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Abstract 

Previous studies have shown that Eicosapentaenoic Acid (EPA) and Docosahexaenoic Acid 

(DHA) exhibit triacylglycerol (TAG) lowering effect in vitro and in vivo by down-regulating the 

Sterol Regulating Element Binding Protein (SREBP-1c) and reducing the expression levels of 

lipogenic genes. However, there is no evidence on the effect of Docosapentaenoic Acid 

(DPA) on SREBP-1c expression levels. DPA is a long chain n-3 fatty acid present in our diet 

through fish, red meat and milk of ruminant animals. Therefore, this study aimed to 

elucidate the effect of DPA on liver fatty acid synthesis in an in vitro model using rat liver 

cells. Our results suggested that DPA incubation (50 µM) for 48 hours (like EPA and DHA) 

caused a significant decrease in the mRNA expression levels of SREBP-1c, 3-Hydroxy-3-

Methyl-Glutaryl-Coenzyme A reductase (HMG-CoA reductase), Acetyl Coenzyme A 

Carboxylase (ACC-1) and Fatty Acid Synthase (FASn) compared with Oleic Acid (OA) and also 

a decrease in the protein levels of SREBP-1 and ACC-1. A time-course fatty acid analysis 

showed that DPA and EPA are interconvertable in the cells, however, after 8 hours of 

incubation with DPA, the cell phospholipids contained mainly DPA. The gene expression 

profiling of the lipogenic genes repeated at 8 hours confirmed that the inhibitory effect of 

DPA on mRNA expression levels of the lipogenic genes was most likely due to DPA itself and 

not due to its conversion into EPA. 
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INTRODUCTION 

Docosapentaenoic Acid (DPA) is a long chain n-3 fatty acid present in our diet through fish, 

red meat and milk of ruminant animals, although the concentration of fatty acid can vary 

between species. The concentration of DPA in fish (such as the Australian salmon), red meat 

(lamb fillet) and bovine milk is 388, 23 and 2.3 mg per 100 g, respectively (1-3). There is 

limited investigation of the biological effects of n-3 DPA, probably because it has only 

recently become available commercially in pure form. There has been extensive research on 

the biological effects of other n-3 LCPs namely Eicosapentaenoic Acid (EPA) and 

Docosahexaenoic Acid (DHA) which has shown that these LCPs possess numerous beneficial 

health properties, such as TAG lowering effects and amelioration of hepatic steatosis (4). 

Previous studies in animals have shown that supplementation with EPA ameliorates hepatic 

steatosis by down-regulation of the mature form of SREBP-1 protein, thereby reducing the 

expression of lipogenic genes (4-7). SREBP-1c is a hepatic gene transcription factor with a 

critical role in controlling the transcription of genes involved in fatty acid synthesis, 

especially in the liver in vitro and in vivo (8-10). It has been reported that EPA and DHA 

inhibit SREBP-1c gene transcription, enhance SREBP-1c mRNA turnover and interfere with 

the proteolysis processing of SREBP-1c protein (11, 12). Furthermore, in another key tissue 

concerned with whole body lipid metabolism, it has been shown using the in vitro cell model 

3T3-L1 adipocytes that EPA suppresses lipid droplet formation by suppression of the 

expression levels of genes related with lipid droplet function such as Cidea and Stearoyl-CoA 

Desaturases (13). To date, there is no data available on the effect of DPA on gene or protein 

expression levels of the main upstream controller of lipogenic genes, SREBP-1c. Recently it 

was reported in an in vivo study that supplementation of db/db mice (an animal model of 

type 2 diabetes) with synthetic tri-DPA for 4 weeks, reduced the mRNA expression levels of 
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hepatic Acetyl Coenzyme A Carboxylase (ACC-2) and enzyme activities of Fatty Acid Synthase 

(FASn) and Malic Enzyme (ME) (14). Tri-DPA is not naturally present in diet and that study 

did not investigate the effect of DPA on SREBP-1c. In the study presented here, the aim was 

to elucidate the effect of pure DPA on lipogenic gene and protein expression levels in liver 

cells. 

The liver plays a central role in whole body lipid metabolism and adapts rapidly to changes 

in dietary fat composition. This adaption involves changes in the expression of genes 

involved in glycolysis, de novo lipogenesis and fatty acid elongation, desaturation and 

oxidation. The liver provides an excellent and relevant model to study the molecular effects 

of DPA. The specific aims of the current study was to investigate the molecular actions of 

DPA compared with EPA and DHA on the key players involved in lipogenesis (SREBP-1c, 

HMG-CoA reductase, ACC-1, Carbohydrate Responsive Element Binding Protein (ChREBP) 

and FASn) using the rat hepatoma FAO cell line.  
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MATERIAL AND METHODS 

Cell culture 

FAO hepatoma cell line is a differentiated cell line derived from the rat hepatoma H4IIEC3 

line (15). FAO cells were seeded in 24-well plates at 1 x 105 cells per well and grown in RPMI 

media containing 10% (w/v) FBS and 1% (v/v) penicillin / streptomycin (Invitrogen, CA). After 

48 hours, FAO cells were at 70% confluence and at that time treated with the fatty acids as 

detailed below. 

 

Preparation of n-3 LCP media 

The stock solutions of fatty acids were prepared in 100% (v/v) ethanol at a concentration of 

20 mM and the working solution was prepared by adding the stock to the RPMI media to 

achieve a final concentration of 50 µM. Previous studies that have investigated the effects of 

n-3 LCP in cell culture have successfully used a dose of 50 µM for 48 hours in various cell 

lines (16-19) including liver cells (17, 18). The working solution was prepared fresh before 

treating the cells. 

 

Fatty acid treatment of cells 

FAO cells were treated with 50 µM of EPA, DPA or DHA (purchased from Nu-Chek Prep Inc., 

USA) for 48 hours. 50µM OA (Nu-Chek Prep Inc., USA) was used as an unsaturated fatty acid 

control while ethanol (EC) (0.5%) was used as a vehicle control. Treatments were 

replenished after 24 hours. The data reported in Fig 3 indicates that the supplemented free 

fatty acids were successfully incorporated into the FAO cells. 
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Gene expression analysis of lipogenesis  

After treatment, RNA was extracted from the cells and first-strand cDNA was generated 

from 1 μg total RNA. The levels of mRNA were measured with specific primers designed 

using Primer Express software package version 3.0 (Applied Biosystems, CA). Real time-PCR 

was performed in duplicate with reaction volumes of 20 μl, containing SYBR Green 1 

(Applied Biosystems, CA). Data was obtained using a comparative critical threshold (Ct) 

method where the amount of target gene was normalised to the amount of cyclophilin. 

Cyclophilin was used as a housekeeping gene since its expression levels did not change with 

the treatments (data not shown).  

 

Protein preparation 

After respective fatty acid treatment, the FAO cells were washed twice with ice-cold 1 x 

Dulbecco’s PBS, pH 7.4 (Invitrogen, CA) and were collected in ice-cold modified RIPA lysis 

buffer (64 mM Tris-HCl, pH 7.4 that contains 150 mM NaCl, 1% (w/v) NP-40, 1 mM EGTA and 

0.25% (w/v) sodium deoxycholate). The protease and phosphatase inhibitors (100 mM 

sodium fluoride, 30 mM sodium pyrophosphate, 1 mM sodium orthovanadate, 2 mM 

phenylmethanesulfonylfluoride, 1 µg/ml leupeptin and 1 µg/ml pepstatin) were added to 

the lysis buffer just prior to addition to cells for solubilisation for 15 min at 4°C. The 

solubilised and resuspended cells were centrifuged at 9,000 x g for 15 min in a 4°C pre-

cooled microcentrifuge. The supernatant (whole cell lysate) was collected into a fresh 

eppendorf tube, protein content was determined using the BradFord assay (Bio-Rad, PA) 

(20) and prepared for Western Blotting analysis of proteins of interest as detailed below.  
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Western Blotting  

Equal amounts of protein (30 µg) were reduced in loading buffer containing β-

mercaptoethanol and the samples were denatured at 100°C for 2 min. Proteins were 

resolved by 8% (for ACC-1) or 10% (for SREBP-1c) (w/v) sodium dodecyl sulphate 

polyacrylamide gel electrophoresis (SDS-PAGE). After SDS, fractionated proteins were 

electrophoretically transferred to nitrocellulose membranes using 1 x Towbin’s Transfer 

buffer. Membranes were blocked overnight at 4°C using 5% (w/v) skim milk in tris-buffered 

saline and Tween-20 (TBST) for ACC-1 and 5% (w/v) BSA in TBST for SREBP-1c. Membranes 

were then probed with the relevant primary antibodies (Cell Signalling, Danvers, MA) for 2 

hours at room temperature: ACC-1 rabbit monoclonal antibody; Phospho-ACC-1 (Ser79) 

rabbit monoclonal antibody; rabbit polyclonal anti-SREBP-1 antibody and mouse monoclonal 

β-actin antibody at a concentration of 1 in 1000 in TBST. After incubation with the primary 

antibody, membranes were then washed in 6 x TBST for 10 min each at room temperature 

and the membrane was probed with the relevant secondary antibodies for 2 hours at room 

temperature (anti-rabbit or –mouse IgG horseradish peroxide) at a concentration of 1:5000 

in TBST. The bound antibodies were visualised by enhanced chemiluminescence (ECL) (GE 

Healthcare, UK) as per manufacturer’s instructions. The density of protein bands was 

quantified using Image J software (NIH, Maryland, USA). 

 

Fatty acid analysis 

Lipid extraction - FAO cells in 6-well plate format were treated with the fatty acids as 

specified above. After 48 hours, the media was aspirated and cells were washed with ice-

cold 1 x PBS, pH 7.4 twice. 50µl of trypsin EDTA was added to each well and incubated at 

37°C for 5 min. Cells from 3 wells were pooled together and 1.5ml of PBS was added to 
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trypsinised cells. The cells were then transferred to 10ml glass screw-capped (teflon-lined) 

centrifuge tubes and tissue lipids were extracted by 2:1 chloroform : methanol, as described 

by Portolesi et al, 2007 (21). In brief, after addition of chloroform/methanol, the samples 

were vortexed for 10 min and centrifuged at 1500 x g for 10 min to separate the aqueous 

and organic phase at room temperature. The organic phase containing the lipid was 

removed and transferred to a new glass tube and evaporated under a stream of nitrogen. 

The lipid extract was reconstituted in 150 µl of chloroform and the lipids were then 

separated by thin layer chromatography (TLC). 

Thin layer chromatography (TLC) – The lipid extracts were spotted onto silica gel plates 

(silica gel 60 G, Merck, Germany) and developed in 85:15:2 (v/v)  hexane : diethylether : 

acetic acid in paper-lined tanks. The lipids were visualised with 0.1% (w/v) 2′,7′ –

dichlorofluroescein indicator in ethanol (Scharlau, Spain). The phospholipid band from the 

samples was scraped off into glass screw-capped tubes and were reacted with 2% H2SO4 in 

100% methanol for 3 hours at 80°C to form the fatty acid methyl esters (FAME). After the 

reaction, the FAME were isolated in 100% petroleum ether and stored in glass vials at -20°C 

prior to gas chromatography. 

Gas chromatography - The purified FAMEs were separated by capillary gas liquid 

chromatography (GLC) using a 50 m x 0.32 mm (I.D.) fused silica bonded phase column 

(BPX70, SGE, Melbourne, Australia) (22). Fatty acids were identified by comparison with 

standard mixtures of FAME and results were calculated using response factors derived from 

FAME standards of known composition. 
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Statistical analysis 

Data calculations and statistical analysis were performed using Statistical Package for the 

Social Sciences software (SPSS version 17.0; Fullerton, USA). Significant differences between 

treatment groups were tested using a one-way ANOVA for each type of fatty acid. Normality 

of distribution was tested using the homogeneity of variance test. If the test was non-

significant, the post-hoc comparisons were made using the least significant difference (LSD) 

test with a significance level of <0.05. If the homogeneity of variance test was significant, the 

data was analysed using Welch test and post-hoc comparisons were made using Dunnetts T3 

test with a level of <0.05 considered as significant. 
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RESULTS 

Effect of n-3 LCP incubation on the expression of lipogenic genes 

The effect of the n-3 LCP treatment, for 48 hours, on the expression levels of key genes 

involved in lipid synthesis in FAO liver cells is shown in Fig 1. This demonstrates that EPA, 

DPA and DHA treatment resulted in a significant decrease in the gene expression levels of 

SREBP-1c by 73, 96 and 84 per cent, respectively, compared with OA (p<0.05, n=2). OA was 

used as a control fatty acid to show that the effect of n-3 LCP on lipogenic genes was not 

common to all unsaturated fatty acids. EPA, DPA and DHA treatment also caused a 

significant decrease in the gene expression levels of HMG-CoA reductase by 53, 93 and 76 

per cent, respectively, compared with OA (p<0.05, n=2). DPA and DHA treatment 

significantly reduced the mRNA expression levels of ChREBP by 83 and 54 per cent, 

respectively, relative to OA (p<0.05, n=2). The mRNA expression levels of ACC-1 and FASn 

were also decreased significantly (p<0.05) by treatment of cells with all three n-3 LCP and 

the maximum decrease of 86% was observed in FASn expression in the cells supplemented 

with 50 µM of DPA. The results obtained from the mRNA expression analysis of the two 

upstream genes in lipogenesis, SREBP-1c and ACC-1, were confirmed by measuring their 

protein levels (Fig 2). DPA significantly reduced the protein levels of ACC-1 by 72% compared 

with the vehicle (p<0.05, n=2). Although EPA and DHA also reduced ACC-1 protein levels by 

55 and 48%, respectively, compared with the vehicle, the effect was not significant (p<0.05, 

n=2). In the case of SREBP-1c, DPA and DHA significantly reduced the pre-mature SREBP-1c 

protein levels by 71 and 85% respectively, compared with the vehicle. EPA did not alter the 

expression of SREBP-1c protein levels in the FAO cells. 
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Effect of n-3 LCP incubation on the fatty acid composition of FAO liver cells 

The fatty acid composition of the total phospholipids (PL) of FAO cells supplemented with n-

3 LCP for 48 hours was analysed in order to ensure that the fatty acids supplemented to the 

cells were being incorporated into the cell PL. The proportion of n-3 LCP in the OA treated 

cells was <2% of total fatty acids. The results also showed that, the cells supplemented with 

EPA resulted in significant increase in EPA levels (by 16 fold) and DPA levels (by 9 fold), 

relative to the OA control (p<0.05, n=2) but there was no increase in DHA levels. Similarly, 

DPA incubation resulted in a significant accumulation of DPA (by 14 fold) as well as EPA (by 9 

fold), relative to the OA control in the cell PL (p<0.05, n=2). DHA incubation significantly 

elevated DHA levels (by 12 fold) and EPA levels (by 6 fold) compared with OA control. There 

was a small but significant increase in DPA in cells treated with DHA (by 1.2 fold). The cells 

treated with ethanol and OA did not cause any changes in n-3 LCP proportions of the cells.  

 

Effect of short-term n-3 LCP incubation on fatty acid composition of FAO liver cells 

The results from the fatty acid analysis of FAO cells conducted at 48 hours suggested that 

the inter-conversion of DPA to EPA and vice-versa occurs in these cells with either fatty acid 

provided in the culture medium. Hence, it became important to identify the time-point at 

which the cells supplemented with DPA contained mostly DPA and little EPA. A time-course 

of fatty acid analysis was performed at 0, 1, 2, 4, 8 and 24 hours and the cells were treated 

in exactly similar manner as for the 48 hour analysis. The results showed that the proportion 

of DPA reached a peak at 8 hours (from 0 to 17%) and then remained constant, however the 

proportion of EPA formed (from DPA) in the DPA-treated cells at 8 hours was low (3%) as 

shown in Fig 3. 
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Effect of short-term n-3 LCP incubation on the expression of lipogenic genes 

The results from 48 hour fatty acid analysis of FAO cells showed that at 48 hours the PL of 

cells treated with DPA contained both DPA and EPA. Therefore it was not clear if the results 

obtained in gene expression and protein analysis were due to DPA or due to its conversion 

into EPA. The results obtained from the time-course fatty acid analysis identified that at 8 

hours, there was a maximum amount of DPA present in the DPA-treated cells, with a 

minimal amount of EPA formed from the DPA. Therefore, the mRNA expression levels of the 

lipogenic genes were re-investigated after 8 hours of DPA incubation. The gene expression 

results at 8 hours of treatment showed that DPA (like EPA and DHA) significantly down-

regulated the expression levels of SREBP-1c, HMG-CoA reductase, FASn and ACC-1 by 54 to 

99% (p<0.05, n=2) (Fig 4). The decrease in expression of ChREBP was not significant. 

 

Discussion and conclusions 

DPA is a dietary n-3 LCP present in fish, fish oil, meat and milk of ruminant species. 

Therefore, it is important to elucidate its molecular effects on lipid metabolism and its 

metabolism in liver cells. Previous studies have shown that oral supplementation with n-3 

LCP ameliorates hepatic steatosis, via down-regulation of mature form of SREBP-1 protein 

and thereby reducing the expression of lipogenic genes (4-7). However, there is no data 

available on effect of pure DPA on lipogenic gene and protein expression. The aim of this in 

vitro study was to investigate the effect of DPA on liver fatty acid synthesis compared with 

EPA and DHA. The second aim was to investigate the incorporation and inter-conversion of 

these n-3 fatty acids. The results showed that 48 hour incubation of DPA (like EPA and DHA) 

down-regulated the mRNA expression levels of SREBP-1c and ACC-1. DPA also reduced the 

protein levels of SREBP-1c and ACC-1 significantly, compared with the vehicle. SREBP-1c is 
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the main upstream controller of fat synthesis in vitro and in vivo (8, 23). Therefore, 

suppression of SREBP-1c levels in the liver cells is expected to reduce lipogenesis.  

The SREBPs are synthesised in the endoplasmic reticulum (ER) in the form of a precursor 

protein. To become transcriptionally active, the SREBP precursor undergoes proteolytic 

cleavage in the Golgi apparatus to liberate its N-terminal domain, which constitutes the 

mature transcription factor (24). In the present study we looked at the protein expression 

level of pre-mature SREBP-1 (120 kDa) and future studies should also investigate the effect 

of DPA incubation on mature SREBP-1 (66 KDa) to confirm this effect. In the present study, 

EPA, DPA and DHA also reduced the mRNA expression levels of HMG-CoA reductase, which 

catalyses a critical step of converting HMG-CoA to mevalonic acid in the cholesterol 

synthesis pathway (25). Our findings also demonstrated that the gene expression levels of 

FASn were down-regulated in all n-3-LCP treated cells compared with OA-treated cells. In 

our study, DPA and DHA treatment significantly decreased the mRNA expression levels of 

ChREBP in the FAO cells. ChREBP controls the expression of L-pyruvate kinase and the 

decreased gene expression of ChREBP can thereby limit L-pyruvate kinase, which in turn can 

restrict the substrate (glucose) available for TAG synthesis. These results are consistent with 

previously published studies, which have shown that EPA and DHA suppress ChREBP activity 

by increasing its mRNA decay and by altering ChREBP protein translocation from the cytosol 

to the nucleus both in primary hepatocyte cultures and in liver in vivo (12, 26). However our 

study is the first investigation to report the inhibitory effect of pure DPA on expression of 

lipogenic genes in liver cells. These results suggest that DPA may have a role in reducing fat 

synthesis and thereby TAG synthesis. An in vivo study in db/db mice (an animal model of 

type 2 diabetes) recently reported that when 1% tri-linoleate in the control diet was 

replaced with synthetic tri-DPA for 4 weeks, the hepatic TAG level and total amount was 
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decreased compared to the control (14). In this study, the efficacy of DPA was greater than 

that of EPA, but less than that of DHA in the liver. In contrast, EPA had the greatest serum 

TAG reducing effect. However this study used a form of DPA (tri-DPA) which is not naturally 

present in our diet. It was also reported that the mRNA expression levels of hepatic ACC-2 

were reduced (14). However the protein expression was not investigated. Supplementation 

of db/db mice with tri-DPA (in TAG form) also significantly reduced the hepatic enzyme 

activities of FASn and malic enzyme (14).  

The results from our study also showed that DPA and EPA are interconvertible in the liver 

cells; however, there was little evidence of conversion of EPA and DPA into DHA. These 

results are consistent with the previously published studies conducted using endothelial 

cells (27-29). One study in the literature reported that the media from DPA-incubated 

endothelial cells contained small amounts of DHA suggesting that DPA was converted to 

DHA and then released into the media (29). In our study the fatty acid composition of the 

cell media was not analysed. However, it can also be speculated that the lack of appearance 

of DHA in the cell PL from EPA and DPA incubation could be due to the fact that FAO 

hepatoma cells have a reported impaired capacity to beta-oxidise long chain fatty acids (30). 

It was also observed in our study that DHA incubation led to increased EPA levels, suggesting 

retro-conversion of DHA to EPA. There is also evidence in the literature on retro-conversion 

of DHA to EPA from human feeding trials. One study compared the metabolism of EPA and 

DHA by supplementing volunteers with 6 g/d for 6 days. It was reported that EPA increased 

the DPA levels in plasma and platelet PL, however DHA levels remained unchanged. DHA 

feeding increased EPA concentrations in plasma PL implying the occurrence of retro-

conversion (31, 32).  
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It was also of interest to identify the rate of incorporation of DPA into cell PL over time and 

to identify the rate at which the conversion of DPA to EPA occurred. The time points tested 

were 0, 1, 2, 4, 8 and 24 hours. It was observed that after 8 hours of treatment, the cells 

supplemented with DPA contained maximum amount of DPA while minimum amount of 

EPA. The gene expression results obtained after 8 hours of treatment showed that DPA 

significantly down-regulated the expression of SREBP-1c, HMG-CoA reductase, FASn and 

ACC-1 by 54-99% (p<0.05) (Fig 4). Since at this time point there was mainly only DPA present 

in the cell PL and minimal EPA is present, it can be concluded that effect of DPA on these 

genes was most likely due to DPA itself and not due to its conversion into EPA.  

In order to provide biological relevance to the findings with gene and protein expression 

analysis, functional end-point assays were conducted to measure the cellular TAG levels. 

However, the results from the current study failed to show an effect of DPA on TAG levels in 

the FAO cells (data not shown). It could be that the concentrations of the fatty acids used in 

this study were sufficient to cause a change in gene expression levels and protein levels in 

the cells but not to induce a change in the TAG amount and/or synthesis in the liver cells.  

In conclusion, the data shows that supplementation of liver cells in vitro with DPA (like EPA 

and DHA) down-regulated the expression levels of key genes and proteins involved in fatty 

acid synthesis. This suggests that DPA should be considered as a biologically active n-3 LCP. 

DPA is often ignored in the literature in reports from studies because it has been under-

studied, yet in all studies involving n-3 LCP measurements in tissues and foods DPA is 

generally present and in some instances in greater levels than DHA (eg. in ruminant meat 

and milk). Future studies should investigate the effects of pure DPA on plasma/liver TAG 

levels in an in vivo model such as diet induced hypertriglyceridemia in rats or an animal 

model of NASH.  
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Figure 1: mRNA expression levels of SREBP-1c, HMG CoA reductase, ChREBP, FASn and 
ACC-1 after treatment of FAO cells with 50µM of EPA, DPA, DHA or OA for 48 hours. 
The results are expressed as relative gene expression (mean ± SEM). The data is obtained 
from 2 independent experiments with n=3 in each experiment. Data was analysed using one 
way ANOVA and post hoc comparisons were made using LSD. Values significantly different 
from the vehicle (EC) are denoted with * and those different from OA are denoted as † 
(p<0.05). The vehicle has been assigned a value of 1. EC, ethanol control; OA, oleic acid; EPA, 
eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, docosahexaenoic acid. 
 
 

48 hour 48 hour 
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Figure 2: Protein levels of ACC-1 and SREBP-1 after 48 hours of treatment of FAO cells with 
50µM of EPA, DPA, DHA or OA or vehicle (EC). 20μg protein was loaded per lane. The graph 
shows arbitrary units of pACC normalised to tACC and of SREBP-1c normalised to the control 
β-actin, representing the mean (± SEM) of two independent experiments. Data was analysed 
using one way ANOVA and post hoc comparisons were made using LSD. Values with 
different superscript are significantly (p<0.05) different to each other. EC, ethanol control; 
OA, oleic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, 
docosahexaenoic acid. 
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Figure 3: Time course incorporation of fatty acids into phospholipids of FAO cells 
supplemented with n-3 LCP from 0 to 24 hours. 

Fatty acid composition of liver cells supplemented with 50 µM of EPA, DPA or DHA for 0-24 
hours. Results are expressed as percentage of total PL fatty acids (mean ± SEM). The results 
were obtained from two independent experiments with n=6 in each experiment. Data was 
analysed using one way ANOVA and post hoc comparisons were made using LSD. The values 
with significant superscripts are significantly different (p<0.05). 
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Figure 4: mRNA expression levels of SREBP-1c, HMG-CoA reductase, ChREBP, FASn and 
ACC-1 after treatment of FAO cells with 50µM of EPA, DPA, DHA or OA or vehicle (EC) 
for 8 hours. The results are expressed as relative gene expression (mean ± SEM). The data 
is obtained from 2 independent experiments with n=3 in each experiment. Data was 
analysed using one way ANOVA and post hoc comparisons were made using LSD. Values 
significantly different from the vehicle (EC) are denoted with * and those different from 
OA are denoted as † (p<0.05). The vehicle has been assigned a value of 1. EC,ethanol 
control; OA, oleic acid; EPA, eicosapentaenoic acid; DPA, docosapentaenoic acid; DHA, 
docosahexaenoic acid. 
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