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Abstract 

The efficient functionalization of large quantities of carbon nanotubes entangled in a 

non-woven fashion into bucky-papers has been demonstrated through exposure to 

hard X-rays generated by a synchrotron source. The X-ray beam solely 

functionalized the carbon nanotube outer walls and an optimum X-ray exposure 

energy between 1048 and 2096 J cm-2 has been found to achieve maximum 

hydroxyl group density. Sol-gel reaction between a commercial fluoro-silane and the 

hydroxyl-modified carbon nanotubes was successfully performed resulting in an 

even distribution of fluoride atoms on the carbon nanotube surface, opening the way 

for the mass production of functionalized carbon nanotubes. 
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 The scope of potential applications for carbon nanotubes (CNTs) has 

dramatically expanded over the past 20 years opening highly promising opportunities 

in materials science. CNTs have demonstrated proof of concept application in 

biotechnology sensing separations, energy production and as composites with 

enhanced mechanical properties. However, the lack of solubility and the difficult 

manipulation in solvents and functionalization on large scale represent crucial 

barriers to the translation of CNT research into commercial products [1, 2].  

The functionalization of CNTs has been demonstrated to improve the surface 

affinity and/or chemical reactivity; several studies have demonstrated the importance 

of such an approach [1]. Although the functionalization of CNTs with hydroxyl or 

carboxylic groups can be obtained in gaseous phase using plasma, gamma ray or 

ozone, the functionalization of large amounts of CNTs with more complex and 

reactive chemicals is typically achieved by chemical reaction in solution. Plasma and 

ozone treatment have been demonstrated to damage the CNTs and may induce wall 

collapse [3]. These physical functionalization methods can affect the original 

electrical or thermal conductive properties of the CNTs. In addition, the penetration 

depth of these plasma and ozone irradiation techniques is limited to the top 20-50 

nm of the exposed surface due either to the thickness of the plasmon or to the 

reactivity of ozone corresponding to a penetration thickness of a few CNTs only [4]. 

Multiple treatments or exposure to severe conditions are therefore required to 

produce functionalized CNTs with high surface functionalization densities using 

these methods [5]. On the other hand, functionalization in solution often initially 

involves harsh treatments in strong acids while a number of steps are typically 

required to induce reactive pre-cursor groups prior to further chemical grafting or 

substitution [6]. Furthermore, a general issue in CNT handling resides in the 
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preparation of homogeneous and concentrated suspensions of CNTs which is 

problematic due to the natural tendency for CNTs to agglomerate. Routes to 

suspend and disperse CNTs have been previously demonstrated to damage the 

CNT crystalline walls. Given the technological demand of materials with specific 

functional properties, the controlled functionalization of the CNT side walls is a 

fundamental step to promote CNTs for the preparation of new composites or the 

fabrication of novel devices.  

Here we propose, for the first time, the use of hard X-rays for the large scale 

functionalization of CNTs. We used preformed self-supporting CNT structures, where 

the CNTs are individually entangled in a non-woven fashion, called bucky-paper 

(BP). BPs were exposed to “white” hard X-ray beams (photon energy range at 3-20 

keV and a peak at 8 keV) allowing a single step functionalization of the entire 20 mg 

CNT disks (47 mm diameter and 50 µm thickness).This fast technique takes 

advantage of the high penetration depth of such high-energy radiation and was used 

to induce the formation of hydroxyl groups [7] on the CNT outer walls without 

significantly changing the wall crystallinity (TEM images in Figure 1Figure 1 A and 

B). Although the crystallinity of the CNT outer walls was reduced, major damage was 

prevented, as compared to the dramatic damages induced on the CNT outer walls 

by other treatment techniques such as ozone or sonication (Figure 1Figure 1 C, D 

and E).  

The formation of hydroxyl groups was confirmed by FTIR (Figure 2Figure 2) 

and subsequent functionalization can be easily carried out. For instance, in this work, 

we grafted a commercial fluoro-silane (FAS-13) widely used for the preparation of 

hydrophobic surfaces [8]. FAS-13 easily reacts with superficial hydroxyl groups 

through a mechanism typical of sol-gel precursors [9]. After functionalization, the 
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broad hydroxyl group band was significantly reduced and the CH stretching modes 

were increased (Figure 2Figure 2) confirming the condensation reaction with FAS-

13. 

The effect of the hard X-rays on the BPs was investigated by exposing only 

one side to the radiation source with a dose matrix ranging from 262 up to 16760 J 

cm-2. The treatment efficiency was first demonstrated by measuring the contact 

angle of water on both sides of the BPs (Figure 3Figure 3-A). The contact angle 

decreased on both sides of the BP from ~120o for the pristine CNTs, down to ~40o 

after 8385 J cm-2 exposure dose corresponding to a ~66% reduction. Although just 

one side of the sample was irradiated, the well-known high penetration depth of such 

radiation source allows the surface along the entire thickness to be modified. Further 

evidence of the homogeneous distribution of the hydroxyl groups was the improved 

stability of suspensions of irradiated CNTs in polar solvents (e.g. ethanol and 50 v/v 

water/ethanol mixture - Figure 4Figure 4), making this a novel technique to efficiently 

functionalize CNTs prior to their suspension.  

The success of the reaction of the hydroxyl-functionalized CNTs with FAS13 

was further demonstrated by the increased contact angle on both sides of the BP 

after the grafting procedure (Figure 3Figure 3-A). The plateauing of the contact angle 

around 145o clearly demonstrates the presence of the fluoro-silane groups on the 

CNT side walls while the deep penetration of the initial X-ray beam exposure was 

confirmed by similar contact angle behaviour on both sides of the BPs. Furthermore, 

from the simultaneous plateauing of both the contact angle and the relative amount 

of fluoride present on the surface the optimal energy input for this experiment was 

found to be in the 1048 to 2096 J cm-2 range. As determined by XPS (Figure 3Figure 

3 B), the oxygen content of the X-ray exposed CNT BPs was consistently reduced by 
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~30 % after silanisation, corresponding to a significant fluoride surface concentration 

of 6.13 at%. Higher exposure doses did not further enhance the initial hydroxyl 

coverage suggesting that saturation was reached over this range of dose matrixes. 

Finally, the distribution of the hydroxyl groups across the surface of a BP is 

demonstrated by Energy Dispersive X-ray Spectroscopy (EDS). The distribution of 

the fluoride atoms after grafting is shown to be even and homogeneous across the 

two BP surfaces (Figure 5Figure 5). This result demonstrates the absence of site 

selectivity and the large scale applicability of the technique to functionalize CNTs.  

In conclusion, we have presented a novel and efficient way to functionalize 

CNTs with hydroxyl precursor groups with minimal damage to the CNT crystallinity. 

This one-step process allows for subsequent functionalization using the hydroxyl 

group for molecular grafting. This is the first report of the ability of hard X-rays to 

functionalize CNTs. Notably, medium value X-ray doses are sufficient to reach 

maximum hydroxyl groups surface density and this treatment is shown to be able 

functionalize through a thickness of 50 µm. The limitation of the proposed approach 

is the need of a synchrotron facility, however emerging research in the field is 

investigating laboratory hard X-ray sources [7]. Further studies are needed to 

investigate the penetration depth of hard X-rays with various CNT structures, such 

as forests, bucky-papers or yarns, in order to optimize the functionalization efficiency 

process. An interesting perspective is the possibility to localize specific functional 

groups in precise areas of the membrane taking full advantage of the deep X-ray 

lithographic technique [7]. 
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Figure 1 Representative Transmission Electron Micrographs (TEMs) of CNTs after 

various treatments (200 keV, lacey formvar carbon TEM grids); A and B: CNTs after 

exposure to hard X-ray doses of 262 and 8385 J cm-2. Even after the 8385 J cm-2, 

only minor damage has occurred to the CNT outer walls. This is compared to severe 

damage for CNTs treated by a 10 and 30 minute ozone treatment (C and D) or horn 

sonication (E). Images C, D and E (left and right) were made as part of previous 

studies within our group [9]. Plasma performed with oxygen for 5 min in a Harrick 

Plasma cleaner (PDC-002) at 200 W.  
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Figure 2 FTIR spectra of both irradiated and fluorinated BPs (1048 J cm-2 exposed 

sample). The irradiated sample (thin black line) presents a significant amount of OH 

group (broad band in the 3900-3000 cm-1 region). The 3000-2700 cm-1 region 

presents the C-H stretching. After functionalization (thick red line) the intensity of the 

main band is decreased while the intensity of the isolated OH is slightly increased 

[10]. The CH modes are weakly increased due to the CH groups in the fluoro-silane 

molecule. The samples were stored in analytical grade ethanol directly after X-ray 

beam exposure and dried in a vacuum oven overnight prior to any characterization. 
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Figure 3 (A: top) Contact angle on the fluorinated samples; black squares and red 

disks respectively correspond to the face of the bucky-paper exposed to the X-ray 

beam and to the opposite side; obtained with 4 µL Milli-Q water drops with a PG3 

PocketGoniometer; (B: bottom) XPS atomic composition (at%) of the surface of the 

BP after X-ray exposure and fluoro-silanisation. Data was acquired using a VG 

ESCALAB220i-XL X-ray Photoelectron Spectrometer incorporating a hemispherical 

analyser. The incident radiation was Monochromatic Al Kα X-rays (1486.6eV) at 

220W (22 mA and 10kV). Base pressure in the analysis chamber was 8.0x10-9 mbar. 
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A low energy flood gun (~6 eV) was used to compensate the charging effect. The 

energy calibration was referenced to the C 1s binding energy at 285.0 eV. 
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Figure 4 Suspension of pristine and X-ray exposed CNTs (at 16760 J cm-2) 

immediately after re-dispersion and 20 minutes later: impact of the hard x-ray 

treatment A) in pure ethanol and B) in 50/50 v/v ethanol/water. The X-ray exposed 

BPs were grinded and then redispersed into solution by sonication for 10 min at 

25oC in a bath sonicator. The pristine CNTs were provided as a powder and were 

similar to those initially used for X-ray exposure. They were directly dispersed 

following the same protocol. 
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Figure 5 EDS spectra taken at 5keV of the front and back of the BP exposed to 8583 

J cm-2 and functionalized using FAS-13. The spectra show the distribution of fluoride 

(F), carbon (C) and oxygen (O). Bright dots correspond to the presence of each 

respective element. A 25 keV was also performed (not shown) to ensure that iron 

had not been mistaken for fluorine. 

 

 

 


