (LMS) 

Algorithm or Learning Rule. 
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4.3.2.1 The Widrow-Hoff or Least Mean Square Learning Rule 

Consider the Linear or Adaline Network of Figure 4.5: 

 

Figure 4.5 A Linear Network 

This network consists of a single layer of S neurons and an input vector p of 

size (Rx1). As described in Section 4.2, these parameters decide the size of the 

weight matrix W as (SxR) and the size of the bias vector b as (Sx1). All 

neurons have the same transfer function purelin. Thus, 

a = purelin(Wp + b).                                                                     (4.10) 

The linear or Adaline network also uses the same method, which is 

performance learning, presented in Section 4.3.1.1. In performance learning 

the network is trained to optimise its performance. The performance index, 

which is to be minimised, used in this network is the mean square error 

(mse). The mean square error at the kth iteration is defined as follows: 

Using the notation defined and used in Sections 4.2 to 4.3.1.1, 

2 2

1 1

1 1
( ) ( ( ) ( ))

Q Q

k k

mse e k t k a k
Q Q= =

= = −∑ ∑ .                                     (4.11) 

The Widrow-Hoff or LMS algorithm or learning rule used to achieve this is: 

W(k + 1) = W(k) + 2αe(k)pT(k)                                                    (4.12) 
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b(k + 1) = b(k) + 2αe(k)                                                               (4.13) 

α which is known as the learning rate must be less than the reciprocal of the 

largest eigenvalue of the correlation matrix pTp. 

Both the perceptron and the Adaline or linear networks are single layer 

networks that can only solve linearly separable problems. However the linear 

network using the LMS algorithm is more powerful than the perceptron. 

The Backpropagation Network Architecture is an extension of the linear 

network to solve more complicated problems as can be seen in Section 

4.3.2.2. 

4.3.2.2 The Backpropagation Learning Rule and Architecture Used 

The "backpropagation network" is a feedforward multilayer perceptron. In 

feedforward networks the neurons are arranged in cascaded layers as shown 

in Figure 4.3. All neurons in a layer are connected to all neurons in the 

adjacent layer through unidirectional connections and therefore information 

can only be transmitted in a forward direction. Hence the term feedforward. 

An algorithm called the Backpropagation Learning Rule or Algorithm is 

used to train such netwoeks. 

Referring to Figure 4.3, there are the inputs, the first layer of neurons, the 

second layer of neurons and the third layer of neurons. In ANN literature, by 

convention, the first layer of neurons is called the first layer, the second layer 

of neurons the second layer and so on. There is another convention; the last 

layer of neurons that gives the output of the ANN is called the output layer 

and all the other layers of neurons are called hidden layers. There can be more 

than three layers; however it is seldom necessary to use more than three. 

As opposed to single layer perceptrons, multi layer perceptrons use 

differentiable transfer functions such as logsig and tansig. Reference [3] states: 

"In fact it has been shown that two-layer networks, with sigmoid transfer 
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functions in the hidden layer and linear transfer functions in the output layer, 

can approximate virtually any function of interest to any degree of accuracy, 

provided sufficiently many hidden units are available." This is the main reason 

for the choice of this architecture for the research presented in this thesis. 

This architecture has become the architecture of choice in much science and 

engineering research and problem solving. 

The backpropagation learning rule is a modified version of the Widrow-Hoff 

or LMS algorithm described in Section 4.3.2.1. It is described briefly here and 

the references [3, 70] give its derivation in detail. 

Using the notation introduced in Section 4.2, 

Let M = the number of layers in the network. 

Then since the network receives external inputs, 

a0 = p,                                                                                           (4.14) 

and, 

am+1 = fm+1(Wm+1am + bm+1)   for m = 0,1,2,……,M-1.                  (4.15) 

The network outputs at the last layer are: 

a = aM.                                                                                          (4.16) 

Define, 

sm = sensitivity of the error at layer m to elements of the net input nm to that 

layer. The mathematical derivation of an expression for s is given in [3, 70]. 

Now during training, the desired outputs at the neurons in the hidden layers 

are not known and therefore the error at the hidden layers cannot be 

calculated. However the desired or target output at the last or output layer is 



 

 73 

known. So using the sensitivities s at this last layer, the sensitivities for other 

layers are calculated. For example the sensitivity at layer m is calculated using 

the sensitivity at layer m+1 as shown in Equation 4.18. It is this recursive 

calculation or back propagation of the sensitivities of the error to net inputs n 

that gives the algorithm its name backpropagation algorithm or learning 

rule. 

To propagate the sensitivities backwards the Jacobian matrix represented by 

Equation 4.17 is needed. 
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Then it can be proved that, (references [3, 70]), 

1 1( )( ) , 1,....., 2,1.m m m T m m M+ += = −s F n W s�                               (4.18) 

Now the weights and biases can be updated as follows: 
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                                             (4.19) 

4.3.2 Generalisation of Backpropagation ANNs 

When a backpropagation ANN is trained, it is trained using a representative 

and known sample of input/output (target) pairs. However the purpose of 

training the ANN is so that it can predict correctly the output for related 

inputs it was not trained for. When an ANN can do this, the ANN is said to 

be generalised [2, 3, 70]. There can be cases where the ANN has more 

parameters, ie. weights and biases, than data points in the training set; then 

the ANN could become over fitted and give inaccurate results for some 

inputs that it was not trained on. If that happens the ANN is not generalised. 

When designing an ANN it is difficult to know whether it would be 

generalised, but the following general rule is given in reference [3]: 

"For a network to be able to generalise, it should have fewer parameters than 

there are data points in the training set." 

This rule has been adhered to in the research presented here. 

There are also other methods, reference [2], described briefly in Sections 

4.3.2.1 and 4.3.2.2, that ensures good generalisation and were used in this 

research. 

4.3.2.1 Regularisation 

In regularisation, the performance function for training, which is usually the 

mean sum of the squares of the errors, is algorithmically modified during 

training to obtain generalisation. MATLAB Neural Network Toolbox 

provides an automated regularisation training algorithm called 'trainbr' to 

achieve this [2]. This is one of the methods used in this thesis. It is claimed in 
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reference [2] that using this method, the network response would never over 

fit the data. MATLAB help file defines the trainbr algorithm as follows: (In 

the research presented in this thesis it was found to give the most accurate 

results.) 

"trainbr is a network training function that updates the weight and bias values 

according to Levenberg-Marquardt optimization. It minimizes a combination 

of squared errors and weights, and then determines the correct combination 

so as to produce a network that generalizes well. The process is called 

Bayesian regularization." 

 
4.3.2.2 Pre-processing and Post-processing of Data 

To avoid over-fitting, the MATLAB Neural Network Tool box also provides 

two methods of processing the input data, ie. pre-processing. If these 

methods are used the outputs have to be processed to obtain the correct 

results, ie. post-processed. 

One method is to process training input/target pairs so that their values fall 

within the range [-1, 1]. The process is reversed with the outputs to obtain the 

correct results. The other method is to scale the training input/target pairs so 

that the mean and the standard deviation of the training set is normalised. 

Again the outputs have to be post-processed to obtain the correct results. 

The first method been used in this thesis and Chapters 5 and 6 further 

elaborate on the method.  

4.4 Conclusion 

This chapter has presented the theory of Artificial Neural Networks with 

emphasis on the Backpropagation Networks that are used in the research 

presented in this thesis. The theory of ANNs being a vast subject, the 

presentation has been brief; however relevant references have been sited. 
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Various methods of training relevant to the present research have been 

presented with comments where necessary on their suitability. 
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C h a p t e r  5  

DESIGN OF THE SIMULATION PERFORMED 

5.1 Choice and Analysis of a Power System 

The power system chosen for voltage stability analysis is the IEEE 14-Bus 

Test System. Figure 5.1 shows the single line diagram and Table 5.1 gives the 

bus and branch data for this system. It consists of five synchronous machines 

three of which are synchronous compensators for reactive power support; 

eleven loads totalling 259 MW and 81.3 MVAR; and lines and transformers as 

shown. 

 

Figure 5.1 The IEEE 14 Bus Test System 
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A B C D E F G H I J K L M N O P Q R S T U

1 Bus 1 1 HV 1 1 3 1 0 0 0 0 0 0 1.06 100 -100 0 0 0

2 Bus 2 2 HV 1 1 2 1.045 0 21.7 12.7 40 0 0 1.045 50 -40 0 0 0

3 Bus 3 3 HV 1 1 2 1.01 0 94.2 19 0 0 0 1.01 40 0 0 0 0

4 Bus 4 4 HV 1 1 0 1 0 47.8 -3.9 0 0 0 0 0 0 0 0 0

5 Bus 5 5 HV 1 1 0 1 0 7.6 1.6 0 0 0 0 0 0 0 0 0

6 Bus 6 6 LV 1 1 2 1.07 0 11.2 7.5 0 0 0 1.07 24 -6 0 0 0

7 Bus 7 7 ZV 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

8 Bus 8 8 TV 1 1 2 1.09 0 0 0 0 0 0 1.09 24 -6 0 0 0

9 Bus 9 9 LV 1 1 0 1 0 29.5 16.6 0 0 0 0 0 0 0 0.19 0

10 Bus 10 10 LV 1 1 0 1 0 9 5.8 0 0 0 0 0 0 0 0 0

11 Bus 11 11 LV 1 1 0 1 0 3.5 1.8 0 0 0 0 0 0 0 0 0

12 Bus 12 12 LV 1 1 0 1 0 6.1 1.6 0 0 0 0 0 0 0 0 0

13 Bus 13 13 LV 1 1 0 1 0 13.5 5.8 0 0 0 0 0 0 0 0 0

14 Bus 14 14 LV 1 1 0 1 0 14.9 5 0 0 0 0 0 0 0 0 0

1 2 1 1 1 0 0.01938 0.05917 0.0528 0 0 0 0 0 0 0 0 0 0 0 0

1 5 1 1 1 0 0.05403 0.22304 0.0492 0 0 0 0 0 0 0 0 0 0 0 0

2 3 1 1 1 0 0.04699 0.19797 0.0438 0 0 0 0 0 0 0 0 0 0 0 0

2 4 1 1 1 0 0.05811 0.17632 0.034 0 0 0 0 0 0 0 0 0 0 0 0

2 5 1 1 1 0 0.05695 0.17388 0.0346 0 0 0 0 0 0 0 0 0 0 0 0

3 4 1 1 1 0 0.06701 0.17103 0.0128 0 0 0 0 0 0 0 0 0 0 0 0

4 5 1 1 1 0 0.01335 0.04211 0 0 0 0 0 0 0 0 0 0 0 0 0

4 7 1 1 1 0 0 0.20912 0 0 0 0 0 0 0.978 0 0 0 0 0 0

4 9 1 1 1 0 0 0.55618 0 0 0 0 0 0 0.969 0 0 0 0 0 0

5 6 1 1 1 0 0 0.25202 0 0 0 0 0 0 0.932 0 0 0 0 0 0

6 11 1 1 1 0 0.09498 0.1989 0 0 0 0 0 0 0 0 0 0 0 0 0

6 12 1 1 1 0 0.12291 0.25581 0 0 0 0 0 0 0 0 0 0 0 0 0

6 13 1 1 1 0 0.06615 0.13027 0 0 0 0 0 0 0 0 0 0 0 0 0

7 8 1 1 1 0 0 0.17615 0 0 0 0 0 0 0 0 0 0 0 0 0

7 9 1 1 1 0 0 0.11001 0 0 0 0 0 0 0 0 0 0 0 0 0

9 10 1 1 1 0 0.03181 0.0845 0 0 0 0 0 0 0 0 0 0 0 0 0

9 14 1 1 1 0 0.12711 0.27038 0 0 0 0 0 0 0 0 0 0 0 0 0

10 11 1 1 1 0 0.08205 0.19207 0 0 0 0 0 0 0 0 0 0 0 0 0

12 13 1 1 1 0 0.22092 0.19988 0 0 0 0 0 0 0 0 0 0 0 0 0

13 14 1 1 1 0 0.17093 0.34802 0 0 0 0 0 0 0 0 0 0 0 0 0

IEEE 14 Bus Test System Bus Data

IEEE 14 Bus Test System Branch Data

 

Table 5.1 The IEEE 14 Bus Test System 
Data 

The column labels, A, B, C,…etc., in Table 5.1 represent the following: 

Bus data: 

A – Introduced by the author of this thesis to identify row numbers. 

B – Introduced by the author of the thesis to identify each bus. 

C – Bus number as per IEEE Common Format. The following are as per   

IEEE Common Format. 

D – Bus name. (To suit the user.) 

E – Load flow area number. (Not used in present analysis.) 
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F – Loss zone number. (Not used in present anlysis.) 

G – Bus type. 

(0 – Unregulated bus, ie. load, PQ 

1 – Hold MVAR generation within voltage limits, ie. gen., PQ, 

2 – Hold voltage within VAR limits, ie, gen., PV, 

3 – Hold voltage and angle, swing bus.) 

H – Final Voltage in p.u. 

I – Final angle in degrees 

J – Load MW 

K – Load MVAR 

L – Generation MW 

M – Generation MVAR 

N – Base kV, no particular voltage chosen since p.u. values are used 

O – Desired volts in p.u. 

P – Maximum MVAR limit 

Q – Minimum MVAR limit 

R – Shunt conductance G p.u. 

S – Shunt susceptance B p.u. 

T – Remote controlled bus number, not used in present analysis. 
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Branch data: 

A – Start bus of transmission line 

B – End bus of transmission line 

C – Load flow area number, not used in present analysis 

D – Loss zone number, not used in present analysis 

E – Circuit number 

F – Type of branch, 0 – transmission line 

G – Branch resistance, R p.u. 

H – Branch reactance, X p.u. 

I – Line charging susceptance, B p.u. 

J – Line No. 1 MVA rating, not used 

K – Line No. 2 MVA rating, not used 

L – Line No. 3 MVA rating, not used 

M – Control bus number, not used 

N – Control side, not used 

O – Transformer final turns ratio 

P – Transformer final angle, not used 

Q – Minimum tap on transformer, not used 

R – Maximum tap on transformer, not used 
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S – Transformer tap step size, not used 

T – Minimum voltage limit, not used 

U – Maximum voltage limit, not used. 

The IEEE 14-Bus Test System, hereafter referred to as the power system, 

was analysed for voltage stability as the load at each load bus was 

progressively increased using the UWPFLOW computer program, [15]. 

5.1.1 Power System Configurations and Contingencies Used in the 

Voltage Stability Analysis 

The full configuration of the power system as given for the IEEE 14 Bus 

Test System is used. However certain assumptions as to the detail of the 

configuration are made and a number of operational contingencies are 

introduced in the analysis. 

It is assumed that each line of the power system is a double circuit line 

consisting of two identical circuits. Therefore doubling of the line resistance 

and reactance for any line is equivalent to one circuit of that line being out of 

service. 

The voltage stability analysis was conducted for the full power system and the 

following contingencies of one circuit in some lines being out of service. 

5.1.1.1 Contingencies Considered 

The following contingencies were chosen at random: 

1. One circuit from bus 1 to bus 2 out of service. 

2. One circuit from bus 6 to bus 11 out of service. 

3. One circuit from bus 11 to bus 10 out of service. 

4. One circuit from bus 12 to bus 6 out of service. 
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5. One circuit from bus 12 to bus 13 out of service. 

6. One circuit from bus 13 to bus 14 out of service. 

However after these six contingencies were analysed, it was noted that case 1 

above, the case of one circuit from bus 1 to bus 2 out of service, was more 

onerous than the rest due to the fact that most of the generation is 

concentrated on bus 1. Therefore another contingency as below was 

considered. 

7. One circuit from bus 1 to bus 5 out of service. 

5.1.1.2 How the UWPFLOW Program was Used in the Voltage Stability Studies 

The UWPFLOW contains a number of features that can be used in the study 

of voltage stability. The following describes how it was used in the present 

research: 

1. The program was used to determine the point of collapse of the 

power system by the direct method, (refer to Section 3.4.1.3), for the 

full system and all the seven contingencies described above. 

2. Then the parameterised continuation method, (refer to Section 

3.4.1.2), was used to determine the point of collapse and the nose 

curves at the most vulnerable buses for the full system and all the 

seven above contingencies. The conditions under which the 

continuation power flow was run are as follows: 

• The input power system data was in the IEEE format. 

• A distributed slack bus was used for which a generation 

direction file, which gives the direction the generation at each 

bus is to be increased, is required. (See Chapter 6). 
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• Load modelling to take into account the variation in load as the 

voltage at each bus changes during load increase (continuation 

method) was implemented. (See Chapter 6). 

• The loading factor, λ, was increased in increments of 0.01 times 

the load at each bus after the base load flow analysis. The base 

load flow analysis being the load flow run to meet the nominal 

initial loads at the bus as given in Table 5.1. 

5.2 The Artificial Neural Networks used for Training 

For reasons given in Section 4.3.2.2 the backpropagation ANN architecture 

has been chosen for the research presented in this thesis. The notation, R – 

S1 – S2 – S3…, where R is the number of inputs to the ANN and S1, S2 etc. 

are the number of neurons in layer 1, layer 2, etc. is used to represent the 

structure of each network. 

5.2.1 The Backpropagation ANN Architectures Used 

1. The backpropagation ANN architectures described below in Section 

5.2.1.1 were used with the intention of selecting the best architecture 

among them. 

2. Since the study is for voltage collapse under increasing system load, 

the inputs to the ANNs were chosen to be the voltage V, real power 

P and reactive power Q at the most affected buses. Once the 

parameterised continuation power flows were performed under the 

stipulated conditions in Section 5.1.1.2 for the full power system and 

the seven contingencies the seven buses whose voltages were most 

affected were found to be the buses 6, 9, 10, 11, 12, 13 and 14. 

Therefore V, P and Q at these buses were chosen as the inputs to the 

ANNs giving a total of 21 inputs. 
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3. Two thirds of the operating points obtained from each study were 

chosen as the training set. Their order of outputs from the 

UWPFLOW program was scrambled arbitrarily so that the inputs to 

the ANNs are not in any logical order to facilitate generalisation by 

the ANNs. 

4. The third of operating points that are furthest away from voltage 

collapse were allocated the target vector [1 0 0]T for very safe, the 

next third that is nearer the point of voltage collapse were allocated 

the target vector [0 1 0]T for safe and the third that is nearest the 

point of collapse were allocated the target vector [0 0 1]T for critical. 

Thus there are 3 ANN outputs. Therefore if a suitable 

backpropagation ANN from the number trained in this thesis were 

used in the IEEE 14 bus test power system in a real life situation, 

(assuming that this system actually exists), and the relevant inputs fed 

into it during operation, then the ANN would predict how close the 

system is to voltage collapse by its output. Depending on this an 

operator would be able to take any necessary corrective action. The 

ANN would be able to correctly predict even for situations that it was 

not trained for as was seen by testing the ANN with the test set. Refer 

to Chapter 6. 

5. The remaining third of the operating points after the training set was 

selected were chosen as the test or validation set. This validation set 

was used in testing the ANNs and the results were compared against 

the known target vectors with successful results. Refer to Chapter 6. 

5.2.1.1 The Selected Backpropagation ANN Architectures 

Using the notation introduced in Section 5.2, the ANNs described below 

were trained. The number of data sets used for training was 928. Therefore 

the ANNs were selected such that the total number of parameters, ie. the 

total number of weights and biases, in each net was less than the number of 
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training data sets. This would facilitate generalisation of the ANNs. Refer to 

Section 4.3.2. 

ANN 1: 

21 – 25 – 3. 

Number of parameters = 649. 

Layer 1, logsig transfer function, layer 2 purelin transfer function. 

Training function, trainlm. This is a backpropagation algorithm modified for 

low computer memory use. Reference [2]. 

ANN 2: 

21 – 25 – 3. 

Number of parameters = 649. 

Layer 1, tansig transfer function, layer 2 purelin transfer function. 

Training function, trainlm. 

ANN 3: 

21 – 25 – 3. 

Number of parameters = 649. 

Layer 1, tansig transfer function, layer 2 tansig transfer function. 

Training function, trainlm. 

ANN 4: 

21 – 25 – 3. 
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Number of parameters = 649. 

Layer 1 tansig transfer function, layer 2, purelin transfer function. 

Training function, traincgf. This is a backpropagation algorithm modified for 

low computer memory use by a method different to trainlm. Reference [2]. 

ANN 5: 

21 – 30 – 3. 

Number of parameters = 774. 

Layer 1, tansig transfer function, layer 2, purelin transfer function. 

Training function, trainlm. 

ANN 6: 

21 – 35 – 3. 

Number of parameters = 899. 

Layer 1, tansig transfer function, layer 2, purelin transfer function. 

Training function, trainlm. 

ANN 7: 

21 – 25 – 3. 

Number of parameters = 649. 

Layer 1, tansig transfer function, layer 2, purelin transfer function. 

Training function, trainbr. Refer to Section 4.3.2.1. 
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ANN 8: 

21 – 50 – 3. 

Number of parameters = 1250. 

Layer 1, tansig transfer function, layer 2, purelin transfer function. 

Training function, trainbr. 

The trainbr algorithm, by its design, is not dependent on having lesser 

network parameters than training points and it generalises extremely well. [2]. 

ANN 9: 

21 – 25 – 25 – 3. (This is an ANN with two hidden layers.) 

Number of parameters = 1374. 

Layer 1, tansig transfer function, layer 2, tansig transfer function, layer 3 

purelin transfer function. 

Training function, trainbr. 

For ANNs 7, 8 and 9 all data was used in training because of the assured 

ability of the training function trainbr to generalise correctly. 

5.3 Conclusion 

In this chapter the design of the simulations carried out for the research is 

described. 

The selected power system for analysis is the IEEE 14-Bus Test Power 

System. Configurations of the power system and contingencies selected for 

the voltage stability studies are described. 
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Finally the architectures of the ANNs selected for the research is described. 
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C h a p t e r  6  

SIMULATION RESULTS 

All the simulation data used and the results are presented in this Chapter and 

Appendix 3 along with the relevant graphs. Appendix 3 is saved in the 

accompanying CD due to the large quantity of data that cannot be fitted in 

printed pages. Greatly summarised results are presented in Chapter 7 – 

Discussion of Results – to give a general overview of the results. 

6.1 Voltage Stability Analysis of the IEEE 14 Bus Test Power System 

Voltage stability analysis was conducted on the IEEE 14-Bus Test Power 

System. The circuit diagram of the power system is shown in Figure 5.1 and 

the data for the power system is shown in Table 5.1. 

The generation and load direction file, referred to in Section 5.1.1.2, used in 

the UWPFLOW program, is shown in Table 6.1. 

Table 6.1 The Generation and Load 
Direction File for UWPFLOW Program in 

Required Format 

C 
C                    IEEE 14 BUS AC TEST SYSTEM: 
C                  Generation and Load Direction 
C                         Nihal Fernando 
C This file contains the generation (DPg) and load (Pnl, Qnl, and optional 
C Pzl and Qzl) direction, and the maximum P generation (PgMax) needed for  
C finding the bifurcation point.  Since the IEEE Common Format does not 
C allow for the definition of PgMax, this value is ignored in this file 
C by making it equal to 0. 
C 
C 
C The unformatted data is given in the following order: 
C 
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C BusNumber  BusName        DPg      Pnl        Qnl     PgMax [ Smax Vmax 
Vmin Pzl  Qzl – The quantities within square brackets not used. ] 
   1            0           2.33      0            0          0 
   2            0           0.40      0.217      0.127   0 
3  0  0  0.942   0.19    0 
4  0  0  0.478  -0.039  0 
5  0  0  0.076   0.016  0 
6  0  0  0.112   0.075  0 
7  0  0  0  0  0 
8  0  0  0  0  0 
9  0  0  0.295  0.166  0 
10  0  0  0.09  0.058  0 
11  0  0  0.035  0.018  0 
12  0  0  0.061  0.016  0 
13  0  0  0.135  0.058  0 
14  0  0  0.149  0.05   0 
 
The load model file referred to in Section 5.1.1.2 and used in the UWPFLOW 

program, is shown in Table 6.2. 

Table 6.2 The Load Model File 
UWPFLOW Program in Required Format 

C 
C                    IEEE 14 BUS TEST SYSTEM: 
C                    Steady State Load Data 
C 
C                    Nihal Fernando 
C 
C 
C This file is used to define the steady state load characteristics 
C for bifurcation studies. 
C The data is assumed to be given in SSSP (Ontario Hydro) format. 
C The program only reads the information between the keywords NLBS 
C and EDATA, the rest is ignored. 
C This data describes the steady state load power as: 
C             
C                    Pl = Pn*V^a + Pz*V^2   (Pn and Qn represent the % of 
nominal load) 
C                    Ql = Qn*V^b + Qz*V^2 (Pz and Qz the balance) 
C 
C and this information is given in the following FORTRAN format: 
C              
C               BusNumber    PnQna        b      
C                 [I5]      [I5]    [I5]   [F10.5]  [F10.5] 
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C 
 DGEN 
EDATA 
! 
 NLBS 
C 
C Bus|   |   |         |         | 
C-Num<--Pn<--Qn<--------a<--------b 
C  I5   I5   I5     F10.5     F10.5 
     2  100              1.0 
     3  100              1.0 
     4  100              1.0 
     5  100   30       1.0       1.0 
     6  100   30       1.0       1.0 
     9  100   30       1.0       1.0 
   10  100   30       1.0       1.0 
   11    60   60       0.0       0.0 
   12    60   60       0.0       0.0 
   13    60   60       0.0       0.0 
   14    60   60       0.0       0.0 
EDATA 
! 
 NDCL 
EDATA 
  END 
 
6.1.1 Base Load Flow Analysis 

A base load flow analysis was performed on the full power system. That is no 

contingencies were considered. The UWPFLOW program automatically 

performs a base power flow for the power system each time a voltage stability 

analysis is performed before it starts increasing the load at each bus up to the 

nose of the nose curve or point of collapse both of which are the same point. 

This base power flow would give the same results for all the contingencies 

considered as well, since the base load at each bus remained the same. Table 

A3.1 in Appendix 3 gives the results of this base power flow. Due to the large 

number of operating points of the power system that were evaluated most of 

the tables in Chapter 6 are provided in Appendix 3. This Appendix is placed 

in the accompanying CD in MS Excel format. 
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6.1.2 Voltage Stability Analysis 

6.1.2.1 Full Power System 

The point of collapse loading factor λ by the direct method = 0.763745 

As stated in Section 5.1 the base load (or the nominal load) of the power 

system is: 

P = 259 MW 

Q = 81.3 MVAR 

The point of collapse loading factor of 0.763745 obtained by the direct 

method indicates that the following total load was reached by the power 

system at the point of voltage collapse: 

P = (1 + 0.763745)259 = 456.809955MW 

Q = (1 + 0.763745)81.3 = 143.392469MVA 

The results of the parameterised continuation power flow are shown in 

Appendix 3, Excel Sheet 1.  

The UWPFLOW program provides the voltages for the 8 weakest buses in 

the power system at each operating point and these are shown in the Tables 

in Appendix 3, Excel Sheets 1, 3, 5, 7, 9, 11, 13 and 15. The weakest buses are 

7, 6, 9, 11, 10, 12, 13 and 14, 14 being the weakest bus. The operating point 

loading factor and load are also shown. 

Data generated by the UWPFLOW program for the nose curves at the weak 

buses is shown in Appendix 3, Excel Sheet 2. 

Figure 6.1 shows the voltage profile or the nose curves for the buses 7, 6, 9 

and 11, the four worst affected buses. Voltage at each bus in p.u. is plotted 

against the loading factor λ in p.u. 
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Figure 6.1 The Voltage Profile or Nose 
Curves for Four Buses – Full Circuit 

Point of collapse loading factor by this method = 0.76321 

Therefore at point of collapse: 

P = (1 + 0.76321)259 = 456.67139 MW 

Q = (1 + 0.76321)81.3 = 143.348973 MVA 

Summarising:- 

Base Pload = 259 MW 

Base Qload = 81.3 MVA 

Point of collapse by direct method occurs at λ = 0.763745. 

Therefore voltage collapse occurs at system power: 
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P = 456.809955 MW 

Q = 143.392469 MVA 

Point of collapse by continuation method occurs at λ = 0.76321. 

Therefore voltage collapse occurs at system power: 

P = 456.67139 MW 

Q = 143.348973 MVA 

6.1.2.2 Power System with One Circuit from Buses 1 to 2 Out of Service 

This is the contingency 1 in Section 5.1.1.1. It was simulated by assuming the 

line to be a double circuit line and doubling the impedance of the line 

between buses 1 and 2. 

Point of collapse by direct method occurs at λ = 0.675355 

Therefore voltage collapse occurs at system power: 

P = 433.916945 MW 

Q = 136.206362 MVA 

Point of collapse by the parameterised continuation method occurs at: 

λ = 0.67444. 

Therefore voltage collapse occurs at system power: 

P = 433.67996 MW 

Q = 136.131972 MVA 

The weakest buses are buses 7, 6, 9, 11, 10, 12, 13 and 14. 
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The results of the parameterised continuation power flow are shown in 

Appendix 3, Excel Sheet 3. 

Data generated by the UWPFLOW program for the nose curves at the weak 

buses is shown in Appendix 3, Excel Sheet 4. 

Figure 6.2 shows the voltage profile or the nose curves for the buses 7, 6, 9 

and 11, the four worst affected buses. Voltage at each bus in p.u. is plotted 

against the loading factor λ in p.u. 

 

Figure 6.2 The Voltage Profile or Nose 
Curves for Four Buses – One Circuit Buses 

1 to 2 Out 

6.1.2.3 Power System with One Circuit from Buses 6 to 11 Out of Service 

This is the contingency 2 in Section 5.1.1.1. It was simulated by assuming the 

line to be a double circuit line and doubling the impedance of the line 

between buses 6 and 11. 
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Point of collapse by direct method occurs at λ = 0.763141 

Therefore voltage collapse occurs at system power: 

P = 456.65352 MW 

Q = 143.34336 MVA 

Point of collapse by the parameterised continuation method occurs at: 

λ = 0.76255. 

Therefore voltage collapse occurs at system power: 

P = 456.50045 MW 

Q = 143.29531 MVA 

The weakest buses are buses 7, 6, 9, 11, 10, 12, 13 and 14. 

The results of the parameterised continuation power flow are shown in 

Appendix 3, Excel Sheet 5. 

Data generated by the UWPFLOW program for the nose curves at the weak 

buses is shown in Appendix 3, Excel Sheet 6. 

Figure 6.3 shows the voltage profile or the nose curves for the buses 7, 6, 9 

and 12, the four worst affected buses. Voltage at each bus in p.u. is plotted 

against the loading factor λ in p.u. 
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Figure 6.3 The Voltage Profile or Nose 
Curves for Four Buses – One Circuit Buses 

6 to 11 Out 

6.1.2.4 Power System with One Circuit from Buses 6 to 12 Out of Service 

This is the contingency 3 in Section 5.1.1.1. It was simulated by assuming the 

line to be a double circuit line and doubling the impedance of the line 

between buses 6 and 12. 

Point of collapse by direct method occurs at λ = 0.761305 

Therefore voltage collapse occurs at system power: 

P = 456.177995 MW 

Q = 143.190965 MVA 

Point of collapse by the parameterised continuation method occurs at: 

λ = 0.76094. 
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Therefore voltage collapse occurs at system power: 

P = 456.08386 MW 

Q = 143.164422 MVA 

The weakest buses are buses 7, 6, 9, 11, 10, 13, 12 and 14. 

The results of the parameterised continuation power flow are shown in 

Appendix 3, Excel Sheet 7. 

Data generated by the UWPFLOW program for the nose curves at the weak 

buses is shown in Appendix 3, Excel Sheet 8. 

Figure 6.4 shows the voltage profile or the nose curves for the buses 7, 6, 9 

and 11, the four worst affected buses. Voltage at each bus in p.u. is plotted 

against the loading factor λ in p.u. 
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Figure 6.4 The Voltage Profile or Nose 
Curves for Four Buses – One Circuit Buses 

6 to 12 Out 

6.1.2.5 Power System with One Circuit from Buses 10 to 11 Out of Service 

This is the contingency 4 in Section 5.1.1.1. It was simulated by assuming the 

line to be a double circuit line and doubling the impedance of the line 

between buses 10 and 11. 

Point of collapse by direct method occurs at λ = 0.763767 

Therefore voltage collapse occurs at system power: 

P = 456.815653 MW 

Q = 143.394257 MVA 

Point of collapse by the parameterised continuation method occurs at: 

λ = 0.76094. 
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Therefore voltage collapse occurs at system power: 

P = 456.08386 MW 

Q = 143.164422 MVA 

The weakest buses are buses 7, 6, 9, 11, 12, 10, 13 and 14. 

The results of the parameterised continuation power flow are shown in 

Appendix 3, Excel Sheet 9. 

Data generated by the UWPFLOW program for the nose curves at the weak 

buses is shown in Appendix 3, Excel Sheet 10. 

Figure 6.5 shows the voltage profile or the nose curves for the buses 7, 6, 9 

and 11, the four worst affected buses. Voltage at each bus in p.u. is plotted 

against the loading factor λ in p.u. 
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Figure 6.5 The Voltage Profile or Nose 
Curves for Four Buses – One Circuit Buses 

10 to 11 Out 

6.1.2.6 Power System with One Circuit from Buses 12 to 13 Out of Service 

This is the contingency 5 in Section 5.1.1.1. It was simulated by assuming the 

line to be a double circuit line and doubling the impedance of the line 

between buses 12 and 13. 

Point of collapse by direct method occurs at λ = 0.763653 

Therefore voltage collapse occurs at system power: 

P = 456.786127 MW 

Q = 143.384989 MVA 

Point of collapse by the parameterised continuation method occurs at: 

λ = 0.76312. 
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Therefore voltage collapse occurs at system power: 

P = 456.64808 MW 

Q = 143.341656 MVA 

The weakest buses are buses 7, 6, 9, 11, 12, 10, 13 and 14. 

The results of the parameterised continuation power flow are shown in 

Appendix 3, Excel Sheet 11. 

Data generated by the UWPFLOW program for the nose curves at the weak 

buses is shown in Appendix 3, Excel Sheet 12. 

Figure 6.6 shows the voltage profile or the nose curves for the buses 7, 6, 9 

and 11, the four worst affected buses. Voltage at each bus in p.u. is plotted 

against the loading factor λ in p.u. 
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Figure 6.6 The Voltage Profile or Nose 
Curves for Four Buses – One Circuit Buses 

12 to 13 Out 

6.1.2.7 Power System with One Circuit from Buses 13 to 14 Out of Service 

This is the contingency 6 in Section 5.1.1.1. It was simulated by assuming the 

line to be a double circuit line and doubling the impedance of the line 

between buses 13 and 14. 

Point of collapse by direct method occurs at λ = 0.762671 

Therefore voltage collapse occurs at system power: 

P = 456.531789 MW 

Q = 143.305152 MVA 

Point of collapse by the parameterised continuation method occurs at: 

λ = 0.76216. 
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Therefore voltage collapse occurs at system power: 

P = 456.39944 MW 

Q = 143.263608 MVA 

The weakest buses are buses 7, 6, 9, 11, 12, 10, 13 and 14. 

The results of the parameterised continuation power flow are shown in 

Appendix 3, Excel Sheet 13. 

Data generated by the UWPFLOW program for the nose curves at the weak 

buses is shown in Appendix 3, Excel Sheet 14. 

Figure 6.7 shows the voltage profile or the nose curves for the buses 7, 6, 9 

and 11, the four worst affected buses. Voltage at each bus in p.u. is plotted 

against the loading factor λ in p.u. 
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Figure 6.7 The Voltage Profile or Nose 
Curves for Four Buses – One Circuit Buses 

13 to 14 Out 

6.1.2.8 Power System with One Circuit from Buses 1 to 5 Out of Service 

This is the contingency 7 in Section 5.1.1.1. It was simulated by assuming the 

line to be a double circuit line and doubling the impedance of the line 

between buses 1 and 5. 

Point of collapse by direct method occurs at λ = 0.691537 

Therefore voltage collapse occurs at system power: 

P = 438.108083 MW 

Q = 137.521958 MVA 

Point of collapse by the parameterised continuation method occurs at: 

λ = 0.69140. 
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Therefore voltage collapse occurs at system power: 

P = 438.0726 MW 

Q = 137.51082 MVA 

The weakest buses are buses 7, 6, 9, 11, 10, 12, 13 and 14. 

The results of the parameterised continuation power flow are shown in 

Appendix 3, Excel Sheet 15. 

Data generated by the UWPFLOW program for the nose curves at the weak 

buses is shown in Appendix 3, Excel Sheet 16. 

Figure 6.8 shows the voltage profile or the nose curves for the buses 7, 6, 9 

and 11, the four worst affected buses. Voltage at each bus in p.u. is plotted 

against the loading factor λ in p.u. 
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Figure 6.8 The Voltage Profile or Nose 
Curves for Four Buses – One Circuit Buses 

1 to 5 Out 

The results of Section 6.1.2 are tabulated in Table 7.1. 

6.2 Training of Backpropagation ANNs and Their Final Errors 

1. Section 5.2.1 describes the ANN architectures used, the training and 

target sets used, the test or validation sets used and how they were 

selected. The seven weakest buses whose parameters real power in 

MW, reactive power in MVAr and voltage in p.u. at each operating 

point were chosen as the training and validation sets are buses 6, 9, 

10, 11, 12, 13 and 14. Buses 7 and 8 were not chosen since they are a 

transformer internal bus and a synchronous condenser bus 

respectively. 

2. The target set is derived from the load margin. Load margin is defined 

in Section 3.4.1 and is calculated for each parameterised continuation 
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power flow operating point and shown in Appendix 3, Excel Sheets 1, 

3, 5, 7, 9, 11, 13 and 15. Each operating point was allocated one of 

three target vectors as described in Section 5.2.1, each of the three 

target vectors representing a very safe, safe or critical operating 

condition. 

3. Two thirds of the operating points from each power flow were used 

as the training set and the balance one third was used as the validation 

set. 

4. Finally each ANN is tested with the validation test and the error 

plotted using a Matlab program written by the author of this thesis. 

6.2.1 Training of Backpropagation ANNs 

The training set for all ANNs was derived as follows: 

• Two thirds of each set of operating points for the seven weakest 

buses, namely buses 6, 9, 10, 11, 12, 13 and 14, obtained from the 

parameterised continuation power flow for the full power system and 

all the contingencies (refer to Section 5.1.1) were selected as the 

training set. The remaining one third was reserved for testing the 

trained ANNs and is referred to as the simulation set. 

• The training sets for the power flows were designated p1, p2,…,p8. 

Their target vector sets as explained in Section 5.2.1 were designated 

t1, t2,…,t8. Refer to the tables in Appendix 3, Excel Sheet 17. 

• Similarly the testing or simulation or testing sets were designated s1, 

s2,…,s8 and the respective target vectors were designated t'1, 

t'2,…,t'8. 
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• The final training set was designated P1 (= p1 + p2 +…+p8) with the 

order of operating points arbitrarily shuffled for better generalisation 

of the ANNs. 

• The final target set was designated T1 (= t1 + t2 +…+t8) the order 

of the target vectors shuffled in the exact order of shuffling used for 

P1. 

• The simulation set S and its correct target vector set Ts was similarly 

derived but the sets were not shuffled as this is unnecessary for a test 

set. 

The matrices P1, T1, S and Ts, since they are too large for MS Excel or MS 

Word, are included in Appendix 3 in MATLAB format and can be opened by 

the MATLAB program. 

6.2.1.1 The MATLAB Program to Draw Error graphs of the Simulation Results 

After the ANNs were trained they were tested with the simulation set to test 

the accuracy and generalisation of the ANNs. It is emphasized that the 

simulation set is separate from the training set and the trained ANNs have 

not encountered the simulation set during training. Therefore it is a valid test 

of the accuracy of the ANNs to correctly predict the voltage stability state of 

the power system for any of the possible operating points and therefore it is 

also a test of the generalisation of the ANNs. 

The MATLAB program given below was written to give two different 

graphical representations of the simulation errors and the average value of the 

simulation errors. The graph titled 'Error Vector Magnitude' gives the 

magnitude of the error plotted against each simulation set point. The graph 

titled 'Error Matrix Visual' gives an overall view of how the errors are 

distributed though an estimation of the error is difficult with this 

representation. 
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The Matlab Program: 

% Matlab Program to Calculate Error Between Target and Simulated Result 

% 1. a = simulation results, T = Targets 

% 2. Subtract elements of 'a' from elements of 'T'=A 

% 3. Square each element of 'A'=Esq 

% 4. Add all columns of Esq=Esqsum 

% 5. Get sqrt of each element of Esqsum=E 

% 6. Average error magnitude Eav = sum(E)/462 

% 7. Graph E Vs column or target number 

% 8. Graph error matrix A for visualisation 

 

A = Ts - a; 

Esq = A .^ 2; 

Esqsum = sum(Esq); 

E = Esqsum .^ 0.5; 

Eav = sum(E)/462 

plot(E), title('Error Vector Magnitude'), xlabel('Target No.'),... 

    ylabel('Error Vector Magnitude') 

figure     % Creates new figure window for second figure 
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contour3(A), title('Error Matrix Visual'), xlabel('Target No.'),... 

    ylabel('Matrix Row No.'), zlabel('Error') 

6.2.1.2 ANN 1 

(Section 5.2.1.1 explains the different ANN architectures such as ANN 1 used 

in the research). 

The trained ANN 1 is given in Appendix 3 as Backprop1.mat, a Matlab file. 

(Note: All ANNs were trained in the Matlab Neural Network Toolbox). 

Trained for 1000 episodes when minimum error was reached. 

The simulation results are given in Appendix 3, ANN 1 Simulation 

Results.doc. 

Average error = 0.1753 

Figure 6.9 shows the error vector magnitude graph. 
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Figure 6.9 ANN 1 Simulation Error 
Magnitude 

Figure 6.10 shows the error matrix visual graph. 

 

Figure 6.10 ANN 1 Simulation Error 
Matrix Visual 

Note that Figure 6.10 is to given as a visual aid to show where the errors lie. It 

is seen that most of the errors represented by the shaded plane is very close to 

zero with a much fewer number of errors lying away from the zero error 

plane. 

6.2.1.3 ANN 2 

The trained ANN 2 is given in Appendix 3 as Backprop2.mat, a Matlab file. 

Trained for 1000 episodes when minimum error was reached. 

The simulation results are given in Appendix 3, ANN 2 Simulation 

Results.doc. 
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Average error = 0.0555 

Figure 6.11 shows the error vector magnitude graph. 

 

Figure 6.11 ANN 2 Simulation Error 
Magnitude 

Figure 6.12 shows the error matrix visual graph. 
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Figure 6.12 ANN 2 Simulation Error 
Matrix Visual 

6.2.1.4 ANN 3 

The trained ANN 3 is given in Appendix 3 as Backprop3.mat, a Matlab file. 

Trained for 1000 episodes when minimum error was reached. 

The simulation results are given in Appendix 3, ANN 3 Simulation 

Results.doc. 

Average error = 0.0347 

Figure 6.13 shows the error vector magnitude graph. 
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Figure 6.13 ANN 3 Simulation Error 
Magnitude 

Figure 6.14 shows the error matrix visual graph. 
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Figure 6.14 ANN 3 Simulation Error 
Matrix Visual 

6.2.1.5 ANN 4 

The trained ANN 4 is given in Appendix 3 as Backprop4.mat, a Matlab file. 

Trained for 630 episodes when minimum error was reached. 

The simulation results are given in Appendix 3, ANN 4 Simulation 

Results.doc. 

Average error = 0.02534 

Figure 6.15 shows the error vector magnitude graph. 
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Figure 6.15 ANN 4 Simulation Error 
Magnitude 

Figure 6.16 shows the error matrix visual graph. 
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Figure 6.16 ANN 4 Simulation Error 
Matrix Visual 

6.2.1.6 ANN 5 

The trained ANN 5 is given in Appendix 3 as Backprop5.mat, a Matlab file. 

Trained for 1000 episodes when minimum error was reached.  

The simulation results are given in Appendix 3, ANN 5 Simulation 

Results.doc. 

Average error = 0.0850 

Figure 6.17 shows the error vector magnitude graph. 
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Figure 6.17 ANN 5 Simulation Error 
Magnitude 

 Figure 6.18 shows the error matrix visual graph. 
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Figure 6.18 ANN 5 Simulation Error 
Matrix Visual 

6.2.1.7 ANN 6 

The trained ANN 6 is given in Appendix 3 as Backprop6.mat, a Matlab file. 

Trained for 1000 episodes when minimum error was reached. 

The simulation results are given in Appendix 3, ANN 6 Simulation 

Results.doc. 

Average error = 0.1714 

Figure 6.19 shows the error vector magnitude graph: 
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Figure 6.19 ANN 6 Simulation Error 
Magnitude 

Figure 6.20 shows the error matrix visual graph: 
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Figure 6.20 ANN 6 Simulation Error 
Matrix Visual 

6.2.1.8 ANN 7 

The trained ANN 7 is given in Appendix 3 as Backprop7.mat, a Matlab file. 

Trained for 220 episodes when minimum error was reached. 

The simulation results are given in Appendix 3, 

ANN_7_Simulation_Results.mat. (This is a Matlab file and is too large to be 

displayed in full on the computer screen and therefore cannot be copied and 

pasted as a MS document). Both for training and simulation of ANN 7 all 

1390 operating points of the power system were used. The reason being as 

stated in Section 4.3.2.1 the trainbr training function used in this ANN 

generalises the ANN extremely well. This is borne out by the fact that the 

average error is extremely small in this case. 

Average error = 3.5789 x 10-4. 

Figure 6.21 shows the error vector magnitude graph. 
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Figure 6.21 ANN 7 Simulation Error 
Magnitude 

Figure 6.22 shows the error matrix visual graph. 
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Figure 6.22 ANN 7 Simulation Error 
Matrix Visual 

6.2.1.9 ANN 8 

The trained ANN 8 is given in Appendix 3 as Backprop8.mat, a Matlab file. 

Trained for 500 episodes when minimum error was reached. 

The simulation results are given in Appendix 3, 

ANN_8_Simulation_Results.mat. (This is a Matlab file and is too large to be 

displayed in full on the computer screen and therefore cannot be copied and 

pasted as a MS document). Both for training and simulation of ANN 8 all 

1390 operating points of the power system were used. The reason being as 

stated in Section 4.3.2.1 the trainbr training function used in this ANN 

generalises the ANN extremely well. This is borne out by the fact that the 

average error is extremely small in this case. 

Average error = 2.7596 x 10-4. 

Figure 6.23 shows the error vector magnitude graph. 
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Figure 6.23 ANN 8 Simulation Error 
Magnitude 

Figure 6.24 shows the error matrix visual graph. 
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Figure 6.24 ANN 8 Simulation Error 
Matrix Visual 

6.2.1.10 ANN 9 

The trained ANN 9 is given in Appendix 3 as Backprop9.mat, a Matlab file. 

Trained for 231 episodes when minimum error was reached. 

The simulation results are given in Appendix 3, 

ANN_9_Simulation_Results.mat. (This is a Matlab file and is too large to be 

displayed in full on the computer screen and therefore cannot be copied and 

pasted as a MS document). Both for training and simulation of ANN 9 all 

1390 operating points of the power system were used. The reason being as 

stated in Section 4.3.2.1 the trainbr training function used in this ANN 

generalises the ANN extremely well. This is borne out by the fact that the 

average error is extremely small in this case. 

Average error = 2.2170 x 10-5. 

Figure 6.25 shows the error vector magnitude graph. 
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Figure 6.25 ANN 9 Simulation Error 
Magnitude 

Figure 6.26 shows the error matrix visual graph. 
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Figure 6.26 ANN 9 Simulation Error 
Matrix Visual 

Results of Section 6.2.1 are tabulated in Table 7.2 

6.3 Conclusion 

This chapter presented the results for the following procedures: 

• Voltage stability analysis using the parameterised continuation method 

of the IEEE 14 Bus Test Power System. This analysis was conducted 

for the full system and seven contingency configurations of the power 

system. 

• Voltage stability analysis of the same power system to determine the 

point of collapse of the system by the direct method. This analysis 

was also conducted for the same power system configurations as 

above. 
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• Training of nine backpropagation ANNs each with a different 

architecture. The error plots of their simulation are also presented. 

• Appendix 3 in the enclosed CD contains the files of tables of data and 

the trained ANNs in formats referred to in this chapter and obvious 

from a glance at the files. These files are too large to be included in 

printed paper format. 
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C h a p t e r  7  

DISCUSSION OF RESULTS 

A discussion of the results with respect to the aims of the research laid down 

in Section 1.2 is presented in this chapter.  Section 1.2 presents the aims in 

point form and a summary of these aims is used as the relevant section 

headings. The discussion relevant to the hypothesis laid down in Section 1.3 

and suitable topics for future research in the field are presented in Chapter 8. 

7.1 A Study of the Theory of Voltage Stability 

Voltage stability and collapse being a power system phenomenon that has 

come into prominence in recent times, its theory is not well known and was 

developed only in recent times, refer to Section 1.5. In fact the theory has 

been formalised by IEEE only as recently as 2003 in its publication [20]. 

Therefore it was necessary to make a thorough study of the theory before 

proceeding with the research. It was also considered necessary to present the 

theory in the thesis for completeness and to place the main aims in context. 

Voltage stability theory utilises a rather difficult branch of mathematics called 

the theory of dynamical systems. This is presented in Appendices 1 and 2. 

The theory of voltage stability itself, being part of the subject of this thesis, is 

presented in Chapter 2. 

7.2 Voltage Stability Analysis of the IEEE 14-Bus Test Power System in 

Full and Under Different Contingencies 

The results of the UWPFLOW voltage stability analysis from Section 6.1.2 for 

the full power system and the power system under the different contingencies 

in Section 5.1.1.1 are summarised below in Table 7.1. 
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Table 7.1 Voltage Stability Analysis 
Summary 

Direct Method Parameterised Continuation Method Contigency 

Line Out 
λ P MW Q MVA λ P MW Q MVA 

Full System 0.76375 456.80996 143.39247 0.76321 456.67139 143.34897 

Conting. 1 

1-2 Out 

0.67536 433.91695 136.20636 0.67444 433.67996 136.13197 

Conting. 2 

6-11 Out 

0.76314 456.65352 143.34336 0.76255 456.50045 143.29531 

Conting. 3 

6-12 Out 

0.76131 456.17799 143.19097 0.76094 456.08386 143.16442 

Conting. 4 

10-11 Out 

0.76377 456.81565 143.39426 0.76094 456.08386 143.16442 

Conting. 5 

12-13 Out 

0.76365 456.78613 143.38499 0.76312 456.64808 143.34166 

Conting. 6 

13-14 Out 

0.76267 456.53179 143.30515 0.76216 456.39944 143.26361 

Conting. 7 

1-5 Out 

0.69154 438.10808 137.52196 0.69140 438.07260 137.51082 

 

• The point of collapse loading λ in Table 7.1 is the additional load 

above the base power flow load, (Section 6.1.1), expressed as a 

fraction of the base power flow load at which the system voltages 

collapse losing voltage stability. 



 

 132 

• Two methods were used to establish the point of collapse of the 

power system namely, the direct method and the parameterised 

continuation method. (Refer to Sections 3.4.1.3 and 3.4.1.2 

respectively.) 

• It is seen from Table 7.1 that the values of the point of collapse 

obtained from the two methods agree within a small tolerance, 

mutually validating both methods. 

• The nose curves of Section 6.1.2 are drawn for the four worst 

affected buses for the full power system and the seven contingencies. 

It is seen from these nose curves that there is a catastrophic failure of 

the power system at the nose of the nose curve, (refer to Section 2.7), 

when the loads at the buses are progressively increased as would 

happen in a power system as demand increases. 

• The parameterised continuation power flow results for the 8 worst 

affected buses are shown in Appendix 3, Excel Sheets 1 to 16. 

• It is seen that the order of the worst affected buses change somewhat 

as different contingencies are considered. There can be wider changes 

when different power systems are considered depending on the 

robustness of different areas of those power systems with respect to 

voltage stability. 

• It is evident from Table 7.1 that contingency 1, when one line 

between buses 1 and 2 is out, is worse than contingencies 2 to 6 with 

respect to voltage stability. This led to the selection of contingency 7 

in the same area of the power system as in contingency 1 as a check. 

Again it is found that this contingency is worse than contingencies 2 

to 6. Therefore it is evident that this area of the power system is weak 
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with respect to voltage stability and requires strengthening in terms of 

transmission lines and reactive power compensation. 

7.3 A Study of the Theory of Soft Computing or Artificial Intelligence 

Application of soft computing or artificial intelligence methods to power 

system analysis in general and voltage stability in particular is new. Due to 

reasons given in Chapter 4, the use of artificial neural networks (ANNs), was 

chosen as the most suitable artificial intelligence method for the study of 

voltage stability in power systems. Thus it was necessary to make a thorough 

study of ANNs. ANNs have been developed over the years in many widely 

differing fields and the knowledge is scattered over many publications. The 

theory of ANN's that is relevant to the research presented in this thesis is 

presented in Chapter 4. 

7.4 Training of Artificial Neural Networks for the Prediction of Voltage 

Instability in the IEEE 14 Bus Test Power System 

Nine different ANN architectures, ANN 1 – 9, were trained to determine 

their suitability for the prediction of voltage instability in the IEEE 14 Bus 

Test Power System. Training and validation sets were chosen from the 

parameterised power flow studies done for the full power system and the 

contingencies described in Section 5.1.1.1 for the buses 6, 9, 10, 11, 12, 13 

and 14. The training parameters for each bus are its, real power in MW, 

reactive power in MVA and voltage in p.u. Target vectors were selected for 

each power system operating point derived from its load margin as described 

in Section 3.4.1. Refer to Appendix 1, Chapter 6 Tables, Sheets 1, 3, 5, 7, 9, 

11, 13 and 15. 

Two types of error graphs for each trained ANN, namely Error Vector 

Magnitude and Error Matrix Visual, were drawn using a Matlab program 

written by the author of this thesis and are shown in Figures 6.9 to 6.26. 
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The trained ANNs are included in Appendix 3 as Matlab files 

Backprop1.mat…Backprop.9.mat. The simulation results are given in 

Appendix 3 in MS Word format as ANN1 Simulation Results.doc…ANN9 

Simulation Results.doc. 

Each trained ANN architecture, average error and the number of episodes 

taken to train the ANN are summarised below in Table 7.2. 
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Table 7.2 ANN Training Summary 

ANN Architecture ANN 

Layers Transfer Functions Train Algorithm 

Average Error No. of Episodes 

ANN 1 21-25-3 Logsig/Purelin Trainlm 0.1753 1000 

ANN 2 21-25-3 Tansig/Purelin Trainlm 0.0555 1000 

ANN 3 21-25-3 Tansig/Tansig Trainlm 0.0347 1000 

ANN 4 21-25-5 Tansig/Purelin Traincgf 0.0253 630 

ANN 5 21-30-3 Tansig/Purelin Trainlm 0.0850 1000 

ANN 6 21-35-3 Tansig/Purelin Trainlm 0.1714 1000 

ANN 7 21-25-3 Tansig/Purelin Trainbr 3.5789 x 10-4 220 

ANN 8 21-50-3 Tansig/Purelin Trainbr 2.7596 x 10-4 500 

ANN 9 21-25-25-3 Tansig/Tansig/ 

Purelin 

Trainbr 2.2170 x 10-5 231 

 

From the error graphs in Figures 6.9 to 6.26 the following observations may 

be drawn: 

 

ANN 1: 

There are errors in all resultant simulation vectors with the error magnitude 

approaching or exceeding 0.7 in 16 cases. This led to discarding logsig as a 

suitable transfer function and adopting tansig transfer function for 

subsequent architectures. ANN 1 also has the highest average error. 



 

 136 

ANN 2: 

There is very low error in the majority of the resultant simulation vectors with 

the error magnitude approaching or exceeding 1 in 12 cases. This low error 

justifies the change of transfer function to tansig. 

ANN 3: 

There are low but not very low errors in majority of the resultant simulation 

vectors with the error magnitude approaching 1.5 in 10 cases. In this case the 

output layer of neurons also had tansig transfer functions as opposed to 

purelin in all the other cases. Since there were errors in the majority of the 

resultant simulation vectors, using tansig in the output layer was abandoned. 

This was justified by better results in subsequent ANNs. 

ANN 4: 

There is a low but distributed error in all the resultant simulation vectors with 

the error magnitude approaching 0.7 in 16 cases. The difference in this case 

was the training function used namely traincgf. Since it produced too many 

errors this training function was abandoned in favour of trainlm and trainbr 

training functions. This is justified by better results with these training 

functions. 

 

 

ANN 5: 

This produced very low errors in the resultant simulation vectors. However 

the magnitude of the error in 3 cases approached or exceeded 4.0 and in 10 

cases it approached or exceeded 1.5. But since there were 462 simulation data 

sets the errors occurred only in a very small percentage of them. Therefore 
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this ANN may be considered acceptably trained. It could also be that ANN 5 

with 30 neurons in the hidden layer and therefore a larger number of 

parameters is becoming over fitted compared to ANN 2 which has only 25 

neurons in the hidden layer. 

ANN 6: 

This ANN produced very low errors in the majority of the resultant 

simulation vectors. However in 14 cases the error was between 1.0 and 16.0 

indicating that the ANN is over fitted lacking generalisation due to an excess 

of ANN parameters. 

ANN 7, ANN 8 and ANN 9: 

These three ANNs produced extremely low errors, the largest errors being in 

the order of 10-3 to 10-4 with much smaller average errors. The reason for this 

being the use of the trainbr training function which uses regularisation during 

training as explained in Section 4.3.2.1. 

Thus it is seen that the architectures, transfer functions and training functions 

used in ANN 2, ANN 7, ANN 8 and ANN 9 are suitable to be trained as soft 

computing or artificial intelligence objects to predict the state of a power 

system with respect to its voltage stability. 

7.5 Conclusion 

A discussion of the results of the research is presented in this chapter. A 

justification of the research undertaken is evident from the positive results 

obtained. The ANNs 2, 7, 8 and 9, from their results, are the most suitable 

ANNs for the prediction of voltage instability in a power system. The power 

system used in this research is the IEEE 14 Bus Test Power System. For 

different power systems, the same architectures with the same transfer 

functions and training functions may be used. However the number of 
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neurons in each layer will have to be different depending on the complexity of 

the power system and the number of training points available for training. 
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C h a p t e r  8  

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

8.1 Conclusions 

In Chapter 1, Section 1.2 the aims of the research presented in this thesis was 

identified. Section 1.3 stated the hypothesis that was to be verified or 

otherwise. Section 1.4 identified the research method to be used. The 

research was carried out as stated and the hypothesis has proved 

correct. 

The hypothesis stated in Section 1.3 is as follows: 

It is possible to train Artificial Neural Networks to predict pending 

voltage instability in a power system. 

A summary of the ANN architectures used, their test or simulation results 

and relevant comments are discussed in Section 7.5. Chapter 6 presents all the 

results of the research with Chapter 7 giving a discussion of all the results. 

As discussed in Sections 7.4 and 7.5, ANN 2, ANN 7, ANN 8, and ANN 9 

are the most suitable for the prediction of pending voltage instability in a 

power system. 

All ANNs used in this thesis have the Backpropagation architecture but differ 

in the transfer function used in different layers, the number of layers, the 

number of neurons in the hidden layers and the training functions used. Refer 

to Section 5.2.1.1. 

Using the notation given in Section 5.2, ANN 2 has the following 

architecture: 
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21 – 25 – 3. 

Number of parameters = 649. 

Layer 1, tansig transfer function, layer 2, purelin transfer function. 

Training function, trainlm. 

Thus out of all the ANNs that do not use the trainbr transfer function, ie. 

ANN 1 to ANN 6, ANN 2 gives the best results. It is to be noted that the 

training set contains 928 data sets, (refer to Section 5.2.1.1), while ANN 2 

contains 649 parameters. This is in accordance with the general rule quoted in 

Section 4.3.2. 

ANN 7 has the following architecture: 

21 – 25 – 3. 

Number of parameters = 649. 

Layer 1, tansig transfer function, layer 2, purelin transfer function. 

Training function, trainbr. 

ANN 8 has the following architecture: 

21 – 50 – 3. 

Number of parameters = 1250. 

Layer 1, tansig transfer function, layer 2 purelin transfer function. 

Training function, trainbr. 

ANN 9 has the following architecture: 



 

 141 

21 – 25 – 25 – 3. 

Number of parameters = 1374. 

Layer 1, tansig transfer function, layer 2, tansig transfer function, layer 3, 

purelin transfer function. 

Training function, trainbr. 

The common feature of ANNs 7, 8, and 9 is that they all have trainbr as the 

training function and all of them give acceptable results in voltage instability 

prediction even though the number of parameters in each of the ANNs 8 and 

9 are greater than the number of training data sets. This is in agreement with 

what is stated in Section 4.3.2.1, which is, that, when using the training 

function trainbr, the network would never over fit the data. 

It is also seen that in all cases the tansig transfer function in the hidden layers, 

purelin transfer function in the output layer and the trainlm or trainbr training 

function give the best results for Backpropagation ANNs for use in the 

prediction of voltage instability in power systems.  

Any trained ANN is specific to the power system it was trained for and in the 

event of additions to the power system being made or even parts of it 

operating islanded, different ANNs need to be trained or the same ANNs 

retrained. If the operating configuration of the power system is otherwise 

drastically changed it may again be necessary to retrain the ANNs. 

8.2 Scope for Future Work 

• In the research presented in this thesis the ANNs were tested using 

data obtained from previous parameterised continuation power flows 

performed on the power system under different contingencies. It is 

possible for ANNs to be embedded in dedicated hardware with 

suitable power system parameters such as real and reactive powers at 
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selected buses and their voltages being fed into it in real time through 

SCADA. The output of the ANNs, in a suitable form, would be the 

proximity of the power system to voltage instability. This is a suitable 

topic for future research. 

• There was a certain limitation in the UWPFLOW program used in the 

present research in that power at all the buses in the power system 

was incremented by the same amount at each step of the continuation 

power flow. Though this does not detract from the validity of the 

results presented in this thesis, it would be more accurate to 

increment the bus powers differently at different buses. There may be 

more expensive commercially available computer programs to achieve 

this. If so further research can be conducted on the subject. 

• Certain models, as stated in the body of the thesis, were used for 

power system components in this research. Further research could be 

conducted with different models. 

• Research also could be conducted on other IEEE Test Bus Systems 

with numbers of buses greater or less than 14. 

• Further research could be conducted on real life power systems to be 

compared to known previous voltage instability incidents using 

parameters and configuration of the power system existing at the 

time. This would give a very good opportunity to evaluate different 

power system component models and how sophisticated these 

models need to be. 

• A versatile voltage stability computer program with an easy to use 

graphical user interface and a bank of suitable component models can 

be a future project. 
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• The research presented in this thesis was conducted using the 

Backpropagation ANN architecture. Further research could be 

conducted using different ANN architectures. 
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A p p e n d i x  1  

PRELIMINARY MATHEMATICS 

Scalar Autonomous Differential Equations 

The references [4-13] have been consulted in the writing of this Appendix. 

Some of the examples used have been designed by the author of this thesis. 

Almost all the problems have been solved by the same author using the 

computer program Phaser [14]. 

Many of the concepts of the geometry of solutions of ordinary differential 

equations can be understood by a study of scalar autonomous differential 

equations. 

Consider an equation of the form: 

( )x f x=�                                                                                              (A1.1) 

This equation is scalar if x is one dimensional and autonomous if ( )f x  is 

independent of t (time) though x  is an unknown function of t the 

independent variable. Thus the term scalar autonomous differential 

equations. Therefore x is a real variable with co-ordinates in one dimensional 

space and x�  is termed a velocity function. 

A 1.1 Solution of Scalar Autonomous Differential Equations 

When solving an equation of the type shown in Equation (A1.1), often the 

interest is in a specific solution that passes through an initial value 0x  at time 

0t . Such a problem is called an initial value problem. Therefore the initial 

value problem may be expressed as: 
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                                                                   (A1.2) 

The method of separation of variables given by the following formula may be 

used to find a solution to the initial value problem. 

                                                                              (A1.3) 

 

But in many cases it is impossible to perform the required integration though 

numerical integration using a computer program can give a solution. However 

the interest in most cases is in the qualitative behaviour of dynamical systems 

and this can be studied by geometrical methods without actually solving the 

differential equations. 

A 1.1.1 An Example 

Consider the following initial value problem. 

                                                                     (A1.4) 

This is a problem where the formula (A1.3) can be used. Using this formula 

the following solution is obtained. 

0

0

( )
1

x
x t

x t
=

−
 

On examination of this solution certain conclusions can be drawn regarding 

the behaviour of ( )x t . [4]. For 0 0x > , the solution is valid or defined only on 

the interval 
0

1
,
x

 
−∞ 
 

; for 0 0x = , the solution is defined on the interval 

( , )−∞ +∞  and for 0 0x < , the solution is defined only on the interval 

0

1
,

x

 
+∞ 

 
. Trajectories of the solution of the equation (A1.4) for the initial 

values 0 1.5, 1.0, 0.5,0.0,0.5,1.0 &1.5x = − − −  are shown in Fig. A1.1. 

0 0( ), ( )x f x x t x= =�

0

0

1

( )

x

x

ds t t
f s

= −∫

2

0, (0)x x x x= =�
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Grid at 0.5 intervals 

 t 

 x 

 

Figure A1.1 Trajectories of 
2

x x=�  for 

Different Initial Conditions. 

It is now evident that a solution to an initial value problem has an interval of 

validity of its solution. This interval is called the maximal interval of 

existence and may be infinite in some cases. It is usually represented as 

0 0 0
( , )x x xI α β≡  where 

0 0x xtα β< < .  

Sometimes it is convenient to represent the solution ( )x t  to the initial value 

problem of equation (A1.2) as 0( , )t xϕ  to show its dependence on the initial 

value. 

The following theorem, called the theorem of existence and uniqueness of 

solutions, given without proof, establishes the conditions for the existence 

and uniqueness of solutions to initial value problems. 

A 1.1.2 Theorem A1.1: The Theorem of Existence and Uniqueness of 

Solutions 

1. If ( )f x  is continuous in the domain U , a sub set of the domain of 

real numbers R , then there exists a solution 0( , )t xϕ  for all 0x  in U  
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with a maximal interval of existence of 
0 0 0

( , )x x xI α β≡  dependent 

on
0x . 

2. If in addition to the above, the first derivative of ( )f x  is continuous 

in U , then the solution 
0( , )t xϕ  is unique in 

0xI . 

A 1.2 The Direction Fields, Vector Fields, Orbits and Phase Portraits of 

Differential Equations 

The geometry of the flow of a differential equation can be studied by a study 

of its direction field, vector field and phase portrait which concepts are 

defined below. 

Considering the equation (A1.1) it is seen that the right hand side gives the 

slope of the trajectory of its solution in the (t, x)-plane at any given point on 

the (t, x)-plane where ( )f x  is defined. Figure A1.2 below shows a collection 

of line segments, ignoring the arrows, representing the slope at different 

points on the (t, x)-plane for the example A1.1. The collection of such line 

segments is called the direction field of that particular differential equation. 

The direction field is always tangential to the any given trajectory at every 

point on that trajectory. 

Now since ( )f x  is independent of x , along every line parallel to the t-axis 

on the (t, x)-plane, the direction field has the same slope. If this slope is 

projected on to the x-axis with its direction indicated, the vector field or the 

velocity field is obtained. The vector field together with its direction field for 

the equation: 

                                                                                           (A1.5) 

is shown on Figure A1.2. The trajectories are for initial values –1.0, -0.5, 0.0, 

0.5 and 1.0. 

x x= −�
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Grid at 0.5 intervals 

 t 

 x 

 

Figure A1.2 Direction Field and Vector 

Field of x x= −� . 

The orbit 0( )xγ  of the trajectory of a differential equation passing through 

the initial condition 0x  is the projection of that trajectory between 
0xt α=  

and 
0xt β=  on to the x-axis. 

The positive orbit 
0( )xγ +  of the trajectory of a differential equation passing 

through the initial condition 0x  is the projection of that trajectory between 

0t =  and 
0xt β=  on to the x-axis. 

The negative orbit 
0( )xγ −  of the trajectory of a differential equation passing 

through the initial condition 0x  is the projection of that trajectory between 

0xt α=  and 0t =  on to the x-axis. 

The Figure A1.3 shows the orbits for the trajectory of equation (A1.5) passing 

through a positive initial value. 
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0( )xγ −
 

0( )xγ +
 

 
0( )xγ  

  0 

 X0 

  x 

 

Figure A1.3 Orbits Through 0x  of 

x x= −� . 

On the orbit 0( )xγ  of a differential equation arrows can be inserted to 

indicate the direction in which its solution 0( , )t xϕ  is changing as time t 

increases. The collection of all the orbits of a differential equation together 

with the arrows gives the phase portrait of the differential equation 

representing its flow. (Refer to Figure A1.4). 
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 0 

 x 

 

Figure A1.4 Phase Portrait of x x= −�  

A 1.3 Equilibrium Points of Scalar Autonomous Differential Equations 

An equilibrium point also known as a critical point, usually represented by 

x , of a differential equation occurs at a point where ( ) 0f x = . A system on 

reaching a critical point stays at that point for all time. However any given 

equilibrium point may or may not be stable as seen below. 

A 1.4 Methods of Drawing the Orbits and Phase portraits of Differential 

Equations [7] 

1. The graph of x  Vs ( )f x  gives an easy method of drawing the orbits 

with the direction of motion and therefore the phase portrait of a 

differential equation. When ( ) 0f x > , the solution increases in t  and 

therefore approaches an equilibrium point or +∞  as 
0xt β→ . When 

( ) 0f x < , the solution decreases in t  and therefore approaches an 

equilibrium point or −∞  as 
0xt β→ . 
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2. In the second method the potential function, ( )F x  of equation 

(A1.1) is defined as follows. 

( ) ( )
( )

d
x f x F x

d x
= = −� . Therefore, 

0

( ) ( )

x

F x f s ds= −∫ . 

Now if a graph of the potential function ( )F x  is drawn, its extreme 

points, that is, its maxima and minima, will be the equilibrium points 

of the differential equation. If a particle is imagined to travel freely 

along this graph, the likely direction in which it travels, at any point on 

the graph, will give the phase portrait of the differential equation. 

 

The following figures illustrate the two methods. 

 

Figure A1.5a Phase Portrait of 
3

x x x= − +�  Using the Function 

3( )f x x x= − + . 
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Figure A1.5b Phase Portrait of 
3

x x x= − +�  Using the Potential 

Function 
2 4( ) / 2 / 4F x x x= − . 

On examination of the above graphs certain conclusions can be drawn on the 

behaviour of the differential equation. 

The differential equation has equilibrium points at 1,0& 1x = − + . The 

equilibrium point at 0x =  is stable. The equilibrium points at 1& 1x = − +  

are unstable. 

A 1.5 Stability of Equilibrium Points 

An equilibrium point x  is stable if all solutions to the differential equation 

starting near x  stay near to it. An equilibrium point is asymptotically stable if 

all solutions near x   tend to x  as t → ∞ . 

A 1.5.1 Theorem A1 .2 

If x  is an equilibrium point of ( )x f x=�  and ( )f x′  exists, that is, ( )f x  is 

differentiable, then, x  is asymptotically stable if ( ) 0f x′ <  and unstable if 

( ) 0f x′ > . 

When ( ) 0f x′ ≠ , the equilibrium point is called a hyperbolic equilibrium 

point and when ( ) 0f x′ = , the equilibrium is called a nonhyperbolic point. 
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A 1.6 Bifurcations in Differential Equations 

Bifurcation of its differential equations is a very important aspect of voltage 

instability in power systems. The behaviour of these differential equations 

represents the behaviour of the power system. 

Consider the behaviour of the following differential equation. 

                                                                       (A1.6) 

Where c is a real number variable parameter. The graph of this equation for 

c=0, passes through the origin (0, 0) which is an equilibrium point. When 

other values are assigned to c, the resultant graph is similar to the graph with 

c=0, but with the x-axis shifted vertically by –c. Refer to Figure A1.6. 

 

F(0,x) 

C<0 

C=0 

c>0 

x 

 

Figure A1.6 Phase Portraits of 
2

x c x= +�  

for different values of c. 

Using method 1 of Section A1.4, the phase portrait of equation (2.3) can be 

drawn for different values of c as shown. For 0c < , there are two 

equilibrium points, for 0c > , there are no equilibrium points and for 0c = , 

there is one equilibrium point, the origin. Now for small variations of c 

around 0, the number of equilibrium points change suddenly. Such a value of 

2 ( , )x c x F c x= + =�
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the parameter is called a bifurcation value, the equation being at a 

bifurcation point causing a saddle node bifurcation. 

A 1.7 Second Order Autonomous Differential Equations [7] 

A 1.7.1 Linear Harmonic Oscillator 

Consider the linear harmonic oscillator represented by the following 

equation. 

 

                                                                                            (A1.7) 

The vector field and the phase portraits of this equation for initial values (x1, 

x2) = (1.0, 1.0), (0.75, 0.75), (0.5, 0.5) are as shown in Figure A1.7. 

 

X1 

X2 

 

Figure A1.7 Vector Field and Phase 
Portraits of Linear Harmonic Oscillator. 

The equation has an equilibrium point at (0, 0) and the orbits for nearby initial 

conditions are circular orbits round this equilibrium point. Such an 

equilibrium point is stable but not asymptotically stable and is called a center. 

A 1.7.2 Van der Pol Oscillator 

Consider the Van der Pol oscillator represented by the following equation. 

1 2

2 1

x x

x x

=

= −

�

�
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                                                                       (A1.8) 

 

The phase portraits of this equation for initial values (x1, x2) = (-0.1, 0.1), (-2.0, 

2.0), (2.0, -2.0) are as shown in Figure A1.8. 

 

X1 

X2 

 

Figure A1.8 Phase Portraits of Van der Pol 
Oscillator. 

It is seen that this equation has an isolated periodic solution called a limit 

cycle. All trajectories starting at any initial condition approach this limit cycle. 

A 1.7.3 Linear Product Syatem 

Consider the linear product system represented by the following equation. 

                                                                                          (A1.9) 

 

The phase portraits for b<a<0, b=a<0 and a<0<b are shown in Figures 

A1.9a,b &c. 

1 2

2

2 1 2 1(1.0 )

x x

x x x x

=

= − −

�

�

1 1

2 2

x ax

x bx

=

=

�

�
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 X 2  

X 1  

 
 

(a) b<a<0 

 
 

X1 

X2 

 
(b) b=a<0 

 
 

X 1  

X 2  

 
 

(c) a<0<b 

 

Figure A1.9 Phase Portraits of the Linear 
Product System  

It is seen that for b<a<0, both 1( )x t  and 2 ( )x t  0→  exponentially as 

t → ∞ . For b=a<0, they tend to 0 along straight lines. Therefore the 

equilibrium point is called a stable node. For a<0<b, the origin is still an 

equilibrium point but all orbits other than the point orbit at the origin leave 

the origin as shown in Figure A1.9c. Such an equilibrium point is called a 

saddle. 

In a power system often the state varies as parameters vary.  This variation in 

parameters can cause voltage collapse. A very simple case is a product system 

where λ  is the parameter: 
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                                                                                    (A1.10) 

For such a system it can be shown that for 0λ < , there are two equilibriums, 

one a node and the other a saddle. As λ  is varied and reaches 0, the 

equilibriums coalesce. As λ  is further increased making 0λ > , the 

equilibrium disappears. Such a bifurcation is called a saddle node 

bifurcation. 

A 1.7.4 Hopf Bifurcation 

Consider the single parameter system below. 

 

                                                                (A1.11) 

 

It can be shown by drawing the phase portraits, that in such a system, when 

0λ ≤ , all solutions spiral in to the origin as t → ∞  and when 0λ > all 

solutions spiral in to a periodic orbit, that is a limit cycle. Such a bifurcation is 

called a Hopf bifurcation. 

A 1.8 Stability in Systems of Nonlinear Differential Equations and 

Other Dynamical Systems 

In the analysis of power systems to determine voltage stability one comes 

across more complicated systems of non-linear differential equations and 

differential algebraic systems of equations. Refer to references [4, 5, 12] and 

Appendix 2. 

2

1 1

2 2

x x

x x

λ= +

= −

�

�

2 2

1 2 1 1 2

2 2

2 1 2 1 2

( )

( )

x x x x x

x x x x x

λ

λ

= + − −

= − + − −

�

�
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A p p e n d i x  2  

ANALYSIS OF VOLTAGE INSTABILITY 

Analysis of voltage stability and many other engineering problems require the 

solution of nonlinear ordinary differential equations and algebraic differential 

equations. Such systems are notoriously difficult to solve and many can only 

be solved numerically when the initial conditions are known. The 

mathematical theory presented below is based on references [4, 20], however 

the author of this thesis attempts to make it more understandable. The 

fundamentals of the concepts presented here are explained in appendix 1. The 

figures shown in this appendix are from reference [4]. 

A2.1 Solution of Differential Equations. 

Voltage stability involves the solution of nonlinear ordinary differential 

equations of the type: 

( )x f x=�                                                                                        (A2.1)         

x is a n×1 vector and f(x) is a nonlinear function of x. The state space which is 

an n-dimensional hyperspace is defined by the n-dimensional state vector x. 

The elements of the vector x are called the state variables. The vector x is 

time variable and its initial value at t = 0 is given by: 

0(0)x x=                                                                                        (A2.2) 

When this initial value is known the ordinary differential equation (ODE) 

(A1.1) is known as an initial value problem. Many ODEs can only be 

numerically solved and then only when the initial conditions are known, ie. as 

initial value problems. The solution x(t) of the ODE is a curve or trajectory 
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passing through the initial value x0 in state space. When t>0, it is called the 

forward trajectory and when t<0, it is called the backward trajectory. The 

theorem of existence and uniqueness of solutions states the conditions under 

which a solution exists for each initial condition (see below). 

Let f(x) be defined in domain U in the n-dimensional real number domain Rn. 

Then U is a subset of Rn. From the above theorem one can make the 

following statements. These statements also serve as a statement of the 

theorem. 

1. If f is continuous in U, then there exists a solution x(t) of (A2.1) for 

all initial conditions x0 in U. Each solution has a maximum interval of 

existence I
0x  dependant upon the initial condition and is written as: 

0 0 0
:x x xI tα β< <                                                         (A2.3) 

 Both or one of 
0xα and 

0xβ can be infinite when the solution exists 

for all positive and/or negative values of t. 

2. If f is smooth, then it is a sufficient condition for f to have a unique 

solution through x0. 

3. If the maximal interval of existence of the solution is finite, then the 

limit points of the solution x(t) for t→β- or t→α+, belong to the 

boundary of U when U is bounded and infinite when U is 

unbounded. 

An example taken from [4] is explained here to illustrate the above. Consider 

the following ODE. 

2
x x= −�                                                                                          (A2.4) 

This ODE has a time solution as follows. 
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00 0x for x= =                                                                      (A2.5) 

0

0

1
0

1
x for x

t
x

= ≠

+

                                                             (A2.6) 

x0 being the initial condition for t=0. 

Figure A2.1 shows the time response of x for different initial values of x, ie. 

for different values of x at t=0. 

 

Figure A2.1 – Time Solutions of Equation 
A2.4 [4] 

 

It is seen that for positive values of x0, x eventually reduces to zero and for 

negative values of x0, x collapses before reaching the critical time 
0xβ , where: 
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0 0

0

1
0.x for x

x
β = − <                                                             (A2.7) 

Therefore (A2.4), when the initial condition is positive, has a solution that 

exists for all time t>0. For t<0, it has a finite lower bound 
0xα of its interval 

of existence given by: 

0 0

0

1
0.x for x

x
α = − >                                                             (A2.8)   

 

A2.2 Equilibria and Stability of Equilibria. 

The equilibrium points, x*, of the ODE (A2.1) are given by the solution of the 

equation: 

( ) 0.f x =                                                                                       (A2.9) 

For all initial conditions x0 = x
*, the solution of (A2.1) is given by: 

*( )x t x=  

for all time. 

An equilibrium is said to be stable if all solutions of the ODE for initial 

conditions near x* remain near x* for all time t>0. An equilibrium is 

asymptotically stable if all trajectories of the solution of the ODE with 

initial conditions near x*, approach x*, as t tends to infinity. The largest region 

round an asymptotically stable equilibrium, x*, for which the trajectory, with 

initial conditions in that region, eventually approach x* is called the region of 

attraction or domain or basin of attraction of x*. 
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Now consider a linear system of ODEs given by the following equation. 

x Ax=�                                                                                           (A2.10) 

Such a system has only one equilibrium point at x* = 0. The stability of the 

system is determined by the eigenvalues of the state matrix A. If all the real 

parts of the eigenvalues are negative the equilibrium is asymptotically stable 

and if the real part of at least one eigenvalue is positive then the equilibrium is 

unstable. The region of attraction of an asymptotically stable equilibrium in 

such a system is the entire state space, all trajectories approaching the origin. 

On the other hand a nonlinear system of ODEs may have one, more than 

one or no equilibria. Also the region of attraction of a stable equilibrium may 

be limited causing instability of the equilibrium for initial conditions around 

the equilibrium. 

It has been shown that the stability of an equilibrium x* in a nonlinear system 

can be determined by examining the linearised system around the equilibrium 

point. To illustrate consider a point x near the equilibrium point x*. Then one 

can write: 

*
x x x∆ = −                                                                                    (A2.11) 

Now using Taylor’s expansion and retaining only the first order term we 

arrive at the linear system: 

.x A x∆ = ∆�                                                                                     (A2.12) 

The state matrix A is called the Jacobian or state Jacobian of f with respect 

to x evaluated at x* and is given by: 

*

*( )x

x x

f
A f x

x =

∂
= =

∂
                                                                    A(2.13) 
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That is  

1 1

1

1

........

.

.

.

........

n

n n

n

f f

x x

A

f f

x x

∂ ∂ 
 ∂ ∂
 
 
 

=  
 
 
∂ ∂ 
 ∂ ∂ 

 

Now if the eigenvalues of A all have negative real parts, then the equilibrium 

x* is asymptotically stable but if at least one eigenvalue has a positive real part 

then the equilibrium x* is unstable. 

When an equilibrium is asymptotically stable, with all eigenvalues having 

negative real parts, it is called a stable node or sink. If it is unstable with all 

the eigenvalues having positive real parts, then it is called an unstable node 

or source. If the equilibrium has eigenvalues some having positive real parts 

and all the others having negative real parts, then such an equilibrium is called 

a saddle. 

An interesting case arises when the Jacobian fx has one or more eigenvalues 

with zero real parts. An example is the case of the system represented by 

equation (A2.4). It has an equilibrium point at the origin (x* = 0). Linearising 

the system around this equilibrium at the origin we obtain the Jacobian to be 

zero as shown below. 

*2 0x x x∆ = − ∆ =�                                                                           (A2.14) 

Now, as seen in Figure A2.1, in the neighbourhood of x* = 0, there are initial 

conditions x0 < 0, for which the forward trajectory is unbounded and 

therefore the system collapses during this forward trajectory. This type of 

unstable equilibrium is called a saddle node. Figure A2.2 shows the three 

types of nodes for a first order, ie. a single variable system. 
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Figure A2.2, a – stable node, b – unstable 
node,  c – saddle node. 

When a multi-order system, ie. a system with multiple variables, has a 

Jacobian with a zero eigenvalue, then that particular equilibrium is a saddle 

node. Note that when the Jacobian has a zero eigenvalue, then the 

determinant of that Jacobian is also zero. Near such equilibrium points there 

are trajectories similar to that in Figure A2.2c. If the Jacobian has a complex 

conjugate pair of eigenvalues with zero real parts at a point of equilibrium, 

then such an equilibrium point is called a center. 

In power systems where many operating points are studied, one comes across 

both stable and unstable equilibria. 

A2.3 Eigenvectors, Manifolds and Invariance. 

As seen above the linearised system of a non-linear system can provide 

information on the stability of equilibrium points. Similarly eigenvectors of 

the linearised system can be generalised in the non-linear system. 

Eigenvectors and eigenspaces of the linearised system correspond to the 

manifolds of the non-linear system. 

It can be shown mathematically that the response of a linear system of the 

type represented by equation (A2.10) can be expressed in terms of the right 

and left eigenvectors v and w respectively of the state matrix A. The 

eigenvectors are known to satisfy the following equations. 

a 

b 

c 

X* 

X* 

X* 
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1,......,i i iAv v for i nλ= =                                                       (A2.15) 

1,......,T T

i i iw A w for i nλ= =                                                   (A2.16) 

where iλ = the eigen values. 

To simplify the theory it is assumed that the linearised system has n distinct 

eigenvalues. Then the left and right eigenvectors for different eigenvalues are 

orthogonal to each other. That is, 

0 .T

i jw v for i j= ≠                                                                  (A2.17) 

For an initial value x0 the response of the linear system is given by: 

0

1

( ) i

n
t T

i i

i

x t e v w x
λ

=

=∑                                                                       (A2.18) 

Now if we consider an initial condition collinear with the right eigenvector vi 

we have: 

0 ix av=                                                                                         (A2.19) 

Substituting this in equation (A2.18) and applying equation (A2.17) we have: 

( ) ( )it T

i i i ix t ae w v v bv
λ= =                                                              (A2.20) 

Equation (A2.20) demonstrates that once a trajectory is on a right 

eigenvector, it is always on that right eigenvector. This is known as the 

invariance property of a right eigenvector. 

It is also observed that if iλ has a negative real part, then, since 

0ite as t
λ → → ∞ , the trajectory x(t) approaches the equilibrium point at 

the origin during its forward trajectory. Similarly if the eigenvalue has a 
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positive real part, the backward trajectory x(t) originates at the equilibrium 

point as t → −∞ . 

If a number of right eigenvectors is considered, it is seen that they span a 

subspace in the space of the variables x. Consider two eigenvectors vi and vj 

spanning a plane and an initial point in this space given by: 

0 i jx av bv= +                                                                                (A2.21) 

The trajectory x(t) is given by: 

( ) [ ( )] [ ( )] .ji
tt T T

i i i j j j i j
x t ae w v v be w v v cv dv

λλ= + = +                      (A2.22) 

From this it is seen that the trajectory lies entirely on the plane defined by vi 

and vj. Thus it is seen that the invariance property holds for subspaces defined 

by eigenvectors as well. 

In a linearised system the subspace spanned by eigenvectors corresponding to 

eigenvalues with negative real parts is called the stable eigenspace, the 

subspace spanned by eigenvectors corresponding to eigenvalues with positive 

real parts is called the unstable eigenspace and the subspace spanned by 

eigenvectors corresponding to eigenvalues with zero real parts is called the 

center eigenspace. All trajectories in a stable eigenspace approach the origin 

as t→∝, and all trajectories in an unstable eigenspace originate from the 

equilibrium point. 

The equivalent in nonlinear systems, of the concept of invariant eigenspace in 

linear systems, is the concept of invariant manifolds. The word manifold 

refers to a smooth curved line, surface or hypersurface with no singular points 

such as self-intersections. A trajectory starting on an invariant manifold stays 

on the manifold for all time. At the equilibrium point the stable, unstable and 

center manifolds are tangential to the respective eigenspaces of the linearised 

system. Figure A2.3 shows the different types of manifolds. 
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Figure A2.3 Different Types of Manifolds 
for a Second Order System [4]. 

Figure A2.3a shows an equilibrium, which is a saddle with the Jacobian having 

one positive and one negative real eigenvalue. Figure A2.3b shows an 

equilibrium with one negative and one zero eigenvalue. The direction of the 

trajectory of the center manifold cannot be assigned without knowledge of 

the nonlinear characteristics of the system. 

 

An example taken from reference [4] is given here to illustrate the above. 

Consider the system of non-linear, second order (two state variables) ODEs 

given below which is similar to the representation of a single generator, 

infinite bus system with no damping. 

                                                                       (A2.23a) 

2 10.5 sinx x= −�                                                                             (A2.23b) 

It can be shown that this system has two equilibria as follows. 

2

1 2 0x a x a= >�
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(1)

(2)

[ / 6 0]

[5 / 6 0]

T

T

x

x

π

π

=

=
 

The Jacobian of the system is derived to be as follows. 

2

*

1

0

cos 0
x

a
f

x

 
=  

−  
 

Therefore the eigenvalues of the linearised system can be calculated and are: 

(1)

1,2

(2)

1,2

0.931

0.931 .

j a

a

λ

λ

= ±

= ±
 

The eigenvalues of the equilibrium x(1) are complex conjugates with zero real 

parts. Therefore it is a center. The eigenvalues of the equilibrium x(2) are both 

real and one is negative while the other is positive. Therefore it is a saddle. 

Figure A2.4 shows the trajectories of the system represented by equations 

(A1.23a,b) for a number of initial conditions. 

 

Figure A2.4 Phase Portrait of the system 
[4] 
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The orientation or direction of the trajectories are as shown. It can be verified 

that the trajectories near the center x(1) are periodic oscillations with constant 

amplitude. Therefore the equilibrium x(1) is stable but not asymptotically 

stable. The trajectories near unstable saddle point x(2) are as shown. The 

eigenvalue (2)

1 0.931aλ = +  gives the eigenvector representing the unstable 

eigenspace of the saddle point, which is: 

(2)

1 [ 0.931]T
v a=  

This eigenspace is tangential to the unstable manifold. 

The eigenvalue (2)

2 0.931aλ = −  gives the eigenvector representing the stable 

eigenspace of the saddle point, which is: 

(2)

2 [ 0.931]T
v a= −  

This eigenspace is tangential to the stable manifold. 

A2.4 Limit Cycles and the Stability of Limit Cycles. 

If a periodic solution x(t) exists for the ODE given in equation (A2.1), then it 

satisfies the following condition. 

( ) ( )x t T x t+ =                                                                               (A2.24) 

The smallest value of T for which equation (A2.24) is satisfied is the period of 

the cycle. If a trajectory starts at a point x0 on a periodic solution, then after 

time T, the trajectory will pass through x0 again and keep on retracing its path 

over and over again. Thus the solution forms a closed curve in n dimensional 

space. An isolated periodic solution of this type is called a limit cycle. The 

periodic solutions shown in Figure A2.4 are not limit cycles since they have an 

infinite number of periodic solutions near each one of them and therefore are 

not isolated. A limit cycle is asymptotically stable if a trajectory starting near 
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the limit cycle eventually ends up on that limit cycle. A limit cycle is unstable 

if a trajectory starting near it eventually diverges away from it. 

Two examples taken from reference [4] are explained here to illustrate stable 

and unstable limit cycles. 

Consider the following second order system. 

1 2x x=�                                                                                           (A2.25a) 

3

2 1 2 210( )x x x x= − + −�                                                                   (A2.25b) 

This system has an equilibrium at x* = 0 and linearising around this 

equilibrium we obtain: 

1 2x x∆ = ∆�                                                                                      (A2.26a) 

2 1 210 10x x x∆ = − ∆ + ∆�                                                                  (A2.26b) 

The eigenvalues of the state matrix are 1 28.87 1.13andλ λ= + = + . 

Therefore the equilibrium is unstable. A graph of the solution is as shown in 

Figure A2.5. 
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Figure A2.5 – Stable Limit Cycle [4] 

It is seen from this figure that trajectories starting near the equilibrium 

eventually end up in an isolated periodic oscillation. Therefore it is a limit 

cycle and since trajectories starting both inside and outside the limit cycle 

eventually end up on it, it is asymptotically stable. The stable manifold of this 

stable limit cycle is the whole of state space. 

Now consider the following system. 

1 210x x=�                                                                                        (A2.27a) 

3

2 1 2 2x x x x= − − +�                                                                          (A2.27b) 

This system has one equilibrium point at the origin and the eigenvalues are 

1 20.5 3.12 0.5 3.12j and jλ λ= − + = − − . Since the real parts of both 
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eigenvalues are negative the equilibrium is stable. A graph of the solution is 

shown in Figure A2.6. 

 

Figure A2.6 – Unstable Limit Cycle [4] 

On the positive x-axis we can see a critical point at 1 3.685x =� . Trajectories 

starting on the x-axis at points less than the critical value spiral towards the 

equilibrium point at the origin and those starting on the x-axis at point greater 

than the critical value diverge. At the critical value there is an unstable limit 

cycle. It is unstable because trajectories starting near the critical value either 

spiral in towards the equilibrium at the origin or diverge away from the limit 

cycle. The stable manifold of this limit cycle is the limit cycle itself and its 

unstable manifold is all of the remaining state space. 

A2.5 Bifurcation Theory. 

When smooth, continuous changes occur in the parameters of a nonlinear 

system, sudden changes in the response of the system can occur. Bifurcation 

theory studies such changes. Voltage collapse in a power system is due to 

such bifurcations. 
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Consider the following family of smooth ordinary differential equations 

(ODEs). 

( , )x f x p=�                                                                                   (A2.28) 

x is a state vector of dimension ( 1)n×  and p is a parameter vector of 

dimension ( 1)k × . For any given value of p, the equilibrium points x* of 

equation (A1.28) is given by: 

*( , ) 0f x p =                                                                                  (A2.29) 

ie. for each possible value of p, there is one or more equilibrium points x*. 

Therefore it can be said that equation (A2.29) defines the k-dimensional 

equilibrium manifold of the system in (A2.28) in ( )n k+ -dimensional state 

and parameter space. This can be visualised in 3-dimensions by taking one 

state vector x and two parameters p1 and p2. p1 and p2 form the two 

horizontal axes and x forms the vertical axis. All possible values of p will form 

a 1-dimensional curve (a line) on the horizontal plane. For each value on this 

curve there is one or more equilibrium value for the state variable x. These 

equilibrium values of x are measured along the vertical x-axis. Thus we obtain 

a two dimensional surface (this is the dimension k of the parameter vector) of 

equilibrium points which is the equilibrium manifold. 

Now consider an equilibrium point x(1) of equation (A2.28) which 

corresponds to the parameter values p0. The Jacobian at this point is assumed 

to be non-singular. 

ie. (1)

0det ( , ) 0xf x p ≠ .                                                                  (A2.30)     

In this case it can be mathematically shown that there is a unique smooth 

function given by: 
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* (1) (1) (1)

0( ) ( )x g p satisfying x g p= = .                                        (A2.31) 

This equation gives a branch of the equilibrium points of the system of 

equation (A2.28) as a function of p. 

Now consider that equation (A2.28) has another equilibrium point x(2) for the 

same value p0 of p. Then as above, 

(2)

0det ( , ) 0xf x p ≠ .                                                                     (A2.32) 

And there is a unique smooth function: 

* (2) (2) (2)

0( ) ( )x g p satisfying x g p= = .                                 (A2.33) 

Equation (A2.33) gives another branch of equilibrium points of the system 

(A2.28) as a function of p. 

When these two branches of equilibrium points intersect each other a 

bifurcation is formed. At such a bifurcation point, the Jacobian f(x) is singular. 

The following example taken from [4] illustrates the concept of bifurcation. 

Consider the first order (one state variable) system with one scalar parameter 

( p µ= ) given by: 

2 2 1.1x x x µ= − + −�                                                                     (A2.34) 

Figure A2.7 shows the plot of the two branches of equilibrium points 

(1) (2)( ) ( )g and gµ µ  in state and parameter space. 
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Figure A2.7 – Equilibria Bifurcation [4] 

It is seen that these two branches intersect at the bifurcation point B given by 

( *0.1, 1.0xµ = = ). At this bifurcation point 0
f

x

∂
=

∂
. It has been shown with 

rigorous mathematics that a bifurcation occurs at a point in parameter space 

where the qualitative structure of the system in (A2.28) changes for a small 

variation of the parameter vector p. [4] gives a list of properties a change in 

any one of which constitutes a bifurcation: 

1. Number of equilibrium points. 

2. Number of limit cycles 

3. Stability of equilibrium points or limit cycles. 

4. Period of periodic solutions. 

 



 

 176 

Voltage stability analysis can be performed by considering bifurcations that 

occur in single parameter families of ODEs. The two types of bifurcations in 

such systems are the Saddle Node Bifurcation (SNB) and the Hopf 

Bifurcation (HB). 

 

A1.5.1 Saddle Node Bifurcations. 

Considering a single parameter family of ODEs given by: 

( , )x f x µ=� ,                                                                                 (A2.35) 

its equilibrium condition is given by: 

( , ) 0f x µ = .                                                                                 (A2.36) 

At a saddle node bifurcation of this system, two branches of equilibria meet at 

a point such as the point B in Fig. A2.7. At this bifurcation the equilibrium 

becomes a saddle node and therefore it is called a Saddle Node Bifurcation 

(SNB). Therefore the necessary conditions for an SNB are equation (A2.36) 

and the following equation. 

*det ( , ) 0xf x µ =                                                                           (A2.37) 

Equation (A2.37) constitutes (n+1) equations in (n+1) variables (x and µ). 

However all points satisfying these necessary conditions are not SNB points. 

Considering a scalar system, the sufficient conditions for a saddle node 

bifurcation are: 

*( , ) 0f x µ =                                                                                  (A2.38a) 

0
f

x

∂
=

∂
                                                                                          (A2.38b) 
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0
f

µ

∂
≠

∂
                                                                                         (A2.38c) 

2

2
0

f

x

∂
≠

∂
                                                                                       (A2.38d) 

The conditions (A2.38a,b) are the same as the conditions (A2.36) and (A2.37) 

applied for the case of a single state variable x and a single parameter µ. 

Conditions (A2.38c,d) are called the transversality conditions. Condition 

(A2.38c) is the condition for the existence of a smooth local function, 

( )h xµ = , at the bifurcation point ( 0 0, xµ ). The geometrical interpretation of 

this is that the equilibrium manifold (A2.38a) intersects the line *

0x x=  

transversally at the bifurcation point. Condition (A2.38d) is the condition that 

locally, the equilibrium manifold remains on one side of the line 0µ µ= . It is 

also seen that that conditions (A2.38a-d) are also sufficient conditions for a 

maximum or minimum of µ on the manifold given by equation (A2.38a). An 

example of three systems taken from reference [4] illustrates the above. 

Consider the following three first order systems with a single parameter 

whose equilibria are graphed in the µ x plane in Figure A2.8. 

2x x µ= +�                                                                                     (A2.39a) 

3x x µ= +�                                                                                     (A2.39b) 

2 3x x µ= +�                                                                                    (A2.39c) 
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Fig. A2.8 – a) Sufficient Conditions for 
SNB, b) Violation of (A1.38d), c) Violation 

of (A1.38c) [4] 

All three systems have an equilibrium point at µ0 = x
*
0 = 0 satisfying the 

condition 0
f

x

∂
=

∂
. Equation (A2.39a) has a saddle node bifurcation at the 

origin, refer to Figure A2.8a. Equation (A2.39b) violates the condition 

(A2.38d), refer to Figure A 2.8b and equation (A2.39c) violates the condition 

(A2.38c), see fig. A 2.8c. However in general, in single parameter families, 

equilibria satisfying condition (A2.38b) will also satisfy conditions (A2.38c,d) 

and therefore are SNB points. 

The system represented by equation (A2.39a) with an SNB at µ = 0, has two 

equilibrium points for µ < 0, one equilibrium point at µ = 0 and no 

equilibrium points for µ > 0. The equilibrium point at µ = 0 is a saddle node 

and the time response or trajectories of the system is similar to that shown in 

Figure A2.1 but the time scale is reversed. For a given negative value of µ and 

for negative initial conditions of x, the trajectories converge to the equilibrium 

point x* = 0; whereas for positive initial conditions x0 of x, the trajectories 

explode in finite time given by 
0

0

1
x

x
β = . Now considering the equilibrium 

points for µ < 0, 
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Let µ = -a2     where a > 0. 

Then the equilibrium points are given by, 

x(1) = a     and     x(2) = -a. 

The Jacobian of A2.39a is, 

*2
f

x
x

∂
=

∂
. 

Therefore considering its eigenvalues, x(1) = +a is an unstable equilibrium and 

x(2) = -a is a stable equilibrium. Thus for a first order system, at a saddle node 

bifurcation, two points of equilibrium, one stable and the other unstable 

coalesce and disappear. 

Conversely, if µ decreases slowly, from a value greater than its bifurcation 

value µ0, then at the SNB point, two equilibria emerge simultaneously. 

The above can be generalised for a multivariable system as follows. At an 

SNB two equilibrium points coalesce and disappear or emerge 

simultaneously. One of these points has an eigenvalue with a positive real part 

and the other an eigenvalue with a negative real part both becoming zero at 

the SNB. In such a multivariable system, if all the other eigenvalues, except 

the one becoming zero at the SNB, have eigenvalues with zero negative parts, 

then one of the equilibria coalescing at the SNB is stable and the other is 

unstable. 

Figure A2.8a shows with arrows, the trajectories approaching the stable 

equilibrium x(2) and the trajectories departing from the unstable equilibrium 

x(1). It is seen that the trajectories with initial conditions x0 < a converge to the 

stable equilibrium point x(2) = -a and trajectories with initial conditions x0 > a 

explode after a finite interval of time. Thus the region of attraction of the 

stable equilibrium point is bounded by the unstable equilibrium. This is its 
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stable manifold in the multivariable case. It is also seen that the region of 

attraction contracts or shrinks as the SNB point is approached. 

At the saddle node bifurcation point at the origin the stable manifold of the 

saddle node is the negative x-axis and the unstable manifold of the saddle 

node is the positive x-axis. Therefore the entire x-axis forms the center 

manifold of the saddle node. Since the system has only one state variable x, 

the entire state space is the center manifold. 

It was mentioned above that in single parameter families of ODEs, the  

equilibrium points satisfying the necessary conditions represented by 

equations (A2.36) and (A2.37) are in general SNBs. In multiparameter families 

(where p is a (k × 1) vector) it should be noted that the points satisfying the 

necessary conditions for an SNB forms a (k – 1)-dimensional manifold in the 

(n + k)-dimensional state and parameter space while the points violating the 

sufficient conditions for an SNB form (k – 2)-dimensional submanifolds lying 

on the above manifold. 

If the parameter vector moves along a given curve such as when the k 

parameters depend on a scalar µ, ie. p = p(µ), then the multiparameter 

problem reduces to a single parameter problem and the equilibrium points 

satisfying the necessary conditions represented by equations (A2.36) and 

(A2.37) are in general SNBs. 

The following observations can be made regarding SNBs and equilibrium 

manifolds. At an SNB point the manifold of equilibrium points folds with 

respect to the parameter space. For example the curve of Figure A2.8a folds 

with respect to the µ axis at the SNB point. When SNB points are projected 

onto the k-dimensional parameter space, it forms a hypersurface of dimension 

(k - 1) called a bifurcation surface. The bifurcation surface is the boundary of 

the feasibility region, which is the region in parameter space for which 

equilibrium points exist. When an equilibrium point goes through a saddle 
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node bifurcation, the number of projection points of the equilibrium 

manifold on parameter space changes by two. For example in Figure A2.8a, 

the feasibility region is the negative µ axis bounded by the SNB point µ = 0. 

When the system consists of multivariables, a saddle node bifurcation occurs 

at an equilibrium with a zero eigenvalue and this equilibrium point satisfies 

the transversality conditions. The curve in n-dimensional state space that is 

tangential to the right eigenvector of the zero eigenvalue is the center 

manifold of the saddle node. The center manifold consists of a stable 

manifold and an unstable manifold that are separated by the equilibrium 

point. Refer to Figure A2.2c. 

A2.5.2 Hopf Bifurcations. 

A saddle node bifurcation is characterised by a zero eigenvalue and at such a 

bifurcation the response of the system is monotonic. The point at which a 

SNB occurs is easily found by equating the Jacobian at the equilibrium point 

to zero, ie. *det ( , ) 0xf x µ = . A Hopf bifurcation occurs in nonlinear systems 

when a parameter variation forces a pair of complex eigenvalues to cross the 

imaginary axis in the complex plane.  When this happens an oscillatory 

instability occurs in the system due to the interaction of the equilibrium point 

with a limit cycle. It has been shown mathematically that the necessary 

condition for a Hopf bifurcation (HB) is the existence of an equilibrium with 

purely imaginary eigenvalues. However as in the case of SNBs, not all 

equilibrium points satisfying the necessary condition are HBs, though most 

are. In cases where the real part of the critical eigenvalue pair does not change 

sign after going to zero are not Hopf bifurcations. Two types of Hopf 

bifurcations are defined in reference [4] as follows. 

Subcritical HB: an unstable limit cycle existing prior to the bifurcation shrinks 

and eventually disappears as it coalesces with a stable equilibrium point at the 

bifurcation. After the bifurcation, the equilibrium point becomes unstable 

resulting in growing oscillations. 



 

 182 

Supercritical HB: a stable limit cycle is generated at the bifurcation and a 

stable equilibrium point becomes unstable with increasing amplitude 

oscillations, which are eventually attracted by the stable limit cycle. 

These two types of HBs are illustrated in Figure A2.9a,b. 

 

Figure A2.9a - Subcritical Hopf 
Bifurcation [4] 

 

Figure A2.9b – Supercritical Hopf 
Bifurcation [4] 
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The abscissa in Figure A2.9 is the parameter value µ with µ0 as its bifurcation 

value. The ordinate is the amplitude of the limit cycle. The straight line 

represents the possible equilibrium points and the curved line represents the 

amplitude of the limit cycle. Solid lines represent stable equilibria and stable 

limit cycles. The dashed lines represent unstable equilibria and unstable limit 

cycles. 

In Figure A2.9a it is seen that the amplitude of the unstable limit cycle 

decreases as the parameter value approaches the bifurcation value. The limit 

cycle disappears at the bifurcation value and the equilibrium point becomes 

unstable as seen by the dashed line. Prior to bifurcation the region of 

attraction of the equilibrium is bounded by the stable manifold of the 

unstable equilibrium. After bifurcation the trajectories are unbounded with 

oscillations of increasing amplitude. It is seen from the figure that the branch 

of limit cycles emanating at the bifurcation exist only for values of the 

parameter less than its bifurcation value. Hence the adjective subcritical. In 

Figure A2.9b there is no limit cycle prior to bifurcation but a stable limit cycle 

is generated at bifurcation. Therefore after bifurcation any trajectories starting 

near the unstable equilibrium are attracted by the stable limit cycle with 

bounded oscillations. In practice just prior to bifurcation, the trajectories have 

lightly damped oscillations and after bifurcation, the trajectories are attracted 

by the limit cycle. Both these are unacceptable from a power system operation 

point of view. 

A2.6 Differential - Algebraic Systems of Equations. 

Differential - Algebraic systems of equations consist of differential equations, 

which also include algebraic variables and are subject to a set of algebraic 

constraints. These are important in voltage stability analysis since multiple 

time scale systems reduce to differential algebraic systems after time scale 

decomposition, which is a mathematical method used to solve multiple time 

scale systems. 
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A2.6.1 Equilibrium Points and Stability in Differential – Algebraic 

Systems. 

Differential – Algebraic systems are of the following form. 

( , , )x f x y p=�                                                                                (A2.40a) 

0 ( , , )g x y p=                                                                                (A2.40b) 

The equations represent n differential equations and m algebraic equations, 

which are assumed smooth. x is a vector of n state variables, y is a vector of m 

algebraic variables and p is a vector of k parameter variables. A manifold 

called the constraint manifold of dimension (n+k) is defined by the m 

algebraic equations in the (n+m+k)-dimensional space of the state, algebraic 

and parameter variables x, y and p. The following method using the implicit 

function theorem is used in the analysis of differential algebraic systems. 

At a point (x, y, p) where the algebraic Jacobian ( , , )yg x y p  is non-singular, 

the implicit function theorem states that there exists a locally unique smooth 

function of the following form. 

( , )x F x p=�                                                                                   (A2.41) 

It is seen that the algebraic variables have been eliminated from this function 

and such a function exists for all points in (n+m+k)-dimensional, state, 

algebraic and parameter space where the algebraic Jacobian gy is nonsingular. 

Therefore the theorem of existence and uniqueness referred to at the 

beginning of this appendix implies that there is a unique time solution to the  

above differential-algebraic equations at all points where the Jacobian gy is 

nonsingular. For a given parameter vector p, the domain of F in state space is 

denoted by Up. Up is bounded by points for which the Jacobian gy is singular 

and may also be bounded by any hard limits on the state variables. 
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Now using a method similar to the one shown in Section A2.2, for a given 

value of p, the equilibrium points are given by the solution of the following 

system of equations. 

( , , ) 0f x y p =                                                                                (A2.42a) 

( , , ) 0g x y p =                                                                                (A2.42b) 

To determine the stability of equilibrium points the above system is linearised 

as follows. 

0

x x
J

y

∆ ∆   
=   ∆   

�
                                                                              (A2.43) 

Where 
x y

x y

f f
J

g g

 
=  
  

                                                                   (A2.44) 

is known as the unreduced Jacobian. 

When gy is nonsingular, ∆y can be eliminated from equation (A2.43) (note 

that equation (A2.43) is a pair of simultaneous equations) and doing so we 

obtain: 

1[ ]
x y y x

x f f g g x−∆ = − ∆�                                                                     (A2.45) 

Therefore the state matrix of the linearised system is: 

1[ ]x x y y xA F f f g g−= = −                                                              (A2.46) 

The expression for A is known as the Schur complement of the algebraic 

equation Jacobian gy in the  unreduced Jacobian J. A is also referred to as the 

reduced Jacobian. Now we may draw the following conclusions. 
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• The eigenvalues of the state matrix A determine the stability of the 

equilibrium point of the differential-algebraic system for a given value 

of p. 

• In state and algebraic variables space, the stable and unstable 

manifolds of the equilibrium point lie on the constraint manifold. 

• Bifurcations occur in a differential-algebraic system as the parameter 

vector p is varied. 

Note is made of Schur’s determinant formula for  nonsingular gy: 

1det det .det[ ] det .dety x y y x yJ g f f g g g A−= − =                        (A2.47) 

From this we see that for nonsingular gy, when the state matrix A becomes 

singular so does the unreduced Jacobian J. Therefore the necessary condition 

for a saddle-node bifurcation, which is gy becoming singular, is also the 

condition that the unreduced Jacobian J becomes singular. 

A2.6.2 Singularity Induced Bifurcations. 

The simultaneous solution of the algebraic constraint equations (A2.40b) and 

the singularity condition for the algebraic equation Jacobian given by: 

det ( , , ) 0yg x y p =                                                                        (A2.48) 

give the points on a hypersurface called the impasse surface with dimension 

(n+k-1) and lying on the constraint manifold.  This surface cannot be crossed 

by the trajectories of the system and divides the impasse surface into different 

regions called causality regions. The projection of the impasse surface, for a 

given parameter vector p, onto the state space defines an (n-1)-dimensional 

surface denoted Sp. This surface Sp consists of the algebraic equation 

singularity points and bounds the domain Up for a given value of the vector p. 

As p is varied the domain Up, on which the differential equation (A2.41) is 
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defined, contracts and expands. Now consider an initial condition of the 

differential-algebraic system with coordinates (x0, y0, p0) whose projection on 

state space is x0 (x0 is in the domain 
0pU ). From the theorem of existence and 

uniqueness of solutions discussed in Section A2.1, the following conclusions 

can be drawn. 

• Some solutions have an upper bound β and some solutions have a 

lower bound α on their interval of existence. 

• As t→β, solutions with an upper bound on the interval of existence 

either go to infinity or terminate on the boundary of Up. The 

singularity surface forms part of this boundary. 

• As t→α, solutions with a lower bound on the interval of existence 

either go to infinity or emerge from the boundary of Up, the 

singularity surface forming part of this boundary. 

Therefore the singularity surface contains points from which trajectories 

emerge or converge on in finite time. 

The k-dimensional equilibrium manifold and the impasse surface of a 

differential-algebraic system lie on the constraint manifold. The points at 

which the equilibrium manifold and the impasse surface cross satisfy both the 

singularity condition (A2.48) and the equilibrium conditions (A2.42a,b) and 

therefore are of interest. When a family of equilibrium points approach the 

impasse surface, the determinant of the algebraic equation Jacobian gy 

becomes  progressively very small and therefore by equation (A2.47), the 

reduced Jacobian A becomes very large. When this happens at least one of the 

eigenvalues of the state matrix A tends to infinity and on the other side of the 

impasse surface but on the equilibrium surface, the equilibrium points also 

have an eigenvalue tending to infinity but of opposite sign. Therefore the 

stability properties change as the equilibrium passes through the singularity 
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surface, giving rise to a bifurcation. Such a bifurcation is called a singularity 

induced bifurcation. This is illustrated by the following example. 

Consider the differential-algebraic system represented by the following 

equations: 

sinx z y x= −�                                                                               (A2.49a) 

20 0.5 cosz y y x= − − +                                                                (A2.49b) 

Where y > 0, z is a scalar parameter and n = m = k = 1. Therefore state and 

parameter space has dimension n + m + k = 3, constraint manifold has 

dimension n + k = 2 and the impasse surface has dimension n + k – 1 = 1. 

Figure A2.10 shows the constraint manifold, the equilibrium manifold and the 

impasse surface. 

 

Figure A2.10 -Singularity Induced 
Bifurcation [4] 
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The three dimensional state and parameter space is shown with the z-axis 

perpendicular to the x-y plane, ie. the z-axis is perpendicular to the plane of 

the paper. Equation (A2.49b) defines the 2-dimensional constraint manifold 

and is represented by the contours in solid lines for different values of z. The 

impasse surface, a 1-dimensional curve in this case, is defined by the equation 

(A2.49b) and the singularity condition given by: 

2 cos 0y

g
g y x

y

∂
= = − + =

∂
                                                           (A2.50) 

It is shown marked IS on Figure A2.10 and lies on the 2-D constraint 

manifold. The constraint manifold is divided into two causality regions by the 

impasse surface. The equilibrium manifold is defined by the equation 

(A2.49b) and the equation: 

sin 0z y θ− =                                                                               (A2.51) 

If z is eliminated from equations (A2.49b) and (A2.51), the following equation 

is obtained. 

cos 0.5siny x x= −                                                                      (A2.52) 

Using equations (A2.51) and (A2.52) the equilibrium manifold, a 1-

dimensional curve in this case, is drawn as shown in fig. A2.10 and marked 

EM. This too lies on the 2-dimensional constraint manifold. If the equations 

for the constraint manifold (A2.49b), the impasse curve (A2.50) and the 

equilibrium manifold (A2.51) are solved simultaneously, the point of 

intersection of the impasse curve (IS) and the equilibrium manifold (EM) on 

the constraint manifold is obtained and is shown as SIB. This is a singularity 

induced bifurcation and its coordinates are ( / 4, 2 / 4, 0.25)x y zπ= = = . 

The point (0, 1, 0), where the parameter z = 0, lies on the equilibrium 

manifold and therefore is an equilibrium point. It is also a stable equilibrium. 

Now if the parameter z is slowly increased, the equilibrium point moves 
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slowly uphill along the equilibrium manifold EM till it reaches the point SNB. 

For any further increase of z there is no equilibrium and the point SNB is a 

saddle-node bifurcation, a point at which a stable equilibrium such as the 

point A coalesces with an unstable equilibrium such as the point B. Once this 

SNB is reached, the trajectory will depart from equilibrium along the unstable 

manifold of the SNB till it reaches the algebraic singularity point D, which lies 

on the impasse surface IS and is not an equilibrium. 

A2.7 Multiple Time Scale Systems of Differential Equations. 

Some systems, including power systems, have dynamics evolving in different 

time scales. That is these systems have dynamics evolving in slow and fast 

time scales. Such systems are represented as follows. 

( , )x f x y=�                                                                                   (2.6a) 

( , )y g x yε =�                                                                                 (2.6b) 

Where x  is a vector of slow states, y  is a vector of fast states and ε  is a 

small number. 

In singular perturbation or time scale decomposition, the method used to 

study such systems, it is assumed that 0ε → . Then the system reduces to a 

differential algebraic system as follows. 

( , )s s sx f x y=�                                                                                (2.6c) 

0 ( , )s sg x y=                                                                                  (2.6d) 

This system contains only slow state variables and can be studied by the 

methods used for differential algebraic systems. It is assumed in the analysis 

that the fast dynamics are stable and that they have died out. 
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A p p e n d i x  3  

Appendix 3 in accompanying CD. 
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Abstract: 
 
Before the restructuring of the electricity industry adequate redundancy was built into power 
systems for voltage instability to be a major problem. Only rotor angle stability was 
considered in the operation and expansion of power systems. With the introduction of the 
new electricity market resulting in reduced investment and altered load patterns, particularly 
increasing load in areas with weak transmission and generation capacity, voltage stability has 
come into prominence. Unlike rotor angle stability, voltage stability requires mathematical 
theory and concepts that are difficult and not normally covered in undergraduate electrical 
engineering courses. This paper explains the theory of voltage instability and methods used to 
analyse the problem and proposes artificial intelligence methods for its prediction in power 
systems. 
 

1. Introduction. 
 
A major outage in North America on 14th August 2003 causing major blackouts in Midwest 
and Northeast United States and Ontario, Canada has been at least partially due to voltage 
collapse according to the US-Canada Power System Outage Task Force Report [13]. A recent 
outage due to voltage instability has also been reported in Sri Lanka [14]. References [15, 16] 
describe the application of voltage stability theory to analyze the South-Brazilian and 
Ecuadorian Power Systems and how the results thus obtained agreed with operational 
experience where voltage collapse has been experienced before.  
 
Thus voltage stability is not merely a theoretical construct but reality for which there was no 
urgency till recent times when power systems became more and more stressed. Therefore as 
power systems become more complex as well as operate in more stressed states, in addition to 
presently used security assessment methods, methods for voltage security assessment are also 
needed. 
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Theories to explain and analyze voltage stability are now being developed. [1]. Voltage 
instability results in voltages in parts of the system or the entire system becoming unstable or 
collapsing altogether causing collapse of the power system. It is different to low voltages 
experienced in certain parts of the network during certain conditions, when, though some 
voltages are low, the system is operating at a stable point. 
 
Mathematics of dynamical systems that studies such concepts as dynamics of and bifurcations 
in dynamical systems and singular perturbation, [2-10], is used in the study of voltage stability. 
Computer programs are now available for solution and visualization of solutions. [11] and 
Matlab. There is also a voltage stability specific computer program called UWPFLOW that 
solves voltage stability specific problems.[12]. Extensive use of this program was made in the 
research for this paper along with Phaser.[11]. 
 
 

2 Some Useful Definitions. 
 
The following two definitions of stability of a power system are given in [17]. 
 

1. An operating point of a power system is small disturbance stable if, following any small 
disturbance, the power system state returns to be identical or close to the pre-disturbance 
operating point. 

 
2. An equilibrium of a power system model is asymptotically stable if, following any small 

disturbance, the power system state tends to the equilibrium. 
 
The second definition assumes that the power system is modelled by, a set of differential 
equations. 
 
Voltage instability is defined in [1] as follows. 
 
Voltage instability stems from the attempt of load dynamics to restore power consumption beyond the capacity of 
the combined transmission and generation system. 
 

3 Voltage Instability 
 
A power system operating under stable conditions keeps continuously evolving. During this 
process some or all of the following take place in the system. The load changes; generators 
and induction motors go through electromechanical transients; static VAR compensators, 
(SVCs), activate; on load tap changers in transformers activate; shunt capacitors are switched 
on and off; automatic load recovery takes place following faults; faulted components of the 
power system are isolated; faulted transmission and distribution lines auto-reclose; excitation 
limiters activate etc. Thus a power system under load is a dynamical system. During this 
dynamics, if the power system is to remain stable, the operating point or the equilibrium point 
of the system has to track a stable point in state space. However the transmission system has a 
limited capacity for power transmission and generators have a limited generating capacity, on 
reaching these limits the system can go into voltage instability. At the point of going into 
voltage instability, the stable point of operation that existed before disappears. Thus the 
power system undergoes a transient and during this transient, the voltages decline 
monotonically causing a voltage collapse. It is to be noted that the state of a power system 
operating with low voltages but at a stable point, (i.e. there is no dynamic collapse of the 
voltages), does not constitute a voltage stability problem. 
 

4. The dynamics of a loaded power system. 
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The dynamics of a loaded power system can be represented by a system of non-linear 
ordinary differential equations, which can be written as: 

( )x f x=� . 

Where 
dx

x
dt

=� , t is time and x is a (nx1) vector.  

The vector x  represents the state of the system at a given time and is known as the state 
vector. Systems of this type are known as dynamical systems. 
Such dynamical systems can be solved analytically only in a very limited number of cases, 
however given initial conditions for the state variables, the equations can be solved by 
numerical integration. The geometric theory of ordinary differential equations allows the study 
of the behaviour of dynamical systems without resort to integration.  
 

5. Evaluation of a power system for voltage stability. 
 
There are a few computer programs available for the evaluation of voltage stability. Typically 
they perform continuation power flows, see [17], using detailed steady state models of the 
various power system elements. Because of their ability to model the power system elements 
in detail they can be used to determine the progression of steady state points as system 
conditions change. Thus for example a voltage sensitive load can be modelled as the system 
conditions change and successive power flows performed. 
 
The authors used the UWPFLOW program to perform continuation power flow studies on 
the IEEE 14 bus test system (see Fig. 1) to obtain the point of (system) collapse loading, the 
power system nose curves related to voltage collapse and sufficient loading points during the 
continuation power flow study to train artificial neural networks (ANN”S). 
 
There is a number of voltage stability indices used to measure proximity to voltage collapse, 
[17]. In the research presented in this paper the additional amount of load that could be 
utilised, at each point during the continuation power flow, before voltage collapse, known as 
the loading margin is utilised. 
 

 
 

Fig. 1 IEEE 14 Bus Test System 
 

The data for the system shown in IEEE data format is shown in Table 1. 
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1 Bus 1 1 HV 1 1 3 1 0 0 0 0 0 0 1.06 100 -100 0 0 0

2 Bus 2 2 HV 1 1 2 1.045 0 21.7 12.7 40 0 0 1.045 50 -40 0 0 0

3 Bus 3 3 HV 1 1 2 1.01 0 94.2 19 0 0 0 1.01 40 0 0 0 0

4 Bus 4 4 HV 1 1 0 1 0 47.8 -3.9 0 0 0 0 0 0 0 0 0

5 Bus 5 5 HV 1 1 0 1 0 7.6 1.6 0 0 0 0 0 0 0 0 0

6 Bus 6 6 LV 1 1 2 1.07 0 11.2 7.5 0 0 0 1.07 24 -6 0 0 0

7 Bus 7 7 ZV 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

8 Bus 8 8 TV 1 1 2 1.09 0 0 0 0 0 0 1.09 24 -6 0 0 0

9 Bus 9 9 LV 1 1 0 1 0 29.5 16.6 0 0 0 0 0 0 0 0.19 0

10 Bus 10 10 LV 1 1 0 1 0 9 5.8 0 0 0 0 0 0 0 0 0

11 Bus 11 11 LV 1 1 0 1 0 3.5 1.8 0 0 0 0 0 0 0 0 0

12 Bus 12 12 LV 1 1 0 1 0 6.1 1.6 0 0 0 0 0 0 0 0 0

13 Bus 13 13 LV 1 1 0 1 0 13.5 5.8 0 0 0 0 0 0 0 0 0

14 Bus 14 14 LV 1 1 0 1 0 14.9 5 0 0 0 0 0 0 0 0 0

1 2 1 1 1 0 0.01938 0.05917 0.0528 0 0 0 0 0 0 0 0 0 0 0 0

1 5 1 1 1 0 0.05403 0.22304 0.0492 0 0 0 0 0 0 0 0 0 0 0 0

2 3 1 1 1 0 0.04699 0.19797 0.0438 0 0 0 0 0 0 0 0 0 0 0 0

2 4 1 1 1 0 0.05811 0.17632 0.034 0 0 0 0 0 0 0 0 0 0 0 0

2 5 1 1 1 0 0.05695 0.17388 0.0346 0 0 0 0 0 0 0 0 0 0 0 0

3 4 1 1 1 0 0.06701 0.17103 0.0128 0 0 0 0 0 0 0 0 0 0 0 0

4 5 1 1 1 0 0.01335 0.04211 0 0 0 0 0 0 0 0 0 0 0 0 0

4 7 1 1 1 0 0 0.20912 0 0 0 0 0 0 0.978 0 0 0 0 0 0

4 9 1 1 1 0 0 0.55618 0 0 0 0 0 0 0.969 0 0 0 0 0 0

5 6 1 1 1 0 0 0.25202 0 0 0 0 0 0 0.932 0 0 0 0 0 0

6 11 1 1 1 0 0.09498 0.1989 0 0 0 0 0 0 0 0 0 0 0 0 0

6 12 1 1 1 0 0.12291 0.25581 0 0 0 0 0 0 0 0 0 0 0 0 0

6 13 1 1 1 0 0.06615 0.13027 0 0 0 0 0 0 0 0 0 0 0 0 0

7 8 1 1 1 0 0 0.17615 0 0 0 0 0 0 0 0 0 0 0 0 0

7 9 1 1 1 0 0 0.11001 0 0 0 0 0 0 0 0 0 0 0 0 0

9 10 1 1 1 0 0.03181 0.0845 0 0 0 0 0 0 0 0 0 0 0 0 0

9 14 1 1 1 0 0.12711 0.27038 0 0 0 0 0 0 0 0 0 0 0 0 0

10 11 1 1 1 0 0.08205 0.19207 0 0 0 0 0 0 0 0 0 0 0 0 0

12 13 1 1 1 0 0.22092 0.19988 0 0 0 0 0 0 0 0 0 0 0 0 0

13 14 1 1 1 0 0.17093 0.34802 0 0 0 0 0 0 0 0 0 0 0 0 0

IEEE 14 Bus Test System Bus Data

IEEE 14 Bus Test System Branch Data

 
 

Table 1 IEEE 14 Bus Data in IEEE Data Format 
 

Each branch in the 14 bus system was treated as a double circuit line and the following 
contingencies were chosen in addition to the full system. In each case after the base case 
power flow analysis a continuation power flow analysis with progressive small increases in 
load was performed. Thus a large number of operating points for a number of possible 
operating conditions of the power system are obtained. 
 

1. One circuit, buses 1 to 2, out. 
2. One circuit, buses 1 to 5, out. 
3. One circuit, buses 6 to 11, out. 
4. One circuit, buses 6 to 12, out. 
5. One circuit, buses 10 to 11, out. 
6. One circuit, buses 12 to 13, out. 
7. One circuit, buses 13 to 14, out. 

 
The nose curves for the most affected buses, 6, 7, 9 & 11, during the continuation power flow 
for the full system drawn using 220 points on the curve are shown in Fig. 2. Similar curves 
were obtained for other operating conditions or contingencies. 
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Figure 2 Nose Curves for the Full 14 Bus System 

 
For each of the eight cases, including the case of all circuits connected, the loading margin 
was calculated at each loading point up to the voltage collapse point which is the nose of the 
curve. These points were divided into adjacent groups of three, the first group being the set of 
points furthest from voltage collapse. For the purpose of training ANN’s, each point in each 
group was assigned a vector that indicates the severity of loading of the power system as 
follows. 
 
[1 0 0]T  The system is safe from voltage collapse. 
[0 1 0]T  Caution needed during further loading. 
[0 0 1]T  Extreme caution needed, system approaching voltage collapse. 
 
Altogether 1390 load points were obtained from all the continuation power flow simulations 
together with the bus voltages for the weakest buses. The P & Q loads and voltages of the 
seven weakest buses namely buses 6, 9, 10, 11, 12, 13 & 14 were chosen as the training inputs 
of the ANN’s. Thus each ANN has 21 inputs. 
 

6. Artificial Neural Network Training. 
 
After a study of artificial neural networks, [18, 19, 20], Multilayer Perceptrons that use 
backpropagation were chosen as the most suitable. Networks of different architectures using 
different learning functions, as explained below, were trained and evaluated for suitability. The 
Matlab Neural Network Toolbox was used for the training. 
 

6.1. ANN Architectures Selected. 
 
The notation, R-S1-S2-S3….., where R is the number of inputs and S1, S2 etc are the number 
of neurons in layer 1, layer 2 etc is used to represent the structure of each network. The 
following architectures were tested for suitability. For definitions of training functions, 
learning functions, transfer functions and the term epochs etc please see [18, 21]. 
 

1. 21-25-3 with Trainlm training function and Learngdm learning function, layer 1 
Logsig transfer function, layer 2 Purelin transfer function trained for 1000 epochs. 

2. As above but with layer 1 Tansig transfer function, layer 2 Purelin transfer function. 
3. As in 1 but with layer 1 Tansig, layer 2 Tansig. 
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4. As in 1 but with layer 1 Tansig, layer 2 Purelin and training function Traincgf. 
5. 21-30-3 layer 1 Tansig, layer 2 Purelin and the rest as in 1. 
6. 21-35-3 rest as in 5. 
7. 21-25-3 using automated regularisation {21] with the training function Trainbr. 

Layer 1 Tansig transfer function, layer 2 Purelin transfer function. For this method 
the training set and the target set need to be preprocessed and the results 
postprocessed [21]. 

8. 21-50-3. The rest same as in 7. 
9. 21-25-25-3. The rest same as in 7 and with the additional layer also with Tansig 

transfer function. 
 

7. Results. 
 
Analysis of the results by simulating the trained networks using sets of results from the 
various continuation power flows and comparing them with the expected targets shows that 
the network architecture represented in 9 above gives the best results and therefore is the 
most suitable. 3-D graphs generated in Matlab for visualisation of the errors is shown for two 
of the above networks including network 9 are shown below. 
 

 
Figure 3 Error Visualisation for the ANN Architecture 3 

 

 
Figure 4 Error Visualisation for the ANN Architecture 9 
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Figure 3 shows a number of errors of the order of less than 1.0 for a number of outputs while 
the number of error in Figure 3 for the architecture 9 is much less and only of the order of 
less than 0.0001. 
 

8. Conclusion. 
 
Therefore it is concluded that an Artificial Neural Network of the architecture represented as 
9 in paragraph 6.1 is very suitable for the prediction of pending voltage instability in a power 
system. A number of such networks need to be trained to take into account seasonal changes 
in load patterns. It would be possible for such a network to be embedded in dedicated 
hardware. Inputs such as the values of voltages and loads at weak buses can then be fed 
directly into this hardware utilising an existing SCADA system at suitable intervals of time. 
The output of the ANN would be an indication of voltage stability of the system for the 
system operator. 
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Abstract: 
 
Before the restructuring of the electricity industry adequate redundancy was built into power 
systems for voltage instability to be a major problem. Only rotor angle stability was 
considered in the operation and expansion of power systems. With the introduction of the 
new electricity market resulting in reduced investment and altered load patterns, particularly 
increasing load in areas with weak transmission and generation capacity, voltage stability has 
come into prominence. Unlike rotor angle stability, voltage stability requires mathematical 
theory and concepts that are difficult and not normally covered in undergraduate electrical 
engineering courses. This paper is an exposition of this mathematics. 
 
 
1. INTRODUCTION 
 
1.1 Some Useful Definitions. 
Voltage stability is defined in [1] as follows. 
 
An operating point of a power system is small disturbance stable if, following any small disturbance, the power 
system state returns to be identical or close to the pre-disturbance operating point. 
An equilibrium of a power system model is asymptotically stable if, following any small disturbance, the power 
system state tends to the equilibrium. 
 
It is defined in [2] as follows. 
 
Voltage instability stems from the attempt of load dynamics to restore power consumption beyond the capacity of 
the combined transmission and generation system. 
 
1.2 Voltage Instability. 
A power system operating under stable conditions keeps continuously evolving. The load 
changes; generators and induction motors go through electromechanical transients; static 
VAR compensators, (SVCs), activate etc. Thus a power system under load is a dynamical 
system. During this dynamics, the operating point or the equilibrium point of the system has 
to track a stable point in state space. However the transmission system has a limited capability 
and on reaching this limit, the system can go into voltage instability. At the point of going into 
voltage instability, the stable point of operation that existed before disappears. A power 
system operating with low voltages but at a stable point does not constitute a voltage stability 
problem. 
 
The following example taken from [1] but solved in greater detail is an elementary example of 
how voltage instability takes place. 
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1.3 Voltage Instability in an Elementary DC Power System. 
 
Consider a simple DC power system fed by a DC power source of 1V. The line resistance is 

0.5Ω, the load is a variable resistor and I is the current drawn by the load. 
 

 

E=1V   V 

R=0.5Ω 

RL 

 
Fig. 1.1 An Elementary DC Power System. 

 
The load resistance RL is automatically varied to achieve an assumed maximum power 
demand of 0.55W according to the differential equation: 
 

(1.1) 
 

According to elementary circuit theory, the maximum transferable power Pmax is given by: 
 
(1.2) 
 
However in this example the maximum power demand is 0.55W. 

 
The trajectory of the load resistance given by the solution of the differential equation (1.1) 

with an initial condition of 4.5LR = Ω  is shown in figure 1.2. 

 

 
Fig.1.2 Trajectory of the Load Resistance. 

 
The variations of the load voltage and load power are shown in figures1.3 & 1.4. 
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Fig. 1.3 Variation of Load Voltage. 

 
 

P
 (

W
) 

t (s)  
Fig.1.4 Variation of Load Power 

 
It is seen from figures 1.3 & 1.4 that voltage instability or collapse takes place when the 
demand for power increases beyond the maximum deliverable power of 0.5 W.  
 
The dynamics of a loaded power system can be represented by a system of non-linear 
ordinary differential equations, which can be written as: 

 ( )x f x=�                                                     (1.3) (1.3) 

Where usually 
dx

x
dt

=�  where t is time, x  is a ( 1)n×  vector and , ( 1, 2,.... )if i n=  are 

generally non-linear functions of , ( 1, 2,.... )ix i n= . The vector x  represents the state of 

the system at a given time and is known as the state vector. Systems of this type are known as 
dynamical systems. 
 
Such dynamical systems can be solved analytically only in a very limited number of cases, 
however given initial conditions for the state variables, the equations can be solved by 
numerical integration. The geometric theory of ordinary differential equations allows the study 
of the behaviour of dynamical systems without resort to integration.  
 
2. SCALAR AUTONOMOUS DIFFERENTIAL EQUATIONS 
 
Many of the concepts of the geometry of solutions of ordinary differential equations can be 
understood by a study of scalar autonomous differential equations. 
 
Consider an equation of the form (1.3): 

( )x f x=�                                                      (2.1) (2.1) 

This equation is scalar if x is one dimensional and autonomous if ( )f x  is independent of t. 

 
2.1 Solution of Scalar Autonomous Differential Equations. 
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When solving an equation of the type (2.1), often the interest is in a specific solution that 

passes through an initial value 
0x  at time 

0t . Such a problem is called an initial value 

problem. Therefore the initial value problem may be expressed as: 
                     (2.2) 
 

But in many cases it is impossible to perform the required integration though numerical 
integration using a computer program can give a solution. However the interest in most cases 
is in the qualitative behaviour of dynamical systems and this can be studied by geometrical 
methods. 
 
Example 2.1 
 
Consider the following initial value problem. 

                       (2.3) 
The solution is: 

0

0

( )
1

x
x t

x t
=

−
 

On examination of this solution certain conclusions can be drawn regarding the behaviour of 

( )x t , see [2]. For 0 0x > , the solution is valid or defined only on the interval 

0

1
,
x

 
−∞ 
 

; 

for 0 0x = , the solution is defined on the interval ( , )−∞ +∞  and for 0 0x < , the solution 

is defined only on the interval 

0

1
,

x

 
+∞ 

 
. Trajectories of the solution of the equation (2.3) 

for the initial values 0 1.5, 1.0, 0.5,0.0,0.5,1.0 &1.5x = − − −  are shown in Fig. 2.1. 

 
 

Grid at 0.5 intervals 

 t 

 x 

 

Fig. 2.1 Trajectories of 
2

x x=�  
 
It is now evident that a solution to an initial value problem has an interval of validity of its 
solution. This interval is called the maximal interval of existence and may be infinite in some 

cases. It is usually represented as 
0 0 0

( , )x x xI α β≡  where 
0 0x xtα β< < .  

Sometimes it is convenient to represent the solution ( )x t  to the initial value problem of 

equation (2.1) as 0( , )t xϕ . 

 
The following theorem, called the theorem of existence and uniqueness of solutions, given 
without proof, establishes the conditions for the existence and uniqueness of solutions to 
initial value problems. 
 
Theorem 2.1 The Theorem of Existence and Uniqueness of Solutions. 
 

0 0( ), ( )x f x x t x= =�

2

0, (0)x x x x= =�
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If ( )f x  is continuous in the domain U , a sub set of the domain of real numbers R , then 

there exists a solution 0( , )t xϕ  for all 0x  in U  with a maximal interval of existence of 

0 0 0
( , )x x xI α β≡  dependent on 0x . 

 

If in addition to the above, the first derivative of ( )f x  is continuous in U , then the 

solution 0( , )t xϕ  is unique in 
0xI . 

 
2.2 The Direction Fields, Vector Fields, Orbits and Phase Portraits of Differential 
Equations. 
 
The geometry of the flow of a differential equation can be studied by a study of its direction 
field, vector field and phase portraits.  
 
The right hand side of equation (2.1) gives the slope of the trajectory of its solution in the (t, 
x)-plane at any given point. Figure 2.2 below shows a collection of line segments representing 

the slope at different points on the (t, x)-plane for x x= −� . The collection of such line 
segments is called the direction field, see [3]. The direction field is always tangential to the 
given trajectory. 
 

Now since ( )f x  is independent of x , along every line parallel to the t-axis on the (t, x)-

plane, the direction field has the same slope. If this slope is projected on to the x-axis with its 
direction indicated, the vector field or the velocity field is obtained. See Fig. 2.2. 
 

 

G r id  a t  0 .5  in te rv a ls  

 t  

 x  

 
 

Fig. 2.2 Direction Field and Vector Field of x x= −� . 
 

The orbit 0( )xγ  of the trajectory of a differential equation passing through the initial 

condition 0x  is the projection of that trajectory between 
0xt α=  and 

0xt β=  on to the x-

axis. 
 

The positive orbit 
0( )xγ +

 of the trajectory of a differential equation is the projection of that 

trajectory between 0t =  and 
0xt β=  on to the x-axis. 

 

The negative orbit 0( )xγ −
 of the trajectory of a differential equation is the projection of that 

trajectory between 
0xt α=  and 0t =  on to the x-axis. 

 

The Fig. 2.3 shows the orbits for x x= −�  passing through a positive initial value. 
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0( )xγ −
 

0( )xγ +
 

 0( )xγ  

  0 

 X0 

  x 

 

Fig. 2.3 Orbits Through 0x  of x x= −� . 

 

On the orbit 0( )xγ , arrows can be inserted to indicate the direction in which its solution 

0( , )t xϕ  is changing as time t increases. The collection of all the orbits together with the 

arrows gives the phase portrait of the differential equation. See Fig. 2.4. 
 

 

 0  

 x  

 
Fig. 2.4 Phase Portrait of x x= −�  

 
2.3 Equilibrium Points of Scalar Autonomous Differential Equations. 
 

An equilibrium point also known as a critical point, usually represented by x , of a differential 

equation occurs at a point where ( ) 0f x = . A system on reaching a critical point stays at 

that point for all time. However any given equilibrium point may or may not be stable. 
 
2.4 Methods of Drawing the Orbits and Phase portraits of Differential Equations. (See 
[3]). 
 

The graph of x  Vs ( )f x  gives an easy method of drawing the orbits with the direction of 

motion and therefore the phase portrait of a differential equation. When ( ) 0f x > , the 

solution increases in t  and therefore approaches an equilibrium point or +∞  as 
0xt β→ . 

When ( ) 0f x < , the solution decreases in t  and therefore approaches an equilibrium point 

or −∞  as 
0xt β→ . 

 

In the second method the potential function, ( )F x  of equation (2.1) is defined as follows. 

 

( ) ( )
( )

d
x f x F x

d x
= = −� . Therefore, 
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0

( ) ( )

x

F x f s ds= −∫ . 

Now if a graph of the potential function ( )F x  is drawn, its extreme points, that is, its 

maxima and minima, will be the equilibrium points.. If a particle is imagined to travel freely 
along this graph, the likely direction in which it travels will give the phase portrait. 
 
Following figures illustrates the two methods. 
 

 

Fig. 2.5a Phase Portrait of 
3

x x x= − +�  Using the Function 
3( )f x x x= − + . 

 
 

 
 

Fig. 2.5b Phase Portrait of 
3

x x x= − +�  Using the Potential Function 
2 4( ) / 2 / 4F x x x= − . 

 
On examination of the above graphs certain conclusions can be drawn on the behaviour of 
the differential equation. 
 

The differential equation has equilibrium points at 1,0& 1x = − + . The equilibrium point 

at 0x =  is stable. The equilibrium points at 1& 1x = − +  are unstable. 

 
2.5 Stability of Equilibrium Points. 
 

An equilibrium point x  is stable if all solutions to the differential equation starting near x  

stay near to it. An equilibrium point is asymptotically stable if all solutions near x  tend to x  

as t → ∞ . 
 
Theorem 2.2 
 

If x  is an equilibrium point of ( )x f x=�  and ( )f x′  exists, that is, ( )f x  is 

differentiable, then, x  is asymptotically stable if ( ) 0f x′ <  and unstable if ( ) 0f x′ > . 

 

When ( ) 0f x′ ≠ , the equilibrium point is called a hyperbolic equilibrium point and when 

( ) 0f x′ = , the equilibrium is called a nonhyperbolic point. 

 
2.6 Bifurcations in Differential Equations. 
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Bifurcation of its differential equations is a very important aspect of voltage instability in 
power systems. The behaviour of these differential equations represents the behaviour of the 
power system. 
 
Consider the behaviour of the following differential equation. 
 

                             (2.3) 
 

 Where c is a real number variable parameter. The graph of this equation for c=0, passes 
through the origin (0, 0) which is an equilibrium point. When other values are assigned to c, 
the resultant graph is similar to the graph with c=0, but with the x-axis shifted vertically by –c. 
See Fig. 2.6. 
 

 

F(0,x) 

C<0 

C=0 

c>0 

x 

 
 

Fig. 2.6 Phase Portraits of 
2

x c x= +�  for different values of c. 
 
Using method 1 of 2.4, the phase portrait of equation (2.3) can be drawn for different values 

of c as shown. For 0c < , there are two equilibrium points, for 0c > , there are no 

equilibrium points and for 0c = , there is one equilibrium point, the origin. Now for small 
variations of c around 0, the number of equilibrium points change suddenly. Such a value of 
the parameter is called a bifurcation value, the equation being at a bifurcation point causing a 
saddle node bifurcation. 
 
3. SECOND ORDER AUTONOMOUS DIFFERENTIAL EQUATIONS. (See [3]). 
 
3.1 Linear Harmonic Oscillator. 
 
Consider the linear harmonic oscillator represented by the following equation. 

 
                                                   (3.1) 
 
 
The vector field and the phase portraits of this equation for initial values (x1, x2) 

= (1.0, 1.0), (0.75, 0.75), (0.5, 0.5) are as shown in Fig. 3.1. 
 

 

X 1  

X 2  

 
 

Fig. 3.1 Vector Field and Phase Portraits of Linear Harmonic Oscillator. 
 

2 ( , )x c x F c x= + =�

1 2

2 1

x x

x x

=

= −

�

�
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The equation has an equilibrium point at (0, 0) and the orbits for nearby initial conditions are 
circular orbits round this equilibrium point. Such an equilibrium point is stable but not 
asymptotically stable and is called a center. 
 
3.2 Van der Pol Oscillator. 
 
Consider the Van der Pol oscillator represented by the following equation. 

 
(3.2) 
 
 
The phase portraits of this equation for initial values (x1, x2) = (-

0.1, 0.1), (-2.0, 2.0), (2.0, -2.0) are as shown in Fig. 3.2. 
 

 

X1 

X2 

 
 

Fig. 3.2 Phase Portraits of Van der Pol Oscillator. 
 
It is seen that this equation has an isolated periodic solution called a limit cycle. All trajectories 
starting at any initial condition approach this limit cycle. 
 
3.3 Linear Product System. 
 
Consider the linear product system represented by the following equation. 
 

                                                  (3.3) 
 
 
The phase portraits for b<a<0, b=a<0 and a<0<b are shown in Figs. 3.3a,b &c. 

 
 X 2  

X 1  

 
 

(a) b<a<0 
 

 

X1 

X2 

 
(b) b=a<0 

 

1 2

2

2 1 2 1(1.0 )

x x

x x x x

=

= − −

�

�

1 1

2 2

x ax

x bx

=

=

�

�
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X 1  

X 2  

 
 

(c) a<0<b 
 

Fig. 3.3 Phase Portraits of the Linear Product System 
 

It is seen that for b<a<0, both 1( )x t  and 2 ( )x t  0→  exponentially as t → ∞ . For 

b=a<0, they tend to 0 along straight lines. Therefore the equilibrium point is called a stable 
node. For a<0<b, the origin is still an equilibrium point but all orbits other than the point 
orbit at the origin leave the origin as shown in Fig. 3.3c. Such an equilibrium point is called a 
saddle. 
 
In a power system often the state varies as parameters vary.  This variation in parameters can 

cause voltage collapse. A very simple case is a product system where λ  is the parameter: 
 
                                              (3.4) 
 
 
 

For such a system it can be shown that for 0λ < , there are two equilibriums, one a node 

and the other a saddle. As λ  is varied and reaches 0, the equilibriums coalesce. As λ  is 

further increased making 0λ > , the equilibrium disappears. Such a bifurcation is called a 
saddle node bifurcation. 
 
3.4 Hopf Bifurcation. 
 
Consider the single parameter system below. 

 
                  (3.5) 
 
 
 

It can be shown by drawing the phase portraits, that in such a system, when 0λ ≤ , all 

solutions spiral in to the origin as t → ∞  and when 0λ > all solutions spiral in to a 
periodic orbit, that is a limit cycle. Such a bifurcation is called a Hopf bifurcation. 
 
4. STABILITY IN SYSTEMS OF NON-LINEAR DIFFERENTIAL EQUATIONS 
 
 
In the analysis of power systems to determine voltage stability one comes across more 
complicated systems of non-linear differential equations. Following rules, given without 
proof, can be used to determine their stability. See [2], [4] and [5]. 
 

Consider the dynamical system represented by the equation (1.3). Let x  be an equilibrium 

point. Then the Jacobian A of ( )f x , which is a matrix, is defined as follows. 

 

2

1 1

2 2

x x

x x

λ= +

= −

�

�

2 2

1 2 1 1 2

2 2

2 1 2 1 2

( )

( )

x x x x x

x x x x x

λ

λ

= + − −

= − + − −

�
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                  (4.1) 
 
 

Now, the eigenvalues of the matrix A give a method of determining the stability as follows. 
 

If all the eigenvalues of ( )xf x  (the Jacobian) have negative real parts, then the equilibrium 

point x  is asymptotically stable. 

If at least one eigenvalue of ( )xf x  has a positive real part, then the equilibrium point x  is 

unstable. 

If some eigenvalues of ( )xf x  have positive real parts and the others have negative real parts, 

then the unstable equilibrium point x  is called a saddle. 

If ( )xf x  has a zero eigenvalue, then the unstable equilibrium point x  is called a saddle 

node. 

If ( )xf x  has a pair of complex conjugate eigenvalues, then the equilibrium point x  is called 

a center. A center is stable but not asymptotically stable. 
 
When a power system is modelled as a dynamical system for the study of voltage stability one 
comes across all the above types of stability and instability. The above is an introduction to 
the mathematics of voltage instability and the more complex topics such as differential 
algebraic systems, which may be used for modelling power systems, require further study. 
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Abstract: 
 
Before the restructuring of the electricity industry adequate redundancy was built into power 
systems for voltage instability to be a major problem. Only rotor angle stability was considered 
in the operation and expansion of power systems. With the introduction of the new electricity 
market resulting in reduced investment and altered load patterns, particularly increasing load in 
areas with weak transmission and generation capacity, voltage stability has come into 
prominence. Unlike rotor angle stability, voltage stability requires mathematical theory and 
concepts that are difficult and not normally covered in undergraduate electrical engineering 
courses. This paper explains briefly the theory of voltage instability and the use of artificial 
intelligence methods for its prediction in power systems. 

 
I INTRODUCTION 

 
Major power system outages due to voltage instability round the world are described in [16-
19].  
 
Theories to explain and analyze voltage stability are now being developed [4, 20]. Voltage 
instability results in voltages in parts of the system or the entire system becoming unstable or 
collapsing altogether causing collapse of the power system. It is different to low voltages 
experienced in certain parts of the network during certain conditions, when, though some 
voltages are low, the system is operating at a stable point. 
 
Mathematics of dynamical systems [5-13] is used in the study of voltage stability. Computer 
programs are now available for solution and visualization of solutions, PHASER [14], 
UWPFLOW [15] and MATLAB. UWPFLOW is voltage stability specific. 
 

II SOME RELEVANT DEFINITIONS 
 
The following two definitions of stability of a power system are given in [20]. 
 

3. An operating point of a power system is small disturbance stable if, following any small 
disturbance, the power system state returns to be identical or close to the pre-disturbance 
operating point. 

 
4. An equilibrium of a power system model is asymptotically stable if, following any small 

disturbance, the power system state tends to the equilibrium. 
 
The second definition assumes that the power system is modelled by, a set of differential 
equations. 
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Voltage instability is defined [4] as follows. 
 
Voltage instability stems from the attempt of load dynamics to restore power consumption beyond the capacity of 
the combined transmission and generation system. 
 

III VOLTAGE INSTABILITY, THE MECHANISM 
 
A power system operating under stable conditions keeps continuously evolving. During this 
process some or all of the following take place in the system. The load changes; generators 
and induction motors go through electromechanical transients; static VAR compensators, 
(SVCs), activate; on load tap changers in transformers activate; shunt capacitors are switched 
on and off; automatic load recovery takes place following faults; faulted components of the 
power system are isolated; faulted transmission and distribution lines auto-reclose; excitation 
limiters activate etc. Thus a power system under load is a dynamical system. During this 
dynamics, if the power system is to remain stable, the operating point or the equilibrium point 
of the system has to track a stable point in state space. However the transmission system has a 
limited capacity for power transmission and generators have a limited generating capacity, on 
reaching one or more of these limits the system can go into voltage instability. At the point of 
going into voltage instability, the stable point of operation that existed before disappears. 
Thus the power system undergoes a transient and during this transient, the voltages decline 
monotonically causing a voltage collapse. It is to be noted that the state of a power system 
operating with low voltages but at a stable point, (i.e. there is no dynamic collapse of the 
voltages), does not constitute a voltage stability problem. 
 

IV THE DYNAMICS OF A LOADED POWER SYSTEM 
 
The dynamics of a loaded power system can be represented by a system of non-linear 
ordinary differential equations as follows: 

( )x f x=� . 

Where 
dx

x
dt

=� , t is time and x is a (nx1) vector.  

The vector x represents the state of the system at a given time and is known as the state 
vector. Systems of this type are known as dynamical systems. Such dynamical systems can be 
solved analytically only in a very limited number of cases, however the geometric theory of 
ordinary differential equations allows the study of the behaviour of dynamical systems without 
resort to integration.  
 

V A SIMPLE POWER SYSTEM 
 

Consider a simple power system as follows. 

 

A single PV or constant voltage or slack bus with a single generator connected to it 

supplying a constant power factor PQ load consisting of real and reactive parts equal to 

p(1+jk). 

Let the impedance of the line be (0 )jX+  as resistance is neglected. Then, if I is the line 

current and ( )S p jq= + is the load power, it can be shown that [4, 20]: 
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          V E jXI= −                                              (1)                              (1) 

       (2a&b)        

               

 

 

 

The above equations are written on the assumption of quasi-steady-state in which case 

they reduce to power flow equations. 

If real power p is chosen as the slowly varying parameter and V and δ are chosen as the 

state vector, the variation of the magnitude of V with p is as shown in Figure 1. Such a 

diagram where one of the state variables is plotted against the slowly varying parameter, p 

in this case, is called a bifurcation diagram or a nose curve. 

 

 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1 Bifurcation Diagram of State V Vs Parameter p 

It is seen from the bifurcation diagram that for loads less than p' there are two equilibria, 

one at high voltage and therefore low current and the other at low voltage and high current. 

In practice the high voltage equilibrium is the more stable and the equilibrium at which a 

power system operates. As the slowly varying parameter, power p, is increased at the load 
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bus, the two equilibria come closer and coalesce at the critical power p' which is a saddle 

node bifurcation. Beyond p' the power system has no equilibrium points and cannot be 

operated. At p' voltage collapse occurs. 

In a real power system the state space would be multidimensional consisting of hundreds if 

not thousands of states. 

 
VI EVALUATION OF THE IEEE 14 BUS TEST SYSTEM FOR VOLTAGE 

STABILITY 
 
Most available computer programs perform continuation power flows [20] using detailed 
steady state models of the various power system elements. Because of their ability to model 
the power system elements in detail they can be used to determine the progression of steady 
state points as system conditions change. The authors used the UWPFLOW program to 
perform continuation power flow studies on the IEEE 14 bus test system (refer to Figure 2) 
to obtain the point of (system) collapse loading, the power system nose curves related to 
voltage collapse and sufficient loading points during the continuation power flow study to 
train artificial neural networks (ANN'S). 
 
Out of the available voltage stability indices used to measure proximity to voltage collapse 
[20], in the research presented in this paper, the additional amount of load that could be 
utilised at each point during the continuation power flow, before voltage collapse, known as 
the loading margin is utilised. 
 

 
 

Figure 2 IEEE 14 Bus Test System 

 
The data for the system, shown in IEEE data format, is shown in Table 1. 
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1 Bus 1 1 HV 1 1 3 1 0 0 0 0 0 0 1.06 100 -100 0 0 0

2 Bus 2 2 HV 1 1 2 1.045 0 21.7 12.7 40 0 0 1.045 50 -40 0 0 0

3 Bus 3 3 HV 1 1 2 1.01 0 94.2 19 0 0 0 1.01 40 0 0 0 0

4 Bus 4 4 HV 1 1 0 1 0 47.8 -3.9 0 0 0 0 0 0 0 0 0

5 Bus 5 5 HV 1 1 0 1 0 7.6 1.6 0 0 0 0 0 0 0 0 0

6 Bus 6 6 LV 1 1 2 1.07 0 11.2 7.5 0 0 0 1.07 24 -6 0 0 0

7 Bus 7 7 ZV 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

8 Bus 8 8 TV 1 1 2 1.09 0 0 0 0 0 0 1.09 24 -6 0 0 0

9 Bus 9 9 LV 1 1 0 1 0 29.5 16.6 0 0 0 0 0 0 0 0.19 0

10 Bus 10 10 LV 1 1 0 1 0 9 5.8 0 0 0 0 0 0 0 0 0

11 Bus 11 11 LV 1 1 0 1 0 3.5 1.8 0 0 0 0 0 0 0 0 0

12 Bus 12 12 LV 1 1 0 1 0 6.1 1.6 0 0 0 0 0 0 0 0 0

13 Bus 13 13 LV 1 1 0 1 0 13.5 5.8 0 0 0 0 0 0 0 0 0

14 Bus 14 14 LV 1 1 0 1 0 14.9 5 0 0 0 0 0 0 0 0 0

1 2 1 1 1 0 0.01938 0.05917 0.0528 0 0 0 0 0 0 0 0 0 0 0 0

1 5 1 1 1 0 0.05403 0.22304 0.0492 0 0 0 0 0 0 0 0 0 0 0 0

2 3 1 1 1 0 0.04699 0.19797 0.0438 0 0 0 0 0 0 0 0 0 0 0 0

2 4 1 1 1 0 0.05811 0.17632 0.034 0 0 0 0 0 0 0 0 0 0 0 0

2 5 1 1 1 0 0.05695 0.17388 0.0346 0 0 0 0 0 0 0 0 0 0 0 0

3 4 1 1 1 0 0.06701 0.17103 0.0128 0 0 0 0 0 0 0 0 0 0 0 0

4 5 1 1 1 0 0.01335 0.04211 0 0 0 0 0 0 0 0 0 0 0 0 0

4 7 1 1 1 0 0 0.20912 0 0 0 0 0 0 0.978 0 0 0 0 0 0

4 9 1 1 1 0 0 0.55618 0 0 0 0 0 0 0.969 0 0 0 0 0 0

5 6 1 1 1 0 0 0.25202 0 0 0 0 0 0 0.932 0 0 0 0 0 0

6 11 1 1 1 0 0.09498 0.1989 0 0 0 0 0 0 0 0 0 0 0 0 0

6 12 1 1 1 0 0.12291 0.25581 0 0 0 0 0 0 0 0 0 0 0 0 0

6 13 1 1 1 0 0.06615 0.13027 0 0 0 0 0 0 0 0 0 0 0 0 0

7 8 1 1 1 0 0 0.17615 0 0 0 0 0 0 0 0 0 0 0 0 0

7 9 1 1 1 0 0 0.11001 0 0 0 0 0 0 0 0 0 0 0 0 0

9 10 1 1 1 0 0.03181 0.0845 0 0 0 0 0 0 0 0 0 0 0 0 0

9 14 1 1 1 0 0.12711 0.27038 0 0 0 0 0 0 0 0 0 0 0 0 0

10 11 1 1 1 0 0.08205 0.19207 0 0 0 0 0 0 0 0 0 0 0 0 0

12 13 1 1 1 0 0.22092 0.19988 0 0 0 0 0 0 0 0 0 0 0 0 0

13 14 1 1 1 0 0.17093 0.34802 0 0 0 0 0 0 0 0 0 0 0 0 0

IEEE 14 Bus Test System Bus Data

IEEE 14 Bus Test System Branch Data

 
 

Table 1 IEEE 14 Bus Data in IEEE Data Format 

 
Each branch in the 14 bus system was treated as a double circuit line and the following 
contingencies were chosen in addition to the full system: 
 

8. One circuit, buses 1 to 2, out. 
9. One circuit, buses 1 to 5, out. 
10. One circuit, buses 6 to 11, out. 
11. One circuit, buses 6 to 12, out. 
12. One circuit, buses 10 to 11, out. 
13. One circuit, buses 12 to 13, out. 
14. One circuit, buses 13 to 14, out. 

The nose curves for the most affected buses, 6, 7, 9 & 11, during the continuation power flow 
for the full system drawn using 220 points on the curve are shown in Figure 3. Similar curves 
were obtained for other operating conditions or contingencies. 
 

 
Figure 3 Nose Curves for the Full 14 Bus System 

 
For each of the eight cases, including the case of all circuits connected, the loading margin 
was calculated at each loading point up to the voltage collapse point which is the nose of the 
curve. These points were divided into adjacent groups of three, the first group being the set of 
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points furthest from voltage collapse. For the purpose of training ANN’s, each point in each 
group was assigned a vector that indicates the severity of loading of the power system as 
follows. 
 
[1 0 0]T  The system is safe from voltage collapse. 
[0 1 0]T  Caution needed during further loading. 
[0 0 1]T  Extreme caution needed, system approaching voltage collapse. 
 
Altogether 1390 load points were obtained from all the continuation power flow simulations 
together with the bus voltages for the weakest buses. The P & Q loads and voltages of the 
seven weakest buses namely buses 6, 9, 10, 11, 12, 13 & 14 were chosen as the training inputs 
of the ANN’s. Thus each ANN has 21 inputs. 
 

VII ARTIFICIAL NEURAL NETWORK TRAINING 
 
After a study of artificial neural networks [1, 3, 70], Multilayer Perceptrons that use 
backpropagation were chosen as the most suitable. Networks of different architectures using 
different learning functions, as explained below, were trained and evaluated for suitability. The 
Matlab Neural Network Toolbox was used for the training. 
 

A. ANN Architectures Selected. 
 
The notation, R-S1-S2-S3….., where R is the number of inputs and S1, S2 etc are the number 
of neurons in layer 1, layer 2 etc is used to represent the structure of each network. The 
following architectures were tested for suitability. For definitions of training functions, 
learning functions, transfer functions and the term epochs etc refer to [2, 3]. 
 

10. 21-25-3 with Trainlm training function and Learngdm learning function, layer 1 
Logsig transfer function, layer 2 Purelin transfer function trained for 1000 epochs. 

11. As above but with layer 1 Tansig transfer function, layer 2 Purelin transfer function. 
12. As in 1 but with layer 1 Tansig, layer 2 Tansig. 
13. As in 1 but with layer 1 Tansig, layer 2 Purelin and training function Traincgf. 
14. 21-30-3 layer 1 Tansig, layer 2 Purelin and the rest as in 1. 
15. 21-35-3 rest as in 5. 
16. 21-25-3 using automated regularisation [2] with the training function Trainbr. Layer 

1 Tansig transfer function, layer 2 Purelin transfer function. For this method the 
training set and the target set need to be preprocessed and the results postprocessed 
[2]. 

17. 21-50-3. The rest same as in 7. 
18. 21-25-25-3. The rest same as in 7 and with the additional layer also with Tansig 

transfer function. 
 

VII RESULTS 
 
Analysis of the results by simulating the trained networks using sets of results from the 
various continuation power flows but not used in training and comparing them with the 
expected targets shows that the network architecture represented in 9 above gives the best 
results and therefore is the most suitable. A 3-D graph generated in Matlab for visualisation of 
the errors is shown in Figure 4 for network 9. 
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Figure 4 Error Visualisation for the ANN Architecture 9 

 
The errors are only of the order of less than 0.0001. 
 

VIII CONCLUSIONS 
 
Therefore it is concluded that an Artificial Neural Network of the architecture represented as 
9 in Section VII A is suitable for the prediction of pending voltage instability in a power 
system. A number of such networks need to be trained to take into account seasonal changes 
in load patterns. It would be possible for such a network to be embedded in dedicated 
hardware. Inputs such as the values of voltages and loads at weak buses can then be fed 
directly into this hardware utilising an existing SCADA system at suitable intervals of time. 
The output of the ANN would be an indication of the proximity to voltage instability of the 
power system. 
 

IX NOTES 
 

The topic of voltage stability being one that has come into prominence only recently the 
following notes are considered appropriate to place the research in its proper context. 
 

1. A literature survey has revealed that there are no published papers for the prediction 
of voltage instability in power systems. This could be due to the commercial 
sensitivities of publishing data for real-life power systems and the novelty of the 
topic. 

2. For the network used, the authors obtained 1390 operating points of the power 
system and the training of ANN's required up to 1000 epochs for each ANN 
architecture used. This makes the process very labour intensive and hence the 
selection of the IEEE 14 Bus Test System for analysis. 
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