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Methods

Additional information about methods used to develop and implement the model is provided below.

Dose-Response Models

The norovirus dose-response model published by Teunis et al. (2008) estimates probabilities of
infection and illness as functions of dose. Fit parameters for the combined inocula dataset
(8flla+8fllb) were used, making no assumptions about the aggregation state of the virus particles.
One of the fit parameters provided by Teunis et al. (2008) exceeds the limits of this model;
therefore, the Pfaff transformation was used as a very close approximation (assuming all doses
<33,323). The probability of norovirus infection per dose (pint nv; person™ day™) was estimated as

Anv(1-anvy) 1
Anv(1 — any) anv ) [l

1\
Pinf nv = 1 — | 2F 1(Bny, ———, anv + Bnv; anv) (_—) )
any 1-any

where ,F; is a hypergeometric function, Ayy is the dose of norovirus (number of organisms), ayy and
B\v are fit parameters and ayy represents the fit parameter of the (logarithmic series) aggregate size
distribution. The conditional probability of illness in infected subjects (pyy, NV) was modeled
following Teunis et al. (2008) as

Pillyne nv = 1= (1 + 0y Any) 7Y (2]
where 1y and r_nv are model parameters described in Teunis et al. (1999). The probability of illness
per dose (pi_nv) was defined as

Pill. NV = Pinf_NVPillins nv (3]
and using Egs. [3, 4 and 5] the tolerable dose of norovirus, Ayy, was determined.

For giardia, Teunis et al. (1996) fitted the exponential dose-response model, using
Pinf ¢ = 1 — exp(—r_GAg), (4]

to the original data published by Rendtorff (1954) where r_G is an infectivity parameter (interpreted
as the probability for one organism to initiate infection) and Ag is the dose of giardia (humber of
organisms) consumed. The mechanism of giardia pathogenicity and host responses to infection
remain unclear (Roxstrom-Lindquist et al., 2006), although it has been widely reported that a high
proportion of giardia infections are asymptomatic; even the original study found no evidence of
illness that could be connected to ingestion of giardia cysts (Rendtorff, 1954). The reported
proportions of asymptomatic cases are highly variable: two community-wide studies reported 0.19
(Birkhead and Vogt, 1989) and 0.76 (Lopez et al., 1980) and studies of adults found 0.07 (Hoque et
al., 2002) and 0.30 (Yakoob et al., 2010). Therefore, a Uniform distribution was used to represent the
proportion of infections that result in illness. The tolerable daily probability of infection (pins ) Was
estimated as

. _ _Ping 5
Pinf G = Grriny 51
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where inf:ill is the proportion of infections that are symptomatic (illness). Eq. [4] was then used to
solve for the tolerable dose of giardia, Ag.

The probability of Campylobacter infection per dose (pint ¢; person day™) was estimated as
Pinf.c =1 — 1F (@, a+ B;— Ac), [6]

where ;F; is a hypergeometric function, A¢ is the dose of Campylobacter (number of organisms) and

a and B are fit parameters. The conditional probability of illness in infected subjects (py, . .) was
found to be dose-dependent and was modeled following Teunis et al. (2005) as
Pillyne ¢ = 1 — (1 +1cAc)™-C (7]

where ¢ and r_C are model parameters described in Teunis et al. (1999). We have assumed the
values of nc and r_C were incorrectly reported in Teunis et al. (2005) such that the published value of
ncis actually r_C. The probability of illness per dose (py_c) was defined as

Pill_c = Pinf_cPilljys ¢ (8]

and using Egs. [8, 9 and 10] the tolerable dose of Campylobacter, Ac, was determined.

Estimates of municipal sewage

Measurements of norovirus in municipal wastewater are scarce which can be explained, at least in
part, by the methodological challenges related to the detection of norovirus (Haramoto et al., 2006;
Katayama et al., 2008; La Rosa et al., 2010; Ottoson et al., 2006a; Ottoson et al., 2006b). Only two
studies reported recovery efficiencies for norovirus detection (Haramoto et al., 2006; Katayama et
al., 2008); therefore, a Mixture distribution, incorporating both studies with equal weighting, was
used assuming that norovirus concentrations are similar across populations with high living
standards. Giardia lamblia cyst numbers were surveyed in raw sewage from three sewage treatment
plants over a 6 to 12 month period (Van Den Akker et al., 2011). Concentration values, corrected for
recovery efficiency, were similar across all three sewage treatment plants with a mean of 2.5 logyg
cysts L. The logy, mean and standard deviation were used to define a Normal distribution (by
definition the antilog is Lognormal®) for each sewage treatment plant and the concentration of
giardia in raw sewage was represented by a Mixture distribution of random values drawn from the
three Normal distributions with equal weighting. There was limited information on Campylobacter
concentrations although there is a reference in the Australian Guidelines for Water Recycling
(NRMMC et al., 2006a) to unpublished research (10 to 10° cfu L™ in raw sewage, 95" percentile
7x10°%). To represent station conditions, the Guideline values (95th and estimates of 1°* and 2™
percentiles) were used to estimate a Lognormal distribution.

! Technically, the definition uses the natural logarithm, but data were provided in base 10; it was assumed the
definition still applies.
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Table S.1 Published values of daily per capita drinking water consumption (L person™ day™).

Country Mean Standard Deviation Description Reference

USA 1.098 0.922 (estimated) adults 20 years and older (USEPA, 2004)

USA 1.48 0.984 (estimated) adults 25-54 years old (USEPA, 2006)
Canada 1.2 0.8 data from 7 cross-sectional studies (Roche et al., 2012)
USA 1.3 1.17 Lognormal distribution (Schijven et al., 2011)
Sweden 0.873 0.541 Lognormal distribution (Astrom et al., 2007)
France 1.760 0.001715 (Hunter et al., 2011)
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Table S.2 Comparison of methods used to estimate required log;, reductions for potable reuse of municipal sewage.

Model Australian Guidelines: Augmentation of Drinking WHO: Guidelines  for Model (estimated municipal sewage)

Parameters Water Supplies® Drinking Water Quality”

Model type Deterministic Deterministic Stochastic

Reference RV, Cr, Cb RV, Cr, Cb NV, G, Cb

pathogens

Pathogen 95" percentile values in raw sewage River Water Mixture distribution for raw sewage

concentration RV: 8.00x10% = adenovirus concentration from RV: 10 NV: 3.12x10° (mean), 1.02x10’ (95”‘percenti|e)c

#LY Virginia Pipeline Scheme, SA (unpublished) Cr: 10 G: 2.51x10° (mean), 9.04x10° (95" percentile)
Cr: 2.00x10%; Cb: 7.00x10° Cb: 100 Cb: 1.90x10° (mean), 7.19x10° (95" percentile)

Dose-response RV: simplified approx. Beta-Poisson RV: Beta-Poisson NV: full Beta-Poisson (hypergeometric)

model

Disease burden
(DALYs case™)

Susceptibility
fraction

Ratio of infection
to illness

Daily per capita
drinking water (L)
Required logio
reduction

Cr: Exponential (r=0.059)
Cb: simplified approx. Beta-Poisson

RV: 1.3x10% Cr: 1.5x10%; Cb: 4.6x10°

RV: 0.06 (population <5 years)
CrandCh: 1

RV: 0.88

Cr.0.70

Cb: 0.30

2

RV: 9.5
Cr:8
Ch: 8.1

(a=0.2531, B=0.4265)

Cr: Exponential (r=0.00467)
Cb: Exponential (r=0.019)
RV: 1.4x107

Cr: 1.5x10°

Cb: 4.6x10°

RV: 0.06

Crand Ch: 1

RV: 0.5

Cr.0.7

Cb: 0.3

1

RV:5.96
Cr:5.89
Cb: 5.98

G: Exponential (r=Triangular)
Chb: full Beta-Poisson (hypergeometric)

NV: Uniform(3.71x10™, 6.23x107%) ~ 3.30x107 (mean)
G: Uniform(2.10x107, 2.68x10%) ~ 2.39x10 (mean)
Cb: Uniform(4.60x107, 4.10x10%) ~ 2.28x10”* (mean)
NV: Uniform(0.8, 1.0)

GandCh: 1

NV: non-linear dose-response model

G: Uniform(0.24, 0.93) ~ 0.58 (mean)

Cb: non-linear dose-response model

Lognormal(3, 1) —truncated at 2 and 6

NV: 6.9 (95" percentile)
G: 8.0 (95" percentile)
Cb: 7.4 (95" percentile)

®Guidelines refer to Phase | Guidelines for many of the parameter values (NRMMC et al., 2006).

°(WHO, 2011)

“Municipal treatment plants were different sizes. In Haramoto et al. (2006) the WWTP serves a population of ~63,000 and treats 28,000m* of sewage per
day. In Katayama et al. (2008), samples were collected from 6 WWTPs that , ranging in size from 63,000 to 770,000 people served and average daily treated
volume of 28,000 to 571,000 m* per day.
Note: Cb=Campylobacter, Cr=cryptosporidium, G=Giardia, NV=norovirus, RV=rotavirus
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Table S.3. Stepwise results from reverse QMRA for required logy reduction (LRV) of pathogens in sewage for potable reuse of treated wastewater. Values

reported as 50"[5", 95'"] percentiles.

Model Parameter Norovirus

Giardia

Campylobacter

Health target (DALYs person™ year™) 10°

Sewage conc’n — municipal (# L) 1.7x10°[3.2x10°, 1.0x107]
Sewage conc’n — Davis outbreak (# L™) 5.0x10"[6.5x10"°, 1.4x10"]
Sewage conc’n — Melbourne outbreak (# L) 2..6x10"[3.4x10°, 7.2x10™
Tolerable annual probability of illness 3.4x10[1.9x10", 1.7x107%]
Tolerable daily probability of illness 3.8x10°[1.8x10°, 1.9x107]
Tolerable daily probability of infection 4.6x107°[3.2x1073, 1.0x107]

Tolerable daily dose (#) 3.8[2.6, 8.5]
Tolerable drinking water conc’n (# L) 1.3[0.7, 3.0]
Required LRV — municipal 6.1[5.3, 6.9]

Required LRV — outbreak 11.6[10.6, 12.1]
Required LRV — Melbourne outbreak 10.3[9.4, 10.8]
Required LRV — Guideline values 9.5

10°

6.5x10%[4.2x10*%, 9.0x10%]

9.7x10°[7.5x10°, 1.4x10°]

n/a
4.2x10"[3.8x10™, 4.7x10]
4.6x10°[3.4x10°°, 6.6x10°)
8.2x10°[4.5x10°°, 1.8x107]
3.3x10™[1.3x10™, 1.0x1073
1.1x10[4.0x10”, 3.6x10™]

6.8[5.5, 8.0]

10.0[9.4, 10.4]

n/a

8.0

10°
6.7x10%[6.3x10", 7.2x10°]
1.2x10%[9.6x10°, 4.9x10°]
n/a
4.4x107[2.6x107°, 1.6x10™]
5.0x10[2.5x107, 1.8x10°]
6.2x10[4.4x10™, 1.2x107%]
9.2x107[6.7x10™, 1.7x107]
3.1x10™[1.7x10™, 6.3x10™]

6.3[5.3, 7.4]

11.6[10.5, 12.3]

n/a

8.1
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Table S.4 Estimated required protozoan logy, reduction values (LRVs) for stepwise methodological
changes from the Guideline method (NRMMC et al., 2008) to a deterministic approximation of the
model using municipal sewage concentrations.

Step RV Model Input Parameters®
v c B S; infill d-r n

1. .0 2 2000 1.5x10° 1 070 cCr’° 365

2. .6 2 9.04x10° (95" G) 1.5x10° 1 070 cCr® 365

3. .3 4.8 (95"™) 2000 1.5x107 1 070 cCr® 365

4, .9 2 9.04x10° (95" G) 2.7x10%(95™) 1 G° G° 365

5. .2 4.8 (95")  9.04x10%(95" G) 2.7x10%(95") 1 G° G° 365

6. .4 2 9.04x10° (95" G) 2.7x10%(95") 1 G° G° 118 (95" AAD)
7. .8  4.8(95")  9.04x10°(95" G) 2.7x10%(95") 1 G° G°  118(95" AAD)

®Model input parameters: V = daily water consumption (L person™), ¢ = sewage pathogen

concentration (# L™), B = disease burden (DALYs case™), ¢ = susceptibility fraction, inf:ill = ratio of
infection to illness, d-r = dose-response model, n = days of exposure.

bexponential dose-response model; r=5.9x107

‘giardia exponential dose-response model: use 95" values of r (0.0468) and Inf:ill (0.8954).

The Guidelines (NRMMC et al., 2008) recommend a minimum cryptosporidium logy, reduction (LRV)
of 8.0 for the production of drinking water from sewage while the full stochastic model, using
municipal sewage concentration, obtained the same value for giardia. To compare these two
methods, sequential steps in methodology from the Guideline method (Step 1) to a deterministic
approximation of the model method (Step 7, using 95 percentile values of all input distributions)
are reported. The difference in LRVs between Steps 1 and 2 shows the effect of using Australian
giardia concentrations (8.0 to 8.6). The difference between Steps 2 and 4 shows the slight increase in
LRV due to the giardia dose-response model (8.6 to 8.9). The difference between Steps 4 and 5
shows the impact of using the higher drinking water volume (8.9 to 9.2) and the difference between
Steps 5 and 7 shows the impact of a shorter exposure period (9.2 to 8.8). Comparing the 95"
percentile of the full stochastic model (8.0) with a deterministic approximation of the method (Step
7; 8.8), the difference is moderate.
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Table S.5 Estimated required bacterial logyy reduction values (LRVs) for stepwise methodological
changes from the Guideline method (NRMMC et al., 2008) to a deterministic approximation of the
model using municipal sewage concentrations.

Step RV Model Input Parameters®
v c B St Infiill d-r n

1. 1 2 7000 4.6x10° 1 0.30 Cb® 365

2. .5 4.8(95") 7000  4.6x10° 1 030 Cb® 365

3. .6 2 7000 3.9x10° (95th) 1 Ch°® Chb® 365

4. .0 4.8(95") 7000  3.9x107(95") 1 Cb®  Cb° 365

5. 4 2 7000  3.9x107(95") 1 Cb®  Cb® 118(95")

6. .7 4.8(95") 7000  3.9x107(95") 1 Cb®  Ch® 118(95")
®Model input parameters: V = daily water consumption (L person™), ¢ = sewage pathogen
concentration (# L™), B = disease burden (DALYs case™), S; = susceptibility fraction, Inf:lll = ratio of

infection to illness, d-r = dose-response model, n = days of exposure.
bsimplified approximate Beta-Poisson; alpha=0.145, beta=7.58
“full Beta-Poisson

The Guidelines (NRMMC et al., 2008) recommend a minimum Campylobacter log,, reduction (LRV)
of 8.1 for the production of drinking water from sewage while the full stochastic model, using
municipal sewage concentrations, determined a 95t percentile LRV of 7.4. To compare these two
methods, sequential steps in methodology from the Guideline method (Step 1) to a deterministic
approximation of the model (Step 6, using 95" percentile values of all input distributions) are
reported. The difference between Steps 1 and 2 shows the impact of using the higher drinking water
volume (8.1 to 8.5). The difference between Steps 1 and 3 shows the reduction in LRV due to the full
Campylobacter dose-response model (8.1 to 7.6) and a further reduction is shown with the
implementation of the (shorter) summer exposure period (Steps 4 and 6; LRVs of 8.0 and 7.7).
Comparing the 95" percentile of the full stochastic model (7.4) with a deterministic approximation
of the method (Step 6; 7.7), the difference is small.
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141  Table S.6 Published maximum pathogen concentrations in raw sewage.

142
Country Peak value Units Account for % Reference
‘ecovery’
NOROVIRUS
Brazil ~5x10* Genomic copies L? 1/a (Victoria et al., 2010)
Finland 10° PCR units L™ 1/a (Von Bonsdorff et al., 2002)
France 1x10° (NV Gl) Genomic copies L™ 1/a (Da Silva et al., 2007)
Germany 9.7%10° Genomic equivalents L™ 10 (Pusch et al., 2005)
Italy 5.7x10° GC/L (have assumed error in 1/a (La Rosa et al., 2010)
paper)
Japan 1.9x107 total NV (I+1) copies L™ /es (Haramoto et al., 2006)
Japan 6.6x10° total NV (I+1) monthly mean RT-PCR units L /es (Katayama et al., 2008)
Netherlands  8.5x10° PDU L™ 10 (Lodder and De Roda Husman, 2005)
Netherlands 10° PCR detectable units L™ 1/a (Van Den Berg et al., 2005)
Singapore 1x10” (NV GI) Genomic copies mL™ 10 (Aw and Gin, 2010)
Sweden 3.65 logio MPN PCR units Lt 1/a (Ottoson et al., 2006b)
Sweden 4.5 x10° #Lt 1/a (Ottoson et al., 2006a)
Sweden 1x10’ (NV GlI) Genomic copies L™ 1/a (Nordgren et al., 2009)
UK 1.8x10’ cDNA copies L™ 10 (Laverick et al., 2004)
143

144
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Country Peak value Units Account for % Reference
‘ecovery’
GIARDIA
Australia >5.0x10° cysts Lt 1/a (Wohlsen and Katouli, 2006)
Canada 2.1 x1032 cysts L’i 1/a (Chauret et al., 1999)

Japan 3.9x10 cysts L /es (Oda et al., 2005)
Netherlands 2.6x10° cysts L! Jes (Medema and Schijven, 2001)
Spain 1.4x10* cysts L™ /es (Castro-Hermida et al., 2010)
Spain 8.31x10° cysts L! 1/a (Castro-Hermida et al., 2008)

Sweden 5.72x10" cysts L™ /es (Ottoson et al., 2006b)

Sweden 1.77x10" cysts L™ /es (Ottoson et al., 2006a)

USA 1.4x10* cysts L™ 1/a (Gassmann and Schwartzbrod, 1991)
USA 1.3x10° cysts L™ 1/a (Rose et al., 1996)

USA 1.4 x10* cysts L™ 1/a (Sykora et al., 1991)

Australia ~900 cysts L! /es (Van Den Akker et al., 2011)
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149  Table S.6 Published maximum pathogen concentrations in raw sewage - continued.

150
Country Peak value Units Account for % Reference
‘ecovery’
CAMPYLOBACTER
Germany >1x10’ CFUL? 10 (Rechenburg and Kistemann, 2009)
Italy 10° CFUL? 10 (Stellacci et al., 2010)
Baltic Sea 1.1x10° CFU L™ 10 (Holler, 1988)
Netherlands 2.4x10" CFU L™ 10 (ten Veldhuis et al., 2010)
(combined
sewers)
Germany 10" CFUL® 10 (Stelzer, 1991)
USA 6.2x10’ CFU L™ 1/a (Hellein et al., 2011)
Spain 1.5x10° MPN L* 10 (Rodriguez and Araujo, 2010)
Switzerland  2.3x10° cells L 10 (Rinsoz et al., 2009)
France 3x10° genes L™ 10 (Wéry et al., 2008)
UK 4.6x10° MPN L™ (Arimi et al., 1988)

151  *n/a=not stated, unclear
152
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