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Abstract 

The search for lower energy consumption desalination systems has been driving 

research in the past decade towards the investigation of osmotically driven membrane 

processes, such as forward osmosis (FO) or osmotic distillation (OD). Despite 

similarities with reverse osmosis (RO) membranes, thin film composite (TFC) for FO 

membranes require careful design to reduce salt concentration polarization formation 

within the large pores composing the supporting layer. An investigation of a novel, 

highly stable, robust support made solely of carbon nanotubes (CNTs), which could find 

applications in both RO and FO was undertaken. TFC membranes were fabricated by 

interfacially polymerizing for the first time a dense poly(amide) (PA) layer on self-

supporting bucky-papers (BPs) made of hydroxyl-functionalized entangled CNTs. These 

hydrophilic supports exhibited low contact angle with water (< 20o), high water uptake 

capacity (17 wt%), large porosity (> 90%), making it a promising material when 

compared with poly(sulfone) (PSf), the traditional polymer used to fabricate TFC 

membrane supports in RO. In addition, the impact of the support hydrophilicity on the 

stability of the interfacially polymerized film and on water adsorption was investigated by 

oxygen-plasma treating various potential support materials, exhibiting similar 

geometrical properties. The morphology and salt diffusion of both CNT BP and PSf 

supports were investigated, and the novel BP-PA composite membranes were found to 

be superior to commercially available TFC membranes. 
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1. Introduction 

Reverse osmosis (RO) dominates today’s global desalination market as it offers 

several advantages over thermally or electrically driven desalination techniques 

including being less energy demanding and more robust for large desalination projects 

[1, 2]. However, since the late 90’s the quest for more energy efficient technologies 

have pushed research in the direction of osmotically driven desalination techniques 

such as forward osmosis (FO) [3, 4]. FO has shown promise when integrated along with 

membrane bio-reactors [5], nano-filtration [6] or membrane distillation [7] in order to 

reduce organic fouling [8] when treating highly concentrated organic solutions or RO 

brines. Although the operating principles of RO and FO highly differ from each other, the 

first membranes designed for FO were very similar to RO membranes [9, 10]. 

Similarities in the required salt rejection and properties of the thin active layer of the 

membranes initially lead research on FO towards using the expertise on RO membrane 

fabrication to process FO membranes [11, 12]. However, the different operational 

principles dictated that an alternative structure could lead to better performance in FO. 

Water permeation in RO relies on external applied pressure to overcome the osmotic 

pressure difference across a dense water soluble membrane to force water from the 

concentrate feed to the dilute permeate [13], while FO operates on the basis of 

exploiting the osmotic pressure difference to drive water across the dense layer of a 

semi-permeable membrane from a dilute feed into a concentrated draw solution. In both 

the RO and FO systems, the porous membrane supports have a significant effect on the 

efficiency of the application of interest but have generally been neglected in the 

research literature [4, 14]. 

Molecular transport in a water soluble polymer membrane is assumed to follow 

the solution-diffusion model [15] where the membrane’s thin active layer undertakes the 

functional separation. It is often assumed that the diffusional resistance across the 

porous sub-layer is very low and that the transport properties of the membrane are 

determined only by the active layer. However, studies on asymmetric cellulose acetate 

membranes in RO have shown that the concentration gradient in the porous sub-layer 

can be significant, comprising up to 22 % of the total resistance of the membrane [16, 
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17]. Similarly, in the case of FO, recent investigations demonstrated that the porosity 

and thickness of the macro porous support layer [18, 19] were likely to influence the 

membrane resistance to salt diffusion [3] due to the formation of large boundary layers 

within the support layer [15, 20]. While FO has the advantage of being less affected by 

pressure based fouling (i.e. cake formation) since no high pressure is applied on the 

membrane surface, it was demonstrated to be more sensitive to internal concentration 

polarization (ICP) than RO. ICP generated within the supports affect performance and 

well-engineered membranes are required to reduce permeation decay and improve the 

process efficiency [21]. ICP in the porous sub-layer of asymmetric cellulose acetate 

membranes have for instance been demonstrated to be significant [16, 17]. Large 

performance losses were demonstrated to occur when inappropriate membranes, such 

as commercial RO membranes [9, 22, 23], were used in FO. An optimal FO membrane 

support was previously described as thin, highly porous, of low tortuosity and strongly 

hydrophilic [24, 25]. The reduction of external concentration polarization has been 

investigated in both RO and FO through the use of specifically designed module 

spacers [26, 27], the better design of membrane structure [26] and chemical 

functionalization of membrane surface in order to change the membranes surface 

wetting behavior [15].  

A number of fabrication strategies have been developed to increase the average 

membrane permeability while maintaining high salt rejection, but more work is clearly 

needed to develop membranes specifically designed for FO. To date, although some 

asymmetric membranes were shown to exhibit high performance, thin film composite 

(TFC) membranes have dominated the commercial RO markets due to their lower 

fabrication costs and higher stability regardless of the feed quality and composition. 

Although, these supports exhibit poor wetting properties [25] and strong internal 

concentration polarization [4, 24, 28], they are the dominant material in the field of RO 

desalination technology, valued for their high water fluxes and salt rejection, and good 

tolerance to large pH variations. TFC membranes are composed of a thin top active 

layer supported on a macro-porous layer. The thickness of this top layer may vary but is 

usually between 100 and 500 nm [2]. An extensive number of studies have focused on 
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improving the selective layer by investigating more water permeable polymers and 

composite nano-structures [29]. Very little attention has, however, been focused on the 

optimization of both the FO and RO membrane supporting layers and typical supports 

for TFC membranes are non-woven poly(ester) and poly(sulfone) (PSf) [1, 20]. To date, 

the only commercial FO membranes available on the market are asymmetric 

membranes from Hydration Technologies Inc. (HTI, Albany OR – USA), based on 

cellulose triacetate embedded into a woven polyester mesh [30] and membranes from 

Modern Water. Improvements of the support structure would therefore improve the 

permeability of current TFC membranes [14, 29] and possibly make them better 

candidates for FO. 

A few studies have focused on the development of new supports for RO [31] and 

FO [18] membranes but, to the best of our knowledge, the impact of the support 

thickness, porosity or compressibility on the permeation process is always assumed to 

be predominantly ruled by the selective top layer. Yang et al. first demonstrated the 

importance of the porosity and structure of the support layer when testing hollow fiber 

membranes in FO initially prepared for nano-filtration [32]. Furthermore, Wei et al. [33] 

prepared PSf supports by phase inversion, which exhibited long finger-shaped cavities 

and porosities between 77 and 81 %. These supports had geometrical S coefficients 

between 0.67 and 0.71 mm making them comparable with commercial membranes from 

HTI (Table 1). Recent work on novel supports successfully used an electro-spun 

nanofibre mesh as a template for ICP [34]. Amongst other promising candidates to 

improve the performance of FO and RO membranes, carbon nanotubes (CNTs) show 

outstanding properties that could lead to more robust and flexible [35], chemically 

resistant supports [36] that may be less susceptible to ICP. CNTs can be organized in a 

variety of macro-structures, either self-supporting [37] with no binding materials and 

using Van der Waals forces to hold the CNTs together [38], as parallel arrays of CNTs, 

after collapsing aligned CNT forest by solvent evaporation [39] or through a composite 

approach by integrating the CNTs within a mixed matrix structure [40]. Furthermore, 

although the price of pristine CNTs was an obstacle over the past decade to their large 

scale commercialization, its cost has been reduced continuously and they stand as 
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promising building blocks in a number of tomorrow’s industrial applications [41]. Given 

the flexibility [42, 43] and large mechanical stiffness of Bucky-papers (BPs), with tensile 

moduli demonstrated to reach up to 1GPa [37], a non-woven network of entangled 

CNTs, they have been specifically of interest in the separation [44] and desalination [45] 

industries. BP can be cheaply processed from any grade of CNTs into very thin layers 

(> 10 µm) and have been shown to exhibit very large porosities [37, 46]. Furthermore, 

CNTs can be functionalized in order to fine tune their outer wall surface chemistry and 

super hydrophilic CNTs BPs have been processed for a large number of applications 

[47, 48]. Additionally, use of binders within the BP structure could be used to stiffen the 

BP without significantly affecting overall porosity [45]. Although the high compressibility 

of BPs without binders [35] could be a limitation to their use as RO supports, the low 

trans-membrane pressure applied in FO makes them promising candidate structures for 

current polymeric supports.  

In this paper we investigate the role of the structure of the support on the 

permeation of salt through TFC membranes, fabricated by interfacial polymerization of a 

poly(amide) (PA) layer on top of a self-supporting, super porous CNT non-woven BP 

material. Coating CNT BPs with a dense stable polymer film is a novel approach to 

fabricate ultra-thin membranes and has not been reported in the literature to the best of 

the authors’ knowledge. These promising thin supported structures were characterized 

prior to testing salt and water diffusion in a diffusion cell. The results were compared to 

the results for a commercial PSf support.  
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2. Experimental details 
 

2.1 Chemical reagents and commercial membranes 
N,N-dimethyl formamide (DMF) (98 %, Chemsupply), 1,3-phenylenediamine 

(MPD) (99+%, Aldrich), trimesoyl chloride (TMC) (98 %, Aldrich), sodium chloride 

(NaCl) (99 %, Chemsupply) and n-hexane (95 %, BDH) were used as received. All 

solutions were made using Milli-Q water with a resistivity of 18.2 MΩ cm. A commercial 

poly(amide) membrane, Dow Filmtec BW30LE, and a porous PSf proprietary polymer 

membrane support were kindly supplied by Dow Filmtec and GE Water, respectively.  

 

2.2 Composite membrane fabrication  

Multi-walled CNTs grown by chemical vapour deposition on silicon wafers at the 

CSIRO Materials Science and Engineering, Clayton, Australia, were used as stock 

material [49]. The CNTs were first scraped from their growth support wafers and 

suspended by repeated sonication in propan-2-ol at -17 oC following a procedure 

detailed in [45]. The suspensions were then filtered under house vacuum onto 

commercial 200 nm pore size poly(ether-sulphone) (PES) membranes from Millipore. 

The BPs were then peeled from the PES membranes to form a self-supporting 

membrane to act as a support during composite membrane processing. The surface of 

the CNT BPs was plasma treated with a 10W low pressure oxygen plasma cleaning 

device in order to render their surface hydrophilic. Both sides of the samples were 

exposed in a closed chamber at 500 mTorr for 5 min to the plasma. The BP supports 

were immediately immersed and stored in ethanol after exposure to protect the 

functional groups formed on the CNTs outer surface. The plasma treatment step was 

necessary to ensure wetting of the solutions during interfacial polymerization. 

The plasma treated BPs were then dried at 50 oC in an oven prior to be carefully 

placed over a Whatman filter paper (grade 602h) into a Buchner funnel. A 2 % w/v MPD 

aqueous solution was poured over the BP to fully cover the membrane and vacuum was 
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applied to filter the MPD solution through the BP until a thin layer remained. This layer 

was then drained and the 0.1 % w/v TMC in hexane was carefully poured over the BP 

and reacted for 10 seconds. Excess organic solution was drained and the BP washed 

with hexane to remove any unreacted TMC, followed by rinsing with ethanol and water. 

The BP-PA deposited membranes were then stored in Milli-Q water. 

 
2.3 Commercial membrane supports: PSf and poly(tetra-fluoroethylene) 

The porous membrane support provided by GE consisted of polyester and PSf 

support without the PA active layer. The polyester paper backing was peeled away to 

give only a single layer of PSf support. This support was used as the supporting layer to 

perform IP as previously described, except that no vacuum was applied during IP. For 

the commercial BW30LE membrane, the paper backing was peeled off before testing in 

the diffusion cell. In addition, IP on top layer of 20 nm pore size poly(tetra-

fluoroethylene) (PTFE) membranes from PALL was also performed to compare with the 

other types of supports. This PTFE support was chosen as it exhibited similar 

geometrical properties as the PSf and BP supports and provided convenient material to 

benchmark against the novel BP supported membranes. 

 

2.4 Membrane characterization and salt diffusion tests 

The thickness of the membranes was measured using a micrometer (Kincrome 

digital micrometer). Three measurements at random positions on the sample surface 

were averaged. The accuracy of the measurement was demonstrated in a previous 

paper [37], while the porosity of the BPs was also estimated following results on the 

same CNT structures from previous work. 

The membrane supports pore size distribution was determined by perm-

porometry with a PMI 1500 capillary flow porometer (CSIRO Materials Science and 

Engineering, Victoria – Australia). The tests were setup inn a wet/up dry/up mode. 

Galwick was used as the wetting liquid and 99.99% pure N2 used as pressurizing 
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gas. The pressure was incremented by 0.05 PSI per second from 150 PSI up to 450 

PSI and the pore size distribution was determined following a procedure previously 

detailed in [50]. 

The sorption of water vapour on the membranes was determined using a 

Gravimetric Sorption Analyzer (GHP-FS, with a Cahn D-200 balance, VTI Scientific 

Insturments, Florida) in flow mode. Membrane samples were placed in a sample holder 

that was suspended inside a temperature controlled chamber. The relative humidity 

(RH) inside the chamber was controlled by varying the flow of saturated and dry helium 

gas. For a given RH, the system was allowed to equilibrate until a constant mass was 

recorded. The RH can be related to the activity of water (aw) [51]: 

 
100

w
w

sat

PRHa
P

= =        (1) 

Where Pw and Psat are the water vapour partial pressure and the saturated water vapour 

pressure, respectively. 

 

The relative weight of water adsorbed was calculated using  Equation 2: 

( ) ( )0

0

% 100. RHm m
RW

m
−

=     (2) 

Where mRH is the mass of the sample at a given RH and m0 the mass of the dry sample, 

respectively. 

 

The surface structure of aromatic PA films and BPs were imaged using a Philips 

XL30 FEG FE Scanning Electron Microscope (SEM) at 2kV. All samples were sputter-

coated with gold under vacuum prior to imaging. Cross sections of the commercial 

membranes were prepared by snapping the samples in liquid nitrogen prior to gold 

sputtering. Furthermore, the cross sections of the BPs were obtained by ion beam 

milling (Gallium) on a FEI Nova dual beam (at Bio21, Melbourne – Australia). 
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The membrane and support were compacted under water in a dead end filtration 

cell at 6.9 MPa and filtered with water to ensure any trapped air was removed and the 

membranes were fully hydrated. A diffusion cell from Permgear (Figure 1) was used to 

perform direct osmosis experiments. It consisted of a two compartment cell design. The 

membrane was sandwiched between two Teflon gaskets and clamped between the two 

compartments. One compartment (receiver cell) was filled with Milli-Q water whereas 

the other compartment (donor cell) was filled with 2 g/L NaCl electrolyte solution. The 

solutions in the two compartments were stirred to reduce external concentration 

polarization. A water cooling jacket was used to maintain the temperature of the 

solutions at 25 oC. The concentration of electrolyte in the receiver cell was recorded as 

a function of time using a conductivity probe, and the conductivity converted to salt 

concentration via a calibration curve. 

 

The mass transfer coefficient or flux constant was calculated using Equation 3 [52]: 

 2 ( )1
2 (0)

R

D

C tV ln Bt
A C

⎛ ⎞
− − =⎜ ⎟

⎝ ⎠
    (3) 

Where CR (t) is the salt concentration in the receiver cell at time t, CD (0) is the initial salt 

concentration in the donor cell, V is the volume of solution in each cell, and A is the 

membrane area.  

In addition, S, the structural parameter, is defined as the product of the support 

layer thickness (l) and tortuosity (τ) over its porosity (ε) [33] and provides an indication 

of the diffusion path length across the membrane. 

Contact angle measurements were performed with a contact angle goniometer 

and analysed using CXImage 2.0 software with 5 µL drops of Milli-Q water. Three tests 

were performed and averaged for each sample. Membrane surface morphology and 

quantitative surface roughness analysis were performed using a Dimension 3100 

Atomic Force Microscope (AFM) (Digital Instruments, Santa Barbara, CA) in tapping 

mode with a non-coated silicon cantilever at a resonance frequency of 300 kHz using an 
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AFM probe of force constant 40 N/m. Dry membrane samples were mounted on a 

specimen holder and a height image of 10 μm x 10 μm area was scanned for 512 

samples (giving an average sample length of approximately 19.5 nm). Surface 

roughness for a 2.5 x 2.5 μm area was reported in terms of the root mean square (RMS) 

values. 
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3. Results and discussion  

3.1 Membrane supports without aromatic poly(amide) film 

The structure of the membrane support is critical to achieving high performance 

in both FO and RO. The membrane support’s wetting by water is especially important 

as water is one of the co-solvents typically used during interfacial polymerization [25] 

and is required to permeate rapidly through the membrane during desalination. It is well 

known that plasma treatment leads to formation of functional ‘defect’ groups [53]. In this 

work, the measure of the effectiveness of plasma to impart the essential hydrophilic 

property is carried out by contact angle. Wetting of the BPs and PSf support surfaces 

was evaluated by direct contact angle measurements. The contact angle on the BPs 

was shown to clearly decrease from 115o (± 3 o) to < 20o (± 3 o) after plasma exposure 

while the contact angle on the PSf was found to be 68o (± 2 o) (Table 1). This 

demonstrates that the plasma treatment significantly improved the wettability of the BPs 

by grafting hydroxyl and carboxylic groups on the surface of the CNTs as previously 

reported [54].  

However, surface contact angle does not truly reflect the wetting properties of the 

bulk of the structure, especially inside the pores where water transport takes place. 

Therefore water vapour sorption tests were performed on the samples. The water 

uptake by the BP and PSf supports as a function of relative humidity is shown in Figure 

2 a. The plasma exposed BPs showed a significantly higher water uptake of 

approximately 17.6 ± 1.3 wt % at 95 % RH compared with only 2.55 ± 0.03 wt% for the 

PSf at the same RH (Table 1). Water sorption by the PSf is via hydrogen bonding 

between the hydrogen atoms of the water molecule and that of the oxygen of the PSf 

sulfonyl group [31] and was comparable to that of the non-plasma exposed BPs. In 

comparison, the plasma exposed BP water uptake was comparable to the 21.5 ± 0.9 wt 

% by the isolated PA layer. In addition, the thickness of the two supports was quite 

different as the BPs and PSf supports exhibited thickness of ≈ 12.33 µm (± 1.52 µm) 

and ≈ 43 µm (± 2.64 µm), respectively. The use of a support that is both highly 

hydrophilic and thin will in theory allow water to permeate through the support with 
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reduced resistance. The surface of the supports and their apparent roughness were 

characterized by AFM as shown in 
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Figure 3. As shown in 
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Table 2, the surface topography clearly indicates the BPs have a much rougher surface 

compare to the PSf supports. The BPs were found to be much rougher (34.6 nm) than 

the PSf supports (4.1 nm). This is explained by the fact that the diameter of the 

individual CNTs, investigated by transmission electron microscopy in our previous work, 

was found to be 20 nm [38] and that bundles of 2 or 3 entangled CNTs may exist 

despite following the thorough dispersion and suspension protocol described in [55]. 

SEM images of the surface and cross-section of both the BP and PSf supports 

are shown in Figure 4. The surface of the BPs was found to be an open network of 

entangled CNTs (Figure 4 a). The pore size distribution of the PSf and BP supports was 

shown to be very similar with a semi-Gaussian distribution around ~20 and 25 nm 

respectively (Figure 5). On the other hand, the pores of the PSf supports appeared as 

individual pores within a smooth, flat surface (Figure 4 b). The cross-sectional images 

for the BPs and PSf supports are shown in Figure 4 c and d, respectively. The porosity 

distribution appears to be much more homogeneous within the BPs than the PSf 

supports. The porosity of the BPs was previously reported to be approximately 90 % 

[37] with an average pore size of approximately 25 nm, distributed between 20 and 50 

nm. The pore size distribution of the PSf supports was asymmetric across the thickness 

of the membrane, with the smallest pore size (≈ 20 nm in diameter) at the top surface 

where IP is performed. Figure 4d was used to analyze the porosity as a function of the 

membrane thickness image analysis and the ratios of dark and white areas. The 

asymmetric distribution is demonstrated in Figure 6 with the porosity increasing from 

≈ 15 % to 60 %. The initial low porosity of the PSf support may pose significant 

resistance to mass transport and reduce the permeation. As demonstrated in previous 

studies, the porosity of the BP was even across its thickness [56] producing a 

membrane of uniformly high porosity which favors water permeation. In addition, the 

similar pore size of the PSf and BP supports means that the PA layer will be self-

supporting over similar distances (size of the pore), which should allow the BP to 

provide sufficient support to prevent the PA layer from tearing when under pressure. 

The salt mass transfer coefficient through the two membrane supports is shown 

in Table 1. Due to the large pore sizes of both membranes compared to salt ions, no 
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molecular resistances to salt permeation were assumed and direct bridging and salt 

diffusion occurred. The BPs exhibited a mass transfer coefficient double of that of the 

PSf support. Without the dense PA layer, the membrane, due to its pore size ranging 

between 20 to 25 nm, is therefore behaving like an ultra-filtration membrane where the 

mass transfer coefficient of the salt (B) may be expressed as:  

     = =
Dε DB
lτ S

      (4) 

Where D is the diffusion coefficient of NaCl and the S parameter is a property of 

the support structure which is proportional to the thickness (l) and the tortuosity (τ) and 

inversely proportional to the porosity of the support (ε). The S parameter provides the 

length scale of the concentration polarization in the support layer, which is analogous to 

the boundary layer thickness in the external concentration polarization. Therefore, a 

larger S value will lead to a higher ICP [17]. Using the mass transfer data from Table 1, 

BPs exhibited an S value of 0.6 mm, which is less than half of that calculated for the PSf 

support, exhibiting an S value of 1.3 mm, and compares well with previously published 

S values for commercial membranes (Table 1). The S value for BPs was less than half 

of that calculated for the PSf support, which exhibited an S value of 1.3 mm. This 

indicates that the BP support should offer a lower ICP and be a much suitable 

supporting layer for osmotically driven processes such as FO (see Table 1). A potential 

concern for their use as RO support material is the mechanical strength of the BPs, as 

compression of the very porous BP is likely to occur at high trans-membrane pressure 

[35]. However, this may not be a significant issue if the tortuosity of the BP is close to 1 

[57], as compression will reduce the S value while maintaining the pore size, potentially 

leading to increased mass transfer coefficient as demonstrated with compressed 

membrane distillation membranes [62]. 

 

3.2 Membrane supports with aromatic poly(amide) film 
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IP of a thin PA film was performed on top of the plasma exposed BP and PSf 

supports. Controls were performed with non-plasma treated BPs and PSf supports as 

well as with 20 nm pore size PTFE membranes to assess the impact of hydrophobicity 

on the formation of the thin film. As expected [14, 31], the stability of the IP layer on the 

PTFE hydrophobic supports was very low and delamination of the PA layer occurred 

very rapidly. This was attributed to the inability of the MPD aqueous solution to wet the 

surface pores of the hydrophobic support which prevents the PA layer from forming 

properly and adhering onto the support  

As shown in Figure 2 b, the maximum water adsorption at any RH decreased 

with increasing average contact angle on each support. The low contact angle supports 

were found more stable, and this clearly shows that highly hydrophilic surfaces should 

be preferred for the preparation of FO membranes by IP. The data obtained at RH 80% 

show that the plasma treated CNT BPs exhibit higher water uptake than the PSf 

supports and slightly lower but nevertheless similar to the PA layer. This is interesting 

as this will reduce the change in water activity between the support and PA layers and 

may be preferential for water transport and possibly decrease the water resistance at 

the CNT BP-PA interface. It is also likely that the water vapour adsorption / desorption 

behaviors for both types of support, PSf and CNT BP, do largely differ. Water vapour is 

very likely to be absorbed by PSf co-polymers and cause swelling of the structure [31, 

58, 59] while only adsorption should occur in the case of the CNTs due to the inability of 

water to penetrate the crystalline graphene network [60]. Although strong swelling and 

permanent structural parameters changes of CNT BPs was reported in the case of 

immersion/drying in alcohol mixtures [61], it is highly unlikely in the case of water due to 

the hydrophobic nature of the CNTs [45]. Recent work on the use of functionalized 

CNTs as RH detectors did not present any swelling [62] and the BP structure therefore 

appears as very stable to water. The enhanced adsorption of the functionalized CNT 

BPs is generated by the presence of hydrophilic groups on the surface of the graphene 

sheets composing the tubes and not by absorption within the support material as it is 

the case for commonly used polymeric supports. This consequently reduces the risks of 

ageing and degradation by consecutive swelling/drying cycles which are issues that 
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have been reported in the literature [14, 63]. In addition, the larger water uptake of the 

non-plasma treated CNTs at very high RH contents (> 80%) can be attributed to 

capillary condensation between the CNTs in the BP [64, 65]. This capillary action may 

be caused by the highly porous structure of the BPs.  

In addition, SEMs of the interfacially polymerized membranes and of one 

commercial membrane (BW30LE) are shown in Figure 7. The film on top of the CNT BP 

is found to be thin and relatively smooth as CNTs could still be seen through the PA 

layer by transparency. This indicates, given the diameter of the CNTs (~20-25 nm [45]) 

that the film should not exceed ~100 nm of thickness, therefore being similar to that 

typically reported on PSf supports [31]. As expected from the AFM data presented in 

Figure 8 and values reported in the literature, the roughness on the PSf-based 
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membranes (Figure 7 b and Figure 8 b) was close to that of the commercial membranes 

(Figure 7 a and 
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Figure 8 a) with an average roughness value of 49.7 nm for the commercial 

membranes as opposed to 56 nm for the PSf supported PA membrane (
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Table 2). The surface morphology was very different to the aromatic PA deposited on 

the BPs (Figure 7c and Figure 8 c), which appears to be a smoother surface (roughness 

of only 29.2 nm as shown in 
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Table 2). The roughness and geometry of the supporting layer surface was therefore, 

demonstrated to highly affect the morphology of the PA layer. It is also interesting to 

note that the most hydrophilic surface lead to the most stable and smoothest PA 

deposition. This follows trends previously reported in [31], where PSf supports used for 

the preparation of RO membranes, were chemically modified to vary their degree of 

hydrophilicity prior to performing IP. The water meniscus orientation at the surface of 

the pores will therefore dictate the stability and penetration depth of the PA layer within 

the support. Furthermore, given the IP procedure that was followed in our work, it is also 

likely that the vacuum applied during the polymerization further enhanced the 

penetration of PA within the top of the CNT BP. This might also have improved the 

adhesion of the PA layer by partially embedding it into the support, across the thickness 

of a few CNTs.  

Finally, the salt mass transfer coefficient through TFC membranes made using 

different supports is tabulated in Table 3. It can be seen that the salt mass transfer 

coefficient related to the PA-BP membranes was actually lower by ≈ 15 % to those of 

the commercial membranes. In fact, hydrophilic supports used for IP were shown [31] to 

produce thinner, smoother and slightly less permeable membranes due to the larger 

penetration of PA within the membrane pores. This is well correlated with our results as 

the CNT BP-PA membranes exhibited lower salt permeability than the PSf support 

membranes, although the thickness of the PA was likely to be very similar. This result is 

highly promising as it demonstrates that membranes fabricated on more exotic supports 

can also be competitive in FO. The salt diffusion tests were performed over 6-8 h and 

no failures were reported for the tested samples. This clearly demonstrates that IP can 

be successfully performed on top of the nano-structured supports, such as BPs, and 

could lead to membranes exhibiting lower resistance to water permeation in FO while 

presenting improved salt rejection when compared to commercially available TFC 

membranes. In addition, the large scope of possible functional groups that can be 

grafted onto CNTs outer walls [36, 60] opens highly promising prospects for CNTs to be 

used and integrated into membrane support materials. 
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A number of other hydrophilic, high porosity and lower processing costs materials 

would also make good candidates as support structures for osmotically driven 

membranes, including highly porous structures made of metal oxide nanotubes [66], 

metal foams [67, 68] or aerogels [69, 70]. 
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4. Conclusion  

It was demonstrated that highly hydrophilic supports were more suitable for the 

processing of stable membranes for salt diffusion membranes for use in applications 

such as FO. CNT BPs especially have a strong potential to be used as a support for 

TFC membranes. The large porosity of the BPs, added to their even structure and 

strong chemical resistance make them promising supports for high flux TFC 

membranes. Their chemistry can be finely tuned to enhance their water adsorption and 

therefore facilitate transport. In addition, they can be processed in very thin sheets that 

can further enhance water permeation and reduce salt permeation when compared to 

commercial PSf supports. Furthermore the surface energy and roughness of the 

support were shown to influence the formation of smooth films by interfacial 

polymerization. CNTs offer fascinating prospects as the tubes can be pre-functionalized 

with groups showing greater affinity for PA, or with some of the monomers used in its 

interfacial polymerization, which could lead to improved polymerization patterns and 

ultimately lower the thickness of the active layer. One major limitation for the use of BPs 

as RO supports might however resides in their high compressibility, potentially reducing 

the effective porosity at large trans-membrane pressure difference. Solutions to improve 

the mechanical stability could lie in adding extra supporting layers, such as a 

poly(amide) mesh or metal grid and further work is required to fully perceive the 

potential of these novel types of supports. This work has explored the concept of the 

novel material, but clearly more work is needed when fixed on a particular application 

(eg. RO or FO) to extract the practical performance in terms of salt rejection and water 

flux. 
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Figure 1 Schematic of the stirred cells and position of the probes. 
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Figure 2: (A) The percentage of water vapour uptake at different RH for PA top layer 

only, plasma treated BP, BP without plasma treatment, PSf support without plasma, PSf 

with plasma, and Teflon without plasma; (B) Relative water adsorption changes as a 

function of the surface contact angle of the supports. 
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Figure 3: AFM images of the surface (insert) and surface topography of supports 

without PA interfacial polymerisation: (a) BP and (b) PSf support layer. The dotted line 

indicates where the surface topography was mapped. 
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Figure 4: SEM images of the surface of (a) BP and (b) PSf, and the cross-section of (c) 
BP and (d) PSf. 
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Figure 5 Pore size distribution of both PSf and BP supports.  
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Figure 6: Porosity as a function of distance away from the top PSf surface. 
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Figure 7: SEM images of the aromatic polyamide surface formed on the membrane 

supports via IP (a) commercial BW30LE, (b) PSf support and (c) BP support. 
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Figure 8: AFM images of the surface (insert) and surface topography of polyamides on: 

(a) BW30L, (b) PSf support and (c) TFC BP membrane. The dotted line indicates where 

the surface topography was mapped. 

Table 1: Characteristics of the membrane supports tested in this study and of values 

taken from the literature for commercial HTI membranes. The contact angle on the 

plasma exposed CNTs was so low that an accurate measurement was difficult and an 

upper bound of 25o. 

 BP 
support 

untreated 

BP 
support 
plasma 
treated 

PSf 
support 

untreated

PSf 
support 
plasma 
treated 

HTI 
support 

PTFE Pall 
20 nm 

support 

Contact 
angle (o) 115 ± 3 < 20 ± 5 68 ± 2 50 ±5 66.4 ± 

1.3 [8] 
140 ± 2 

Water 
uptake at 95 
% relative 
humidity 

(wt%) 

5.7 17.6 2.2 2.27 - 0.5 

Thickness 
(µm) - 12.3 ± 

1.5 
43 ± 3 - - - 

Salt 
permeability 
(10-4 cm.s-1) 

- 2.6 1.24 - - - 

S (mm) - 0.62 1.3 - 
0.7 – 

1.4 [8] - 
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Table 2: AFM roughness on the surface of the supports and TFC membranes (nm). 

RMS (2.5 μm × 2.5 μm) 

BP alone 34.6 ± 2.2 

PSf alone 4.1 ± 0.3 

BW30LE 49.7 ± 5.2 

PA-PSf 56.0 ± 4.8 

PA-BP 29.2 ± 3.7 

 

 

 

Table 3: Salt mass transfer coefficient through TFC membranes from commercially 

available BW30LE, membrane synthesised in the laboratory using PSf and membrane 

made using BP support. 

 Salt permeability (10-5 cm.s-1) 

BW30LE 1.5 ± 0.12 

PA-PSf 1.71 ± 0.13 

PA-BP 1.28 ± 0.36 
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‐ Investigating new supports for the preparation of forward osmosis membranes 

‐ Testing the impact of hydrophillicity of support materials on the stability of 

interfacially polymerized films to delaminating 

‐ Characterizing and testing the salt permeation of the composite nanotube – 

poly(amide) membranes 

 




