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ABSTRACT

Small, remote communities often have limited access to energy and water. Direct potable reuse of
treated wastewater has recently gained attention as a potential solution for water-stressed regions,
but requires further evaluation specific to small communities. The required pathogen reductions
needed for safe implementation of direct potable reuse of treated sewage is an important
consideration but these are typically quantified for larger communities and cities. A quantitative
microbial risk assessment (QMRA) was conducted, using norovirus, giardia and Campylobacter as
reference pathogens, to determine the level of treatment required to meet the tolerable annual
disease burden of 10° DALYs per person per year, using Davis Station in Antarctica as an example of
a small remote community. Two scenarios were compared: published municipal sewage pathogen
loads and estimated pathogen loads during a gastroenteritis outbreak. For the municipal sewage
scenario, estimated required logy, reductions were 6.9, 8.0 and 7.4 for norovirus, giardia and
Campylobacter respectively, while for the outbreak scenario the values were 12.1, 10.4 and 12.3
(95" percentiles). Pathogen concentrations are higher under outbreak conditions as a function of
the relatively greater degree of contact between community members in a small population,
compared with interactions in a large city, resulting in a higher proportion of the population being at
risk of infection and illness. While the estimates of outbreak conditions may overestimate sewage
concentration to some degree, the results suggest that additional treatment barriers would be

required to achieve regulatory compliance for safe drinking water in small communities.
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Sewage

Abbreviations



47

48

49

50

51

52

DALYs

DPR

IPR

LRV

QMRA

disability adjusted life years
direct potable reuse
indirect potable reuse

log,o reduction values

Quantitative Microbial Risk Assessment



53
54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

1. Introduction
Small remote communities sometimes struggle to adequately meet basic services such as power and

water. In Australia, for example, there are many small remote communities. This is exemplified by
the many remote indigenous communities, with nearly 13% of people living in the 838 communities
with a population of less than 50 people and a significant number in communities with between 50
and 199 residents (ABS, 2008). More than half of the people living in remote indigenous
communities rely on bore water as their main water source, 62% rely on community generators for
electricity, only 30% are connected to a town sewerage system while 28% and 3.2% use septic tanks
or pit toilets, respectively and high proportions of people experience interruptions in supply of
services (ABS, 2008). In some of these communities, where water scarcity is an issue of concern,
alternative sources of water may be needed. While recent droughts in Australia were accompanied
by a drastic rise in the domestic use of grey water (ABS, 2007a; ABS, 2010a; ABS, 2010b), alternative

sources of potable water have received less attention.

Indirect potable reuse schemes for the recycling of wastewater (IPR is the discharge of treated water
into a receiving body prior to extraction and re-treatment for potable use) can be found in many
countries; however, direct potable reuse (DPR is reuse without environmental mixing) is rare. There
are currently only three DPR schemes in the world: Windhoek in Namibia (Lahnsteiner and Lempert,
2007), Cloudcroft in New Mexico and Big Springs in Texas (Tchobanoglous et al., 2011). While the
more immediate driver of DPR is extreme water scarcity, various other factors also favour DPR
systems, including whole-of-system life-cycle costs, reliability of water supply and quality and the
exhaustion of economically feasible non-potable reuse options (Leverenz et al., 2011). An important
consideration for system design and operation is the impact of population size on disease outbreaks,
sewage quality and ultimately the required level of treatment. A greater understanding of these

impacts is needed before the technology is implemented broadly.
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Quantitative microbial risk assessment (QMRA) is a useful tool to assess pathogen reduction
requirements for wastewater recycling and has been used to inform the regulatory environment
relevant to wastewater schemes for non-potable reuse, IPR and DPR scenarios (NRMMC et al.,
2006b; NRMMC et al., 2008; NRMMC et al., 2009; WHO, 2006). Reuse guidelines are usually based
on water quality characteristics of municipal sewage from large cities and, using a tolerable annual
disease burden of <10 disability adjusted life years (DALYs) per person per year, QMRA has been
used to inform guidelines where recommended pathogen logy, reduction values (LRV) are presented
(NRMMC et al., 2008). Municipal sewage is typically of consistent or relatively stable quality, as a
function of the dilution effect from a large population base (NRMMC et al.,, 2008), although
differences between peak and non-peak seasons may be detectable; for example norovirus
concentrations in sewage may be up to 1 or 2 logs units higher during peak season (Katayama et al.,
2008; Nordgren et al., 2009; Victoria et al., 2010). Localized disease outbreaks and changes in
population size may significantly alter sewage microbial quality from a small population, potentially

affecting treatment requirements.

The objective of this study was to determine the required LRVs for DPR in small communities as this
has not been specifically considered in reuse guidelines. While any of a number of small remote
communities could have been chosen as a representative population for the model, Davis Station,
the largest of three permanent Australian research stations in Antarctica, was selected for this
exercise as there is current interest in DPR. The Australian Antarctic Division is undertaking a project
to reduce the environmental impact of sewage treatment and disposal at Davis Station. As part of
this project, research is being conducted into the potential implementation of DPR which, in addition
to providing a reliable potable water supply, could provide considerable energy savings as compared
with the existing water system. While Davis Station may not be a typical small community, only

minor modifications (volume of drinking water and days of exposure) would be required to
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adequately reflect other populations. Regardless, the results of this assessment were considered
generalizable to a range of other small communities, of which there are many in Australia and

around the world.

2. Methods

The focus of this model was human health risks from waterborne pathogens, in particular diarrheal
diseases, from ingestion of treated drinking water. Two complementary approaches were employed
to estimate sewage pathogen concentrations: published values from municipal sewage treatment
plants and estimated gastroenteritis outbreak conditions. Further detail is provided in
supplementary materials.

2.1 QMRA

The QMRA method was used to determine required LRVs for direct potable reuse of wastewater
starting from a health target—a tolerable annual burden of disease (DB) of <10® DALYs person™
year—that has been widely adopted for both drinking water and non-potable reuse (NRMMC et al.,
2006b; WHO, 2006; WHO, 2011). All model input parameters are listed in Table 1. Using the annual
burden of disease calculation

DB = PyBS;, [1]
the tolerable annual probability of illness (Py) was determined, where B is the disease burden (DALYs

per case of illness) and S; is the proportion of the population susceptible to the disease.

While country-specific estimates of disease burden (B) are preferred, they are often non-existent. In
this model, published values from a range of countries were used. For norovirus, a Uniform
distribution (Cressey and Lake, 2009; Haagsma et al., 2008; Kemmeren et al., 2006; Lake et al., 2010;
Masago et al., 2006) was used to represent the range of available values and similarly using Dutch
data for giardia (Havelaar, 2012; Vijgen et al., 2007) and Campylobacter (Havelaar, 2012; Havelaar

and Melse, 2003).
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Disease susceptibility (Sf) is used to exclude the proportion of the population shown to be resistant
to infection. There is evidence of resistance to norovirus infection (Johnson et al., 1990; Lindesmith
et al., 2003; Teunis et al., 2008) related to both histo-blood group antigens and secretor status (Le
Pendu et al.,, 2006) although it has been suggested that, due to the variation between norovirus
genotypes, every person may be genetically susceptible to at least one norovirus genotype (Atmar,
2010). Since susceptibility to norovirus is uncertain, S; was represented by a Uniform distribution
accounting for a range from secretor-positive individuals (0.8; Denborough and Downing, 1968;
Thorven et al., 2005) through to all individuals (1.0). Despite many years of research, there remain
many questions about the mechanisms of pathogenicity, host responses to infection and immunity
to giardia infections (Roxstrom-Lindquist et al., 2006); therefore, in this work, all individuals were
assumed susceptible (S; =1). No information on susceptibility to Campylobacter was found so the

same assumption was made.

To estimate the tolerable daily probability of illness (py), the original equation for annual probability
of illness (WHO, 2006) was used such that

Pp=1-01-pi)" (2]
for n exposure events (days year™). In the model, the summer period (months where population
>30) was assumed to be the period of exposure (due to the movement of people to and from the
station) and was represented by a Uniform distribution determined from Davis Station records
between 2005 and 2010. The tolerable daily probability of infection (pi.) was determined using
published dose-response models for norovirus (Teunis et al., 2008), giardia (Teunis et al., 1996) and
campylobacter (Teunis et al., 2005). Full details of dose-response models and determination of

tolerable dose are provided in supplementary materials.



152  Table 1. Model input parameters.

Parameter

Units Distribution or Point Estimates®, [mean b]

References and Justification

Disease Burden (B)

DALYs case of illness™

Norovirus Uniform(3.71x10‘4, 6.23x10‘3), [3.3Ox10‘3] (Cressey and Lake, 2009; Haagsma et al., 2008; Kemmeren et al.,
2006; Lake et al., 2010; Masago et al., 2006)
Giardia Uniform(2.10x107, 2.68x107%), [2.39x107] (Havelaar, 2012; Vijgen et al., 2007)
Campylobacter Uniform(4.60x10‘3, 4.1Ox10‘2), [2.28x10‘2] (Havelaar, 2012; Havelaar and Melse, 2003)
Susceptibility fraction (Sx) proportion
Norovirus Uniform(0.8, 1.0), [0.9] (Atmar, 2010; Denborough and Downing, 1968; Soller et al., 2010;
Thorven et al., 2005)
Giardia, Campylobacter 1
Exposure events (n) days year™" Uniform(62, 121), [91.5] Total number of days for months with population 230 (AAD, 2011)

between 2005 and 2010

Dose-response models

Norovirus (a+b inoculum)

Giardia

full Beta-Poisson: ayy=0.04, Byy=0.055,
Nnv=0.00255, r_NV=0.086, ay,=0.9997

exponential: r_G=Triangular(0.0044, 0.0566,

(Teunis et al., 2008)

(Teunis et al., 1996); min/max are 95" confidence intervals




0.0199), [0.027]

Campylobacter full Beta-Poisson: a=0.024, f=0.011, r]c=3.63x10'9, (Teunis et al., 2005)
r C=2.44x10°
Giardia infection:illness proportion Uniform(0.24, 0.93), [0.58] (Birkhead and Vogt, 1989; Hoque et al., 2002; Lopez et al., 1980;
(inf:ill) Yakoob et al., 2010)
Daily water consumption (V) L person™ Lognormal(3, 1) —truncated at 2 and 6; u=1.05, (Hunter et al., 2011; Roche et al., 2012; Schijven et al., 2011;
6=0.32 USEPA, 2004; USEPA, 2006)

Sewage concentration — municipal sewage (Csewage)

Norovirus PCR units L™ Mixture (A, B), [3.12x10°]

A = Lognormal(2.19x10°, 2.60x10°%); p=14.2, 6=0.94

B = Lognormal(4.06x10°, 6.27x10°%); u=14.6, 6=1.11

Giardia cysts Lt Mixture (G1, G2, G3), [2.51x103]
G1 = 10"Normal(2.90, 0.56)
G2 = 10"Normal(2.94, 0.77)
G3 = 10~Normal(2.57, 0.72)

Campylobacter cful® Lognormal(1.90x103, 5.00x103); u=6.51, 6=1.44

11.1% recovery efficiency (Katayama et al., 2008) appliedto A & B
(Katayama et al., 2008)
(Haramoto et al., 2006)
(Van Den Akker et al., 2011)

recovery included in values (32-47%)

(NRMMC et al., 2006a)




Station population (P) # people

Discrete distribution (min=51, max=106), [72]

daily station population in months with population >30; data from

2005-2011, n=601 (AAD, 2011)

Secondary attack rate (A,) proportion

Norovirus

Giardia

Campylobacter

Uniform(0.14, 0.22), [0.18]

Uniform(0.17, 0.18), [0.175]

Uniform(0, 0.15), [0.075]

(Alfano-Sobsey et al., 2012; Baron et al., 1982; Gotz et al., 2002;
Johansson et al., 2002; ter Waarbeek et al., 2010)
(Katz et al., 2006; Pickering et al., 1981)

(Evans, 1996; Norkrans and Svedhem, 1982; Porter and Reid, 1980)

Peak shedding rate

Norovirus (Syy) copies g-faeces™

Giardia (Sg) cysts person'1
day'1

Campylobacter (S¢) cfu g-faeces™

Uniform(2.9x10", 1.6x10"), [8.2x10"]

Uniform(6.42x10°, 7.05x10°), [6.73x10°]

Uniform(10°, 10°), [5x10°]

(Atmar et al., 2008; Chan et al., 2006; Lee et al., 2007)

(Tsuchiya, 1931)

(Feachem et al., 1983; Lin et al., 2008)

Daily diarrhoeal faecal weight g-faeces person™

(F)

Uniform(200, 750), [475]

(Rao, 2006)

Daily water use (W) L person” day™

Uniform(90, 174), [132]

Davis Station between 2010 and 2011 (AAD, 2011; AAD, 2012)

10
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®Distributions: Lognormal(mean, sd), values from 1,000,000 iterations, population parameters u and & calculated as follows: u = In(x) - 0.5In(1+s%/%%), 6 =
[In(1+(sz/f2))]1/2, where % is the sample mean and s the sample standard deviation; Mixture is a set of random values drawn from each distribution with
equal weighting; Normal(mean, sd); Triangular(min, max, mode/most likely); Uniform(min, max).

®mean of 1,000,000 iterations (for information purposes only).
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The tolerable pathogen concentration in treated drinking water (Ciolerable; Organisms L") was
estimated from the exposure model,

A = CroteranieVs (3]

using the estimated tolerable dose (A) and the daily per capita water consumption (V; L person™

day™). Per capita water consumption at Davis Station is much higher than that of the general
population (typically assumed to be 2 L day) as humidity is very low in Antarctica. Some community
members have indicated they drink much more than the recommended 4 L, with consumption of up
to 6 L per day considered quite reasonable. Variability in drinking water consumption was
represented using a Lognormal distribution (Astrom et al., 2007; Pintar et al., 2012; Schijven et al.,
2011) with a mean daily drinking water consumption of 3 L. In studies with mean daily drinking
water consumption greater than 1 L (Table S.1), standard deviations ranged from 0.8 to 1.2;
therefore, the middle value (1.0) was chosen to represent variation and the distribution was

truncated at the likely minimum and maximum values (2 and 6 L).

Finally, the required logy, reduction value (LRV) in sewage, necessary to meet tolerable drinking
water quality, was calculated as

LRV = log,o(c) — log1o(Crolerable), (4]

where the pathogen concentrations in sewage (c) were estimated using two different methods: 1)
published values of pathogen concentrations in municipal wastewater and 2) estimates of sewage
pathogen concentrations during a gastroenteritis outbreak at Davis Station. There was no available

information on concentrations of pathogens or indicator organisms in raw sewage at Davis Station.

Norovirus, giardia and Campylobacter concentrations in municipal wastewater (Csewage; # L) were
assumed to follow a Lognormal distribution, with values drawn from published literature (refer to

supplementary materials). An estimate of outbreak conditions at Davis Station was developed, with

12
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an outbreak defined as the arrival of one infected person. Outbreak sewage pathogen

concentrations (c,; # L) were estimated using the following equations

_ (1+PAp)S [5]
° wp '
S = SNVF orS = ScF, [6]

where P is the population on a given summer day, A, is the secondary attack rate (proportion), S is
the peak daily pathogen shedding rate (# person™ day™), W is the per capita water use (L person™
day™), Snv and Sc are the norovirus and Campylobacter shedding concentrations (# g faeces™) and F is

the daily diarrheal excretion rate (g faeces person™ day™).

To represent the summer population (P), months were selected where the minimum number of
people on station was >30, and daily population values (n=601) were used as a discrete distribution,
using data from 2005 to 2011. Daily per capita water use (W) was determined from monthly average
population and monthly total station water use during summer months (2010-2011; AAD, 2012),

with the variation represented by a Uniform distribution.

The secondary attack rate (A,) is the proportion of people who, after contact with the original
infected person, become ill (typically measured as the number of symptomatic cases). A, was used to
estimate the maximum number of people who might be ill at one time (post-arrival of the one
infected person), making the unrealistic (highly conservative) assumption that all infections occurred
instantaneously (rather than over a period of days or weeks). Uniform distributions were used to
represent the range of published values for secondary attack rate. Various studies have reported
secondary norovirus attack rates between 0.14 and 0.22 over periods of up to 14 days after the first
reported case (Alfano-Sobsey et al., 2012; Baron et al., 1982; G6tz et al., 2002; Johansson et al.,

2002; ter Waarbeek et al., 2010). Two studies reported very similar secondary attack rates for giardia

13
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(Katz et al., 2006; Pickering et al., 1981) while a wide range (0 to 0.15) was reported for

Campylobacter (Evans, 1996; Norkrans and Svedhem, 1982; Porter and Reid, 1980).

Shedding rates (S) were also represented by Uniform distributions. The only known study of giardia
shedding rates (Sg; cysts person™ day™) was conducted with two infected individuals over a period of
7 weeks (Tsuchiya, 1931) and the maximum shedding rate from each participant was used to define
the range of peak daily shedding rates. Lin et al. (2008) reported viable Campylobacter counts in
faeces (CFU g?) from 10 samples while Faechem et al. (1983) reported counts as high as 10° per g
faeces (minimum and maximum values used to define the distribution). Three studies (Atmar et al.,
2008; Chan et al., 2006; Lee et al., 2007) reported a range of norovirus shedding concentrations (Syy;
copies g-faeces™) and the maximum value from each of the four sets of data was used to define the
distribution. For both norovirus and Campylobacter, a Uniform distribution (# g-faeces™) was
converted to shedding rate using an estimate of daily diarrhoeal faecal weight (F; g person™ day™).
Individuals suffering from diarrhea are typically defined as having a daily stool weight in excess of
200 g and a recent study reported mean stool weights of 750 g in persons with diarrhea (Rao, 2006);
a Uniform distribution was used to represent faecal weights for ill individuals, making the
assumption that all infected individuals have diarrhea (secondary attack rate counts only people who
are symptomatic).

2.2 Population Size

The premise of this model is that small communities need to be considered differently to large cities,
with the assumption that outbreak conditions will be significantly different to those in a large city as
a function of the relatively greater degree of contact between community members in a small
population and the greater level of dilution in a municipal sewage treatment plant due to the large
population served (NRMMC et al., 2008). The estimate of municipal sewage concentrations reflects

“average” conditions in a large city while outbreak sewage concentration was estimated assuming

14
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that the community at Davis Station operates in a similar fashion to the confined populations
assessed to determine secondary attack rates (assuming a high degree of contact between all
community members). The difference in sewage concentrations during outbreaks in small or large
communities is a function of the proportion of the population infected. To evaluate the impact of
population size, a method was developed to estimate the likely sewage concentration, and therefore
required logy reduction, during a norovirus outbreak in a large city. Norovirus was selected as the

reference pathogen as the required epidemiological data were available.

In Australia, there are 0.92 cases of gastroenteritis per person per year (Hall et al., 2006) of which
10.7% are caused by norovirus (Sinclair et al.,, 2005). If all norovirus infections occurred
simultaneously (which is highly improbable), then 9.8% of the population would be infected (~0.098
cases of novovirus infection per person per year). A more realistic scenario can be developed using
the results of a Melbourne study of 600 households that reported a maximum of 2.5% of households
with at least one case of norovirus per month (Sinclair pers. comm.; Sinclair et al., 2005), assuming
that monthly incidence rates equate to outbreaks. Assuming four people per household, 1.4 people
infected per household event (average value reported by Sinclair et al., 2005), and using the current
Melbourne population of 4,137,432 (ABS, 2012), an estimated 36,203 people would be infected
during an outbreak, or ~0.88% of the population. Applying this monthly infection rate across a whole
year, there would be 0.105 cases of norovirus per person per year which is consistent with the
estimated value above (0.098) and therefore a norovirus outbreak in Melbourne was conservatively
assumed to infect 1% of the population. The following scenarios were compared to evaluate the
magnitude of the effect of population size: municipal sewage (“average” city conditions), outbreak

conditions in a large city (population >1 million) and outbreak conditions at Davis Station.
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2.3 Method Comparisons
The model presented herein uses a different approach to that taken by regulatory bodies. For

example, a stochastic approach was used here to account for variability and uncertainty in the
model while the Australian Guidelines for Water Recycling — Augmentation of Drinking Water
Supplies (NRMMC et al., 2008) use a deterministic approach, conceding that stochastic analyses may
provide a better understanding of uncertainty and variability where sufficient data is available. In
our model, norovirus was chosen as the reference pathogen for viruses, giardia for protozoans and
Campylobacter for bacteria, while the Guidelines use adenovirus measurements with the rotavirus
dose-response model for viruses, cryptosporidium for protozoans and Campylobacter for bacteria. In
addition, daily per capita drinking water consumption was much higher to reflect conditions at Davis
Station. The differences in methods between the model used herein and that described in the
Guidelines are outlined in Table S.2. The Guideline method and input parameters were used and
then individual parameters were changed sequentially (detailed in Table 2, Table S.4 and Table S.5)
to evaluate the impact of each change on the model output (required LRVs).

2.4 Sensitivity Analysis

A sensitivity analysis, using Spearman rank order correlation coefficients, was conducted using
values from the first 1,000 random draws of each input distribution to identify those input
parameters that had the greatest influence on the uncertainty of the model output. Input
distributions were assessed to ensure there was no correlation between unrelated variables and
then relevant input parameters were tested against the final model output (LRV). To further
evaluate the impact of variation of input parameters on the magnitude of required LRVs, the model
was run with key inputs set at discrete percentile values (5", 50" and 95"), with no other alteration
to the model; median required LRVs were reported.

2.5 Model Structure and Implementation

For all input parameters, a set of random values (n = 1,000,000) was drawn from the distribution and

used for all model calculations. For all model outputs, the median and 90% confidence intervals
16
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were reported. Confidence intervals were estimated using the percentile method (Buckland, 1984)
and values are reported as follows: 50" [5™, 95); single values are 95" percentile values unless
otherwise indicated. Statistical differences were determined from the first 10,000 random draws
from each output distribution using analysis of variance (ANOVA) and comparison of means using
Tukey’s HSD (Honestly Significant Difference) test. Differences were considered significant at p<0.05.
All modeling and analyses were performed in ‘R’ version 2.12.2 (The R Foundation for Statistical

Computing, 2011) and some distribution fitting was conducted in @Risk (version 5.7).

3. Results

Estimates of norovirus, giardia and Campylobacter concentrations in municipal sewage (1x10’, 9x10°
and 7.2x10° # L, respectively) were significantly lower (p<0.0001) than those determined for Davis
Station outbreak conditions, 1.4x10", 1.4x10° and 4.9x10® (Figure 1), which had a direct effect on
the required LRVs. The required LRVs to meet the <10° DALYs person™ year® health target, for
potable reuse of treated wastewater at Davis Station, were 6.9 for norovirus, 8.0 for giardia and 7.4
for Campylobacter using estimates of municipal sewage, while for the Davis Station outbreak

scenario they were 12.1, 10.4 and 12.3 respectively (Figure 2).

The estimate of norovirus concentration in municipal sewage (1x10’ L") was similar (within 1 order
of magnitude) to many previously reported maximum sewage concentrations in Japan, UK, Italy,
Finland, Germany, Sweden, Singapore and the Netherlands (Aw and Gin, 2010; Haramoto et al.,
2006; Katayama et al., 2008; La Rosa et al., 2010; Laverick et al., 2004; Nordgren et al., 2009; Pusch
et al., 2005; Van Den Berg et al., 2005; Von Bonsdorff et al., 2002), while the estimate of outbreak
concentration (1x10™ L") was 5 orders of magnitude higher. Similarly, the estimate of giardia
concentration in municipal sewage (9x10® L") was within 1 order of magnitude of most of the
previously reported maximum sewage concentrations in Japan, the Netherlands, Spain, Sweden

and the USA (Castro-Hermida et al., 2008; Castro-Hermida et al., 2010; Gassmann and Schwartzbrod,
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1991; Medema and Schijven, 2001; Oda et al., 2005; Ottoson et al., 2006a; Ottoson et al., 2006b;
Sykora et al., 1991) while the estimate of giardia outbreak concentration (1.4x10° L) was 3 orders
of magnitude higher. The estimate of Campylobacter concentration in municipal sewage (7.2x10° cfu
L™) was similar to published values from Italy and Spain (Rodriguez and Araujo, 2010; Stellacci et al.,
2010), but lower (by as much as 2 orders of magnitude) than published concentrations in Germany
and the Baltic Sea region (Holler, 1988; Rechenburg and Kistemann, 2009). The estimate of outbreak

concentration (4.9x10%) was up to 5 orders of magnitude higher than municipal sewage estimates.

The situation considered here is a worst case scenario where raw wastewater is not diluted with
other wastewater sources (stormwater, rainwater, etc.). Each of the different scenarios and
estimation methods had a significant effect (p<0.001) on the estimated sewage pathogen
concentrations and subsequently the required LRVs. To evaluate the impact of population size on
required LRVs, an epidemiological method was developed to estimate norovirus concentrations in
Melbourne sewage during an outbreak. Melbourne outbreak sewage concentration (7.2x10™ # L)
was nearly 4 orders of magnitude greater than municipal sewage (1.0x10’ # L) and ~1 order of
magnitude less than Davis Station outbreak concentration (1.4x10"2# L™), requiring 10.8 compared

with 12.1 LRVs for Davis Station (Figure 3).

The Guidelines recommend a minimum enteric virus LRV of 9.5 for the production of drinking water
from sewage while the model, using municipal sewage pathogen concentrations, determined a LRV
of 6.9 for norovirus. To compare these two methods, sequential steps from the Guideline method to
a deterministic approximation of the model are reported in Table 2. The difference in LRVs between
Steps 2 and 4 shows that the full norovirus dose-response model reduces the required LRV from 12.5
with the rotavirus dose-response model to 7.2; this is likely the primary contributing factor to the

difference between the Guideline value and the model value, although the higher virus
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concentration was also important (increased the LRV from 9.4 to 12.5). The difference between
Steps 4 and 5 shows the impact of using the higher drinking water volume (7.2 to 7.6) and the
difference between Steps 5 and 7 shows the impact of a shorter exposure period (7.6 to 7.3); none
of these changes greatly altered the final model output. Comparing the 95" percentile of the full
stochastic model (6.9) with a deterministic approximation of the model (Step 7; 7.3), the difference
is small, demonstrating that the understanding gained from the stepwise evaluation of parameter
changes can be applied to the full model. A similar step-wise process was conducted for the other
reference pathogens and results are presented in supplementary materials (Tables S.4 and S.5). The

impact of the full stochastic model had much less impact on the LRVs for giardia and Campylobacter.

An assessment of all input parameters confirmed that there were no unexpected relationships or
correlations and variation in many of the input parameters contributed significantly to the variation
in the model outputs (Table 3). Using the municipal sewage method, sewage concentration had the
largest impact on variation in the estimate of required LRVs, while drinking water volume, disease
burden and exposure period contributed smaller amounts. Exposure period did not affect
Campylobacter, while for giardia the dose-response parameter (r) and the infection to illness
relationship also made significant contributions to variation. The outbreak scenario method was
similar for norovirus and Campylobacter, with the greatest effect on variation in LRV due to variation
in the estimate of sewage concentration which was a function of the other input parameters.
Pathogen shedding rate contributed the most to the variation in LRVs for norovirus and
Campylobacter, followed by faecal weight, disease burden, volume of drinking water and daily per
capita water use. Secondary attack rate was also a significant contributor for Campylobacter. The
variation in required LRVs for giardia was somewhat different and largely influenced by the variation
in the dose-response parameter and illness to infection ratio, followed by drinking water volume,

exposure period and daily per capita water use.
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352  Table 2. Estimated required enteric virus log;, reduction values (LRVs) for stepwise methodological
353  changes from the Guideline method (NRMMC et al., 2008) to a deterministic approximation of the
354 model using municipal sewage concentrations.
Step LRV Model Input Parameters®
v c B St inf:ill ~ d-r n

1. 9.4 2 8000 1.3x107 (RV) 0.06 (RV) 0.88 RV° 365

2. 125 2 1.02x107 (95" NV) 1.3x10” (RV) 0.06 (RV)  0.88 RV’ 365

3. 9.8  4.8(95"AAD) 8000 1.3x107(RV) 0.06 (RV) 0.88 RV’ 365

4. 7.2 2 1.02x107 (95" NV)  5.94x10° (95" NV) 0.99 (95" NV) NV NV© 365

5. 7.6  4.8(95"AAD) 1.02x107(95"NV)  5.94x10° (95" NV) 0.99 (95" NV) NV  NV° 365

6. 6.9 2 1.02x107 (95" NV)  5.94x10° (95" NV) 0.99 (95" NV) NV NV° 118 (95" AAD)

7. 7.3  4.8(95™AAD) 1.02x10’ (95" NV)  5.94x10° (95" NV) 0.99 (95" NV) NV NV¢ 118 (95" AAD)
355 ®Model input parameters: V = daily water consumption (L person™), ¢ = sewage pathogen
356 concentration (# L), B = disease burden (DALYs case), S = susceptibility fraction, inf:ill = ratio of
357 infection to illness, d-r = dose-response model, n = days of exposure per year. 95" refers to 95"
358 percentile of the input distribution. AAD = Davis Station data. NV = norovirus, RV = rotavirus.
359 ®Simplified approximate Beta-Poisson
360  “full Beta-Poisson
361
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Table 3. Spearman’s rank order correlation coefficients for required log, pathogen reductions.

Pathogen Method Model Input Parameters®
Csewage v St n B r inf:ill P A, S F w
Norovirus municipal 0.90° 0.22° -0.04 0.09° 0.28° n/a n/a n/a n/a n/a n/a n/a
outbreak 0.88°° 0.24° -0.02 0.15° 032° n/a n/a -0.001 0.09° 0.75° 0.41° -0.21°
Giardia municipal 0.86° 0.20° n/a® 0.16° 0.08° 0.27° 0.23° n/a n/a n/a n/a n/a
outbreak 0.26°° 0.34° n/a 032° 0.12° 0.66° 0.50° -0.02 0.07° 005 n/a -0.25°
Campylobacter municipal 0.99° 0.07° n/a 000 0.14° n/a n/a n/a n/a n/a n/a n/a
outbreak 0.93°° 0.23° n/a 0.09° 025° n/a n/a -0.07° 0.45° 0.66° 0.33° -0.16°

*Model input parameters: Csewage = €stimated sewage pathogen concentration (# L"), V = daily water
consumption (L person™), S; = susceptibility fraction, n = exposure period (days year™), n = exposure
period (days year™), B = disease burden (DALYs case), r = dose-response parameter for giardia,
inf:ill = ratio of infection to illness for giardia, P = station population, A, = secondary attack rate, S =
peak pathogen shedding, F = daily faecal weight (g-faeces person™), W = daily water use (L person™
day™).

®p<0.05

“Outbreak sewage pathogen concentration was calculated from some or all of the following inputs:
station population, secondary attack rate, shedding rate, faecal weight, daily water use and dose-
response fit parameters. Its inclusion in the sensitivity analysis reflects the sum of variation
contributed by the other model input parameters.

n/a = not applicable.
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Similar trends were observed in the impact on LRVs when input parameters were fixed at discrete
percentile values (Figure 4). For municipal sewage scenarios, median LRVs were most affected by the
variation in the estimate of sewage concentration, with the spread in estimated LRVs as high as 2.3
log,o for giardia. For outbreak sewage scenarios, median LRVs were most affected by pathogen
shedding rate for norovirus and Campylobacter with a difference in LRVs as large as 1.3 logy
(Campylobacter). The effect of input parameter variation on LRVs for giardia was minimal for

outbreak conditions.

4. Discussion
While there have been recent arguments that the 10 DALY threshold is too conservative, even for

developed countries with lower background levels of water-borne disease (Mara, 2011; Mara et al.,
2010), the more cautious approach appears sensible in the context of small communities where, as a
result of isolation, the implications of illness may be much greater. Using the 10 DALY health target,
required LRVs were calculated to be 6.9, 8.0 and 7.4 for norovirus, giardia and Campylobacter using
municipal sewage values and 12.1, 10.4 and 12.3 for estimated Davis Station outbreak conditions,
compared with 9.5, 8.0 and 8.1 reported in the Guidelines (NRMMC et al., 2008). Using municipal
sewage concentrations, the LRVs for giardia and Campylobacter were very similar to the Guideline
values while the LRV for norovirus was much lower, largely due to the difference between the

rotavirus and norovirus dose-response models.

Under outbreak conditions, LRVs were much higher than Guideline values as a direct result of the
much higher sewage pathogen concentrations (3-5 orders of magnitude greater) estimated for Davis
Station outbreak conditions. These values, particularly norovirus, were orders of magnitude higher
than other published values of municipal sewage pathogen concentrations, reporting peaks of 10°—
107 for norovirus, 10°—10* for giardia and 10°—10’ for Campylobacter (Table S.6). There is very little

information available on sewage pathogen concentrations during community gastroenteritis
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outbreaks, although the Guidelines use 95" percentile values assumedly to represent peak pathogen
loads that might occur during an outbreak. To further evaluate the outbreak method, norovirus
concentrations at Davis Station were compared with estimated concentrations during an outbreak in
Melbourne. The proportion of people that become infected during a Melbourne norovirus outbreak
(1%) was much less than the secondary attack rate (14-18%) used for the Davis Station outbreak
scenario; therefore, Melbourne sewage was more dilute (i.e. lower pathogen concentration) and
required 10.8 compared with 12.1 LRVs for Davis. Assuming that the 95t percentile of the municipal
concentration estimate represents outbreak conditions, the median Melbourne outbreak
concentration (2.6x10™° # L) was nearly 3 orders of magnitude higher and may represent an
overestimation of outbreak concentrations. There are various possible explanations for this disparity
in concentration estimates: 1) the estimate of municipal sewage, based on data from Japan, does
not reflect Melbourne conditions (i.e. norovirus rates in Japan are lower than in Melbourne); 2) the
estimate of municipal sewage, based on monthly measurements, missed outbreak conditions; 3) the
outbreak method does not account for pathogen decay through the distribution system; or 4) the
outbreak sewage estimation method is too conservative. The impact of each of these potential
contributors cannot be quantified but importantly, even if the outbreak method overestimates
sewage concentration, the required LRVs are still higher than those in the Guidelines suggesting that
additional treatment will be required. A greater understanding of sewage pathogen concentrations

from small communities is needed to reduce the uncertainty around the estimated LRVs.

Various assumptions were made in the development of the model that may be important
constraints in the application of the model results. Secondary attack rate was used to estimate
outbreak sewage pathogen concentrations and is a measure of the spread of illness by direct
(person-to-person contact, inhalation of aerosols, etc.) and indirect (transfer from contaminated

surfaces, etc.) contact. Studies are typically conducted in relatively confined populations such as

23



426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

households and school camps. While there is evidence that pathogen shedding can occur in the
absence of symptoms (Atmar et al., 2008; Birkhead and Vogt, 1989; Yakoob et al., 2010), the
secondary attack rate accounts for symptomatic cases only. Therefore, the model has not accounted
for asymptomatic infections that could contribute to the pathogen load in sewage. This may be of
limited concern, at least for norovirus, as recent investigations have found that asymptomatic cases
are unlikely to cause transmission despite high shedding rates (Sukhrie, 2012). We have also made
highly conservative assumptions that all individuals became ill instantaneously and shed pathogens
at the peak rate, and that all infected or ill individuals had diarrhea. In an actual outbreak, it is likely
that the spread of infection would occur over a few weeks (the time span of studies used to estimate
secondary attack rate). At the same time, pathogen shedding can occur for extended periods of time
— both prior to symptomatic illness and after apparent recovery — and it would seem unlikely that

peak shedding amongst all individuals would occur simultaneously.

Careful consideration will be required to design a treatment plant to meet safe drinking water
requirements in the event of an outbreak of gastroenteritis in a small community. The higher
required LRVs for norovirus, giardia and Campylobacter will demand a combination of treatment
systems. At Davis Station, a secondary treatment plant will be installed to remove the majority of
the wastewater contaminants, with additional tertiary and polishing treatment steps to meet
potable water quality requirements. The tertiary and polishing processes of large scale indirect
potable water systems generally consist of ultrafiltration, reverse osmosis and advanced oxidation
followed by final disinfection. Such systems provide a multi-barrier approach to ensure water quality
and are required to achieve a virus LRV of 9.5. Such processes can achieve higher LRVs (e.g. virus LRV
of 10 for Western Corridor in Brisbane, Australia), but nevertheless, the higher required LRVs for

small scale treatment plants as suggested by this model (e.g. an extra LRV of 2.6 for viruses) will
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necessitate additional treatment units such as UV disinfection. The higher protozoa and bacteria

LRVs required for small systems also necessitate this extra treatment barrier.

In considering the higher required LRV requirements suggested by this model, it is important to
contextualize the risk of exposure to treated wastewater relative to other forms of exposure. A small
community such as Davis Station operates similar to a household in that the level of contact
between community members is quite high. The potential exposure pathways include person-to-
person contact, contact with contaminated surfaces and inhalation/ingestion of aerosols. The
assumption of the model, that one infected person arrives at Davis Station, would result in 18, 19 or
12 people sick with norovirus, giardia or Campylobacter respectively, based on the secondary attack
rate (direct or indirect contact with the infected person). In contrast, assuming all infected
individuals are shedding pathogens at a peak rate and that treatment of sewage conforms to the
required LRVs needed to meet the 10° DALY health target, consumption of the treated water would
result in up to 17 cases of norovirus, 5 cases of giardia or 2 cases of Campylobacter illness per 10,000
people or 0.18, 0.05 and 0.02 additional cases of norovirus, giardia and Campylobacter per summer

season (using 95t percentile station population).

While Davis Station may be considered an extreme example, a similar approach could be applied to
many small remote communities in Australia. In the Northern Territory alone, there are 41
predominantly indigenous communities (95% indigenous) that range in size from 85 to 886
residents, with 13 of those communities having a population under 200 (ABS, 2007b). Other reports
have found that of the 1,139 remote indigenous communities across Australia, more than half (54%)
reported less than 20 residents and 23% reported populations of 20 to 49 (ABS, 2003). DPR may be
an appropriate solution in some of these communities and the results of this model demonstrate the

importance of consideration of small communities in determining appropriate treatment trains.
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5. Conclusion
Direct potable reuse is a relatively new concept that has legitimate potential to enhance water

security in both small and large communities. This analysis has highlighted the need to consider
population size and vulnerability when assessing treatment requirements, a conclusion based on a
guantitative microbial risk assessment (QMRA) that was conducted using norovirus, giardia and
Campylobacter as reference pathogens. Two scenarios were compared, municipal sewage pathogen
loads and potential pathogen loads during a community gastroenteritis outbreak, and pathogen
concentrations were significantly higher (p<0.001) in the outbreak scenario. For the municipal
sewage scenario, required LRVs were 6.9, 8.0 and 7.4 for norovirus, giardia and Campylobacter
respectively, while for outbreak conditions, the values were 12.1, 10.4 and 12.3. While the outbreak
values could overestimate LRVs by as much as 3 (for norovirus), they still indicate a need for
additional treatment barriers for small communities in order to provide safe drinking water in the
event of an outbreak. This higher treatment requirement is predominately attributed to the
significantly increased pathogen levels in outbreak sewage relative to municipal sewage from a large
city as a result of dilution and the relatively smaller proportion of the population infected. The
recommended pathogen LRVs clearly represent a worst case scenario, assuming high pathogen
concentrations and close community contact (high secondary attack rate). Generalization to other
small communities is relevant nonetheless, and the model results indicate that in the event of an
outbreak additional treatment barriers will be necessary to achieve safe drinking water in such

communities.
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